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Abstract
Due to the major importance of the study of the logarithmic coefficients for univalent
functions, in this paper we find the sharp upper bounds for some expressions
associated with logarithmic coefficients of functions that belong to some well-known
classes of analytic functions in the open unit disk of the complex plane.
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1 Introduction and preliminaries
Let A be a class of analytic functions in the open unit disk D := {z ∈C : |z| < 1} of the form

f (z) = z +
∞∑

n=2

anzn, z ∈ D, (1.1)

and let S be the class of functions f ∈A which are univalent in D. For α ∈ [0, 1), we denote
by S∗(α) the subclass ofA consisting of all functions f ∈A for which f is a starlike function
of order α in D, that is,

Re
zf ′(z)
f (z)

> α, z ∈D.

Note that S∗(0) =: S∗ represents the class of starlike functions in D. A function f ∈ A is
said to be starlike of reciprocal order α ∈ [0, 1) (see [19, p. 2734]), denoted by f ∈ S∗

r (α), if

Re
f (z)

zf ′(z)
> α, z ∈D.

It is well known that every starlike function of reciprocal order 0 is starlike. In particular,
every starlike function of reciprocal order α ∈ [0, 1) is starlike, and hence univalent in D
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(see [22]). Moreover, for a function f ∈A and 0 < α < 1, the following equivalence holds:

f ∈ S∗
r (α) ⇐⇒

∣∣∣∣
zf ′(z)
f (z)

–
1

2α

∣∣∣∣ <
1

2α
, z ∈D.

Various authors have studied many problems for the classes S∗
r (α) and one may see, for

example, the works [8, 19, 22].
If is well known that if F and G are two analytic functions in D, then F is said to be

subordinated to G, denoted by F(z) ≺ G(z), if there exists an analytic function w in D,
with w(0) = 0 and |w(z)| < 1, z ∈ D, such that F(z) = G(w(z)) for all z ∈ D. It follows from
the Schwarz lemma that F(z) ≺ G(z) implies F(D) ⊂ G(D), while if G is univalent in D then

F(z) ≺ G(z) ⇐⇒ F(0) = G(0) and F(D) ⊂ G(D).

In [6] the authors introduced the class S∗
4� of functions f ∈A such that

zf ′(z)
f (z)

≺ 1 +
5z
6

+
z5

6
=: Q4�(z).

A function f ∈ S∗
4� maps the open unit disk D onto a domain that consists in a four-leaf-

shaped region.
In [12] (see also [26]), by using the polynomial function ��(z) := 1 +

√
2z + z2

2 , the cor-
responding class S∗

� of functions f ∈A such that

zf ′(z)
f (z)

≺ ��(z)

was widely investigated. Note that every function in S∗
� is univalent in D and maps the

open unit disk onto the domain bounded by the limacon curve

(
4u2 + 4v2 – 8u – 5

)2 + 8
(
4u2 + 4v2 – 12u – 3

)
= 0, z = u + iv.

The logarithmic coefficients γn of a function f ∈ S are defined with the aid of the follow-
ing power series expansion:

Ff (z) := log
f (z)

z
= 2

∞∑

n=1

γn(f )zn, z ∈D, where log 1 = 0. (1.2)

These coefficients play an important role in different estimates in the theory of univalent
functions, and note that we will use the notation γn instead of γn(f ); in this regard see [16,
Chap. 2] and [17, 18].

The logarithmic coefficients γn of an arbitrary function f ∈ S (see [11, Theorem 4])
satisfy the inequality

∞∑

n=1

|γn|2 ≤ π2

6
,

and the equality is obtained for the Koebe function. For f ∈ S∗, the inequality |γn| ≤ 1/n
holds but it is not true for the whole class S (see [10, Theorem 8.4]). However, the problem
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of the best upper bounds for the logarithmic coefficients of univalent functions for n ≥ 3
is presumably still open.

Because of the major importance of the study of the logarithmic coefficients, in recent
years several authors have recently investigated the issues regarding the logarithmic coeffi-
cients and various related problems for some subclasses of analytic functions (for example,
see [1–5, 9, 13–15, 20, 21, 24, 25]).

In [2] the authors obtained bounds for the logarithmic coefficients γn, n ∈ N, of the
general class

S∗(ϕ) :=
{

f ∈A :
zf ′(z)
f (z)

≺ ϕ(z)
}

,

with the given bounds generalizing many of the earlier obtained results.

