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Abstract
In this paper, we are concerned with elliptic problems

{
–�u = f (u) + g(|x|,u, x

|x| · ∇u), x ∈ �,

u|∂� = 0,

where � = {x ∈R
N : R1 < |x| < R2} is an annular domain, N > 2, 0 < R1 < R2 <∞,

4(R2 – R1)(N – 1) ≤ R1. f :R → R is continuous and satisfies lim|ξ |→∞ f (ξ )
ξ

=∞.

g : [R1,R2]×R
2 →R is continuous, |g(r,ξ0,ξ1)| ≤ C + β|ξ0| for some C > 0,

0 < β < 1
4(R2–R1)2

. We obtain infinitely many radial solutions with prescribed nodal
properties using bifurcation techniques.
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1 Introduction
In this paper, we are concerned with the existence and multiplicity of radial nodal solutions
of elliptic problems

⎧⎨
⎩–�u = f (u) + g(|x|, u, x

|x| · ∇u), x ∈ �,

u|∂� = 0,
(1.1)

where � = {x ∈ R
N : R1 < |x| < R2} is an annular domain, N > 2, 0 < R1 < R2 < ∞, R1 ≥

4(R2 – R1)(N – 1).
One of the main features of the problem (1.1) is the presence of convection term

g(|x|, u, x
|x| · ∇u), depending on the function u and its gradient ∇u, which plays an impor-

tant role in science and technology. For example, particles or energy are converted and
transferred inside a physical system due to convection and diffusion processes. For the
work related to this topic, we cite the interesting works [3, 11, 14], and references therein.
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Specifically, in [21], the authors considered the existence of solutions for

⎧⎨
⎩–�pu – μ�qu = f (x,ρ ∗ u,∇(ρ ∗ u)) in �,

u = 0 on ∂�,
(1.2)

where ρ ∈ L1(RN ). It is well known that ∇(ρ ∗u) = ρ ∗∇u with the convolution acting com-
ponentwise. The presence of convolution appears frequently in various applications, tak-
ing different meanings in practical problems of computer science and engineering. Con-
cerning real-life applications, we mention, for instance, that convolution in deep learning
gives the cross-correlation in signal and image processing. Specifically, the convolution is
useful in signal processing to smooth out the noise in the original signal. In the related field
of image processing, the result of convolution is to smooth out the rough edges in the val-
ues taken by a mapping representing mathematically the model of the image under study
so that we have a blurring effect. A huge amount of technical literature is aimed at imple-
menting concrete procedures, for example, filter operations in digital image processing
that we illustrate by citing [20]. To sum up, studying elliptic problems, including gradient
terms, is of great significance in both theoretical exploration and practical application.

The research on solutions of semilinear elliptic problems has been widely concerned,
see [1, 2, 4–6, 8, 12, 17]. For example, the semilinear elliptic problems

⎧⎨
⎩–�u = f (u), x ∈ �,

u|∂� = 0,
(1.3)

with no gradient terms in nonlinearity, where � = {x ∈ R
N : R1 < |x| < R2} is an annular

domain, N > 2, 0 < R1 < R2 < ∞. Denote

f0 := lim
s→0

f (s)
s

, f∞ := lim
s→∞

f (s)
s

.

When N = 1, the existence of positive solutions of (1.3) has been obtained by Erbe and
Wang [10] using fixed point techniques under f ∈ C([0,∞), [0,∞)) and f0 = 0, f∞ = ∞.
Using bifurcation techniques, Ma and Thompson [18] obtained nodal solutions of (1.3)
when f ∈ C(R,R) with f (s)s > 0 and f0, f∞ ∈ (0,∞). When N ≥ 2, by assuming f (0) = 0,
f (s) > 0 for s > 0, f0 = 0, f∞ = ∞, Coffman and Marcus [5] showed that (1.3) had one radial
solution with prescribed numbers of zeros. In [22], f is assumed to be an odd function,
f (0) = 0 and f0, f∞ ∈ [0, +∞], by shooting method together with the Strum’s comparison
theorem, Naito and Tanaka demonstrated the existence of nodal solutions for (1.3). Re-
cently, Harrabi [13] obtained the existence of nodal solutions for (1.3) by assuming f (0) = 0
and f∞ = ∞.

