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Abstract
In this paper, we propose a sparse equity portfolio optimization model that aims at
minimizing transaction cost by avoiding small investments while promoting
diversification to help mitigate the volatility in the portfolio. The former is achieved by
including the �0-norm regularization of the asset weights to promote sparsity.
Subjected to a minimum expected return, the proposed model turns out to be an
objective function consisting of discontinuous and nonconvex terms. The complexity
of the model calls for proximal method, which allows us to handle the objective
terms separately via the corresponding proximal operators. We develop an efficient
algorithm to find the optimal portfolio and prove its global convergence. The
efficiency of the algorithm is demonstrated using real stock data and the model is
promising in portfolio selection in terms of generating higher expected return while
maintaining good level of sparsity, and thus minimizing transaction cost.
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1 Introduction
Introduced by Markowitz [22] in 1952, mean–variance optimization (MVO) has been
widely used in the selection of optimal investment portfolios. The success of MVO is
attributed to the simplicity of its quadratic objective function, which in turn can be opti-
mized by quadratic programming (QP) methods that are widely available. However, MVO
has flaws on its own and its implementation in portfolio optimization has been heavily crit-
icized by academics and professionals [25]. One of its flaws, as pointed out by Michaud
[23], is its sensitivity towards input parameters, thus maximizing the errors associated
with these inputs. This was proven theoretically and computationally by Best and Grauer
[2], where a slight change in the assets’ expected return or correlations resulted in large
changes in portfolio weights. This has led to a number of studies investigating different
strategies on risk measures and return rates [17, 18, 20, 27]. Through the literature, it is ev-
ident that MVO remains to be one of the most successful frameworks due to the absence
of models that are simple enough to be cast as a QP problem.
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Over the past one decade or so, the success of robust optimization techniques has
allowed researchers to consider nonquadratic objective function and regularization for
portfolio optimization. Consequently, the work by Daubechies et al. [11] showed that the
usual quadratic regularizing penalties can be replaced by weighted �p-norm penalties with
p ∈ [1, 2]. Two specific cases in portfolio optimization, namely least absolute shrinkage
and selection operator (lasso) when p = 1 and ridge regression when p = 2, were consid-
ered by Brodie et al. [8] and DeMiguel et al. [13], respectively. While the ridge regression
regularization minimizes the sample variance subject to the constraint which leads to di-
versification, lasso regularization encourages sparse portfolios which in turn leads to the
minimization of transaction cost. Such regularizations have been studied notably by Chen
et al. [9], De Mol [12], and Fastrich et al. [14].

In reality, financial institutions charge their customers transaction fees for trading on
the stock market. The two most common ways to charge their customers are based on a
fixed transaction fee and/or a proportion of the investment amount, whichever is higher.
In general, a large number of transactions will result in higher transaction cost, likely to
be caused by small investments that incur fixed transaction fees. Transaction cost, in this
sense, will have an effect on the portfolio optimization and the frequency of time rebal-
ancing the portfolio. On the other hand, diversification is the practice of spreading the
investments around so that the exposure to any one type of asset is limited. This practice
can help to mitigate the risk and volatility in the portfolio, potentially upsizing the number
of investment components and thus increasing the number of transactions. Therefore, a
more realistic model is needed to strike a balance between diversification and minimiza-
tion of transaction costs for optimal portfolio selection.

Due to the complexity of the objective function and the regularization that are involved,
many existing studies in the literature employ the alternating direction method of mul-
tipliers (ADMM), which was first introduced by Gabay and Mercier [16] in 1976. It was
not until the recent decade that ADMM has received much attention in machine learn-
ing problems. The essence of ADMM is that it allows one to handle the objective terms
separately when they can only be approximated using proximal operators. Its appealing
features in large-scale convex optimization problems include ease of implementation and
relatively good performance (see, for instance, Boyd et al. [7], Fazel et al. [15], and Perrin
and Roncalli [25]). Some of the examples of ADMM-like algorithms in portfolio optimiza-
tion can be found in Chen et al. [9], Dai and Wen [10], and Lai et al. [19], where they are
used to solve �p-regularizing problems when p ∈ [1, 2]. Though the �0-norm is ideal for
sparsity problems, the regularization results in a discontinuous and nonconvex problem,
thus solving it computationally will turn out to be complicated.