Theorem A ([2, Theorem 1(i)]) Let f ∈ S∗(ϕ). If ϕ(z) = 1+B1z+ · · ·+Bnzn + · · · , z ∈D, with
B1 = 0, is convex (univalent), then the logarithmic coefficients of f satisfy the inequalities:

|γn| ≤ |B1|
2n

, n ∈N := {1, 2, 3, . . . }, (1.3)

and

∞∑

n=1

|γn|2 ≤ 1
4

∞∑

n=1

|Bn|2
n2 . (1.4)

All the inequalities in (1.3) and (1.4) are sharp, so that for any n ∈ N there is a function fn

given by zf ′
n(z)/fn(z) = ϕ(zn) and a function f given by zf ′(z)/f (z) = ϕ(z), respectively.

In [6] the authors found upper bounds for the logarithmic coefficients γn for n = 1, 2, 3, 4
as follows:

Theorem B ([6, Theorem 6]) Let f be the series as in (1.1) and suppose f ∈ S∗
4�. Then

|γ1| ≤ 5
12

, |γ2| ≤ 5
24

, |γ3| ≤ 5
36

, |γ4| ≤ 5
48

.

These bounds are sharp.

The next lemma will be used to obtain our first main result.

Lemma 1.1 ([23, Theorem II(i)], [10, Theorem 6.3, p. 192]) Let f (z) =
∑∞

n=1 anzn and g(z) =
∑∞

n=1 bnzn be analytic in D, and suppose that f (z) ≺ g(z) where g is univalent in D. Then

n∑

k=1

|ak|2 ≤
n∑

k=1

|bk|2, n ∈N.

To prove our second result that gives sharp estimates for the logarithmic coefficients γn,
n ∈N, for functions belonging to the class S∗

4�, we will use a different method given by the
following lemma.
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Lemma 1.2 ([23, Theorem VI(i)]) Let f (z) =
∑∞

k=1 akzk and F(z) =
∑∞

k=1 Akzk , z ∈ D, be
analytic functions in D such that f (z) ≺ F(z). If A1 > 0 and there is a function

F1(z) =
1
2

A1 + A2z + · · · + Anzn–1 +
∞∑

k=n+1

Bkzk–1, z ∈D, (1.5)

which is regular in D and satisfies Re F1(z) > 0, z ∈D, then

|an| ≤ A1, n ∈N.

Equality is possible only if either f (z) = F(εzn), |ε| = 1, or if Ak are of the form

Ak =
n–1∑

j=1

ρjei(k–1)ϑj , ρj ≥ 0, k = 1, 2, . . . , n.

In [7] the author defined the class S(A, B, p,β) of functions f (z) = zp +
∑∞

k=1 akzk analytic
in D which satisfy

zf ′(z)
f (z)

≺ (p – β)
1 + Az
1 + Bz

+ β =: ψ(z), (1.6)

with –1 ≤ B < A ≤ 1 and 0 ≤ β < p, p ∈ N. Theorem 3 of [7] gives upper bounds for the
coefficients an of functions belonging to this class S(A, B, p,β).

We emphasize that, if we assume also that –1 ≤ A < B ≤ 1 instead of –1 ≤ B < A ≤ 1,
the conclusion of Theorem 3 in [7] holds. We will use the following lemma to determine
upper bounds for the coefficients of functions in the class S∗

r (α).

Lemma 1.3 ([7, Theorem 3]) If f (z) = zp +
∑∞

k=1 akzk ∈ S(A, B, p,β), then

|an| ≤
n–(p+1)∏

k=0

|(B – A)(p – β) + Bk|
k + 1

, n ≥ p + 1,

and these bounds are sharp for all –1 ≤ A < B ≤ 1 and for each n ≥ p + 1.

The main purpose of this paper is to get sharp bounds for some relations associated with
logarithmic coefficients of functions belonging to the well-known classes S∗

r (α), S∗
4�, and

S∗
� . Moreover, we find sharp bounds for the coefficients of functions in S∗

r (α).

2 Main results
The first result of this section deals with the logarithmic coefficients of the class S∗

r (α).

Theorem 2.1 Let f ∈ S∗
r (α).

