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Abstract
In this paper, we introduce some user-friendly versions of integral-type fixed-point
results and give some modifications of the classical Banach contraction principle by
constructing a special type of contractive restrictions of integral forms for weak
contraction mappings defined on 1E-complete multiplicative partial cone metric
spaces over Banach algebras and formulate some existence and uniqueness results
regarding the fixed-point theorems using some integrative conditions. Moreover, we
validate the significance our results and exploit them to find the unique solution of a
fractional nonlinear differential equation of Caputo type, which complements some
previously well-known generalizations found in the literature.
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1 Introduction
One of the most frequently cited results of functional analysis is the Banach contraction
mapping principle. It is widely regarded as the source of the metric fixed-point theory, and
its importance lies in its broad applicability in a number of branches of mathematics. We
are interested in the generalization given by Branchiari [1].

In 2002, Branchiari [1] introduced the integral version of the Banach contraction princi-
ple and studied the existence of fixed points for a single-valued mapping satisfying inter-
esting integral-type contractive conditions in complete metric spaces. Later, many authors
in [2–5] extended the result of Branciari and proved some fixed-point theorems on differ-
ent spaces involving more general contractive conditions.
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In 2010, Khojasteh et al. [6] defined a new notion of integral with respect to a cone and
proved some fixed-point theorems for integral-type contractions in the setting of cone
metric spaces.

In 2018, Langpoklakpam Premila Devi and Laishram Shambhu Singh [7] proved gener-
alized results to C-class functions using contractive conditions of integral type on com-
plete Sb-metric spaces. In 2018, Ansari et al. [8] generalized the results via C-class func-
tions under new contractive conditions of integral type on complete S-metric spaces.

In 2020, Amjad Ali et al. [9] developed some common fixed-point theorems for gen-
eralized mappings and used their results to solve a system of functional equations and
Voltera-type integral equations, and at the same year, Sahar Mohamed Ali Abou Bakr [10]
proved the existence of a common fixed point of (A; B) generalized cyclic φ – abc weak
nonexpansive mappings.

In 2021, Sahar Mohamed Ali Abou Bakr [11] gave more generalizations of [7] and [8].
Moreover, as a particular case, the author proved the existence of a fixed point for both
cyclic �S,(abef )-weak contractions and cyclic �S,(abef )-weak nonexpansive mappings. On
the other side, the author extended the studies in the settings of cone metric spaces, gen-
eralized cone metric spaces, and cone b metric spaces in [12–14]. See [10] and references
therein.

In 2022, Amjad Ali et al. [15] generalized the notion of θ -contractions in the framework
of b-metric to the case of nonlinear θb-contraction mappings and compiled their work
by an application of nonlinear θb-contractions to Liouville–Caputo fractional differential
equations. Also, Amjad Ali et al. [16] took a different approach in the case of b-metric-
like and orthogonal b-metric-like spaces via a hybrid pair of operators to present some
results in fixed-point theory and included some applications in the field of nonlinear anal-
ysis to highlight the usability and validity of the theoretical results. Then Amjad Ali et al.
[17] developed some fixed-point theorems and the notion of F-contractions to the case of
nonlinear (F , FH)-dynamic-iterative scheme for Branciari Ćirić-type contractions in con-
trolled metric spaces; they also provided an application to the Liouville–Caputo fractional
derivatives and fractional differential equations.

In 2023, Sahar Mohamed Ali Abou Bakr [18] proved the existence of coupled coinci-
dence points of generalized contraction mappings where parametric contractions are vec-
tors.

The present paper is organized into three main sections. Firstly, we introduce the no-
tion of integration with respect to the multiplicative algebra cone. Secondly, we manifest
some fixed-point results under general F� – (ψ ,φ) integral-type contractive inequalities.
Ultimately, we present an application and numerical example of our core result. In fact,
we introduce some user-friendly versions of integral-type fixed-point results. Besides, the
new results are supported by illustrative examples. As an application, we prove the exis-
tence and uniqueness of a solution for fractional-order differential equation to validate the
significance of the results that complement a number of previously well-known general-
izations found in the literature.

2 Preliminaries
Let N denote the set of all positive integers, N0 = N∪ {0}, R = (–∞,∞), and R

+ = (0,∞).
Consistently with [19], we will need the following definitions.
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Definition 2.1 A multiplicative normed space is a vector space E (with either the real or
complex numbers as its field of scalars) with zero vector θ , in which to each vector x, there
corresponds a real number, denoted ρ(x) and called the multiplicative norm of x, satisfying
the following conditions:

(i) ρ(x) ≥ 1 for all x ∈ E;
(ii) ρ(x) = 1 if and only if x = θ ;

(iii) ρ(αx) = ρ(x)|α| for all x ∈ E and all scalars α;
(iv) ρ(x ± y) ≤ ρ(x) × ρ(y) for all x, y ∈ E.

The pair (E,ρ(·)) is called a multiplicative normed space.

To fix notations, let CR[a, b] be the set of all continuous real-valued functions defined
on the closed bounded interval of real numbers [a, b]; that is,

CR[a, b] :=
{

f : [a, b] →R, f is a continuous function on [a, b]
}

,

and let ‖f ‖ := maxt∈[a,b] |f (t)|. The multiplicative norm on CR[a, b] is defined by ρ∞(f ) =
r‖f ‖, where r > 1 is any fixed real number (see [19]).

Definition 2.2 A sequence {xn}n∈N in a multiplicative normed space (E,ρ(·)) is said
to be multiplicative convergent to x0 ∈ E if for any ε > 1, there exists n0 ∈N such that
ρ(xn – x0) < ε for all n ≥ n0. Mathematically, xn

ρ→ x0 as n → ∞ if limn→∞ ρ(xn – x0) = 1.

3 Multiplicative algebra cones in Banach algebras
The aim of this section is to stress the aspects of multiplicative algebra cones in ordered
Banach algebras. We suppose the reader is acquainted with the definition of a Banach
algebra; if not, see [20] for a review. Let E be a Banach algebra with multiplicative element
denoted by 1E , and let x be an element in E. The main tools for dealing with operations on
exponential terms on E are defined subject to the following three key formulas:

In the case of positive integer powers, xn (n ∈N) is the n-fold product of x by itself, that
is, xn := x · x · . . . · x︸ ︷︷ ︸,

n times

and x0 := 1E . By a root we mean a fractional power xr , where r = 1
m

for m ∈ N, which is an element y ∈ E such that x := ym. We now turn to the fractional
exponent case: in general, x n

m (n, m ∈ N) is defined as x n
m := x

1
m · . . . · x

1
m︸ ︷︷ ︸

n times

or, equivalently,

x n
m := (x · . . . · x︸ ︷︷ ︸

n times

) 1
m .

Definition 3.1 Let E be a real Banach algebra with multiplicative element 1E . A subset M
(	= ∅) of E is called a multiplicative algebra cone if M satisfies the following conditions:

(i) M is closed, 1E ∈ M, and M 	= {1E};
(ii) M · M ⊂ M;

(iii) Ma ⊂ M (a ≥ 0), that is, xa ∈ M for all x ∈ M and a ≥ 0, where xa = limn→∞ xan for
a sequence an of rational numbers converging to a;

(iv) M
⋂ 1

M = {1E}, that is, if x, 1E
x ∈ M, then x = 1E .

We proceed by giving the following example.
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Example 3.2 Let E := Mn(R) be the algebra of all real n-by-n matrices with the stan-
dard matrix multiplication and with Frobenius multiplicative norm defined by ρF (A) :=

r(
∑n

i,j=1 |aij|2)
1
2 for A ∈ Mn(R), where r > 1 is a fixed real number. Clearly, (Mn(R),ρF (·)) is

a Banach algebra, and the identity matrix In = {aij : aii = 1 and aij = 0 whenever i 	= j, 1 ≤
i, j ≤ n} serves as the multiplicative element in Mn(R). Let M be the family of all diagonal
matrices in Mn(R) with diagonal elements aii ≥ 1 for 1 ≤ i ≤ n, that is,

M :=
{

A = [aij]n×n ∈ E : aij = 0 when i 	= j, and aii ≥ 1 for 1 ≤ i, j ≤ n
}

.

Thus M ⊂ E is a multiplicative algebra cone in Mn(R).

