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Abstract
This work is devoted to the analysis for a new class of set-valued inverse mixed
variational inequalities (SIMVIs) in reflexive Banach spaces, when both the mapping
and the constraint set are perturbed simultaneously by two parameters. Several
equivalence characterizations are given for SIMVIs to have nonempty and bounded
solution sets. Based on the equivalence conditions, under the premise of monotone
mappings, the stability result for the SIMVIs is obtained in the reflexive Banach space.
Furthermore, to illustrate the results, an example of the traffic network equilibrium
control problem is provided at the end of this paper. The results presented in this
paper generalize and extend some known results in this area.
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1 Introduction
As an important part of nonlinear analysis, variational inequalities are widely applied in fi-
nance, transportation, economics, optimization, engineering science, and other fields. In
the initial stage of the development of variational inequalities, researchers have mainly
studied the nonemptiness and boundedness of variational inequality solution sets; see
[1–3]. In recent years, the stability analysis of variational inequalities has been extensively
developed because of the importance of investigating the properties of solutions to prob-
lems with perturbed data in practical applications; see [4–7]. McLinden [8] investigated
the stability of a variational inequality with monotone operators and convex sets in re-
flexive Banach spaces and obtained a variety of results about stability involving a natural
parameter. Addi et al. [9] investigated the stability of a finite semicoercive variational in-
equalities with respect to data perturbation by using recession analysis. He et al. [10] in-
vestigated the stability of generalized variational inequalities with either the mapping or
the constraint set perturbed in reflexive Banach spaces. Fan et al. [11] studied the stability
of a variational inequality where the mapping and the constraint set are perturbed simul-
taneously in reflexive Banach spaces. In addition, with the proposed mixed variational
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inequality, Zhong et al. [12] analyzed the stability of a class of Minty mixed variational in-
equalities in reflexive Banach spaces based on the analysis in [10] and extended the results
in [10].

Inverse variational inequality (IVI) research has also made great progress, as an IVI is
a special case of a variational inequality. Yang [13] considered the dynamic power price
problem as defined by an IVI in finite dimensional spaces from the perspective of optimal
control. He et al. [14] regarded congestion control problems in finite dimensional spaces as
constrained black box inverse inequality problems and solved a class of constrained ‘black
box’ inverse variational inequalities in finite dimensional spaces. Scrimali et al. [15] used
an evolutionary IVI to study a time-dependent spatial pricing equilibrium control prob-
lem in finite dimensional spaces. Li et al. [16] used an inverse mixed variational inequality
in Hilbert spaces to study the equilibrium control problem of a transportation network.
Barbagallo et al. [17] proposed using an IVI in Hilbert spaces to solve an oligopolistic mar-
ket equilibrium problem. Moreover, to address IVI problems, Luo [18] used the Tikhonov
regularization method to study the perturbation analysis of the solution set of the reg-
ularized inverse variational inequality in finite dimensional spaces. Vuong [19] used the
neural network to obtain a projection algorithm for solving the IVI in finite dimensional
spaces. Xu [20] used the image space analysis to investigate an inverse variational inequal-
ity with a cone constraint. Hu and Fang [21] studied the Levitin–Polyak well-posedness of
IVIs in finite dimensional spaces. Luo [22] studied the stability for the set-valued inverse
variational inequality with both the mapping and the constraint set that are perturbed in
a reflexive Banach space. Aussel et al. [23] studied a gap function and error bounds for
the IVI in finite dimensional spaces. Jiang et al. [24] used ADMM to analyze structured
IVIs to solve policy design difficulties in finite dimensional spaces. Very recently, Zhang
[25] investigated error bounds of an inverse mixed quasi-variational inequality problem in
Hilbert spaces. Tangkhawiwetkul [26] studied and analyzed the generalized inverse mixed
variational inequality in Hilbert spaces and obtained the existence and uniqueness of the
solution for the problem. For more related research works, we can see [27–29].

However, most results about IVIs are about the existence, well-posedness, and applica-
tions, there are very few studies on the stability of IVIs in infinite dimensional spaces. But
the stability analysis of IVIs with perturbed parameters is very important because it can
help in identifying relatively high accuracy, predicting the future changes of the equilibria
as a result of the changes in the governing system, providing valuable information for de-
signing various equilibrium systems. Moreover, most results about IVIs are discussed in
finite dimensional spaces or Hilbert spaces where the mappings in IVIs are single-valued.
Thus, it is worth studying the stability of a generalized inverse variational inequality, which
is called a set-valued inverse mixed variational inequality (SIMVI), with the constraint set
and the mapping perturbed simultaneously by different parameters in reflexive Banach
spaces. To illustrate the results, some examples are provided. To the best of our knowl-
edge, the results are new.

The paper is built up as follows. Section 2 provides a few useful definitions and lemmas.
In Sect. 3, to make the SIMVI have a nonempty and bounded solution set, we offer a num-
ber of equivalent characterizations. In Sect. 4, the stability of the solutions for the SIMVI
with the mapping and the constraint set perturbed simultaneously is obtained. In Sect. 5,
to illustrate the results, we give an example. In Sect. 6, we give the conclusion.
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2 Preliminaries
In this paper, we let E be a reflexive Banach space with its dual space E∗, and let � be a
nonempty, convex, and closed subset of E∗. Let � : E → 2E∗ be a set-valued mapping and
� : E∗ → R ∪ {+∞} be a proper lower semicontinuous convex functional. We denote the
set-valued inverse variational inequality by SIMVI(�,�), which means finding w ∈ E and
w∗ ∈ �(w) ∩ � such that

〈
v – w∗, w

〉
+ �(v) – �

(
w∗)≥ 0 for all v ∈ �.

Note that if E = R
n and � is single-valued, the SIMVI(�,�) may be simplified to the inverse

mixed variational inequality (IMVI) shown below: find w ∈R
n such that

�(w) ∈ �,
〈
ṽ – �(w), w

〉
+ �(ṽ) – �

(
�(w)

)≥ 0 for all ṽ ∈ �.

The work about IMVIs can be found in [4, 5, 16]. If � ≡ 0 on Rn, then IMVI can be trans-
formed to an inverse variational inequality (IVI): find w ∈R

n such that

�(w) ∈ �,
〈
ṽ – �(w), w

〉≥ 0 for all ṽ ∈ �.

We use the sign “→” for strong convergence and “⇀” to represent weak convergence. The
barrier cone of � is defined by

barr(�) :=
{

w ∈ E : sup
v∈�

〈v, w〉 < ∞
}

.

The recession cone of � is a closed and convex cone defined by

�∞ :=
{

d ∈ E∗ : ∃tn ↓ 0,∃wn ∈ �, tnwn ⇀ d
}

or

�∞ :=
{

d ∈ E∗ : w0 + λd ∈ �, for all λ > 0, w0 ∈ �
}

.