In this paper, we propose a new algorithmic framework to maximize the sparsity within
the entire portfolio while promoting diversification, i.e., to minimize the �0- and �2-norm
of the asset weights, respectively, subject to a minimum expected return via MVO. We
first transform the constrained problem into an unconstrained one, to find a nonsmooth
and nonconvex objective term. The technique of ADMM allows us to handle these terms
separately, but nevertheless yields convergence to its optimal solution. Numerical results
using real data are also provided to illustrate the reliability of the proposed model and its
efficiency in generating higher expected return while minimizing transaction cost when
compared to the standard MVO.
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This paper is organized as follows: In Sect. 2, we present a model for sparse equity port-
folio optimization with minimum transaction cost and establish the proximal linearized
method for �0-norm minimization. Subsequently, in Sect. 3, we present an ADMM-like
algorithm to find the optimal portfolio of the proposed model, together with its conver-
gence analysis. To illustrate the reliability and efficiency of our method, we present the
numerical results using real stock data in Sect. 4. Finally, the conclusion of the paper is
presented in Sect. 5.

2 Proximal linearized method for �0-norm minimization
We begin with a universe of n assets under consideration, with mean return vector μ ∈R

n

and the covariance matrix V ∈R
n×n. Let x ∈R

n be the vector of asset weights in the port-
folio. Our objective is to maximize the portfolio return μT x and minimize the variance of
portfolio return xT Vx, while maintaining a certain level of diversification ‖x‖2

2 and mini-
mizing transaction cost ‖x‖0. The variance of the portfolio return is the measure of risk
inherent in investing in a portfolio, and we shall denote this as variance risk throughout
this paper. The portfolio is said to be purely concentrated if there exists an i such that
xi = 1 and equally weighted if xi = 1

n for all i. We assume that the capital is fully invested,
thus eT x = 1 where e ∈R

n is an all-one vector. The standard MVO [22] is as follows:

min
x∈Rn

1
2

xT Vx – γμT x (1)

subject to x � 0, (2)

eT x = 1, (3)

where γ > 0 is a parameter for leveraging the expected return and the inequality (2) is the
no short selling restriction, with the notation � representing component-wise inequality
between vectors. Here, diversification is of general importance to reduce portfolio risk
without necessarily reducing portfolio return. While diversification does not mean that
we add more money into our investment, it certainly does reduce our investment value
as investment in each equity incurs transaction cost. Our proposed method takes into
consideration having diversified investments, but at the same time avoiding small invest-
ments that might result in unnecessary transaction costs due to diversification. To do so,
we consider the sparsity measure of the vector x ∈ R

n given by its �0-norm:

‖x‖0 := number of nonzero components of xi.

A sparse equity portfolio optimization with minimum transaction cost (SEPO-�0) is
stated as follows:

min
x∈Rn

β1

2
xT Vx – μT x +

β2

2
‖x‖2

2 + ‖x‖0 (4)

subject to μT x ≥ r, (5)

x � 0, (6)

eT x = 1, (7)
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where β1 > 0 is a parameter for leveraging the portfolio variance risk, β2 > 0 is a param-
eter for leveraging portfolio diversification, and r ≥ 0 is the minimum guaranteed return
ratio with r ≤ max{μi}. Though it is standard to introduce a parameter for leveraging the
expected return μT x in the objective function, here we consider a more direct inequality
constraint (5) where one can easily decide on the minimum expected return while maxi-
mizing it via the objective function. Note that minimizing �0-norm in (4) promotes spar-
sity within the portfolio, since the values of xi are forced to be zero except for the large
ones, thus reducing the transaction cost.

Our model (4)–(7) poses computational difficulties due to the nonconvexity and dis-
continuity of the �0-norm, the minimum guaranteed return constraint (5), and no short
selling constraint (6). Instead of dealing with the problem in its entirety, we employ the
ADMM such that the smooth and nonsmooth terms can be handled separately. This calls
for a brief introduction to proximal operators and Moreau envelope [26]:

Definition 2.1 Let ψ : Rn → R ∪ {+∞} be a proper and lower semicontinuous function
and σ > 0 be a parameter. The proximal operator of ψ is defined as

proxσψ (x) = arg min
y∈Rn

{
ψ(y) +

1
2σ

‖y – x‖2
2

}
. (8)

Its Moreau envelope (or Moreau–Yosida regularization) is defined by

envσψ (x) = inf
y∈Rn

{
ψ(y) +

1
2σ

‖y – x‖2
2

}
. (9)

The parameter σ can be interpreted as a trade-off between minimizing ψ and being
close to x. Moreau envelope, specifically, is a way to smooth a nonsmooth function, and it
can be shown that the optimal value of envσψ (x) is also the optimal value of proxσψ (x).