Definition 3.3 Let x and y be elements of the Banach algebra E ordered by a multiplicative
algebra cone M. The preference ordering � with respect to M is defined by x � y if and only
if y

x ∈ M. We say that x ≺ y if and only if y
x ∈ M, but x 	= y. Further, x � y if and only if

y
x ∈ Int(M), where Int(M) denotes the interior of M, if there are any. If Int(M) 	= ∅, then M is
called solid. Note that y

x ∈ Int(M) implies y
x ∈ M, but the converse is not always the case.

A significant property that the multiplicative algebra cone M may have is normality.

Definition 3.4 Let M be a multiplicative algebra cone. We say that M is normal if there is
K > 0 such that for all x, y ∈ E, ρ(x) ≤ ρ(y)K whenever 1E � x � y. The least positive number
satisfying the above inequality is called the multiplicative normality constant of K .

Lemma 3.5 If E is a real Banach algebra with multiplicative algebra cone M and {xn}n∈N
is a sequence in M such that xn

ρ→ 1E (or, equivalently, ρ(xn – 1E) →
n→∞ 1), then {xn}n∈N is a

c-sequence, that is, for each 1E � c, there exists nc ∈N such that xn � c for all n ≥ nc.

Remark 3.6 For the moment, it is worth remarking that the converse of Lemma 3.5 holds
whenever the underlying multiplicative algebra cone M is necessarily normal. Indeed, for
each ε > 1, there exists 1E � c such that ρ(c) < ( ε

ρ(1E) )
1
K , where K is the multiplicative nor-

mality constant of M. For this c, there is some nc ∈N such that xn � c for all n ≥ nc and
for all n ≥ nc, we have

ρ(xn – 1E) ≤ ρ(xn) × ρ(1E) ≤ ρ(c)K × ρ(1E) <
ε

ρ(1E)
× ρ(1E) = ε.

This is equivalent to xn
ρ→ 1E as n → ∞.

Definition 3.7 [6] Suppose that C is a normal cone in E and a, b ∈ E with a < b. Then
define [a, b] := {x ∈ E : x = tb + (1 – t)a for some t ∈ [0, 1]}.

Definition 3.8 [6] The set {a = x0, x1, x2, . . . , xn–1, xn = b} is called a partition for [a, b] if
and only if the sets {[xi–1, xi)}n

i=1 are pairwise disjoint and

[a, b] =

{ n⋃

i=1

[xi–1, xi)

}

∪ {b}.
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Definition 3.9 Suppose that the multiplicative algebra cone M in E is normal, and let
a, b ∈ M be any elements such that a � b. Then

(i) The multiplicative segment between a and b denoted by [a, b]m is defined as

[a, b]m :=
{

c : c = at · b(1–t) for some t ∈ [0, 1]
} ⊂ M.

(ii) The partition of the multiplicative segment [a, b]m is any finite ordered subset
Q = {a = x0, x1, x2, . . . , xn–1, xn = b} satisfying the following conditions:
{xi : 1 ≤ i ≤ n – 1} ⊆ (a, b)m, xi ≺ xi+1 for all i ∈ {0, 1, . . . , n – 1}, and
[a, b]m = {⋃n

i=1[xi–1, xi)m}⋃{b}.
The collection of all partitions of a multiplicative segment [a, b]m is denoted

Q[a, b]m.

Example 3.10 Consider the Banach algebra E := (CR[0, 1],ρ∞(·)) in the order of the mul-
tiplicative algebra cone M = {f ∈ E : f (x) ≥ 1 on x ∈ [0, 1]} with multiplicative normality
constant K = 1. Define multiplication in CR[0, 1] in the natural way. Let f (x) = ex be the
exponential function with the natural base e, and let g(x) = e – cos(1) + cos(x). Since
ex ≤ (e – cos(1) + cos(x)) for all x ∈ [0, 1], we have f � g. The multiplicative segment be-
tween the mappings f and g is indicated by

[f , g]m =
{

ht :
(
ht(x) = etx(e – cos(1) + cos(x)

)(1–t) for all x ∈ [0, 1]
)

for some t ∈ [0, 1]
}

.

Specifically, we will stick to the following mappings defined over the values of x ∈ [0, 1]
as follows:

h1(x) := f (x) = ex;

h0.9(x) := e0.9x(e – cos(1) + cos(x)
)0.1;

h 4
5

(x) := e
4
5 x(e – cos(1) + cos(x)

) 1
5 ;

h0.75(x) := e0.75x(e – cos(1) + cos(x)
)0.25;

h 2
3

(x) := e
2
3 x(e – cos(1) + cos(x)

) 1
3 ;

h0.5(x) :=
√

ex
(
e – cos(1) + cos(x)

)
;

h0.22(x) := e0.22x(e – cos(1) + cos(x)
)0.78;

h0(x) : g(x) = e – cos(1) + cos(x).

Clearly, Q1 = {h1, h 4
5

, h0.75, h0.5, h0}, Q2 = {h1, h0.9, h 2
3

, h0.22, h0}, and Q3 := (Q1 ∪Q2) =
{h1, h0.9, h 4

5
, h0.75, h 2

3
, h0.5, h0.22, h0} are partitions of the multiplicative segment [f , g]m. We

present the graphs for the mappings in partition Q3 in Fig. 1.
Observe that x = 1 ∈ [0, 1] is a coincidence point of the mappings f , g , and ht for any

ht ∈Q3. Indeed, x = 1 is a coincidence point of all mappings belonging to the multiplicative
segment [ex, (e – cos(1) + cos(x))]m.
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Figure 1 Graph of the mappings in partitionQ3 := (Q1 ∪Q2) of the multiplicative segment
[ex , (e – cos(1) + cos(x))]m on the closed interval [0, 1] in Example 3.10

Example 3.11 Let E := CR[1, 2] be equipped with the multiplicative norm ρ∞(·) and usual
multiplication. Then E is a Banach algebra. Let

M =
{

f ∈ E : f (x) ≥ 1 on x ∈ [1, 2]
}

.

Thus M ⊂ E is a multiplicative algebra cone with multiplicative normality constant K = 1.
Note that (1 + ln(x)) ≥ 1 for x ∈ [1, 2], and thus 1E � (1 + ln(x)), where 1E in CR[1, 2] is

the constant mapping f (x) = 1 for all x ∈ [1, 2]. The multiplicative segment between 1E and
(1 + ln(x)) is presented by

[
1E ,

(
1 + ln(x)

)]
m =

{
ht :

(
ht(x) =

(
1 + ln(x)

)(1–t) for all x ∈ [1, 2]
)

for some t ∈ [0, 1]
}

.

Naturally, Q = {1E , (1 + ln(x))0.7,
√

1 + ln(x), (1 + ln(x)) 1
3 , (1 + ln(x))} is a partition of

[1E , (1 + ln(x))]m. The set of mappings in the partition Q is depicted in Fig. 2.
We can see that x = 1 ∈ [1, 2] is a common fixed point of the mappings

{
f (x) = 1,

(
1 + ln(x)

)0.7,
√

1 + ln(x),
(
1 + ln(x)

) 1
3 ,

(
1 + ln(x)

)}
.

The common fixed point of these mappings can be seen in Fig. 2. Moreover, x = 1 is a
common fixed point of any mapping ht ∈ [1E , (1 + ln(x))]m.

Example 3.12 Let E := (CR[0, 2π ],ρ∞(.)), and define the multiplication in E pointwise.
Then E is a real Banach algebra. Consider a multiplicative algebra cone M = {h ∈ E :
h(x) ≥ 1 on x ∈ [0, 2π ]} in E with multiplicative normality constant K = 1. Consider the
following mappings:

f (x) =

⎧
⎨

⎩
2 + sin x if x ∈ [0,π ],

2 – sin x if x ∈ [π , 2π ],
g(x) =

⎧
⎨

⎩
4 – sin x if x ∈ [0,π ],

4 + sin x if x ∈ [π , 2π ].
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Figure 2 The mappings in the partitionQ of the multiplicative segment between f (x) = 1 and (1 + ln(x)) on
the closed interval [1, 2] in Example 3.11

Evidently, we have (2 + sin x) ≤ (4 – sin x) for all x ∈ I = [0,π ] and (2 – sin x) ≤ (4 + sin x)
for all x ∈ J = [π , 2π ].