The definition of negative polar cone of � is

�– :=
{

v ∈ E∗ : 〈v, w〉 ≤ 0, for all w ∈ �
}

,

and int(�) represents the interior of �.
Assume that � : � ⊂ E∗ → R ∪ {+∞} is a proper, convex, and lower semicontinuous

functional. The recession function of �, denoted by �∞, is defined by

�∞(w) := lim
t→+∞

�(w0 + tw) – �(w0)
t

,

where w0 is any point in � = {v ∈ E∗ : �(v) < +∞}. Then it means that

�∞(w) := lim
t→+∞

�(tw)
t

.
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The functional �∞(·) has been proved to be a proper, convex, lower semicontinuous, and
weakly lower semicontinuous with the property that

�(w + v) ≤ �(w) + �∞(v) for all w ∈ dom�, v ∈ E∗. (2.1)

Obviously, we know that �∞(·) is positively homogeneous of degree 1, i.e.,

�∞(λw) = λ�∞(w) for all w ∈ E,λ ≥ 0. (2.2)

The conjugate function �∗(w) : E →R∪ {+∞} of � is defined by

�∗(w) := sup
v∈�

{〈v, w〉 – �(v)
}

,

where the domain of �∗ is defined by dom�∗ = {w ∈ E : �∗(w) < +∞}.
According to Proposition 2.5 in [6], we have

�∞(w) ≤ lim inf
n→∞

�(tnwn)
tn

, (2.3)

where w0 is any point in dom�, {wn} is any sequence in E converging weakly to w, and tn

is any real sequence converging to +∞.

Definition 2.1 [22] A set-valued mapping � : E → 2E∗ is said to be
(i) upper semicontinuous at w0 ∈ E if, for any neighborhood N(�(w0)) of �(w0), there

exists a neighborhood N(w0) of w0 such that �(w) ⊂ N(�(w0)) for all w ∈ N(w0);
(ii) lower semicontinuous at w0 ∈ E if, for any v0 ∈ �(w0) and any neighborhood N(v0)

of v0, there exists a neighborhood N(w0) of w0 such that �(w)
⋂

N(v0) �= ∅ for all
w ∈ N(w0);

(iii) upper hemicontinuous iff the restriction of � to every line segment of E is upper
semicontinuous;

(iv) monotone on E iff, for all (w, w∗), (v, v∗) in the graph �,

〈
v∗ – w∗, v – w

〉≥ 0.

It is evident that � is lower semicontinuous at w0 ∈ E if and only if, for any wn with
wn → w0 and v0 ∈ �(w0), there exists vn ∈ �(wn) such that vn → v0.

Lemma 2.1 [10] Let K ⊂ E be a nonempty closed convex set. If barr K has nonempty inte-
rior, then there does not exist wn ⊂ K with ‖wn‖ → ∞ such that wn

‖wn‖ ⇀ 0. If additionally
K is a cone, then there does not exist dn ⊂ K with each ‖dn‖ = 1 such that dn ⇀ 0.

Lemma 2.2 [11] Let (Z, d) be a metric space, α0 ∈ Z be a given point. Let L : Z → 2E∗ be a
set-valued mapping with nonempty values, and L is upper semicontinuous at α0, then there
exists a neighborhood W of α0 such that (L(α))∞ ⊂ (L(α0))∞ for all α ∈W .

Lemma 2.3 [30] Let K be a nonempty convex subset of a Hausdorff topological vector space
X and G : K → 2X be a set-valued mapping from K into X satisfying the following proper-
ties:
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(a) G is a KKM mapping, i.e., for every finite subset A of K , co(A) ⊂⋃w∈A G(w);
(b) G(w) is a closed set in X for every w ∈ K ;
(c) G(w0) is compact in X for some w0 ∈ K .
Then

⋂
w∈K G(w) �= ∅.

3 Boundedness of solution sets
In this section, we give some characterizations about the solutions of the SIMVI(�, F).
Theorem 3.1 is critical for demonstrating the equivalence of the nonemptiness and bound-
edness of the solution set. For the convenience of discussion, we let G := �×E and propose
the set-valued dual inverse mixed variational inequality (for short, SDIMVI(G,�)), which
means finding (v, w) ∈ G such that

inf
μ∗∈F(μ)

〈
μ∗ – z,μ – w

〉
+ 〈z – v,μ〉 + �(z) – �(v) ≥ 0 for all (z,μ) ∈ G, (3.1)

which is closely related to SIMVI(�,�).

Theorem 3.1 Assume that � ⊂ E∗ is a nonempty convex and closed set, � : E → 2E∗ is a
set-valued mapping with nonempty values, and � : � ⊂ E∗ →R is a lower semicontinuous
convex functional. Then we have two conclusions as follows:

(a) every solution of SIMVI(�,�) can solve SDIMVI(G,�) when � is monotone;
(b) every solution of SDIMVI(G,�) can solve SIMVI(�,�) when � is upper

hemicontinuous.

Proof Firstly, we prove conclusion (a). Assume that w is a solution of SIMVI(�,�), then
there exists w∗ ∈ �(w) ∩ � such that 〈v – w∗, w〉 + �(v) – �(w∗) ≥ 0 for all v ∈ �. Because
� is monotone, then for any (z,μ) ∈ G and any μ∗ ∈ �(μ), we have

0 ≤ 〈μ∗ – w∗,μ – w
〉

=
〈
μ∗ – z + z – w∗,μ – w

〉

=
〈
μ∗ – z,μ – w

〉
+
〈
z – w∗,μ – w

〉

=
〈
μ∗ – z,μ – w

〉
+
〈
z – w∗,μ

〉
–
〈
z – w∗, w

〉
+ �(z) – �

(
w∗) – (�(z) – �

(
w∗)

=
〈
μ∗ – z,μ – w

〉
+
〈
z – w∗,μ

〉
+ �(z) – �

(
w∗) –

[〈
z – w∗, u

〉
+ �(z) – �

(
w∗)]

≤ 〈μ∗ – z,μ – w
〉
+
〈
z – w∗,μ

〉
+ �(z) – �

(
w∗).

It follows that

inf
μ∗∈�(μ)

〈
μ∗ – z,μ – w

〉
+
〈
z – w∗,μ

〉
+ �(z) – �

(
w∗) for all (z,μ) ∈ G. (3.2)

We replace w∗ ∈ �(w) ∩ � in (3.2) with v, so there exists (v, w) ∈ G such that

inf
μ∗∈�(μ)

〈
μ∗ – z,μ – w

〉
+ 〈z – v,μ〉 + �(z) – �(v) ≥ 0 for all (z,μ) ∈ G,

which means w solves SDIMVI(G,�).
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Next, we prove (b). Assume that (v, w) ∈ G is a solution of SDIMVI(G,�), then we have

inf
μ∗∈�(μ)

〈
μ∗ – z,μ – w

〉
+ 〈z – v,μ〉 + �(z) – �(v) ≥ 0 for all (z,μ) ∈ G. (3.3)

For any ŵ ∈ E, v̂ ∈ � and v ∈ �, we let w(τ ) = w + τ (ŵ – w) and v(τ ) = v + τ (v̂ – v) ∈ � for
all τ ∈ [0, 1]. Take z = v(τ ), μ = w(τ ), then by virtue of (3.3), it follows that

inf
μ∗∈�(w(τ ))

〈
μ∗ – v(τ ), w(τ ) – w

〉
+
〈
v(τ ) – v, w(τ )

〉
+ �
(
v(τ )

)
– �(v) ≥ 0,

which means

inf
μ∗∈�(w(τ ))

〈
μ∗ – v(τ ), τ (ŵ – w)

〉
+
〈
τ (v̂ – v), w(τ )

〉
+ �
(
v + τ (v̂ – v)

)
– �(v) ≥ 0.