Suppose now we are given a problem

minψ(x) + φ(x),

where ψ ,φ : Rn → R ∪ {+∞} are closed proper functions, of which both ψ and φ can be
nonsmooth. Under the ADMM algorithm, each iteration k takes on an alternating nature
with the proximal operators of ψ and φ being evaluated separately:

xk+1 ∈ proxσψ

(
zk – uk),

yk+1 ∈ proxσφ

(
xk+1 + uk),

uk+1 := uk + xk+1 – zk+1.

Viewing the above as a fixed point iteration, the ADMM scheme results in x = z such that

x = proxσψ (x – u),

y = proxσφ(x + u).
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Turning our attention back to our problem (4)–(7), we first denote the set R associated
with the inequality constraint in (5) by

R =
{

x ∈R
n : μT x ≥ r

}
, (10)

and the indicator function of R by

IR(x) =

⎧⎨
⎩

0, x ∈ R,

∞, x /∈ R.
(11)

The feasible set for constraint (6) is given by

S =
{

x ∈R
n : x � 0

}
, (12)

with its indicator function

IS(x) =

⎧⎨
⎩

0, x ∈ S,

∞, x /∈ S.
(13)

We now define the augmented Lagrangian corresponding to problem (4)–(7) as

L(x,λ,ρ) =
β1

2
xT Vx – μT x +

β2

2
‖x‖2

2 + ‖x‖0 + IR(x) + IS(x)

+ λ
(
eT x – 1

)
+

ρ

2
(
eT x – 1

)2,
(14)

where λ is the usual Lagrange multiplier and ρ > 0 is the penalty parameter for the equality
constraint eT x = 1. To obtain convergence, we may set ρ to be a constant that is larger
than the threshold of the problem [1]. Our problem (14), with a threshold of ρ = 4, can be
rewritten as L(x,λ) where x and λ are updated via

xk+1 = arg min
x

L
(
x,λk),

λk+1 = λk + ρ
(
eT xk+1 – 1

)
.

Problem (14) can now be viewed as the following minimization problem:

min
x,λ

P(x,λ) + Q(x), (15)

where P(x,λ) consists of the smooth terms given by

P(x,λ) =
β1

2
xT Vx – μT x +

β2

2
‖x‖2

2 + λ
(
eT x – 1

)
+

ρ

2
(
eT x – 1

)2, (16)

and Q(x) comprises the nonsmooth terms, namely

Q(x) = ‖x‖0 + IR(x) + IS(x). (17)
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For the purpose of our discussion on the proximal method, we let λ be a fixed value, say
λ̂, which we use in the following minimization problem:

min
x

P(x, λ̂) + Q(x). (18)

Our proximal method for minimizing the objective function in (18) can be viewed as the
proximal regularization of P linearized at a given point xk :

xk+1 ∈ arg min
x

{
Q(x) +

(
x – xk)T∇P

(
xk) +

1
2t

∥∥x – xk∥∥2
}

, (19)

where t > 0 and ∇ denotes the derivative operator. Invoking simple algebra and ignoring
the constant terms, (19) can be written as

xk+1 ∈ arg min
x

{
Q(x) +

1
2tk

∥∥x –
(
xk – tk∇P

(
xk))∥∥2

}
. (20)

Using Definition 2.1, the iterative scheme consists of a proximal step at a resulting gradient
point which gives us the proximal gradient method:

xk+1 ∈ proxαk Q
(
xk – αk∇P

(
xk)), (21)

where αk > 0 is a suitable step size. Note that if ∇P is Lipschitz continuous with constant
Lc, then the proximal gradient method is known to converge at a rate of O(1/k) with fixed
step size α ∈ (0, 1/Lc] (see Parikh and Boyd [24]). In the case when Lc is not known, the
step sizes can be chosen via line search methods. In the context of line search methods, the
largest possible step size α = 1 is more desirable. Therefore, proximal gradient methods
usually have a fixed step size α = min{1, 1/Lc}. In our case, the Lipschitz continuity of ∇P
gives

∥∥∇P(x) – ∇P(y)
∥∥

2 =
∥∥β1V (x – y) + β2(x – y) + ρ(x – y)

∥∥
2

≤ ∥∥β1V + β2I + ρeeT∥∥
F‖x – y‖2 (22)

for all x, y ∈R
n where I denotes the identity matrix and ‖ · ‖F denotes the Frobenius norm.