When the nonlinearity depends on the gradient terms [9], Ehrnstrom discussed the ex-
istence problem of positive radial solutions for the elliptic equation with linear gradient
terms

–�u = f
(|x|, u

)
+ g

(|x|)x · ∇u, x ∈ �1 (1.4)

in an exterior domain �1 = {x ∈R
N : |x| > r0}. Equation (1.4) was also studied by Vrodljak

[24] in the special case g(r) ≡ 1
2 . Recently, Li [16], Xu and Wei [26] were concerned with
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the elliptic problems with general gradient terms:

⎧⎨
⎩–�u = f (|x|, u, x

|x| · ∇u), x ∈ �,

u|∂� = 0,
(1.5)

where � := {x ∈ R
n, a < |x| < b}, 0 < a < b < ∞ is an annular domain in R

N , N > 2. Under
the suitable conditions, Li [16], Xu and Wei [26] obtained the existence of radial solutions
for (1.5). However, to our knowledge, when N > 2, the existence results of nodal solutions
for elliptic problems in annular domains with gradient terms have not been studied. In fact,
the presence of gradient terms determines the loss of the variational structure. This brings
serious technical difficulty since we cannot use variational methods. Inspired by the above,
in this paper, we are concerned with the existence of nodal solutions for nonhomogeneous
elliptic problems (1.1) using the bifurcation technique.

Letting u = u(r), r = |x|, (1.1) is rewritten as

⎧⎨
⎩–u′′(r) – N–1

r u′(r) = f (u(r)) + g(r, u(r), u′(r)), r ∈ (R1, R2),

u(R1) = u(R2) = 0
(1.6)

or
⎧⎨
⎩–(rN–1u′(r))′ = rN–1(f (u(r)) + g(r, u(r), u′(r))), r ∈ (R1, R2),

u(R1) = u(R2) = 0.
(1.7)

In this paper, we make the following assumptions:
(H1) f : R →R is continuous, f (ξ )ξ ≥ 0 for ξ ∈R and satisfies

lim|ξ |→∞
f (ξ )
ξ

= ∞ (
f is superlinear as |ξ | → ∞)

.

(H2) g : [R1, R2] ×R
2 →R is continuous and satisfies

∣∣g(r, ξ0, ξ1)
∣∣ ≤ C + β|ξ0| for some C > 0, 0 < β <

1
4(R2 – R1)2 .

It is worth noting that although to obtain the nodal solutions for the elliptic problems,
we do not require the growth conditions of f at zero like in [13, 18, 22], in fact, when the
nonlinearity includes nonhomogeneous terms, we can only obtain infinitely many “large”
solutions having specified nodal properties.

For any integer i ≥ 0, let Ci[R1, R2] denote the standard Banach space of real valued,
i-times continuously differentiable functions defined on [R1, R2], with the norm |u|i =∑i

j=0 |u(j)|∞, where | · |∞ denotes the usual sup-norm on C0[R1, R2]. Let

E =
{

u ∈ C1[R1, R2] : u(R1) = u(R2) = 0
}

, X = E ∩ C2[R1, R2], Y = C0[R1, R2].

To state our results, we first recall some standard notation to describe the nodal properties
of solutions. From now on, ν will denote an element of {±}, that is, either ν = + or ν = –.
For each integer k ≥ 1, let Sk,ν denote the set u ∈ E such that:
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(i) u has only simple zeros in (R1, R2) and exactly k – 1 simple zeros.
(ii) u is positive near R1 if u ∈ Sk,+, and u is negative near R1 if u ∈ Sk,–.
Sk,ν = Sk,+ ∪ Sk,–, Sk,– = –Sk,+, Sk,+ and Sk,– are disjoint and open in E. Our main result is

the following theorem.

Theorem 1.1 There exists an integer k0 ≥ 1 such that for all integers k ≥ k0, and each ν ,
the problem (1.1) has at least one radial solution uk,ν ∈ Sk,ν .

Remark 1.2 In [15], Kajikiya and Ko only obtained the existence of positive radial solutions
for (1.3) under f (0) < 0. In fact, our conditions (H1)-(H2) allow for f (0) + g(r, 0, ξ1) < 0.
Therefore, our main results also include the research on the nodal solutions of semi-
positone problems.