Mathematically, the multiplicative segment between f and g can be expressed as

[f , g]m =

⎧
⎨

⎩
{ht : (ht(x) = (2 + sin x)t(4 – sin x)(1–t) for all x ∈ I) for some t ∈ [0, 1]},
{kt : (kt(x) = (2 – sin x)t(4 + sin x)(1–t) for all x ∈ J) for some t ∈ [0, 1]}.

We remark that

Q =

⎧
⎨

⎩
{h1(x), h 1

2
(x), h0.35(x), h 1

4
(x), h0(x)} if x ∈ I,

{k1(x), k 1
2

(x), k0.35(x), k 1
4

(x), k0(x)} if x ∈ J ,

is a partition of [f , g]m. The sets of mappings in the partition Q can be seen graphically in
Fig. 3.

From Fig. 3 we can point out that π
2 ∈ I = [0,π ] is the coincidence point of the mappings

{2 + sin x, 4 – sin x, ht(x)} for any mapping ht(x) ∈ [f , g]m. Further, 3π
2 ∈ J = [π , 2π ] is the

coincidence point of the mappings {2 – sin x, 4 + sin x, kt(x)} for any mapping kt(x) ∈ [f , g]m.

Definition 3.13 [6] For each partition Q of [a, b] = {⋃n
i=1[xi–1, xi)}⋃{b} and each increas-

ing function ϕ : [a, b] → C, the cone lower summation and cone upper summation are de-
fined as

LCon
n (ϕ, Q) =

∑

0≤i≤n–1

ϕ(xi)‖xi+1 – xi‖,

UCon
n (ϕ, Q) =

∑

0≤i≤n–1

ϕ(xi+1)‖xi+1 – xi‖,

respectively.

Lemma 3.14 Let E be the real multiplicative Banach algebra of real-valued functions de-
fined on an arbitrary closed bounded interval J ⊆R, and let the underlying multiplicative
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Figure 3 Graphical representation of partitionQ in Example 3.12

algebra cone M be normal. For any f , g ∈ E, we define

f � g if and only if
(

g
f

)
(x) ≥ 1 for all x ∈ J .

Let f , g ∈ M with f � g . If x̄ ∈ J is a coincidence point of f and g , then x̄ is a coincidence
point of f , g , and h for any h ∈ [f , g]m.

Proof Let h ∈ [f , g]m. Then h = f t × g(1–t) for some t ∈ [0, 1]. Assume that x̄ ∈ J is a coinci-
dence point of f and g . Then there must be some y ∈R such that f (x̄) = g(x̄) = y. For this
x̄, we find that

h(x̄) =
(
f t × g(1–t))(x̄) =

(
f t(x̄)

) × (
g(1–t)(x̄)

)
= yt × y(1–t) = y.

Hence h(x̄) = f (x̄) = g(x̄) = y, and so x̄ is a coincidence point of f , g , and h for any
h ∈ [f , g]m. �

Definition 3.15 Suppose that ϕ : [a, b]m → M is any increasing mapping with respect to
� . Let Q = {a = x0, x1, x2, . . . , xn–1, xn = b} be any partition of [a, b]m. Then we define the
multiplicative lower product LM

n (ϕ,Q) and the multiplicative upper product UM
n (ϕ,Q) of

ϕ, respectively, as follows:

LM
n (ϕ,Q) =

∏

0≤i≤n–1

ϕ(xi)ρ(xi+1–xi),

UM
n (ϕ,Q) =

∏

0≤i≤n–1

ϕ(xi+1)ρ(xi+1–xi).

Definition 3.16 The mapping ϕ : [a, b]m → M is called a multiplicative integrable map-
ping on [a, b]m with respect to the multiplicative algebra cone M or, for simplicity, a multi-



Faried et al. Journal of Inequalities and Applications        (2023) 2023:144 Page 9 of 26

plicative integrable mapping if and only if for any partition Q of [a, b]m, we have

lim
n→∞ LM

n (ϕ,Q) = lim
n→∞ UM

n (ϕ,Q) = PM.

The limit PM is called the multiplicative integral of ϕ on [a, b]m, and we denote it by
∫ b

a ϕ(t)dM(t).

We denote the set of all multiplicative integrable mappings ϕ : [a, b]m → M by
L1([a, b]m, M).

Lemma 3.17 Let [a, b]m ⊂ [a, c]m and ϕ ∈ {L1([a, b]m, M),L1([a, c]m, M)}. Then

∫ b

a
ϕ(t)dM(t) �

∫ c

a
ϕ(t)dM(t).

Proof Let Q1 and Q2 be the resulting points of the partitions of [a, b]m and [b, c]m, respec-
tively:

Q1 = {a = x0, x1, . . . , xn–1, xn = b},
Q2 = {b = xn, xn+1, . . . , xm–1, xm = c}m>n.

The set Q̄ = {a = x0, x1, . . . , xn–1, b = xn, xn+1, . . . , xm–1, xm = c}m>n is a partition of [a, c]m be-
cause xi ≺ xi+1 and xj ≺ xj+1 for every i ∈ {0, 1, . . . , n – 1} and every j ∈ {n, n + 1, . . . , m}. We
have

LM
n (ϕ,Q1) =

∏

0≤i≤n–1

ϕ(xi)ρ(xi+1–xi)

�
{ ∏

0≤i≤n–1

ϕ(xi)ρ(xi+1–xi)
}

·
{ ∏

n≤j≤m–1

ϕ(xj)ρ(xj+1–xj)
}

=
∏

k∈{0,1,...,n–1,n,n+1,...,m–1}
ϕ(xk)ρ(xk+1–xk )

= LM
m (ϕ, Q̄).

Consequently,
∫ b

a ϕ(t)dM(t) � ∫ c
a ϕ(t)dM(t). �

Definition 3.18 The mapping ϕ : M → M is called a submultiplicative integrable if and
only if for all a, b � 1E , we have

∫ a·b

1E

ϕ(t)dM(t) �
∫ a

1E

ϕ(t)dM(t) ·
∫ b

1E

ϕ(t)dM(t).

Definition 3.19 The multiplicative integrable mapping ϕ ∈L1([1E, c]m, M) is called com-
pletely multiplicative integrable on M if the following conditions hold:

(i) ϕ is a nonvanishing mapping;
(ii) ϕ is submultiplicative integrable on each multiplicative segment [1E , c]m for any

c ∈ M;
(iii)

∫ c
1E

ϕ(t)dM(t) � 1E for each c � 1E .
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4 Topological structure on multiplicative partial cone metric spaces over
Banach algebras

For completeness, we begin with the following preliminary notes.
Let (E,‖ · .‖) be a real Banach space with the zero vector θ . A proper nonempty closed

subset C of E is called a cone if C + C ⊂ C, λC ⊂ C for λ ≥ 0, and C ∩ (–C) = {θ}. If the
cone C has a nonempty interior Int(C), then it is called solid. Each cone induces a partial
ordering on E, denoted by � and defined by x � y if and only if y – x ∈ C. The notation
x ≺ y indicates that x � y and x 	= y, and the notation x � y indicates that y – x ∈ Int(C).
The cone C is called normal if there is a constant number K > 0 such that for all x, y ∈ E,
θ � x � y implies ‖x‖ ≤ K‖y‖. The least positive number satisfying above is called the
normal constant of C (see [21]).

Let X be a nonempty set, and let C be a cone of a real Banach space E. A partial cone
metric on X is a mapping p : X2 → C such that for each x, y, z ∈ X,

(PCM1) : θ � p(x, x) � p(x, y);
(PCM2) : if p(x, x) = p(x, y) = p(y, y), then x = y;
(PCM3) : p(x, y) = p(y, x);
(PCM4) : p(x, y) � p(x, z) + p(z, y) – p(z, z).
The quadruple (X, E, C, p) is called a partial cone metric space (see [22, 23]).
Each partial cone metric p on X over a solid cone generates a topology �p on X, which

has a base of the family of open balls {Bp(x; c) : x ∈ X, θ � c}, where Bp(x; c) = {y ∈ X :
p(x, y) � p(x, x) + c} for each x ∈ X and each c ∈ Int(C).

Let (X, E, C, p) be a partial cone metric space over a solid cone C of a topological vector
space E.