Since the Lipschitz constant of (22) is not easily accessible, we can estimate it in the fol-
lowing way:

Lc ≤ β1‖V‖F + β2‖I‖F + ρ
∥∥eeT∥∥

F

= β1
(
tr

(
VV T))1/2 + β2

√
n + ρn =: L̃c, (23)

where tr denotes the matrix trace. Since L̃c > 1, it is clear that min{1, 1/L̃c} will always
return the value 1/L̃c. We shall henceforth fix our step size α = 1/L̃c. Our choice of step
size follows from the well-known descent property below:

Lemma 2.1 (Descent property [6]) Let ψ : Rn → R be a continuously differentiable func-
tion with gradient ∇ψ assumed to be Lc-Lipschitz continuous. Then, for any L̃c ≥ Lc,

ψ(x) ≤ ψ(y) + (x – y)T∇ψ(y) +
L̃c

2
‖x – y‖2, ∀x, y ∈R

n. (24)
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Using the proximal operator defined in Definition 2.1, the minimization of (19) is equiv-
alent to the following step:

xk+1 ∈ proxαQ
(
xk – α∇P

(
xk)), (25)

where α = 1
L̃c

. The choice of L̃c also guarantees a sufficient decrease of our objective func-
tion under the proximal methods:

Lemma 2.2 (Sufficient decrease property [6]) Let ψ : Rn → R be a C1 function with its
gradient ∇ψ being Lipschitz continuous with modulus Lc. Let φ : Rn → (–∞, +∞] be a
proper and lower semicontinuous function with infRn φ > –∞. Suppose L̃c is chosen such as
L̃c > Lc. Then, for any x ∈ dom φ and any x̂ ∈R

n defined by

x̂ ∈ proxαφ

(
x – α∇ψ(x)

)
, α =

1
L̃c

, (26)

we have

ψ(x̂) + φ(x̂) ≤ ψ(x) + φ(x) –
1
2

(L̃c – Lc)‖x̂ – x‖2. (27)

Note that dom φ in Lemma 2.2 defines the set of points for which proper and lower
semicontinuous function φ : Rn →R∪ {+∞} takes on a finite value:

dom φ =
{

x ∈R
n : φ(x) < +∞}

.

In view of Lemma 2.2, we turn to our nonsmooth term Q(x), for which we continue to
invoke the ADMM algorithm on (25):

⎧⎪⎪⎨
⎪⎪⎩

zk+1 ∈ proxσ‖·‖0 (zk – α∇P(zk)),

yk+1 = proxIR
(zk+1),

xk+1 = proxIS
(yk+1).

(28)

The convergence of our iteration is guaranteed since the ADMM method ensures the con-
vergence of the objective function to its optimal value [7].

In (28), the proximal operator of the �0-norm can be expressed in its component-wise
form as

proxσ‖·‖0 (x) =

⎧⎪⎪⎨
⎪⎪⎩

{0}, if xi <
√

2σ ,

{0, xi}, if xi =
√

2σ ,

{xi}, if xi >
√

2σ .

(29)

Note that proxσ‖·‖0 (x) is known as a hard thresholding operator since it forces the vector’s
components xi except the large ones to be zero [26]. In other words, a larger σ results in
higher sparsity and less penalization for moving away from x. Doing so ensures that our
portfolio selections avoid small investments.



Sim et al. Journal of Inequalities and Applications        (2023) 2023:152 Page 8 of 16

Meanwhile, the proximal operator of the indicator function IR is reduced to Euclidean
projection onto R:

proxIR
(x) =

⎧⎨
⎩

x, if μT x ≥ r,
r

μT x x, if μT x < r.
(30)

The proximal operator of the indicator function IS is the projection of the vector x onto
R+:

proxIS
(x) = x+, (31)

where x+ is taken component-wise with each negative xi being replaced by a zero. In view
of (28), we have

xk+1
i = max

{
0, yk+1

i
}

, i = 1, 2, . . . , n.