Remark 1.3 Our research is inspired by [23], a study of nodal solutions for the fourth order
problem

⎧⎨
⎩u(4) = g(u(x)) + p(x, u(0)(x), . . . , u(3)(x)), x ∈ (0, 1),

u(0) = u(1) = u(2)(0) = u(2)(1) = 0.
(1.8)

In fact, due to equivalent problem (1.6), we are dealing with contains the N–1
r u′(r) to obtain

the bound of the norm of u, we have to limit the size of the annulus. The proof of [23]
relies heavily on some lemmas of [19], which introduce some properties of fourth-order
problems. However, for second-order problems in the annular domain, similar lemmas as
in [19] are difficult to establish. All these bring great difficulties to considering our elliptic
problems, some of the proof methods in [23] are no longer applicable. Therefore, we adopt
some new proof methods; see the proof of Lemmas 2.4–2.5 and Lemmas 3.4–3.6.

2 Preliminaries
By (H1), we know that

f (ξ )ξ ≥ 0, ξ ∈ R. (2.1)

For any u ∈ X, we define e(u) : [R1, R2] → R by e(u)(r) = g(r, u(r), u′(r)), r ∈ [R1, R2]. It fol-
lows from (H2) that

∣∣e(u)(r)
∣∣ ≤ C + β

∣∣u(r)
∣∣, r ∈ [R1, R2]. (2.2)

For any s ∈R, let F(s) =
∫ s

0 f (ξ ) dξ ≥ 0, and for any s ≥ 0 let

γ (s) = max
{∣∣f (ξ )

∣∣ : |ξ | ≤ s
}

, 
(s) = max
{∣∣F(ξ )

∣∣ : |ξ | ≤ s
}

.

We now consider the problem

⎧⎨
⎩–(rN–1u′(r))′ = λrN–1u + αrN–1(f (u) + e(u)), r ∈ [R1, R2],

u(R1) = u(R2) = 0,
(2.3)



Zhu et al. Journal of Inequalities and Applications        (2023) 2023:146 Page 5 of 13

where α ∈ [0, 1] is an arbitrary fixed number, λ ∈ R. In the following lemmas, (λ, u) ∈
R× X will be an arbitrary solution for (2.3), while R ≥ 0 will be an arbitrary number. Also,
c1, c2, . . . , will be constants, ζ1, ζ2, . . . , will be continuous functions (from [0, +∞) to [0, +∞)
unless stated otherwise), and these will depend only on f and g , not on (λ, u) or α.

Lemma 2.1 For u ∈ X, we have

|u|∞ ≤ (R2 – R1)
∣∣u′∣∣∞ ≤ (R2 – R1)2∣∣u′′∣∣∞. (2.4)

Proof By u(R1) = u(R2) = 0 and Rolle’s theorem, for any u ∈ X, each of the functions u, u′

has a zero in [R1, R2], then there exists τ ∈ (R1, R2) such that u′(τ ) = 0. So, the repeated
application of mean value theorem shows that

∣∣u(r)
∣∣ =

∣∣∣∣
∫ r

R1

u′(s) ds
∣∣∣∣ ≤

∫ R2

R1

∣∣u′(s)
∣∣ds ≤ (R2 – R1)

∣∣u′∣∣∞,

∣∣u′(r)
∣∣ =

∣∣∣∣
∫ r

τ

u′′(s) ds
∣∣∣∣ ≤

∫ R2

R1

∣∣u′′(s)
∣∣ds ≤ (R2 – R1)

∣∣u′′∣∣∞.

Therefore,

|u|∞ ≤ (R2 – R1)
∣∣u′∣∣∞ ≤ (R2 – R1)2∣∣u′′∣∣∞. �

Lemma 2.2 There exists ζ1 such that if

0 ≤ λ ≤ R, |u|∞ ≤ R, (2.5)

then |u|1 ≤ ζ1(R).

Proof By Rolle’s theorem, we know that there exists τ ∈ (R1, R2) such that u′(τ ) = 0. By
(2.2)-(2.5), we have

rN–1u′(r) = λ

∫ τ

r
ξN–1u(ξ ) dξ +

∫ τ

r
αξN–1(f (u) + e(u)

)
dξ

≤ λ

∫ R2

R1

ξN–1|u|∞ dξ +
∫ R2

R1

ξN–1(∣∣f (u)
∣∣ +

∣∣e(u)
∣∣)dξ

≤ (R2 – R1)RN–1
2 R2 + (R2 – R1)RN–1

2
(
γ (R) + C + βR

)
.