Due to � is convex, we know that

inf
μ∗∈�(w(τ ))

〈
μ∗ – v(τ ), τ (ŵ – w)

〉
+
〈
τ (v̂ – v), w(τ )

〉
+ τ�(v̂) – τ�(v) ≥ 0.

Since τ ∈ [0, 1], there is

inf
μ∗∈�(w(τ ))

〈
μ∗ – v(τ ), ŵ – w

〉
+
〈
v̂ – v, w(τ )

〉
+ �(v̂) – �(v) ≥ 0,

and so

sup
μ∗∈�(w(τ ))

〈
μ∗ – v(τ ), ŵ – w

〉
+
〈
v̂ – v, w(τ )

〉
+ �(v̂) – �(v) ≥ 0.

Because � is upper hemicontinuous and τ ∈ [0, 1], it can be seen from (iii) of Definition 2.1
that � is upper semicontinuous. Let τ → 0+, it follows from the definition of upper semi-
continuity that

sup
w∗∈F(w)

〈
w∗ – v, ŵ – w

〉
+ 〈v̂ – v, w〉 + �(v̂) – �(v) ≥ 0 for all ŵ ∈ E, v̂ ∈ �.

Since ŵ ∈ E was chosen arbitrarily, we take ŵ = w – ru for any r ∈ R and any u ∈ E, we
know that there exists w∗ ∈ �(w) such that

〈
w∗ – v, –ru

〉
+ 〈v̂ – v, w〉 + �(v̂) – �(v) ≥ 0 for all v̂ ∈ �,

which means

r
〈
w∗ – v, u

〉≤ 〈v̂ – v, w〉 + �(v̂) – �(v) for all v̂ ∈ �. (3.4)

If v̂ ∈ � is fixed, then 〈v̂ – v, w〉 + �(v̂) – �(v) is a constant; therefore, we get for any r ∈R

r
〈
w∗ – v, u

〉≤ constant.
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As a result, we can deduce that w∗ = v ∈ �. Owing to u ∈ E was chosen arbitrarily, from
(3.4), there exists w∗ ∈ �(w) ∩ � such that

〈
v̂ – w∗, w

〉
+ �(v̂) – �

(
w∗)≥ 0 for all v̂ ∈ �.

Thus, we conclude that w solves the SIMVI(�,�). �

Remark 3.1 When � ≡ 0, based on the same conditions, Luo [22] obtained the corre-
sponding result of Theorem 3.1. Thus, we note that Theorem 3.1 extends the results in
Theorem 3.1 in [22].

Theorem 3.2 Assume that � ⊂ E∗ is a nonempty, convex, and closed set, � : E → 2E∗ is
a set-valued mapping with nonempty values, and � : � ⊂ E∗ → R is a convex and lower
semicontinuous functional, int{w ∈ E : �(w)∩� �= ∅} �= ∅ and int(dom�∗) �= ∅. Consider the
following assertions:

(a) �∞ ∩ {d ∈ E∗ : 〈d, w〉 + �∞(d) ≤ 0 for all w ∈ {w ∈ E : �(w) ∩ � �= ∅}} = {0};
(b) D1 ⊂ E and D2 ⊂ � are two bounded sets, where D := D2 × D1 ⊂ G, such that for any

w ∈ E/D1, v ∈ �/D2, there exist some μ̄ ∈ D1, z̄ ∈ D2 such that

inf
μ∗∈�(μ)

〈
μ∗ – z̄,μ – w

〉
+ 〈z̄ – v, μ̄〉 + �(z̄) – �(v) < 0; (3.5)

(c) The solution set of SIMVI(�,�) is nonempty and bounded;
(d) int{w ∈ E : �(w) ∩ � �= ∅} ∩ int(– dom�∗) �= ∅.

Then (a) ⇒ (b) if int(barr�) �= ∅; (b) ⇒ (c) if F is upper hemicontinuous and monotone; (c)
⇒ (d); (d) ⇒ (a).

Proof (a) ⇒ (b): If not, we suppose that (b) does not hold, then we can choose a sequence
{(vn, wn)} ⊂ G, satisfying for any n, ‖vn‖ ≥ n, ‖wn‖ ≥ n, and

inf
μ∗∈�(μ)

〈
μ∗ – z,μ – wn

〉
+ 〈z – vn,μ〉 + �(z) – �(vn) ≥ 0 (3.6)

for any (z,μ) ∈ G, where ‖z‖ < n, ‖μ‖ < n. Without losing the generality, we let dn = vn
‖vn‖ ,

and so dn weakly converges d0 as n → ∞. By the definition of the recession cone, we know
that dn ∈ �∞. Because �∞ is closed, we obtain d0 ∈ �∞. Since int(barr�) �= ∅ and from
Lemma 2.1, it can be seen that d0 �= 0. Now, we let μ = μ̃ ∈ {w ∈ E : �(w) ∩ � �= ∅}, μ∗ =
μ̃∗ ∈ �(μ̃) ∩ �, and z = μ̃∗ in (3.6), there exists a large number M1 > 0, for n ∈ [M1, +∞)
one has

〈
μ̃∗ – μ̃∗, μ̃ – wn

〉
+
〈
μ̃∗ – vn, μ̃

〉
+ �
(
μ̃∗) – �(vn) ≥ 0,

and so

〈
μ̃∗ – vn, μ̃

〉
+ �
(
μ̃∗) – �(vn) ≥ 0.

Multiplying both sides by 1
‖vn‖ , we get

1
‖vn‖

〈
μ̃∗ – vn, μ̃

〉
+

�(μ̃∗) – �(vn)
‖vn‖ ≥ 0,
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it shows that
〈

μ̃∗

‖vn‖ , μ̃
〉

+
�(μ̃∗)
‖vn‖ ≥

〈
vn

‖vn‖ , μ̃
〉

+
�(vn)
‖vn‖ .