(i) A sequence {xn}n∈N in X converges [22] to x ∈ X (denoted by xn
�p→ x) if for each

c ∈ Int(C), there exists a positive integer n0 such that p(xn, x) � p(x, x) + c for each

n ≥ n0. A sequence {xn}n∈N in X strongly converges [23] to x ∈ X (denoted xn
s–�p→ x) if

limn→∞ p(xn, x) = limn→∞ p(xn, xn) = p(x, x).
(ii) A sequence {xn}n∈N in X is θ -Cauchy if for each c ∈ Int(C), there exists a positive

integer n0 such that p(xn, xm) � c for m, n ≥ n0. The partial cone metric space (X, E, C, p)
is θ -complete if each θ -Cauchy sequence {xn}n∈N of X converges to a point x ∈ X such that
p(x, x) = θ .

Let (X, E, C, p) be a partial cone metric space over a solid cone C of a normed space
(E,‖ · ‖). A sequence {xn}n∈N in X is Cauchy [22, 23] if there exists an element u ∈ C such
that limn,m→∞ p(xn, xm) = u. The partial cone metric space (X, E, C, p) is complete [22, 23] if
every Cauchy sequence {xn}n∈N of X strongly converges to some point x ∈ X with p(x, x) =
u.

Definition 4.1 Let M be a multiplicative algebra cone in the real Banach algebra E. Sup-
pose that X is a nonempty set. We call the mapping p : X2 → M a multiplicative partial
cone metric on X if for all x, y, z ∈ X, the following axioms are satisfied:

(M – PCM1) : 1E � p(x, x) � p(x, y);
(M – PCM2) : if p(x, x) = p(y, y) = p(x, y), then x = y;
(M – PCM3) : p(x, y) = p(y, x);
(M – PCM4) : p(x, y) � p(x,z)·p(z,y)

p(z,z) .
The quadruple (X, E, M,p) is called a multiplicative partial cone metric space over a

Banach algebra E.
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Observe that for any x, y ∈ X, if p(x, y) = 1E , then x = y.Equivalently, if x 	= y, then 1E ≺
p(x, y).

Example 4.2 Let E := R
2 be with the coordinatewise multiplication

(x1, y1) · (x2, y2) = (x1y1, x2y2).

Endow E with the multiplicative norm ρ((x, y)) = rmax{|x|,|y|}, where r > 1. Thus (R2,ρ(·)) is
a Banach algebra. Let M = {(x, y) ∈ E : x, y ≥ 1}, and let X = R

+
0 be the set of all nonnegative

real numbers. Also, let β ≥ 0 and a > 1 be given fixed real numbers, and let the mapping
p : X2 → M be defined by

p(x, y) =
(
amax{x,y}, aβ max{x,y}).

Then (R+
0 ,R2, M,p) is a multiplicative partial cone metric space over Banach algebra R2.

It is worth mentioning that it is possible to characterize the multiplicative partial cone
metric p in the following way: for a nonempty set X, let p(x, y) = ap(x,y) for all x, y ∈ X, where
a > 1. Then p defines a multiplicative partial cone metric whenever p defines a partial cone
metric. Now solving for p(x, y), we have p(x, y) = loga(p(x, y)), unless a = e, and then p is
not a partial cone metric.

The following example of a multiplicative partial cone metric space shows the reason
why these spaces are worth considering. We will show this by answering the following
question: if (X, E, M, p∗) is a complete multiplicative partial cone metric space and we de-
fine the function p by p(x, y) = ln(p∗(x, y)) for x, y ∈ X, then is p a partial cone metric?

Let E := (CR[0, 1],ρ∞(·)) and X = M := {f ∈ E : f (x) ≥ 1 on x ∈ [0, 1]}, and let p∗ :
CR[0, 1] × CR[0, 1] −→ M be defined by

p∗(f , g) =

⎧
⎨

⎩
f if f = g,

fg otherwise,

where fg is the pointwise multiplication of two real mappings f and g , that is, (fg)(x) =
f (x)g(x) for f , g ∈ X. For a multiplicative algebra cone M, define the partial ordering �
with respect to M by

f � g if and only if
(

g
f

)
(x) ≥ 1 for all x ∈ [0, 1],

where ≥ is the usual order on the elements of R.
We state that (M, CR[0, 1], M, p∗) is multiplicative partial cone metric space over a Ba-

nach algebra CR[0, 1].
(M – PCM1) For any f , g ∈ X, if f = g , then p∗(f , f ) = p∗(f , g) = f , whereas if f 	= g , then

p∗(f , f ) = f � fg = p∗(f , g).
(M – PCM2) For any f , g ∈ X, p∗(f , f ) = p∗(f , g) = p∗(g, g) whenever f = g .
(M – PCM3) For any f , g ∈ X, if f = g , then p∗(f , g) = f = p∗(g, f ). If f 	= g , then p∗(f , g) =

fg = gf = p∗(g, f ).
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(M – PCM4) The multiplicative triangle inequality is easy to verify by looking shortly at
the cases. For arbitrary f , g, h ∈ X, we include the following five cases:

p∗(f , g) = f =
p∗(f , h) · p∗(h, g)

p∗(h, h)
when f = g = h;

p∗(f , g) = f � fgh =
p∗(f , h) · p∗(h, g)

p∗(h, h)
when f = g 	= h;

p∗(f , g) = fg =
p∗(f , h) · p∗(h, g)

p∗(h, h)
when f 	= g = h;

p∗(f , g) = fg =
p∗(f , h) · p∗(h, g)

p∗(h, h)
when f = h 	= g;

p∗(f , g) = fg � fgh =
p∗(f , h) · p∗(h, g)

p∗(h, h)
when f 	= g 	= h.

The above discussion confirms that the multiplicative triangle inequality holds for all
f , g, h ∈ X. This completes the verification.

Now define the function p by p(f , g) = ln(p∗(f , g)) for f , g ∈ X. Then

p(f , g) =

⎧
⎨

⎩
ln(f ) if f = g,

ln(f ) + ln(g) if f 	= g.

The mapping p is not a partial cone metric, since axiom (PCM1) is not satisfied for all
f , g ∈ X with f 	= g . Indeed, if g : [0, 1] → R is a continuous mapping such that 0 < g(x) < 1
for x ∈ [0, 1], then ln(f (x)) � ln(f (x)) + ln(g(x)) for f ∈ CR[0, 1]. For example, take g(x) =
sin(x) for x ∈ (0, π

2 ).
It is mildly interesting that we can redefine p∗ : CR[0, 1] × CR[0, 1] −→ M by

p∗(f , g) =

⎧
⎨

⎩
1E if f = g,

fg otherwise.

Then (M, CR[0, 1], M, p∗) is a complete multiplicative partial cone metric space over a Ba-
nach algebra CR[0, 1]. Again, if we define the function p by p(f , g) = ln(p∗(f , g)) for all
f , g ∈ X, then

p(f , g) =

⎧
⎨

⎩
0 if f = g,

ln(f ) + ln(g) if f 	= g.

Clearly, p is not a partial cone metric.
In what follows, we suppose that E is a Banach algebra over the real field R with mul-

tiplicative identity 1E , M ⊂ E is a multiplicative algebra cone with Int(M) 	= ∅, and � is a
partial ordering with respect to M.

Proposition 4.3 Every multiplicative partial cone metric p generates some topology �p on
X. More precisely,

�p =
{

U ⊆ X : for every x ∈ U , there exists c ∈ Int(M) such that Bp(x; c) ⊆ U
} ∪ {φ}.
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The basis of �p is the family of multiplicative open balls given as

Bp(x; c) :=
{

y ∈ X : 1E � c · p(x, x)
p(x, y)

}
,

where (x, c) is any element in X × Int(M).

Definition 4.4 Let (X, E, M,p) be a multiplicative partial cone metric space over a Banach
algebra E, and let {xn}n∈N be a sequence in X. Then:

(i) {xn}n∈N is said to be multiplicative convergent, with respect to �p, to some x ∈ X if
for each 1E � c, there exists nc ∈N such that p(xn, x) � c · p(x, x) for all n ≥ nc. This

type of convergence is denoted by xn
�p−→ x.

(ii) {xn}n∈N is said to be strongly multiplicative convergent to some x ∈ X if
limn→∞ p(xn, x) = limn→∞ p(xn, xn) = p(x, x). This type of convergence is denoted by

xn
s–�p−→ x.

(iii) {xn}n∈N is said to be multiplicative Cauchy if there exists u ∈ M such that
limn,m→∞ p(xn, xm) = u.