(2.6)

Thus,

∣∣u′∣∣∞ ≤ (R2 – R1)
(

RN–1
2

RN–1
1

)[
R2 + γ (R) + C + βR

]
,

consequently,

|u|1 = |u|∞ +
∣∣u′∣∣∞

≤ [
(R2 – R1) + 4(R2 – R1)2](RN–1

2

RN–1
1

)[
R2 + γ (R) + C + βR

]
=: ζ1(R). �
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Lemma 2.3 For any r0, r1 ∈ [R1, R2], we have

u′(r1)2 + λu(r1)2 + 2αF
(
u(r1)

)
= u′(r0)2 + λu(r0)2 + 2αF

(
u(r0)

)
– 2

∫ r1

r0

N – 1
ξ

u′(ξ )2 dξ

– 2α

∫ r1

r0

e(u)(ξ )u′(ξ ) dξ .

Proof (2.3) is equivalent to

–u′′ =
N – 1

r
u′ + λu + α

(
f (u) + e(u)

)
, r ∈ [R1, R2]. (2.7)

Multiplying (2.7) by u′ and integrating, we have

–
∫ r1

r0

u′′(ξ )u′(ξ ) dξ =
∫ r1

r0

N – 1
ξ

u′(ξ )u′(ξ ) dξ + λ

∫ r1

r0

u(ξ )u′(ξ ) dξ

+ α

∫ r1

r0

[
f
(
u(ξ )

)
+ e(u)(ξ )

]
u′(ξ ) dξ ,

then we have

–
1
2

u′(r1)2 +
1
2

u′(r0)2

=
∫ r1

r0

N – 1
ξ

u′(ξ )2 dξ +
λ

2
u(r1)2 –

λ

2
u(r0)2 + αF

(
u(r1)

)
– αF

(
u(r0)

)

+ α

∫ r1

r0

e(u)(ξ )u′(ξ ) dξ .

Therefore,

u′(r1)2 + λu(r1)2 + 2αF
(
u(r1)

)
= u′(r0)2 + λu(r0)2 + 2αF

(
u(r0)

)
– 2

∫ r1

r0

N – 1
ξ

u′(ξ )2 dξ

– 2α

∫ r1

r0

e(u)(ξ )u′(ξ ) dξ .

(2.8)

�

Lemma 2.4 There exists an increasing function ζ2 such that if 0 ≤ λ ≤ R, and |u(r0)| +
|u′(r0)| ≤ R, for some r0 ∈ [R1, R2], then |u|∞ ≤ ζ2(R).

Proof Choose r1 ∈ [R1, R2] satisfying |u′|∞ = |u′(r1)|. By Lemma 2.3, we have

∣∣u′(r1)
∣∣2 ≤ u′(r0)2 + λu(r0)2 + 2F

(
u(r0)

)
+ 2

∣∣∣∣
∫ R2

R1

N – 1
ξ

u′(ξ )2 dξ

∣∣∣∣
+ 2

∣∣∣∣
∫ r1

r0

e(u)(ξ )u′(ξ ) dξ

∣∣∣∣.
(2.9)
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Therefore,

∣∣u′∣∣2
∞ ≤ R2 + R3 + 2
(R) + 2(R2 – R1)

N – 1
R1

∣∣u′∣∣2
∞

+ 2
(
C + β(R2 – R1)

∣∣u′∣∣∞)∣∣u′∣∣∞(R2 – R1).

Let

K(R) = R2 + R3 + 2
(R),

thus
[

1 – 2(R2 – R1)
N – 1

R1
– 2β(R2 – R1)2

]∣∣u′∣∣2
∞ – 2C(R2 – R1)

∣∣u′∣∣∞ – K(R) ≤ 0,

since

1 – 2(R2 – R1)
N – 1

R1
– 2β(R2 – R1)2 > 0,

let

Â := (R2 – R1), B̂ := (R2 – R1)2,

consequently,

∣∣u′∣∣∞ ≤ ζ̂2(R) :=
2CÂ +

√
4C2Â2 + (4 – 8Â N–1

R1
– 8βB̂)K(R)

2 – 4Â N–1
R1

– 4βB̂
,

|u|∞ ≤ Âζ̂2(R) := ζ2(R). �

By (H1), we can choose c1 ≥ (R2 – R1) such that

|ξ | ≥ c1 ⇒ ∣∣f (ξ )
∣∣ ≥ C + β|ξ |. (2.10)

We also define

ζ3(ξ ) =

⎧⎨
⎩ζ2(ξ + ξ 2) + c1 for ξ ≥ c1,

ζ3(c1) for ξ < c1.