1. Then, the logarithmic coefficients of f satisfy the following inequalities:

|γn| ≤ 1 – α

n
, n ∈N, (2.1)

∞∑

n=1

|γn|2 ≤
⎧
⎨

⎩
(α – 1)2 ∑∞

n=1
(1–2α)2(n–1)

n2 , if α ∈ [0, 1) \ {1/2},
1
4 , if α = 1/2,

(2.2)
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and

∞∑

n=1

n2|γn|2 ≤
⎧
⎨

⎩
(α – 1)2 ∑∞

n=1(1 – 2α)2(n–1), if α ∈ [0, 1) \ {1/2},
1
4 , if α = 1/2.

(2.3)

2. The first inequality is sharp (the best possible) because for an arbitrary n0 ∈N, for the
function

κ(z) = fn0 (z) :=

⎧
⎨

⎩
z[1 + (1 – 2α)zn0 ]

2(α–1)
n0(1–2α) , if α ∈ [0, 1) \ {1/2},

ze– zn0
n0 , if α = 1/2,

we obtain equality in (2.1).
3. The second and third inequalities are sharp because for the function

k(z) = f1(z) :=

⎧
⎨

⎩
z[1 + (1 – 2α)z]

2(α–1)
1–2α , if α ∈ [0, 1) \ {1/2},

ze–z, if α = 1/2,
(2.4)

we obtain equalities in (2.2) and (2.3).

Proof 1. To prove the first part of our result, suppose that f ∈ S∗
r (α). Then

f (z)
zf ′(z)

≺ 1 + (1 – 2α)z
1 – z

,

and, according to the definition of subordination, this is equivalent to

zf ′(z)
f (z)

≺ 1 – z
1 + (1 – 2α)z

=: φ(z)

=

⎧
⎨

⎩
1 + 2(α–1)

1–2α

∑∞
k=1(–1)k–1(1 – 2α)kzk , if α ∈ [0, 1) \ {1/2},

1 – z, if α = 1/2,

where φ(z) = 1 + B1z + · · · , z ∈ D, with B1 = 2(α – 1) = 0 for α ∈ [0, 1). Now, we will show
that φ is convex (univalent) in D. Since φ′(0) = B1 = 0 and

Re

(
1 +

zφ′′(z)
φ′(z)

)
= Re

1 – (1 – 2α)z
1 + (1 – 2α)z

> 0, z ∈D,

for all α ∈ [0, 1), it follows that φ is convex (univalent) inD. Since all conditions of Theorem
A are satisfied, from (1.3) and (1.4) it follows that the first two inequalities of our theorem
hold.

Now we will prove the last inequality of our theorem. Thus, given f ∈ S∗
r (α) and using

the power series expansion formula (1.2), we get

∞∑

n=1

2nγnzn = z
d
dz

(
log

f (z)
z

)
=

zf ′(z)
f (z)

– 1 ≺ 1 – z
1 + (1 – 2α)z

– 1 = φ(z) – 1 =: ψ(z).
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We already proved that the function φ is univalent in D, hence ψ will be such too, and it
has the form

ψ(z) =

⎧
⎨

⎩

2(α–1)
1–2α

∑∞
n=1(–1)nk–1(1 – 2α)nzn, if α ∈ [0, 1) \ {1/2},

–z, if α = 1/2.

According to Lemma 1.1, the above subordination leads to

p∑

n=1

4n2|γn|2 ≤
⎧
⎨

⎩
4
∑p

n=1(α – 1)2(1 – 2α)2(n–1), if α ∈ [0, 1) \ {1/2},
1, if α = 1/2,

and, letting p → +∞, the last assertion is proved.
2. For the proof of the sharpness of (2.1), if α ∈ [0, 1) \ {1/2}, we have κ ∈A, and since

zκ ′(z)
κ(z)

=
1 – zn0

1 + (1 – 2α)zn0
≺ 1 – z

1 + (1 – 2α)z
,

it follows that κ ∈ S∗
r (α). Also,

1
2

log
κ(z)

z
=

1
2

2(α – 1)
n0(1 – 2α)

log
[
1 + (1 – 2α)zn0

]

=
α – 1

n0
zn0 +

∞∑

k=2

(–1)k–1(α – 1)(1 – 2α)k–1

n0k
zn0k , z ∈D.