(iv) {xn}n∈N is said to be 1E-Cauchy if for each 1E � c, there exists nc ∈N such that
p(xn, xn+p) � c for all n ≥ nc and p ∈N or, equivalently, p(xn, xn+p) ρ→ 1E for all
p ∈ N.

(v) (X, E, M,p) is called a multiplicative complete if each multiplicative Cauchy
sequence {xn}n∈N in X is strongly multiplicative convergent to some point x ∈ X such
that p(x, x) = u.

(vi) (X, E, M,p) is called 1E-complete if each 1E-Cauchy sequence {xn}n∈N of X is
multiplicative convergent with respect to �p to some point x ∈ X such that
p(x, x) = 1E .

Remark 4.5 It follows from Lemma (3.5) and Remark (3.6) that if xn
s–�p−→ x for some x ∈ X,

then xn
�p−→ x. The converse is still valid whenever the underlying multiplicative algebra

cone M of (E,ρ(·)) is normal.

By the following example we show, from the point of topology, that the real novelty of
multiplicative partial cone metric spaces is in the convergence structure. In particular, it
also shows that the multiplicative partial cone metric p and the partial cone metric p are
topologically different.

Let E := R, X = C := [0,∞), and let p : [0,∞)2 → [0,∞) be defined by

p(x, y) =

⎧
⎨

⎩
( 1

2 )max{x,y} if x 	= y,

0 if x = y.

Then p is a partial cone metric. Let {xn}n∈N = { 1
n }n∈N ∈ X. Clearly, p(xn, 0) = ( 1

2 ) 1
n for all

n ∈N, and p(0, 0) = 0. We will now show that xn
�p
� 0 ∈ X. If we take c = 1

2 ∈ Int(C) = (0,∞),
then at that point, we will never find nc ∈N such that

1
2

–
(

1
2

) 1
n

> 0 for all n ≥ nc.
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If we now consider E := R, M := [1,∞), X = [0,∞), and
⎧
⎨

⎩
p : [0,∞)2 → [1,∞),

(x, y) �→ emax{x,y},

then p is a multiplicative partial cone metric. Choosing the sequence {xn}n∈N = { 1
n }n∈N in

X, it is clear that xn
�p−→ 0. Indeed, for every c ∈ Int(M) = (1,∞), we have

lim
n→∞

c
(e) 1

n
= c > 1.

Thus the sequence {xn}n∈N = { 1
n }n∈N is multiplicative convergent in the multiplicative par-

tial cone metric space ([0,∞),R, [1,∞),p), but it is not convergent in the partial cone met-
ric space ([0,∞),R, [0,∞), p). Hence topologies induced on X = [0,∞) by p and p are dif-
ferent.

Lemma 4.6 Suppose that ϕ : M → M is completely multiplicative integrable mapping on
M. Let p : X2 → M be a multiplicative partial cone metric defined on a nonempty set X.
Then for all x, y, z ∈ X, we have:

(i) 1E � ∫ p(x,x)
1E

ϕ(t)dM(t) � ∫ p(x,y)
1E

ϕ(t)dM(t)

and 1E � ∫ p(y,y)
1E

ϕ(t)dM(t) � ∫ p(x,y)
1E

ϕ(t)dM(t);
(ii) if

∫ p(x,y)
1E

ϕ(t)dM(t) =
∫ p(x,x)

1E
ϕ(t)dM(t) =

∫ p(y,y)
1E

ϕ(t)dM(t), then x = y;
(iii)

∫ p(x,y)
1E

ϕ(t)dM(t) =
∫ p(y,x)

1E
ϕ(t)dM(t);

(iv)
∫ p(x,y)

1E
ϕ(t)dM(t)) � ∫ p(x,z)·p(z,y)

p(z,z)
1E

ϕ(t)dM(t).

Remark 4.7 If
∫ p(x,y)

1E
ϕ(t)dM(t) = 1E , then p(x, y) = 1E , so that x = y.

Remark 4.8 If we take ϕ := 1E , then
∫ p(x,y)

1E
(1E)dM(t) = p(x, y), and we recover Definition 4.1.

5 Main fixed-point results
We begin the section by first introducing the following classes of mappings defined on
multiplicative algebra cone M.

Definition 5.1 Let � be the class of all continuous self-mappings defined on a multiplica-
tive algebra cone M that satisfies the following conditions:

(i) every ψ ∈ � is sequentially continuous;
(ii) every ψ ∈ � is strongly monotonic increasing, that is, u � v if and only if

ψ(u) � ψ(v) for all u, v ∈ M;
(iii) ψ(u) = 1E if and only if u = 1E .

Definition 5.2 By � we denote the class of all self-mappings φ defined on a multiplicative
algebra cone M and satisfying the following properties:

(i) φ(u) � 1E for all u � 1E ;
(ii) φ(1E) � 1E .

Definition 5.3 By C∗ we denote the set of all continuous mappings F� : M × M → M sat-
isfying the following axioms:
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(i) F�(u, v) � u;
(ii) F�(u, v) = u implies that either u = 1E or v = 1E for all u, v ∈ M.

Example 5.4 The following functions F� : M × M → M are elements of C∗ for all u, v ∈ M:
(i) F�(u, v) = u

v ;
(ii) F�(u, v) = uk , 0 < k < 1.

We further assume that E is a Banach algebra over the real field R with multiplicative
identity 1E , M ⊆ E is a normal multiplicative algebra cone with Int(M) 	= ∅, and � is a
partial ordering with respect to the multiplicative algebra cone M.

The following theorem is the main result in this paper.

Theorem 5.5 Let (X, E, M,p) be a 1E-complete multiplicative partial cone metric space
over Banach algebra E. In a nonempty set X, let T : X → X be a self-mapping. Suppose that
there exists a constant k ∈ (0, 1) such that the integral inequality

ψ

(∫ p(Tx,Ty)

1E

ϕ(t)dM(t)
)

� F�

(
ψ

(∫ p(x,y)

1E

ϕ(t)dM(t)
)k

,φ
(∫ p(x,y)

1E

ϕ(t)dM(t)
)k)

is satisfied for all x, y ∈ X, where (ψ ,φ, F�) ∈ � × � × C∗, and ϕ : M → M is a completely
multiplicative integrable mapping on M. Then the mapping T admits a unique fixed-point
in X.

Proof For a generic point x0 in X, we define the sequence {xn}n∈N in X by the recurrence
relation xn+1 = Txn := Tn+1x0 for all n ∈N0.

A direct computation show that

ψ

(∫ p(xn ,xn+1)

1E

ϕ(t)dM(t)
)

= ψ

(∫ p(Txn–1,Txn)

1E

ϕ(t)dM(t)
)

� F�

(
ψ

(∫ p(xn–1,xn)

1E

ϕ(t)dM(t)
)k

,φ
(∫ p(xn–1,xn)

1E

ϕ(t)dM(t)
)k)

� ψ

(∫ p(xn–1,xn)

1E

ϕ(t)dM(t)
)k

for certain k ∈ (0, 1) and for all n ∈ N. Since ψ is strongly increasing, we deduce that

∫ p(xn ,xn+1)

1E

ϕ(t)dM(t) �
(∫ p(xn–1,xn)

1E

ϕ(t)dM(t)
)k

for all n ∈N.

As before, we have

∫ p(xn–1,xn)

1E

ϕ(t)dM(t) �
(∫ p(xn–2,xn–1)

1E

ϕ(t)dM(t)
)k

.

Repeating the previous process over and over again, we speculate that

∫ p(xn ,xn+1)

1E

ϕ(t)dM(t) �
(∫ p(xn–1,xn)

1E

ϕ(t)dM(t)
)k

�
(∫ p(xn–2,xn–1)

1E

ϕ(t)dM (t)
)k2
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� · · · �
(∫ p(x0,x1)

1E

ϕ(t)dM(t)
)kn

.

To give more details, let us distinguish the following two cases.
(i) If x0 = xn for all n ≥ 2, the we see that

∫ p(x0,x1)

1E

ϕ(t)dM(t) =
∫ p(x0,Tx0)

1E

ϕ(t)dM(t)

=
∫ p(xn ,Txn)

1E

ϕ(t)dM(t)

=
∫ p(xn ,xn+1)

1E

ϕ(t)dM(t)

�
(∫ p(x0,x1)

1E

ϕ(t)dM(t)
)kn

.