Lemma 2.5 If R ≥ c1, 0 ≤ λ ≤ R and |u|∞ ≥ ζ3(R), then for any r0 ∈ [R1, R2] with |u(r0)| ≤
R, we have |u′(r0)| ≥ R2.

Proof Suppose that for some R ≥ c1, there exists r0 ∈ (R1, R2) such that |u(r0)| ≤ R and
|u′(r0)| < R2. We will show that it is impossible if |u|∞ ≥ ζ3(R).

Now,

∣∣u(r0)
∣∣ +

∣∣u′(r0)
∣∣ < R + R2, (2.11)
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Combining this with λ ≤ R < R + R2 and using Lemma 2.4, we conclude that

|u|∞ ≤ ζ2
(
R + R2).

However, it is impossible if |u|∞ ≥ ζ3(R).
Finally, if r0 ∈ {R1, R2} and |u′(r0)| < R2, then by continuity, there exists r∗ ∈ (R1, R2) such

that |u(r∗)| ≤ R and |u′(r∗)| < R2, which contradicts the result just proved. �

3 Auxiliary problem
We now consider the problem

–
(
rN–1u′(r)

)′ = λrN–1u + θ

( |u|∞
ζ3(λ)

)
rN–1(f (u) + e(u)

)
, u ∈ X, (3.1)

where θ : R → R is increasing, C∞ function with θ (s) = 0, s ≤ 1 and θ (s) = 1, s ≥ 2 (we
have replaced α in (2.3) with the function θ ( |u|∞

ζ3(λ) ). The nonlinearity in (3.1) is a continuous
function of (λ, u) ∈ R × X and is zero for λ ∈ R, |u|∞ ≤ ζ3(λ). So, (3.1) becomes a linear
eigenvalue problem in this region, and overall the problem can be regarded as a bifurcation
(from u = 0) problem.

Regarding the linear problem, define the operator L : X → Y by Lu = –(rN–1u′(r))′, u ∈ X.
By [25](Chapter IV, Sect. 27), we know that the eigenvalue problem

⎧⎨
⎩–(rN–1u′(r))′ = μrN–1u, r ∈ [R1, R2],

u(R1) = u(R2) = 0,
(3.2)

has a strictly increasing sequence of eigenvalues

0 < μ1 < μ2 < · · · < μk < · · ·

with limk→∞ μk = ∞. Each eigenvalue μk , k ≥ 1, has a corresponding eigenfunction φk

having exactly k – 1 zeros in (R1, R2). The next Lemmas now follow immediately:

Lemma 3.1 The set of solutions (λ, u) of (3.1) with |u|∞ ≤ ζ3(λ) is

{
(λ, 0) : λ ∈R

} ∪
{

(λk , tφk) : k ≥ 1, |t| ≤ ζ3(λ)
|φk|∞

}
.

Lemma 3.2 For each k ≥ 1 and ν , there exists a connected set Ck,ν ⊂ R × E of nontrivial
solution for (3.1) such that Ck,ν ∪ (μk , 0) is closed and connected and:

(i) there exists a neighbourhood Nk of (μk , 0) in R× E such that Nk ∩ Ck,ν ⊂R× Sk,ν ,
(ii) either Ck,ν ∩ Ck′ ,ν′ �= ∅ for some (k′,ν ′) �= (k,ν), or Ck,ν meets infinity in R× E (that is,

there exists a sequence (λn, un) ∈ Ck,ν , n = 1, 2, . . . , such that |λn| + |un|∞ → ∞).

Proof Since L–1 : Y → X exists and is bounded, (3.1) can be rewritten in the following
form

u = λL–1rN–1u + θ

( |u|∞
ζ3(λ)

)
L–1rN–1(f (u) + e(u)

)
. (3.3)
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Since L–1 can be regarded as a compact operator from Y to E, it is clear that finding a
solution (λ, u) for (3.1) in R × X is equivalent to finding a solution for (3.3) in R× E. Now,
by the similar method used in the proof of [7], we may deduce the desired result. �

In the following section, we will rely on the preservation of nodal properties for “large”
solutions encapsulated in the following Lemmas.

Lemma 3.3 If (λ, u) is a solution for (3.1) with λ ≥ 0 and |u|∞ ≥ ζ3(λ), then u ∈ Sk,ν for
some k ≥ 1 and ν .