Then we have

lim inf
n→∞

[〈
μ̃∗

‖vn‖ , μ̃
〉

+
�(μ̃∗)
‖vn‖

]
≥ lim inf

n→∞

[〈
vn

‖vn‖ , μ̃
〉

+
�(vn)
‖vn‖

]
,

it implies that

lim inf
n→∞

[〈
μ̃∗

‖vn‖ , μ̃
〉

+
�(μ̃∗)
‖vn‖

]
≥ lim inf

n→∞

〈
vn

‖vn‖ , μ̃
〉

+ lim inf
n→∞

�(vn)
‖vn‖ .

By (2.3), we get

0 ≥ 〈d0, μ̃〉 + �∞(d0),

which implies d0 ∈ {d ∈ E∗ : 〈d, w〉 + �∞(d) ≤ 0 for all w ∈ {w ∈ E : �(w) ∩ � �= ∅}}, and
so 0 �= d0 ∈ �∞ ∩ {d ∈ E∗ : 〈d, w〉 + �∞(d) ≤ 0 for all w ∈ {w ∈ E : �(w) ∩ � �= ∅}}, which
contradicts (a).

(b) ⇒ (c): We define H : G → 2G as follows:

H(z,μ) :=
{

(v, w) ∈ G : inf
μ∗∈�(μ)

〈
μ∗ – z,μ – w

〉
+ 〈z – v,μ〉 + �(z) – �(v) ≥ 0

}

for all (z,μ) ∈ G.

Let {(vn, wn)} ⊂ H(z,μ) with (vn, wn) → (v0, w0), then

inf
μ∗∈�(μ)

〈
μ∗ – z,μ – wn

〉
+ 〈z – vn,μ〉 + �(z) – �(vn) ≥ 0.

It turns out that

lim inf
n→∞

[
inf

μ∗∈�(μ)

〈
μ∗ – z,μ – wn

〉
+ 〈z – vn,μ〉 + �(z)

]
≥ lim inf

n→∞ �(vn),

because � is a lower semicontinuous functional, we have

inf
μ∗∈�(μ)

〈
μ∗ – z,μ – w0

〉
+ 〈z – v0,μ〉 + �(z) ≥ �(v0).

We deduce that (v0, w0) ∈ H(z,μ), which means H(z,μ) is closed.
Step 1. Next we will demonstrate that H is a KKM mapping. In fact, by contradiction,

suppose that there exist γ1,γ2, . . . ,γn ∈ [0, 1],
∑n

i=1 γi = 1, and

(ṽ, w̃) = γ1(z1,μ1) + γ2(z2,μ2) + · · · + γn(zn,μn) ∈ co
{

(z1,μ1), (z2,μ2), . . . , (zn,μn)
}

for any finite set {(z1,μ1), (z2,μ2), . . . , (zn,μn)} ∈ G such that

(ṽ, w̃) /∈
⋃

Hi∈{1,2,...,n}(zi,μi).
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Then, for any i = 1, 2, . . . , n,

inf
μ∗

i ∈�(μi)

〈
μ∗

i – zi,μi – w̃
〉
+ 〈zi – ṽ,μi〉 + �(zi) – �(ṽ) < 0.

Due to � is monotone, there is μ∗
i ∈ �(μi) such that for any u∗ ∈ �(ũ) and i = 1, 2, . . . , n,

0 >
〈
μ∗

i – w∗ + w∗ – zi,μi – w̃
〉
+ 〈zi – ṽ,μi〉 + �(zi) – �(ṽ)

≥ 〈w∗ – zi,μi
〉
–
〈
w∗ – zi, w̃

〉
+ 〈zi – ṽ,μi〉 + �(zi) – �(ṽ)

=
〈
w∗ – ṽ,μi

〉
–
〈
w∗ – zi, w̃

〉
+ �(zi) – �(ṽ).

Since � is convex, then we get

0 >

〈

w∗ – ṽ,
n∑

i=1

γiμi

〉

–

〈

w∗ –
n∑

i=1

γizi, w̃

〉

+ �

( n∑

i=1

γizi

)

– �(ṽ)

=
〈
w∗ – ṽ, w̃

〉
–
〈
w∗ – ṽ, w̃

〉
+ �(ṽ) – �(ṽ)

= 0,

which is contradiction. Therefore, H is the KKM mapping.
Step 2. We can suppose that D is a bounded, convex, and closed subset(if not, we con-

sider replacing D with the closed convex hull of D). Let {(z1,μ1), (z2,μ2), . . . , (zm,μm)} be
the definite number of points in G, and let N := co(D ∪ {(z1,μ1), (z2,μ2), . . . , (zm,μm)}).
N is weakly compact convex. Next, we consider the set-valued mapping H̃ , defined by
H̃(z,μ) := H(z,μ) ∩ N for any (z,μ) ∈ N .

Firstly, we prove that H(z,μ) is a convex set for any (z,μ) ∈ N . Let λ ∈ [0, 1], for arbitrary
w1, w2 ∈ E and v1, v2 ∈ �, there is

inf
μ∗∈�(μ)

〈
μ∗ – z,μ –

[
λw1 + (1 – λ)w2

]〉
+
〈
z –
[
λv1 + (1 – λ)v2

]
,μ
〉
+ �(z)

– �
(
λv1 + (1 – λ)v2

)

= inf
μ∗∈�(μ)

〈
μ∗ – z,λ(μ – w1)

〉
+
〈
μ∗ – z, (1 – λ)(μ – w2)

〉
+
〈
λ(z – v1), x

〉

+
〈
(1 – λ)(z – v2),μ

〉
+ λ�(z) + (1 – λ)�(z) – �

(
λv1 + (1 – λ)v2

)

≥ λ
[

inf
μ∗∈�(μ)

〈
μ∗ – z,μ – w1

〉
+ 〈z – v1,μ〉 + �(z) – �(v1)

]

+ (1 – λ)
[

inf
μ∗∈�(μ)

〈
μ∗ – z,μ – w2

〉
+ 〈z – v2,μ〉 + �(z) – �(v2)

]

≥ 0,

so H(z,μ) is convex. It is easy to know that each H̃(z,μ) is a weakly compact convex subset
of N . Obviously, H̃(z,μ) is a closed set for any (z,μ) ∈ N .

Now we prove H̃ is a KKM mapping. On the contrary, suppose that there are η1,η2, . . . ,
ηn ∈ [0, 1],

∑n
i=1 ηi = 1, and

(t, s) = η1(z1,μ1) + η2(z2,μ2) + · · · + ηn(zn,μn) ∈ co
{

(z1,μ1), (z2,μ2), . . . , (zn,μn)
}
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for any finite set {(z1,μ1), (z2,μ2), . . . , (zn,μn)} ∈ N such that

(t, s) /∈
⋃

H̃i∈{1,2,...,n}(zi,μi).

Then, for any i = 1, 2, . . . , n,

inf
μ∗

i ∈�(μi)

〈
μ∗

i zi,μi – s
〉
+ 〈zi – t,μi〉 + �(zi) – �(t) < 0.