Henceforth, we possess

(∫ p(x0,x1)

1E

ϕ(t)dM(t)
)kn–1

∈ M.

On the other hand, since we are treating k ∈ (0, 1), and thus 1 – kn > 0, there must be

(∫ p(x0,x1)

1E

ϕ(t)dM(t)
)1–kn

∈ M.

Reviewing all the above discussions, we have only one possibility that
∫ p(x0,x1)

1E
ϕ(t)dM(t) =

1E , and so p(x0, x1) = 1E , which means x0 = Tx0, and so x0 is a fixed point of T .
Therefore we presume that x1 	= x0, i.e., p(x0, x1) � 1E . In view of Definition 3.19, since

for each c � 1E ,
∫ c

1E
ϕ(t)dM(t) � 1E , we have

∫ p(x0,x1)
1E

ϕ(t)dM(t) � 1E .
(ii) If there exists n0 ∈ N such that xn0+1 = xn0 , then xn0 is a fixed point of T , and there is

nothing to prove. By the previous arguments we suppose that no two consecutive elements
are equal in the sequence {xn}n∈N, i.e., xn 	= xn+1 for all n ∈N0. Consequently, p(xn, xn+1) �
1E for all n ∈N0, which in turn implies that

∫ p(xn ,xn+1)
1E

ϕ(t)dM(t) � 1E .
In conclusion, we presume that xn 	= xm for all idiosyncratic m, n ∈ N. We complete the

proof in three steps as follows.
Step 1. We will prove that {xn}n∈N is 1E-Cauchy. For any n, p ∈ N, we have the following

estimates:

∫ p(xn ,xn+p)

1E

ϕ(t)dM(t) �
∫

∏n+p–1
i=n p(xi ,xi+1)

∏n+p–1
i=n+1 p(xi ,xi)

1E

ϕ(t)dM(t)

�
∫ ∏n+p–1

i=n p(xi ,xi+1)

1E

ϕ(t)dM(t)

�
n+p–1∏

i=n

(∫ p(xi ,xi+1)

1E

ϕ(t)dM(t)
)
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�
n+p–1∏

i=n

(∫ p(x0,x1)

1E

ϕ(t)dM(t)
)ki

=
(∫ p(x0,x1)

1E

ϕ(t)dM(t)
)∑n+p–1

i=n ki

≺
(∫ p(x0,x1)

1E

ϕ(t)dM(t)
)kn ∑∞

j=0 kj

=
(∫ p(x0,x1)

1E

ϕ(t)dM(t)
) kn

1–k
.

Since ψ is strongly increasing, we clearly have

ψ

(∫ p(xn ,xn+p)

1E

ϕ(t)dM(t)
)

� ψ

(∫ p(x0,x1)

1E

ϕ(t)dM(t)
) kn

1–k
.

Since k < 1, we can readily infer that (
∫ p(x0,x1)

1E
ϕ(t)dM(t))

kn
1–k −→

n→∞
1E .

This, together with the premise that ψ is continuous, implies

ψ

(∫ p(xn ,xn+p)

1E

ϕ(t)dM(t)
)

−→
n→∞

1E .

Taking into account that ψ is sequentially continuous leads us to
∫ p(xn ,xn+p)

1E
ϕ(t)dM(t) −→

n→∞
1E , and thus p(xn, xn+p) −→

n→∞
1E for all p ∈N. This shows that {xn}n∈N is 1E-Cauchy. By

the 1E-completeness nature of (X, E, M,p) there must be an element (say) x̄ ∈ X for which

xn
�p−→ x̄ with p(x̄, x̄) = 1E . Recall that the multiplicative algebra cone M is normal and thus

xn
s–�p−→ x̄, i.e., limn→∞ p(xn, x̄) = p(x̄, x̄) = 1E .

Step 2. We are required to show that this limit x̄ is a fixed point of the mapping T . To
see this, we derive

ψ

(∫ p(xn+1,Tx̄)

1E

ϕ(t)dM(t)
)

= ψ

(∫ p(Txn ,Tx̄)

1E

ϕ(t)dM(t)
)

� F�

(
ψ

(∫ p(xn ,x̄)

1E

ϕ(t)dM(t)
)k

,φ
(∫ p((xn ,x̄)

1E

ϕ(t)dM(t)
)k)

� ψ

(∫ p(xn ,x̄)

1E

ϕ(t)dM(t)
)k

.

This, coupled with the assumption that ψ is a strongly increasing mapping, gives

∫ p(xn+1,Tx̄)

1E

ϕ(t)dM(t) �
(∫ p(xn ,x̄)

1E

ϕ(t)dM(t)
)k

.

Thus
∫ p(xn+1,Tx̄)

1E
ϕ(t)dM(t) −→

n→∞
1E , and so p(xn+1, Tx̄) −→

n→∞
1E . At the moment,

p(x̄, Tx̄)
(M–PCM4)� p(x̄, xn+1) · p(xn+1, Tx̄).

Letting n tend to ∞ on both sides, we get p(x̄, Tx̄) = 1E , which says that x̄ = Tx̄.
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Step 3. To prove the theorem, we just need to prove the uniqueness of the fixed point of
T . Let, on the contrary, there exist x̂ ∈ X such that Tx̄ = x̄ 	= x̂ = Tx̂. We state that

ψ

(∫ p(x̄,x̂)

1E

ϕ(t)dM(t)
)

= ψ

(∫ p(Tx̄,Tx̂)

1E

ϕ(t)dM(t)
)

� F�

(
ψ

(∫ p(x̄,x̂)

1E

ϕ(t)dM(t)
)k

,φ
(∫ p(x̄,x̂)

1E

ϕ(t)dM(t)
)k)

� ψ

(∫ p(x̄,x̂)

1E

ϕ(t)dM(t)
)k

.

Therefore we must have that

∫ p(x̄,x̂)

1E

ϕ(t)dM(t) �
(∫ p(x̄,x̂)

1E

ϕ(t)dM(t)
)k

≺
∫ p(x̄,x̂)

1E

ϕ(t)dM(t),

which is a contradiction to our assumption that T has another fixed point x̂. Thus T pos-
sesses a unique fixed point x̄ ∈ X such that p(x̄, x̄) = 1E . This completes the proof. �

Corollary 5.6 Let (X, E, M,p) be a 1E-complete multiplicative partial cone metric space
over a Banach algebra E. In a nonempty set X, let T : X → X be a self-mapping. Suppose
that there exist N ∈ N and k ∈ (0, 1) such that the integral inequality

ψ

(∫ p(TN x,TN y)

1E

ϕ(t)dM(t)
)

� F�

(
ψ

(∫ p(x,y)

1E

ϕ(t)dM(t)
)k

,φ
(∫ p(x,y)

1E

ϕ(t)dM(t)
)k)

is satisfied for all x, y ∈ X, where (ψ ,φ, F�) ∈ � × � × C∗, and ϕ : M → M is a completely
multiplicative integrable mapping on M. Then the mapping T admits a unique fixed point
in X.

Corollary 5.7 Let (X, E, M,p) be a 1E-complete multiplicative partial cone metric space
over a Banach algebra E. In a nonempty set X, let T : X → X be a self-mapping. Suppose
that there exists a constant k ∈ (0, 1) such that the integral inequality

ψ

(∫ p(Tx,Ty)

1E

ϕ(t)dM(t)
)

� ψ(
∫ p(x,y)

1E
ϕ(t)dM(t))k

φ(
∫ p(x,y)

1E
ϕ(t)dM(t))k

is satisfied for all x, y ∈ X, where (ψ ,φ) ∈ � × �, and ϕ : M → M is a completely multi-
plicative algebra integrable mapping on M. Then the mapping T admits a unique fixed
point in X.

Proof Along the hypotheses stated in Theorem 5.5, define F� : M×M → M by F�(u, v) = u
v

for u, v ∈ M. �

Corollary 5.8 Let (X, E, M,p) be a 1E-complete multiplicative partial cone metric space
over a Banach algebra E. In a nonempty set X, let T : X → X be a self-mapping. Suppose
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that there exists a constant k ∈ (0, 1) such that the integral inequality

ψ

(∫ p(Tx,Ty)

1E

ϕ(t)dM(t)
)

� ψ

(∫ p(x,y)

1E

ϕ(t)dM(t)
)k

is satisfied for all x, y ∈ X, where ψ ∈ � , and ϕ : M → M is a completely multiplicative al-
gebra integrable mapping on M. Then the mapping T admits a unique fixed point in X.