Proof If u /∈ Sk,ν for any k ≥ 1 and ν , then u must have a double zero, but this contradicts
Lemma 2.5. �

In view of Lemmas 3.1 and 3.3, in the following Lemmas, we suppose that (λ, u) is an
arbitrary nontrivial solution for (3.1) with λ ≥ 0 and u ∈ Sk,ν , for some k ≥ 1 and ν .

Lemma 3.4 There exists an integer k0 ≥ 1 such that if λ = 0 and ζ3(0) ≤ |u|∞ ≤ 2ζ3(0),
then k < k0.

Proof Let r1, r2 be consecutive zeros of u. Then there exists r3 ∈ (r1, r2) such that u′(r3) = 0,
and hence, by Lemma 2.5 with R = c1,

∣∣u(r3)
∣∣ ≥ R = c1 ≥ (R2 – R1).

Hence

∣∣u′∣∣∞(r2 – r1) =
∣∣u′∣∣∞(r3 – r1) +

∣∣u′∣∣∞(r2 – r3)

≥ ∣∣u(r3) – u(r1)
∣∣ +

∣∣u(r2) – u(r3)
∣∣ ≥ 2(R2 – R1).

So,

|r2 – r1| ≥ 2(R2 – R1)
|u′|∞ .

By Lemma 2.2, we have

|u|∞ +
∣∣u′∣∣∞ ≤ ζ1

(
2ζ3(0)

)
,

so

|r2 – r1| ≥ 2(R2 – R1)
|u′|∞ ≥ 2(R2 – R1)

ζ1(2ζ3(0)) – |u|∞ ≥ 2(R2 – R1))
ζ1(2ζ3(0)) – ζ3(0)

.

Thus,

R2 – R1 = (R2 – rk–1) + · · · + (r1 – R1) ≥ k
2(R2 – R1)

ζ1(2ζ3(0)) – ζ3(0)
> (R2 – R1)

if k > [ ζ1(2ζ3(0))–ζ3(0)
2 ] + 1 =: k0. Contradiction! �
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Now let

VR(u) =
{

r ∈ [R1, R2] :
∣∣u(r)

∣∣ ≥ R
}

, WR(u) =
{

r ∈ [R1, R2] :
∣∣u(r)

∣∣ < R
}

.

Lemma 3.5 Suppose that R ≥ c1, 0 ≤ λ ≤ R and |u|∞ ≥ ζ3(R). Then WR(u) consists of
exactly k + 1 intervals, each of length less than 2

R , and VR(u) consists of exactly k intervals.

Proof Lemma 2.5 implies that |u′(r)| ≥ R2 for all x ∈ WR(u). For any interval I ⊂ WR,
u′(r) ≥ R2, r ∈ I , we claim that the length of I is less than 2

R .
In fact, for x, y ∈ I with x > y, we have

u(x) – u(y) =
∫ y

x
u′(s) ds ≥ R2(x – y).

Thus,

x – y ≤ R – (–R)
R2 =

2
R

,

which implies

|I| ≤ 2
R

.

The case u′(r) ≤ –R2, r ∈ I can be treated by the similar method. �

Lemma 3.6 There exists ζ4, satisfying limR→∞ ζ4(R) = 0, and c2 ≥ c1 such that, for any
R ≥ c2, if either

(a) 0 ≤ λ ≤ R and |u|∞ = 2ζ3(R), or
(b) λ = R and ζ3(R) ≤ |u|∞ ≤ 2ζ3(R).
Then the length of each interval of VR(u) is less than ζ4(R).

Proof Define H = H(R) by

H(R) := min

{
R, min

{
f (ξ )
ξ

: |ξ | ≥ R
}

–
(

C
R

+ β

)}
,

and let

ζ4(R) :=
2

RN–1
1 m∗MH(R)

,

where m∗, M are defined in detail below.
By (H1), limR→∞ H(R) = ∞, so limR→∞ ζ4(R) = 0, and we may choose c2 ≥ c1 sufficiently

large that H(R) > 0 for all R ≥ c2.
Choose r0, r2 such that u(r0) = u(r2) = R and u > R on (r0, r2), that is, I := [r0, r2] is an

interval of VR(u) (the case of intervals on which u < –R is similar). By (3.1) and the con-
struction of H , if either (a) or (b) holds then –(rN–1u′(r))′ ≥ rN–1H(R)u(r) > 0 for r ∈ I .
Now let v(r) = u(r) – R, suppose now that r2 – r0 < ζ4(R), we have