3 Alternating proximal algorithm and its convergence
In this section, we present an ADMM algorithm to find the optimal portfolio of the pro-
posed SEPO-�0 model (4)–(7) and establish its global convergence.

SEPO-�0 Algorithm
Step 0. Given β1,β2,σ , r, V ,μ,ρ,α, initial point (x0,λ0), and convergence tolerance ε. Set

k := 0.
Step 1. Compute zk+1 ∈ proxσ‖·‖0 (zk – α∇P(zk ,λk)).
Step 2. Compute yk+1 = proxIR

(zk+1).
Step 3. Compute xk+1 = proxIS

(yk+1).
Step 4. Compute λk+1 = λk + ρ(eT xk+1 – 1).
Step 5. If ‖∇P(xk+1,λk+1)‖ < ε or k > 10000, stop. Else, set k := k + 1 and go to Step 1.
We have seen in Sect. 2 how the proposed proximal method guarantees the descent

of the solution. To proceed with the convergence of SEPO-�0 algorithm, we begin with
Assumption A for any objective function L : Rn →R∪ {+∞} where L = ψ + φ:

Assumption A
(i) ψ : Rn →R is a continuously differentiable function where its gradient ∇ψ is

Lipschitz continuous with modulus Lc.
(ii) φ : Rn →R∪ {+∞} is a proper and lower semicontinuous function.

(iii) infRn ψ > –∞ and infRn φ > –∞.

SEPO-�0 algorithm also results in nice convergence properties of (14):

Lemma 3.1 (Convergence properties [6]) Suppose that L : Rn →R∪{+∞} is an objective
function such that Assumption A holds. Let {xk}k∈N be a sequence generated by SEPO-�0

algorithm. Then, the sequence {L(xk ,λk) : k ∈N} is nonincreasing and, in particular,

L
(
xk) – L

(
xk+1) ≥ 1

2
(L̃c – Lc)

∥∥xk+1 – xk∥∥2. (32)
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Moreover,

∞∑
k=1

∥∥xk+1 – xk∥∥2 < ∞, (33)

and hence

lim
k→∞

∥∥xk+1 – xk∥∥ = 0. (34)

Proof Without loss of generality, we let λ be a fixed constant and work with L(x) =
P(x) + Q(x) in place of L(x,λ), where P(x) and Q(x) are given by (16) and (17), respectively.
Note that P(x) is differentiable and its gradient is Lipschitz continuous with modulus Lc.
Invoking SEPO-�0 algorithm and by Lemma 2.2, we have

P
(
xk+1) + Q

(
xk+1) ≤ P

(
xk) + Q

(
xk) –

1
2

(L̃c – Lc)
∥∥xk+1 – xk∥∥2, (35)

where L̃c is given by (23). Writing L(xk) = P(xk) + Q(xk) in (35) and rearranging it leads to
(32), which asserts that the sequence {L(xk ,λk) : k ∈N} is nonincreasing.

Note that P and Q are bounded below (see Assumption A), and hence L converges to
some L. Let N ∈ N+. We sum up (32) from k = 0 to k = N – 1 to get

N–1∑
k=0

∥∥xk+1 – xk∥∥2 ≤ 2
L̃c – Lc

N–1∑
k=0

(
L

(
xk) – L

(
xk+1))

=
2

L̃c – Lc

(
L

(
x0) – L

(
xN))

≤ 2
L̃c – Lc

(
L

(
x0) – L

)
.

It follows that (33) and (34) hold when we take the limit as N → ∞. �

Before we present the result that sums up the properties of the sequence {xk}k∈N gen-
erated by SEPO-�0 algorithm starting from the initial point x0, we first give some basic
notations. We denote by crit L the set of critical points of L and ω(x0) the set of all limit
points, where

ω
(
x0) =

{
x ∈R

n : ∃ an increasing sequence of integers {kj}j∈N
such that xkj → x as j → ∞

}
.

Given any set 
 ⊂ R
n and any point x ∈ R

n, the distance from x to 
 is denoted and
defined by

dist(x,
) := inf
{‖y – x‖ : y ∈ 


}
.