Because � is monotone, there exists μ∗
i ∈ �(μi) such that for any w∗ ∈ �(s) and i =

1, 2, . . . , n,

0 >
〈
μ∗

i – w∗ + w∗ – vi,μi – s
〉
+ 〈zi – t,μi〉 + �(zi) – �(t)

≥ 〈μ∗
i – w∗,μi – s

〉
+
〈
w∗ – zi,μi – s

〉
+ 〈zi – t,μi〉 + �(zi) – �(t)

≥ 〈w∗ – zi,μi
〉
–
〈
w∗ – zi, s

〉
+ 〈zi – t,μi〉 + �(zi) – �(t)

=
〈
w∗ – t,μi

〉
–
〈
w∗ – zi, s

〉
+ �(zi) – �(t).

Since � is convex, then we get

0 >

〈

w∗ – t,
n∑

i=1

ηiμi

〉

–

〈

w∗ –
n∑

i=1

ηizi, s

〉

+ �

( n∑

i=1

ηizi

)

– �(t)

=
〈
w∗ – t, s

〉
–
〈
w∗ – t, s

〉
+ �(t) – �(t)

= 0,

which leads to a contradiction. Therefore, H̃ is a KKM mapping.
Step 3. Since H̃(z,μ) is a weakly compact closed set for any (z,μ) ∈ N and H̃ is also a

KKM mapping, so by Lemma 2.3 we have

∅ �=
⋂

(z,x)∈N

H̃(z,μ).

Furthermore, if there exists some (v0, w0) ∈⋂(z,μ)∈N H̃(z,μ) but (v0, w0) /∈ D, then from
(3.5) we know that for some (z̄, μ̄) ∈ D2 × D1 ⊂ G, there is

inf
μ∗∈�(μ)

〈
μ∗ – z̄, μ̄ – w0

〉
+ 〈z̄ – v0, μ̄〉 + �(μ̄) – �(v0) < 0,

therefore, (v0, w0) /∈ H(z,μ), and so (v0, w0) /∈ H̃(z,μ), it is a contradiction. Then

∅ �=
⋂

(z,μ)∈N

H̃(z,μ) ⊂ D. (3.7)

Let (v, w) ∈⋂(z,μ)∈N H̃(z,μ), it can be seen from (3.7) that (v, w) ∈ D, then we have

⋂

(z,μ)∈N

H̃(z,μ) ⊂
m⋂

i=1

H̃(zi,μi),
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and hence (v, w) ∈⋂m
i=1(H(zi,μi) ∩ D). It can be known that {H(z,μ) ∩ D : (z,μ) ∈ G} has

the property of finite intersection. For each (z,μ) ∈ G, it follows from the weak compact-
ness of H(z,μ) ∩ D that

⋂
(z,μ)∈G(H(z,μ) ∩ D) is nonempty, which coincides with the solu-

tion set of SDIMVI(G,�). Thus, according to Theorem 3.1, we can obtain that the solution
set of SIMVI(�,�) is nonempty and bounded.

(c) ⇒ (d): If (d) does not hold, then int({w ∈ E : �(w)∩� �= ∅})∩ int(– dom�∗) = ∅. There
exists w ∈ E and �(w) ∩ � �= ∅, but w /∈ int(– dom�∗), then we have

sup
v∈�

{〈v, w〉 – �(v)
}≥ +∞. (3.8)

From (c) we know that the solution set of SIMVI(�,�) is nonempty, then there exists
w ∈ E, w∗ ∈ �(w) ∩ � such that

〈
ṽ – w∗, w

〉
+ �(ṽ) – �

(
w∗)≥ 0 for all ṽ ∈ �.

Let d0 ∈ �∞, according to the definition of recession of cone, there is w∗ + λd0 ∈ �, where
λ > 0. Due to the arbitrariness of ṽ ∈ �, taking ṽ = w∗ + td ∈ �, we have

〈
w∗ + td – w∗, u

〉
+ �
(
w∗ + td

)
– �

(
w∗) ≥ 0

and

〈
w∗ + td, –w

〉
– �

(
w∗ + td

) ≤ 〈–w∗, w
〉
– �

(
w∗).

Since –�(w∗) < +∞. Thus, 〈–w∗, w〉 – �(w∗) < +∞, and so

〈
w∗ + td, –w

〉
– �

(
w∗ + td

)
< +∞,

which contradicts (3.8). The proof is complete.
(d) ⇒ (a): If (a) does not hold, then �∞ ∩ {d ∈ E∗ : 〈d, w〉 + �∞(d) ≤ 0 for all w ∈ {w ∈

E : �(w) ∩ � �= ∅}} �= {0}. We know that there exists a sequence {dn} ⊂ �∞ ∩ {d ∈ E∗ :
〈d, w〉 + �∞(d) ≤ 0 for all w ∈ {w ∈ E : �(w) ∩ � �= ∅}}. Without losing the generality, we
let dn = vn

‖vn‖ , and so dn weakly converges d0 as n → ∞. Since �∞ is a closed and convex
cone, so d0 ∈ �∞. According to Lemma 2.1, it follows that d0 �= 0.

For any w̃ ∈ {w ∈ E : �(w) ∩ � �= ∅}, we have

〈dn, w̃〉 + �∞(dn) ≤ 0.

Combining with dn ⇀ d0 and the weak lower semicontinuity of �∞(·), it follows that

〈d0, –w̃〉 – �∞(d0) ≥ 0. (3.9)

Due to int({w ∈ E : �(w)) ∩ � �= ∅} ∩ (int(– dom�∗) �= ∅, then there exists ξ ∈ int({w ∈ E :
�(w)) ∩ � �= ∅} ∩ int(– dom�∗). Next we prove that

〈d0, –ξ 〉 – �∞(d0) = 0. (3.10)
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Indeed, if (3.10) does not hold, then

〈d0, –ξ 〉 – �∞(d0) > 0, (e)

as (3.9) holds.
By ξ ∈ int(– dom�∗), we obtain

�∗(–ξ ) = sup
v∈�

〈v, –ξ 〉 – �(v) < +∞. (3.11)

Let w0 ∈ �. d0 ∈ �∞ implies that w0 + td0 ∈ � for all t > 0. It follows from (3.11) that

〈w0 + td0, –ξ 〉 – �(w0 + td0) < +∞.

From (2.1) and (2.2), we have

〈w0 + td0, –ξ 〉 – �(w0) – t�∞(d0) < +∞,

which immediately implies that

〈w0, –ξ 〉 – �(w0) + t
(〈d0, –ξ 〉 – �∞(d0)

)
< +∞.