⎧⎨
⎩–(rN–1v′(r))′ ≥ rN–1H(R)(v(r) + R), r ∈ (r0, r2),

v(r0) = v(r2) = 0.
(3.4)
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Set

φ(r) =
1

N – 2

[
1

rN–2
0

–
1

rN–2

]
, ψ(r) =

1
N – 2

[
1

rN–2 –
1

rN–2
2

]
, r ∈ [r0, r2], (3.5)

then

G(r, s) =

⎧⎨
⎩

1
ρ
φ(r)ψ(s), r0 ≤ r ≤ s ≤ r2,

1
ρ
φ(s)ψ(r), r0 ≤ s ≤ r ≤ r2,

(3.6)

where

ρ :=
1

N – 2

[
1

rN–1
0

–
1

rN–1
2

]
. (3.7)

The Green function G(r, s) satisfies G(r, s) > 0, ∀r, s ∈ (r0, r2).
In fact,

v(r) ≥ d0G(r, r)|v|∞, (3.8)

where

d0 :=
ρ

φ(r2)ψ(r0)
. (3.9)

Let

m∗ := min
r0+ r2–r0

4 ≤r,s≤r2– r2–r0
4

G(r, s), (3.10)

φ∗ψ∗ := min
s∈(r0+ r2–r0

4 ,r2– r2–r0
4 )

[
1

rN–2
0

–
1

sN–2

][
1

sN–2 –
1

rN–2
2

]
. (3.11)

By (3.4)-(3.11), we have

v(r) ≥
∫ r2

r0

sN–1G(r, s)H(R)
(
v(s) + R

)
ds

≥
∫ r2– r2–r0

4

r0+ r2–r0
4

sN–1G(r, s)H(R)
(
d0G(s, s)|v|∞ + R

)
ds

≥ m∗
∫ r2– r2–r0

4

r0+ r2–r0
4

sN–1H(R)
(

φ(s)ψ(s)
φ(r2)ψ(r0)

|v|∞
)

ds

≥ m∗
∫ r2– r2–r0

4

r0+ r2–r0
4

sN–1H(R)
( [ 1

rN–2
0

– 1
sN–2 ][ 1

sN–2 – 1
rN–2
2

]

( rN–2
2 –rN–2

0
(rN–2

0 )2 )2
|v|∞

)
ds

≥ m∗RN–1
1

∫ r2– r2–r0
4

r0+ r2–r0
4

H(R)
(

φ∗ψ∗

( rN–2
2 –rN–2

0
(rN–2

0 )2 )2
|v|∞

)
ds

≥ m∗RN–1
1

φ∗ψ∗

( RN–2
2 –RN–2

1
(RN–2

1 )2 )2

∫ r2– r2–r0
4

r0+ r2–r0
4

H(R)|v|∞ ds.
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Set

M :=
φ∗ψ∗

( RN–2
2 –RN–2

1
(RN–2

1 )2 )2
,

Thus,

r2 – r0 ≤ 2
RN–1

1 m∗MH(R)
.

Contradiction. �

Now choose an arbitrary integer k ≥ k0 and ν , and choose � > max{c2,μk} such that

2(k + 1)
�

+ kζ4(�) < R2 – R1. (3.12)

Let

B =
{

(λ, u) : 0 ≤ λ ≤ �, ζ3(λ) ≤ |u|∞ ≤ 2ζ3(�)
}

.

�1 =
{

(λ, u) : 0 ≤ λ ≤ �,≤ |u|∞ = ζ3(λ)
}

.

�2 =
{

(0, u) : 2ζ3(0) ≤ |u|∞ ≤ ζ3(�)
}

.

It follows from Lemma 3.1 that Ck,ν “enters”B through the set �1, while from Lemma 3.3,
Ck,ν ∩ B ⊂ R × Sk,ν . Thus, by Lemma 2.1 and Lemma 3.2, Ck,ν must “leave” B, and since
Ck,ν is connected, it must intersect ∂B. However, Lemmas 3.4–3.6 (together with (3.12))
show that the only portion of ∂B (other than �1), which Ck,ν can intersect, is �2. Thus,
there exists a point (0, uk,ν) ∈ Ck,ν ∩ �2, and clearly uk,ν provides the desired solution for
(1.1).
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