Proof In Theorem 5.5, take F� : M × M → M defined by F�(u, v) = u. �

Corollary 5.9 Let (X, E, M,p) be a 1E-complete multiplicative partial cone metric space
over a Banach algebra E. In a nonempty set X, let T : X → X be a self-mapping. Suppose
that there exists a constant k ∈ (0, 1) such that the integral inequality

∫ p(Tx,Ty)

1E

ϕ(t)dM(t) �
(∫ p(x,y)

1E

ϕ(t)dM(t)
)k

is satisfied for all x, y ∈ X, where ϕ : M → M is a completely multiplicative integrable map-
ping on M. Then the mapping T admits a unique fixed point in X.

Proof The result follows trivially by using the definition of ψ in Corollary 5.8. �

Corollary 5.10 Let (X, E, M,p) be a 1E-complete multiplicative partial cone metric space
over a Banach algebra E. In a nonempty set X, let T : X → X be a self-mapping. Suppose
that there exists a constant k ∈ (0, 1) such that the inequality

ψ
(
p(Tx, Ty)

) � F�
(
ψ

(
p(x, y)

)k ,φ
(
p(x, y)

)k)

is satisfied for all x, y ∈ X, where (ψ ,φ, F�) ∈ � × � × C∗. Then the mapping T admits a
unique fixed point in X.

Proof Take ϕ := 1E in Corollary 5.6. �

Corollary 5.11 Let (X, E, M,p) be a 1E-complete multiplicative partial cone metric space
over a Banach algebra E. In a nonempty set X, let T : X → X be a self-mapping. Suppose
that there exists a constant k ∈ (0, 1) such that the inequality

p(Tx, Ty) � p(x, y)k

is satisfied for all x, y ∈ X. Then the mapping T admits a unique fixed point in X.

Proof Take ϕ := 1E in Corollary 5.9. �

Let us consider a nontrivial counterexample for Corollary 5.11.

Example 5.12 Consider the Banach algebra E := (CR[1,∞),ρ∞(·)) in the order of the mul-
tiplicative algebra cone M := {f ∈ E : f (x) ≥ 1 on x ∈ [1,∞)}, and define the multiplication
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in the natural way. For X = M, define the mapping p : X2 → M for f , g ∈ X by

p(f , g) =

⎧
⎨

⎩
1E if f = g,

fg otherwise,

where fg is the pointwise multiplication of two real mappings f and g , that is,
(fg)(x) = f (x)g(x) for all x ∈ [1,∞), and 1E (the multiplicative element in CR[1,∞)) is

understood as the constant mapping f (x) = 1 for all x ∈ [1,∞). Then (M, CR[1,∞), M,p)
defines a multiplicative partial cone metric space over the Banach algebra CR[1,∞).

Step 1. We will show that (M, CR[1,∞), M,p) is 1E-complete. If {fn}n∈N is any 1E-Cauchy
sequence in X, then for each 1E � c, there exists nc ∈N such that p(fn, fm) � c for all
m > n ≥ nc. It is clear that fn(x) ≤ fn(x)fm(x) = (fnfm)(x) for all x ∈ [1,∞), that is, fn � fnfm

for all m, n ∈ N with m > n. Thus, for each 1E � c, there exists nc ∈N such that

fn � fnfm = p(fn, fm) � c for all n ≥ nc. (5.1)

This implies that {fn}n∈N is a c-sequence in X = M for all 1E � c (for the purpose at hand,
exceptionally in this space, we proved that any 1E-Cauchy sequence is a c-sequence in
X = M for all 1E � c). We need here to consider two possible situations.

Case 1: If fn = 1E , that is, fn(x) = 1 for all n ∈N and x ∈ [1,∞), then p(fn, 1E) = p(1E , 1E) =
1E , and thus p(fn, 1E) � p(1E , 1E) · c makes sense for all 1E � c and n ∈ N. This says that
{fn}n∈N is multiplicative convergent to 1E in X.

Case 2: If fn 	= 1E , then p(fn, 1E) = fn
(5.1)� c = c · p(1E , 1E) for all 1E � c and n ≥ nc. This

means that {fn}n∈N is multiplicative convergent to 1E in X.
Both cases ensure that every 1E-Cauchy sequence in X is multiplicative convergent to

1E ∈ X with p(1E , 1E) = 1E . Therefore (M, CR[1,∞), M,p) is 1E-complete multiplicative
partial cone metric space over Banach algebra CR[1,∞).

Step 2. Define the self-mapping T : X → X by f (x) �→ ef (x) for all f ∈ X and x ∈ [1,∞). Let
f (x) = x and g(x) = ln(x) for x ∈ [1,∞). For this case, in general, the contractive inequality
condition on the mapping T is not satisfied for all k ∈ (0, 1). Indeed, we have

p(Tf , Tg) = p
(
ex, x

)

= xex

�
(
x ln(x)

)k

=
(
p(f , g)

)k .

For x = 1, it is clear that e � (ln(1))k for all k ∈ (0, 1).
We eventually have that the mapping T is a fixed-point free, since there is no real-valued

function f ∈ X such that f (x) – ef (x) = 0 for x ∈ [1,∞).

6 Application to fractional calculus: involvement of fixed-point result for
solving Caputo fractional boundary value problem

As an application of the main proved fixed-point results, we investigate the existence and
uniqueness of analytical solution for nonlinear fractional differential equations involving
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the Caputo fractional-order derivative. First, we forward the theoretical background ma-
terials that will be utilized throughout this section (see [24, 25]).

If δ > 0 is a given positive real number and �(δ) denotes the gamma function, the ex-
tended form of the factorial function to complex (real) numbers, then

�(δ) :=
∫ ∞

0
yδ–1e–y dy.

In particular, if n is a natural number, then we have

�(1) =
∫ ∞

0
e–y dy = 1 and �(n) =

∫ ∞

0
yn–1e–y dy = n! = 1×2×3×· · ·× (n – 1)×n.

If α is a number calculated to be within n – 1 ≤ α < n, then n = [α] + 1, where [α] denotes
the integer part of α, and for a function h on the interval [a, b], the αth Caputo fractional-
order derivative of h is defined by

cDα
a
(
h(t)

)
=

1
�(n – α)

∫ t

a
(t – s)n–α–1h(n)(s) ds.

In this section, we illustrate the main theorem of this paper. In fact, we investigate a
solution of the Caputo fractional derivative boundary value problem in Banach algebras
stated as follows. Given a continuous function f : [a, b] ×R → R and a finite set of n real
constants x0, x1, . . . , xn–2, xn–1 := xb, the problem is to find an n times differentiable function
x ∈ Cn–1

R
[a, b] satisfying the following conditions for some α within n – 1 ≤ α < n:

⎧
⎨

⎩

cDα
a (x(t)) = f (t, x(t)) for t ∈ [a, b],

x(j)(a) = xj, j = 0, 1, . . . , n – 2, x(n–1)(b) = xb,
(6.1)

where cDα
a is the Caputo fractional derivative of order α.

Lemma 6.1 [26] Let h : [a, b] → R be a continuous function. A function x(t) is a solution
of the fractional boundary value problem

⎧
⎨

⎩

cDα
a (x(t)) = h(t), t ∈ [a, b],

x(j)(a) = xj, j = 0, 1, . . . , n – 2, x(n–1)(b) = xb,

if and only if x(t) is a solution of the fractional integral equation

x(t) =
1

�(α)

∫ t

a
(t – s)α–1h(s) ds +

(
xb

(n – 1)!
+

h(a)(b – a)α–n+1

(n – 2)!�(α – n + 2)

)
(t – a)n–1

–
(t – a)n–1

(n – 1)!�(α – n + 1)

∫ b

a
(b – s)α–nh(s) ds +

n–2∑

j=0

xj

j!
(t – a)j.

Note that we usually can select a positive constant L > 0 such that

0 < L(b – a)α
(

1
�(α + 1)

+
n

(n – 1)!�(α – n + 2)

)
< 1. (6.2)
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We have the following:

Theorem 6.2 Let f : [a, b] ×R → R be a continuous mapping satisfying the uniform Lip-
schitz condition with respect to the second coordinate, that is,

∣∣f
(
t, x(t)

)
– f

(
t, y(t)

)∣∣ ≤ L
∣∣x(t) – y(t)

∣∣

for all
(
t, x(t)

)
,
(
t, y(t)

) ∈ [a, b] ×R

(6.3)

with some constant L > 0 satisfying inequality (6.2). Then equation (6.1) has a unique so-
lution on [a, b].