Thus γn0 = α–1
n0

and hence |γn0 | = 1–α
n0

.
For α = 1

2 , it follows that κ ∈A and

zκ ′(z)
κ(z)

= 1 – zn0 =
1 – zn0

1 + (1 – 2 · 1
2 )zn0

≺ 1 – z
1 + (1 – 2 · 1

2 )z
,

which implies κ ∈ S∗
r (1/2). Since

1
2

log
κ(z)

z
= –

zn0

2n0
,

it follows that γn0 = – 1
2n0

and hence |γn0 | = 1
2n0

= 1–α
n0

for α = 1
2 .

3. To prove the sharpness of (2.2) and (2.3), for α ∈ [0, 1) \ {1/2}, like in the above proof,
by replacing n0 := 1, we get k ∈ S∗

r (α), and

1
2

log
k(z)

z
=

∞∑

k=1

(–1)k–1(α – 1)(1 – 2α)k–1

k
zk , z ∈ D.

Hence, γn = (–1)n–1(α–1)(1–2α)n–1

n , n ∈N and thus

|γn|2 =
(α – 1)2(1 – 2α)2(n–1)

n2 , n ∈N. (2.5)
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Therefore we have

∞∑

n=1

|γn|2 = (α – 1)2
∞∑

n=1

(1 – 2α)2(n–1)

n2 .

For α = 1
2 , similarly to the above proof, we get k ∈ S∗

r (1/2) and

γ1 =
1
2

and γk = 0, k ≥ 2, (2.6)

which implies

∞∑

n=1

|γn|2 =
1
4

.

Similarly, if α ∈ [0, 1) \ {1/2}, from (2.5) we get

n2|γn|2 = (α – 1)2(1 – 2α)2(n–1), n ∈N.

Hence

∞∑

n=1

n2|γn|2 = (α – 1)2
∞∑

n=1

(1 – 2α)2(n–1),

and, for α = 1/2, according to (2.6) it follows that

∞∑

n=1

n2|γn|2 =
1
4

.

Therefore the proof of the theorem is completed. �

Remark 2.1 The power series on the right-hand side of (2.3) converges only for |1–2α| < 1,
which is equivalent to α ∈ (0, 1). If α = 0, then

∞∑

n=1

(1 – 2α)2(n–1) =
∞∑

n=1

1 = +∞,

hence this series is divergent. Consequently, for α = 0 the third inequality is not useful
from the point of view that for

∑∞
n=1 n2|γn|2 the upper bound given by (2.3) is not finite.

The following result provides the best possible upper bounds for the logarithmic coef-
ficients of the functions belonging to S∗

4� and it is an extension of Theorem B.

Theorem 2.2 If f ∈ S∗
4�, then

|γn| ≤ 5
12n

, n ∈N. (2.7)

This inequality is sharp for each n ∈N.
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Proof If f ∈ S∗
4�, then from the definition of S∗

4� it follows that

z
d
dz

(
log

f (z)
z

)
=

zf ′(z)
f (z)

– 1 ≺ 5z
6

+
z5

6
,

and using the logarithmic coefficients γn of f given by (1.2), we get

∞∑

n=1

2nγnzn ≺ 5z
6

+
z5

6
=: F(z). (2.8)

Now, consider in Lemma 1.2 the sequence

A1 =
5
6

, A2 = A3 = A4 = 0, A5 =
1
6

, (2.9)

An = 0 for all n ≥ 6, and Bk = 0 for all k ≥ 7. Then the function F1 given by (1.5) becomes

F1(z) =
5

12
+

z4

6
.

Since A1 = 5/6 > 0, the analytic function F1 in D satisfies Re F1(z) > 1/4 > 0, z ∈ D. Hence
all the assumptions of Lemma 1.2 are satisfied. Therefore, according to this lemma, the
subordination (2.8) implies that

2n|γn| ≤ A1 =
5
6

, n ∈N,

which yields our inequality.
The sharpness of the inequality (2.7) could be proved much easier, and without using

Lemma 1.2, as follows. For every n ∈ N, define the function

fn(z) := z exp

(∫ z

0

Q4�(tn) – 1
t

dt
)

= z +
5

12n
zn+1 + · · · , z ∈D.