It is known that w0 ∈ �, and from (3.11) we can deduced that 〈w0, –ξ 〉–�(w0) < +∞. Thus

t
(〈d0, –ξ 〉 – �∞(d0)

)
< +∞. (3.12)

According to (e), and letting t → +∞, we get t(〈d0, –ξ 〉 – �∞(d0)) has no upper bound,
which contradicts (3.12). Therefore, (3.10) is proved. Since ξ ∈ int{w ∈ E : �(w) ∩ � �=
∅}∩ int(– dom�∗), for any w1 ∈ E, there exists t ∈ (0, 1) such that ξ + (1 – t)w1 ∈ int{w ∈ E :
�(w) ∩ � �= ∅} ∩ int(– dom�∗). From (3.9), we know that

〈
d0, –

(
ξ + (1 – t)w1

)〉
– �∞(d0) ≥ 0,

because 〈d0, –ξ 〉 – �∞(d0) = 0, then we have 〈d0, –w1〉 ≥ 0.
For any w1 ∈ E, there exists t ∈ (0, 1) such that ξ – (1 – t)w1 ∈ int{w ∈ E : �(w) ∩ � �=

∅} ∩ int(– dom�∗). By (3.9), we get

〈
d0, –

(
ξ – (1 – t)w1

)〉
– �∞(d0) ≥ 0.

By 〈d0, –ξ 〉–�∞(d0) = 0, we can obtain 〈d0, w1〉 ≥ 0. Then it can be deduced that 〈d0, w1〉 =
0, which contradicts d0 �= 0. Thus �∞ ∩ {d ∈ E∗ : 〈d, w〉 + �∞ ≤ 0 for all w ∈ {w ∈ E :
�(w) ∩ � �= ∅}} = {0} is verified. �

4 Stability for the SIMVI
Our goal in this section is to establish the stability of the solutions for SIMVI(�,�) with
monotone and upper hemicontinuous mappings. The following Theorem 4.1 is of great
help in obtaining the stability results.
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Theorem 4.1 Let α0 ∈ Z1 and β0 ∈ Z2 be given points, (Z1, d1) and (Z2, d2) be metric
spaces, � : E × Z2 → 2E∗ be a lower semicontinuous set-valued mapping for the second
variable on Z2, � : L(α) ⊂ E∗ → R be a convex and lower semicontinuous functional, and
L : Z1 → 2E∗ be a continuous set-valued mapping. Assume there is a neighborhood W × U
of (α0,β0) such that �(w,β) has nonempty, closed values for every w ∈ E and β ∈ U , and
L(α) has nonempty, convex, closed values for any α ∈W . If

(
L(α0)

)
∞ ∩ {d ∈ E∗ : 〈d, w〉 + �∞(d) ≤ 0 for all w ∈ {w ∈ E : �(w,β0) ∩ L(α0)

} �= ∅}

= {0},

then there exists a neighborhood W̄ × Ū of (α0,β0) with W̄ × Ū ⊂ W × U , such that for
any (α,β) ∈ W̄ × Ū ,

(
L(α)

)
∞ ∩ {d ∈ E∗ : 〈d, w〉 + �∞(d) ≤ 0, for all w ∈ {w ∈ E : �(w,β) ∩ L(α)

} �= ∅}

= {0}.

Proof Suppose the conclusion is not true, then for any neighborhood W̄ × Ū of (α0,β0),
there is (α,β) ∈ W̄ × Ū such that (L(α))∞ ∩ {d ∈ E∗ : 〈d, w〉 + �∞(d) ≤ 0 for all w ∈ {w ∈
E : �(w,β)∩L(α)} �= ∅} �= {0} holds. Then, we can select a sequence (αn,βn) in Z1 ×Z2 with
(αn,βn) converging to (α0,β0) such that for any n, (L(αn))∞ ∩ {d ∈ E∗ : 〈d, w〉 + �∞(d) ≤
0 for all w ∈ {w ∈ E : �(w,βn) ∩ L(αn)} �= ∅} �= {0}. Thus, there exists a sequence {dn} such
that for any n, ‖dn‖ = 1 and dn ∈ (L(αn))∞ ∩ {d ∈ E∗ : 〈d, w〉 + �∞(d) ≤ 0 for all w ∈ {w ∈
E : �(w,βn) ∩ L(αn)} �= ∅}. Without losing the generality, we can suppose that dn ⇀ d0

as n → ∞. Furthermore, according to Lemma 2.1 it can be known that d0 �= 0. Since
dn ∈ (L(αn))∞ and L on Z1 is upper semicontinuous, then from Lemma 2.2 we have
dn ∈ (L(α0))∞ for sufficiently large n. Because (L(α0))∞ is a closed cone, so d0 ∈ (L(α0))∞.

For any given w̄ ∈ {w ∈ E : �(w,β0) ∩ L(α0) �= ∅}, there is δ0 ∈ E∗ satisfying δ0 ∈
�(w̄,β0) ∩ L(α0). Next we prove that for any n, there is a sequence {δ̄n} such that δ̄n →
δ0, δ̄n ∈ �(ū,βn) ∩ L(αn). If not, we prove the contrary conclusion holds then for any
sequence {δn} such that δn → δ0. However, δn /∈ �(w̄,βn) ∩ L(αn). Since βn → β0 and
δ0 ∈ �(w̄,β0), and � on Z2 is lower semicontinuous, so there is a sequence {δ̃n} such
that {δ̃n} → δ0 and δ̃n ∈ �(w̄,βn) for any n. Therefore, δ̃n /∈ L(αn). Because � and L
have nonempty closed values and L is lower semicontinuous, δ0 /∈ L(α0). Therefore, we
get a contradiction. Now we know that there exists δ̄n ∈ �(w̄,βn) ∩ L(αn), it means that
�(w̄,βn) ∩ L(αn) �= ∅. Moreover, w̄ is fixed, then we get w̄ ∈ {w ∈ E : �(w,βn) ∩ L(αn) �= ∅}.
From dn ∈ {d ∈ E∗ : 〈d, w〉 + �∞(d) ≤ 0 for all w ∈ {w ∈ E : �(w,βn) ∩ L(αn) �= ∅}}, we can
obtain

〈dn, w̄〉 + �∞(dn) ≤ 0.

Combining with dn ⇀ d0 and the weak lower semicontinuity of �∞(·), it follows that

〈d0, w̄〉 + �∞(d0) ≤ 0.

Then we have

d0 ∈ {d ∈ E∗ : 〈d, w〉 + �∞(d) ≤ 0, for all w ∈ {w ∈ E : �(w,β0) ∩ L(α0) �= ∅}},
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and so

d0 ∈ (L(α0)
)
∞

∩ {d ∈ E∗ : 〈d, w〉 + �∞(d) ≤ 0, for all w ∈ {w ∈ E : �(w,β0) ∩ L(α0) �= ∅}}

with d0 �= 0, which contradicts the assumption and ends the proof of the theorem. �

Remark 4.1 If � ≡ 0, then �∞ ≡ 0. Consequently, Theorem 4.1 reduces to Theorem 4.1
of [22]. Thus, Theorem 4.1 is a generalization of Theorem 4.1 in [22].