Proof Problem (6.1) can be transformed into a fixed-point problem as follows. Let us de-
fine the self-mapping T : Cn–1

R
[a, b] → Cn–1

R
[a, b] by

T
(
x(t)

)
=

1
�(α)

∫ t

a
(t – s)α–1f

(
s, x(s)

)
ds

+
(

xb

(n – 1)!
+

f (a, x(a))(b – a)α–n+1

(n – 2)!�(α – n + 2)

)
(t – a)n–1

–
(t – a)n–1

(n – 1)!�(α – n + 1)

∫ b

a
(b – s)α–nf

(
s, x(s)

)
ds +

n–2∑

j=0

xj

j!
(t – a)j.

Obviously, the fixed points of the mapping T are solutions of equation (6.1). We prove
that T has a fixed point. For that reason, set E := (Cn–1

R
[a, b],ρ∞(·)); for the Banach algebra

E, the associated multiplicative algebra cone M = {x ∈ E : x(t) ≥ 1 on t ∈ [a, b]} is solid,
Int(M) 	= ∅, and normal with multiplicative normality constant K = 1. Let X = Cn–1

R
[a, b],

and let p : X2 → M be defined for all x, y ∈ X by p(x, y)(t) = e(‖x–y‖∞)t for all t ∈ [a, b]. The
space (Cn–1

R
[a, b], Cn–1

R
[a, b], M,p) is a 1E-complete multiplicative partial cone metric space

over a Banach algebra Cn–1
R

[a, b].
Now, with the help of this frame, we are going to show that all the hypotheses of Corol-

lary 5.11 are satisfied. For all x, y ∈ Cn–1
R

[a, b] and all t ∈ [a, b], observe the following frac-
tional integral inequalities:

∣∣Tx(t) – Ty(t)
∣∣ ≤ 1

�(α)

∫ t

a
(t – s)α–1∣∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣∣ds

+
(

(t – a)n–1(b – a)α–n+1

(n – 2)!�(α – n + 2)

)∣∣f
(
a, x(a)

)
– f

(
a, y(a)

)∣∣

+
(t – a)n–1

(n – 1)!�(α – n + 1)

∫ b

a
(b – s)α–n∣∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣∣ds.

Thus we must have

∣∣Tx(t) – Ty(t)
∣∣ ≤ 1

�(α)

∫ t

a
(t – s)α–1∣∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣∣ds

+
(

(b – a)α

(n – 2)!�(α – n + 2)

)∣∣f
(
a, x(a)

)
– f

(
a, y(a)

)∣∣

+
(b – a)n–1

(n – 1)!�(α – n + 1)

∫ b

a
(b – s)α–n∣∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣∣ds.
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Since x, y ∈ Cn–1
R

[a, b] are a continuous functions on a compact set, we get

∣∣Tx(t) – Ty(t)
∣∣ ≤ 1

�(α)

∫ t

a
(t – s)α–1(L

∣∣x(s) – y(s)
∣∣)ds

+
(

(b – a)α

(n – 2)!�(α – n + 2)

)(
L
∣∣x(a) – y(a)

∣∣)

+
(b – a)n–1

(n – 1)!�(α – n + 1)

∫ b

a
(b – s)α–n(L

∣∣x(s) – y(s)
∣∣)ds

≤ L
�(α)

∫ t

a
(t – s)α–1 sup

s∈[a,b]

∣∣x(s) – y(s)
∣∣ds

+ L
(

(b – a)α

(n – 2)!�(α – n + 2)

)
sup

s∈[a,b]

∣∣x(s) – y(s)
∣∣

+
L(b – a)n–1

(n – 1)!�(α – n + 1)

∫ b

a
(b – s)α–n sup

s∈[a,b]

∣∣x(s) – y(s)
∣∣ds.

Therefore

∣∣Tx(t) – Ty(t)
∣∣ ≤ L‖x – y‖∞

(
1

�(α)

∫ t

a
(t – s)α–1 ds +

(
(b – a)α

(n – 2)!�(α – n + 2)

)

+
(b – a)n–1

(n – 1)!�(α – n + 1)

∫ b

a
(b – s)α–n ds

)

≤ L‖x – y‖∞
(

(b – a)α

α�(α)
+

(n – 1)(b – a)α

(n – 1)!�(α – n + 2)

)

+ L‖x – y‖∞
(

(b – a)α

(n – 1)!(α – n + 1)�(α – n + 1)

)

= L(b – a)α‖x – y‖∞
(

1
�(α + 1)

+
n

(n – 1)!�(α – n + 2)

)
.

For the least upper bound, we have

‖Tx – Ty‖∞ ≤ L(b – a)α
(

1
�(α + 1)

+
n

(n – 1)!�(α – n + 2)

)
‖x – y‖∞.

If k < 1 is as k := L(b – a)α( 1
�(α+1) + n

(n–1)!�(α–n+2) ), then we have the following result:

e(‖Tx–Ty‖∞)t ≤ ek(‖x–y‖∞)t , x, y ∈ Cn–1
R

[a, b], t ∈ [a, b].

Consequently,

p(Tx, Ty) � p(x, y)k

with certain k ∈ (0, 1). This shows that all the requirements of Corollary 5.11 are satisfied
for the defined mapping T . Then T has a fixed point, which is a solution for equation (6.1)
in X. Since the fixed point of T is unique, the solution of (6.1) is also unique in X. �
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7 Pertinent example
We provide a numerical example to support our application of the previous section, Corol-
lary 5.11.

Consider the nonlinear Caputo fractional differential equation

cDα
0
(
x(t)

)
=

t2

10
+

sin |x(t)|
(50 + t2)

for t ∈ I = [0, 1], n – 1 ≤ α < n,

subject to the initial conditions

x(j)(0) = 0, j = 0, 1, . . . , n – 2, x(n–1)(1) = 1.

In this case,

f
(
t, x(t)

)
=

t2

10
+

sin |x(t)|
(50 + t2)

is continuous for all t ∈ I. Further, let x(t), y(t) ∈R
+
0 and t ∈ I. Thus we have

∣∣f
(
t, x(t)

)
– f

(
t, y(t)

)∣∣ ≤ 1
50

∣∣x(t) – y(t)
∣∣.

Hence (6.3) is satisfied with L = 1
50 .

We also need to check that

k := L
(

1
�(α + 1)

+
n

(n – 1)!�(α – n + 2)

)
< 1. (7.1)

For instance, if we take α = 5
2 , then n = [α] + 1 = 3, and we have the following boundary

value problem:

⎧
⎨

⎩

cD
5
2
0 (x(t)) = t2

10 + sin |x(t)|
(50+t2) for t ∈ I,

x(j)(0) = 0, j = 0, 1, x′′(1) = 1.
(7.2)

Correspondingly, we have

k =
1

50

(
1

�( 7
2 )

+
3

(2!)�( 3
2 )

)
=

1
50

(
4

15
√

π
+

3√
π

)
=

49
750

√
π

= 0.036860 < 1.

Hence (7.1) is also satisfied. Then Theorem 6.2 guarantees that the considered system (7.2)
has a unique solution on I for α ∈ [2, 3). 3

8 Conclusion
A metric sort distance, convergence structures, and some more topological inquiries in
multiplicative partial cone metric spaces over Banach algebras were contemplated. We set
up the idea for defining these generalizations of metric locations by supplanting the ar-
rangement of a Banach space by an arranged multiplicative Banach algebra. Additionally,
the multiplicative partial cone metric is valued in an ordering multiplicative algebra cone
in the Banach algebra having a nonempty interior. We stretched out Banach’s contraction
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mapping theory for fixed points of contractions to such spaces and built up synthesis of
fixed-point results for contractive sort mappings fulfilling a contractivity kind condition
including a new integration structure in terms of these spaces by embedding the presump-
tion of normality of the multiplicative algebra cone. A supporting nontrivial counterexam-
ple to the main theorem and some illustrative examples are additionally given. One of our
results is an exceptionally significant instrument in solving a certain problem in fractional
calculus pursued by a numerical example.
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