It is easy to check that fn ∈A and

zf ′
n(z)

fn(z)
= 1 +

5zn

6
+

z5n

6
≺ 1 +

5z
6

+
z5

6
,

hence fn ∈ S∗
4�. Since

log
fn(z)

z
= 2

∞∑

k=1

γk(fn)zk =
5

12n
zn + · · · , z ∈D,

it follows that the upper bound of the inequality (2.7) is sharp for each n ∈N if f = fn, that
is, |γn| = 5

12n , n ∈N. �

Sharp bounds of the logarithmic coefficients γn for the functions of the class S∗
� are

obtained in the next result.
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Theorem 2.3 If f ∈ S∗
� , then

|γn| ≤ 1√
2n

, n ∈N. (2.10)

This inequality is sharp for each n ∈N.

Proof Supposing that f ∈ S∗
� , by the definition of S∗

� it follows that

z
d
dz

(
log

f (z)
z

)
=

zf ′(z)
f (z)

– 1 ≺ √
2z +

z2

2
,

which, with regard to the logarithmic coefficients γn of f given by (1.2), leads to

∞∑

n=1

2nγnzn ≺ √
2z +

z2

2
=: F(z). (2.11)

If we consider in Lemma 1.2 the sequence A1 =
√

2, A2 = 1/2, An = 0 for all n ≥ 3, and
Bk = 0 for all k ≥ 4, then the function F1 given by (1.5) becomes

F1(z) =
1√
2

+
z
2

.

Since A1 =
√

2 > 0, the analytic function F1 in D satisfies Re F1(z) > (
√

2 – 1)/2 > 0, z ∈ D.
Hence all the assumptions of Lemma 1.2 are satisfied. Therefore, from the subordination
(2.11) we get

2n|γn| ≤ A1 =
√

2, n ∈N,

and the inequality (2.10) is proved.
Moreover, for every n ∈N, define the function

fn(z) := z exp

(∫ z

0

��(tn) – 1
t

dt
)

= z +
1√
2n

zn+1 + · · · , z ∈D.

Since fn ∈A and

zf ′
n(z)

fn(z)
= 1 +

√
2zn +

z2n

2
≺ 1 +

√
2z +

z2

2
,

it follows that fn ∈ S∗
� . Also, a simple computation shows that

log
fn(z)

z
= 2

∞∑

k=1

γk(fn)zk =
1√
2n

zn + · · · , z ∈D.

Thus, the upper bound of (2.10) is the best possible for each n ∈N whenever f = fn. �

For the coefficients an of the functions f ∈ S∗
r (α) of the form (1.1), we find the following

sharp upper bounds.
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Theorem 2.4 If f ∈ S∗
r (α), then

|an| ≤
⎧
⎨

⎩

∏n–2
k=0

|2(1–α)+(1–2α)k|
k+1 , if α ∈ [0, 1) \ {1/2},

1
(n–1)! , if α = 1/2.

This inequality is sharp for the function k given by (2.4).

Proof Supposing that f ∈ S∗
r (α), it follows that

f (z)
zf ′(z)

≺ 1 + (1 – 2α)z
1 – z

,

and, according to the definition of subordination, the above is equivalent to

zf ′(z)
f (z)

≺ 1 – z
1 + (1 – 2α)z

.

If we take in the definition (1.6) the values p := 1, A := –1, B := 1 – 2α, and β := 0, from this
relation, using Lemma 1.3 for the above values, it follows that f ∈ S∗

r (α), α ∈ [0, 1), and
hence

|an| ≤
n–2∏

k=0

|2(1 – α) + (1 – 2α)k|
k + 1

, n ≥ 2.

In the third part of the proof of Theorem 2.1, we showed that the function k ∈ S∗
r (α). For

α ∈ [0, 1) \ {1/2}, the sharpness of the result follows from the extremal function given in
[7, p. 741] or could be proved directly, while for α = 1/2 the sharpness is obvious. �

3 Conclusion
In the current paper, due to the major importance of the study of the logarithmic coef-
ficients γn of the function f ∈ S , we obtained sharp upper bounds for some expressions
associated with the logarithmic coefficients γn of the functions that belong to the well-
known classes like S∗

r (α), S∗
4�, and S∗

� , and an upper bound for the functions in the class
S∗

r (α). All results are the best possible (sharp, i.e., cannot be improved), while the second
one extended an earlier estimate obtained by the authors.
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