If K is bounded, we know K∞ = {0}, so from Theorem 4.1 we have the following result.

Corollary 4.1 Let α0 ∈ Z1 and β0 ∈ Z2 be given points, (Z1, d1) and (Z2, d2) be metric
spaces, � : E ×Z2 → 2E∗ be a set-valued mapping with nonempty value, � : L(α) ⊂ E∗ →R

be a convex and lower semicontinuous functional, and L : Z1 → 2E∗ be a set-valued map-
ping with nonempty bounded value. Then, for any (α,β) ∈ Z1 × Z2,

(
L(α)

)
∞ ∩ {d ∈ E∗ : 〈d, w〉 + �∞(d) ≤ 0 for all w ∈ {w ∈ E : �(w,β) ∩ L(α) �= ∅}}

= {0}.

Theorem 4.2 Let (α,β) ∈ W̄ × Ū , S(α,β) and S(α0,β0) represent the solution sets of
SIMVI(L(α),�(·,β)) and SIMVI(L(α0),�(·,β0)), respectively. If the conditions in Theo-
rem 4.1 hold and

(a) for every β ∈ U , the mapping w �→ �(w,β) is monotone and upper hemicontinuous
on E;

(b) the solution set of SIMVI(L(α0),�(·,β0)) is nonempty and bounded;
(c) int{w ∈ E : �(w,β) ∩ L(α) �= ∅} �= ∅ and int(– dom�∗) �= ∅.

Then
(A) there exists a neighborhood W̄ × Ū of (α0,β0) with W̄ × Ū ⊂W × U such that for

every (α,β) ∈ W̄ × Ū , the solution set of SIMVI(L(α),�(·,β)) is nonempty and
bounded;

(B) if � is continuous on L(α) with α ∈ W̄ and
⋃

α∈W̄ L(α) is compact, then
lim sup(α,β)→(α0,β0) S(α,β) ⊂ S(α0,β0).

Proof
(A) By Theorem 3.2, it follows from condition (b) in Theorem 4.2 that

(
L(α0)

)
∞ ∩ {d ∈ E∗ : 〈d, w〉 + �∞(d) ≤ 0 for all

w ∈ {w ∈ E : �(w,β0) ∩ L(α0) �= ∅} = {0}.

Next, applying Theorem 4.1, we know that there is a neighborhood W̄ × Ū of
(α0,β0) with W̄ × Ū ⊂W × U such that for any (α,β) ∈ W̄ × Ū ,

(
L(α)

)
∞ ∩ {d ∈ E∗ : 〈d, w〉 + �∞(d) ≤ 0 for all

w ∈ {w ∈ E : �(w,β) ∩ L(α) �= ∅} = {0}.
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Utilizing Theorem 3.2 once more, we can now derive the solution set of
SIMVI(L(α),�(·,β)) is nonempty and bounded for any (α,β) ∈ W̄ × Ū .

(B) For any sequence {(αn,βn)} ⊂ W̄ × Ū with (αn,βn) → (α0,β0) when n → ∞, we will
verify that

lim sup
n→∞

S(αn,βn) ⊂ S(α0,β0).

Let w0 ∈ lim supn→∞ S(αn,βn), then there exists a sequence {wn} ⊂ S(αn,βn) such
that wn → w0 as n → ∞. From Theorem 3.1 and Theorem 4.2 (A), it can be known
that the solution set of SDIMVI(G(αn),�(·,βn)) is nonempty and bounded, where
G(αn) := L(αn) × E. So there exists vn ∈ L(αn) such that vn → v0 as n → ∞ and

inf
μ∗∈�(μ,βn)

〈
μ∗ – z,μ – wn

〉
+ 〈z – vn,μ〉 + �(z) – �(vn)

≥ 0, for all (z,μ) ∈ L(αn) × E. (4.1)

On the other side, for any z0 ∈ L(α0) and μ0
∗ ∈ �(μ,β0), L is lower semicontinuous

on Z1, and αn → α0, then there exists zn ∈ L(αn) such that zn → z0 as n → ∞. Since
� is lower semicontinuous on Z2 and βn → β0, there exists μn

∗ ∈ �(μ,βn) such that
μn

∗ → μ0
∗ as n → ∞. According to vn ∈ L(αn) and upper semicontinuity of L, we

get v0 ∈ L(α0). Therefore, (4.1) means that

〈
μn

∗ – zn,μ – wn
〉
+ 〈zn – vn,μ〉 + �(zn) – �(vn) ≥ 0 for all μ ∈ E.

Since � is continuous on L(α), letting n → +∞, we obtain (v0, w0) ∈ L(α0) × E and

inf
μ0∗∈�(μ,β0)

〈
μ0

∗ – z0,μ – w0
〉
+ 〈z0 – v0, w〉 + �(z0) – �(v0)

≥ 0 for all z0 ∈ L(α0),μ ∈ E.

Using Theorem 3.1 once more, there exist w0 ∈ E and w0
∗ ∈ �(w0,β0) ∩ L(α0) such

that

〈
ṽ – w0

∗, w0
〉
+ �(ṽ) – �

(
w0

∗)≥ 0, for all ṽ ∈ L(α0),

so w0 ∈ S(α0,β0). �

Next, we will give Examples 4.1, 4.2, 4.3, 4.4 to demonstrate the necessity of the condi-
tions in Theorem 4.2.

Example 4.1 Let Z1 = Z2 = [–1, 1], α0 = β0 = 0, �(w) = 1
2 w

L(α) = [0, 2],

�(w,β) =

⎧
⎨

⎩
{0}, β �= 0,

{2}, β = 0.
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It is easy to note that L(α) is continuous, �(·,β) is both monotone and upper hemicon-
tinuous on [0, 2], and �(w, ·) is not lower semicontinuous at β = 0. By calculation, we get
S(0, 0) = (–∞, – 1

2 ] and S(0,β) = [– 1
2 , +∞) for any β �= 0. Consequently, lim supβ→0 S(0,β) =

[– 1
2 , +∞) �⊂ S(0, 0).

Example 4.2 Let Z1 = Z2 = [–1, 1], α0 = β0 = 0, �(w) = 1
2 w

L(α) = [–1, 1],

�(w,β) =

⎧
⎪⎪⎨

⎪⎪⎩

{w}, β = 0,

{ew}, β �= 0, w ≥ 0,

{ln w}, β �= 0, w > 0.

Obviously, L(α) is continuous at α = 0, �(·,β) is not monotone on [–1, 1], and �(w, ·)
is not lower semicontinuous at β = 0. By calculation, we get S(0, 0) = {– 1

2 } and S(0,β) =
{– 1

2 , 1
e } for any β �= 0. Consequently, lim supβ→0 S(0,β) = {– 1

2 , 1
e } �⊂ S(0, 0).

Example 4.3 Let Z1 = Z2 = [–1, 1], α0 = β0 = 0, �(w) = 1
2 w

L(α) =

⎧
⎨

⎩
[–2, 0], α �= 0,

[–3, 0], α = 0,

�(w,β) ≡ {–2}.

Note that L(α) is not lower semicontinuous when α = 0, but it is upper semicontinuous.
Moreover, �(·,β) is not only monotone on [–3, 0], but also upper hemicontinuous. And
�(w, ·) is lower semicontinuous at β = 0. By calculations, we get S(0, 0) = {– 1

2 } and S(α, 0) =
[– 1

2 , +∞) for any α �= 0. Consequently, lim supα→0 S(α, 0) = [– 1
2 , +∞) �⊂ S(0, 0).

Example 4.4 Let Z1 = Z2 = [–1, 1], α0 = β0 = 0, �(w) = 1
2 w

L(α) =

⎧
⎨

⎩
[–1, 0], α �= 0,

[1, 2], α = 0,

�(w,β) =

⎧
⎨

⎩
[0, 2], β �= 0,

[0, 1], β = 0.

At α = 0, it is obvious that L(α) is neither lower semicontinuous nor upper semicontin-
uous. Moreover, �(·,β) is not monotone on [–1, 2], and �(w, ·) is lower semicontinuous
at β = 0. By calculation, we obtain S(0, 0) = [– 1

2 , +∞) and S(α,β) = (–∞, – 1
2 ] for any α �= 0

and β �= 0. Consequently, lim supα→0,β→0 S(α,β) = (–∞, – 1
2 ] �⊂ S(0, 0).

5 An example
In this section, we will give an example about the stability of IMVI in the traffic network
equilibrium control problem.
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5.1 The traffic network equilibrium control problem
As an application of our main results, we shall give an example similar to Example 2.2 in
[16]. We describe it simply.

Let a network have n parallel links linking a basic origin-destination pair, each link rep-
resent a feasible path and xi denote the flow on each link i, ti be the user cost associated
with traversing the link i, d represent the travel demand of customers traveling between
origin-destination pairs. We denote

� =

{

x
∣∣∣x ≥ 0,

n∑

i=1

xi = d

}

.

Now from traffic management authorities’ point of view, we consider the traffic network
equilibrium control problem. Assume that the total loss of vehicle accidents and road dam-
age is determined by the flow of all network links, that is,

f (x) =
n∑

i=1

fi(xi),

where fi : R+ → R is a convex and continuous function. The goal of the traffic manage-
ment authorities is to control the traffic flow xi within predetermined intervals by adjust-
ing the link toll yi and to minimize the total loss of vehicle accidents and road damage
in the network. For a given adjustment of y ∈ Rn, we know that the resultant traffic net-
work equilibrium flow x(y) is a solution of the following parametric variational inequal-
ity:

〈z – x, t + y〉 ≤ 0 for all z ∈ �. (5.1)

As a control approach, traffic management authorities could change link tolls to reduce
loss and prevent traffic jams. We regard (5.1) as a ‘black-box’ procedure that returns a
value of x at the point y. Consequently, the path flow x(y) can be revealed. Assume that
the desired link flows are constrained with the feasible link flow set K = {x|0 ≤ x ≤ b}.
Thus, by Example 2.2 in [16], the problem faced by the authority can be interpreted as
follows:

min f
[
x(y)
]
,

s.t. x(y) ∈ K ,

where x(y) is a solution of (5.1). Based on the KKT theory, from [16] we know the above
problem can be transformed as an inverse mixed variational inequality as follows: find
y ∈ C such that x(y) ∈ K and

〈
z – x(y), y

〉
+ f (z) – f

[
x(y)
]≥ 0, for all z ∈ K , (5.2)

where C = {y ∈ Rn|∃x(y) ∈ K , 〈z – x(y), y〉 ≤ 0}. We use the interval [a, b] to represent
the fluctuation range of gasoline prices, where a represents the lowest oil price and b
represents the highest oil price. However, with the large fluctuation of gasoline prices,
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it will affect the traffic of vehicles on the road, which means that the feasible link flow
set K and the traffic network equilibrium flow x(y) will be influenced by a parameter q,
where q ∈ [a, b]. Hence, we can easily see that K should be a set-valued mapping of q
and x should be a set-valued mapping of y and q. Then (5.2) will be transformed as fol-
lows:

〈
z – x(y, q), y

〉
+ f (z) – f

[
x(y, q)

]≥ 0, for all z ∈ K(q). (5.3)

So, the traffic network equilibrium control problem influenced by holidays and week-
days will lead to a stability problem for a class of inverse mixed variational inequal-
ity.

Corollary 5.1 Let q0 ∈ [a, b], x(y, ·) : [a, b] → R be a lower semicontinuous mapping on
[a, b], and K : [a, b] → R be a continuous set-valued mapping with nonempty, convex,
closed bounded value, where y ∈ Rn. If there is a neighborhood U of q0 such that x(y, q)
has nonempty, closed values for any q ∈ U . If the following conditions hold:

(a) for every q ∈ U , the mapping y �→ x(q, y) is monotone and upper hemicontinuous
on R;

(b) the solution set of SIMVI(K(q0), x(·, q0)) is nonempty and bounded;
(c) int{(y, q) ∈ Rn × [a, b] : x(y, q) ∩ K(q)}⋂ int(– dom f ∗) �= ∅;
(d) if f is continuous and convex on K(q) with q ∈ U and ∪q∈UK(q) is compact.

Then lim supq→q0 S(q) ⊂ S(q0), where q ∈ U , S(q) and S(q0) represent solution sets of
SIMVI(K(q), x(·, q)) and SIMVI(K(q0), x(·, q0))), respectively.

Proof Since K(q) is a bounded set for any q ∈ U , then from Corollary 4.1 we know that the
conclusions of Theorem 4.1 hold. Then, using Theorem 3.2, there exists a neighborhood
Ū of q0 with Ū ⊂ U such that for every q ∈ Ū , the solution set of SIMVI(K(q), x(·, q)) is
nonempty and bounded. By using Theorem 4.2, we can obtain lim supq→q0 S(q) ⊂ S(q0),
where q ∈ Ū . �

6 Conclusion
In this paper, we introduced a new class of set-valued inverse mixed variational inequali-
ties (SIMVI) in reflexive Banach spaces. We gave some equivalent characterizations such
that the solution set of SIMVI(�,�) is nonempty and bounded in Theorem 3.2. The sta-
bility of SIMVI was obtained in Theorem 4.2 by using equivalent conditions when the
mapping and the constraint set are perturbed simultaneously by different parameters in
reflexive Banach spaces. We also gave some examples to show the conditions were neces-
sary in Theorem 4.2. At the end of the paper, an example of the traffic network equilibrium
control problem was provided to illustrate the application of the stability of IMVI. For fur-
ther research, we can apply the theorem of set-valued analysis and inverse variational in-
equalities to study the stability of set-valued inverse quasi-mixed variational inequalities
in Banach spaces.
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