When 
 = ∅, we invoke the usual convention that inf∅ = ∞ and hence dist(x,
) = ∞ for
all x.
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Lemma 3.2 (Properties of limit points [6]) Suppose thatL : Rn →R∪{+∞} is an objective
function such that Assumption A holds. Let {xk}k∈N be a bounded sequence generated by
SEPO-�0 algorithm. Then, the following hold:

(a) ω(x0) is a nonempty, compact, and connected set.
(b) ω(x0) ⊂ crit L.
(c) limk→∞ dist(xk ,ω(x0)) = 0.
(d) The objective function L is finite and constant on ω(x0).

Proof See Bolte et al. [6]. �

What remains is its global convergence, which we shall establish by means of the
Kurdyka–Łojasiewicz (KL) property [6] as an extension of Łojasiewicz gradient inequal-
ity [21] for nonsmooth functions. We first show that the objective function (14) is semi-
algebraic and therefore is a KL function. This, in turn, is crucial in giving us the conver-
gence of the sequences generated via SEPO-�0 algorithm. We begin by recalling notations
and definitions concerning subdifferential (see, for instance, [6, 26]) and KL property.

Definition 3.1 Let φ : Rn → R ∪ {+∞} be a proper and lower semicontinuous function.
The (limiting) subdifferential of φ at x ∈ domφ is denoted and defined by

∂φ(x) =

{
u ∈R

n : ∃xk → x,φ
(
xk) → φ(x), uk → u,

lim infy→xk
φ(y)–φ(xk )–〈uk ,y–xk〉

‖y–xk‖ ≥ 0

}
. (36)

The point x is called a (limiting) critical point of φ if 0 ∈ ∂φ(x).

It follows that 0 ∈ ∂φ(x) if x ∈ R
n is a local minimizer of φ. For a continuously differen-

tiable φ, ∂φ(x) = {∇φ}, and hence we have the usual gradient mapping ∇φ from x ∈ dom φ

to ∇φ(x). If ψ is convex, the subdifferential (36) turns out to be the classical Fréchet sub-
differential [26].

Let η ∈ (0,∞] and denote by �η the class of all concave and continuous functions
ϕ : [0,η) → R+ that are continuously differentiable on (0,η) and continuous at 0 with
ϕ(0) = 0 and ϕ′(s) > 0 for all s ∈ (0,η).

Definition 3.2 (Kurdyka–Łojasiewicz (KL) property) Let φ : R
n → R ∪ {+∞} be a

proper and lower semicontinuous function. The function φ is said to have the Kurdyka–
Łojasiewicz (KL) property at ū ∈ dom ∂φ := {u ∈R

n : ∂φ(u) �= ∅} if there exist η ∈ (0, +∞],
a neighborhood U of ū and a function ϕ ∈ �η such that for all u ∈ U ∩ [φ(ū) < φ(u) <
φ(ū) + η], the following inequality holds:

ϕ′(φ(u) – φ(ū)
)
dist

(
0, ∂φ(u)

) ≥ 1. (37)

Moreover, φ is called a KL function if it satisfies the KL property at each point of dom φ.

The definition above uses the sublevel sets: Given a, b ∈R, the sublevel sets of a function
φ are denoted and defined by

[a ≤ φ ≤ b] :=
{

x ∈R
n : a ≤ φ(x) ≤ b

}
.
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A similar definition holds for [a < φ < b]. The level sets of φ are denoted and defined by

[φ = a] :=
{

x ∈R
n : φ(x) = a

}
.

Closely related to the KL function is the semi-algebraic function, which is crucial in the
proof of the convergence property of our proposed method.

Definition 3.3 (Semi-algebraic sets and functions)
(i) A subset 
 ⊂R

n is called semi-algebraic if there exists a finite number of real
polynomial functions pij and qij such that


 =
p⋃

j=1

q⋂
i=1

{
u ∈R

n : pij(u) = 0 and qij(u) < 0
}

. (38)

(ii) A function φ : Rn →R∪ {+∞} is called semi-algebraic if its graph

{
(u, t) ∈ R

n+1 : φ(u) = t
}

(39)

is a semi-algebraic subset of Rn+1.

It follows that semi-algebraic functions are indeed KL functions, and the result below is
a nonsmooth version of the Łojasiewicz gradient inequality.

Theorem 3.1 ([4, 5]) Let φ : Rn →R∪ {+∞} be a proper and lower semicontinuous func-
tion. If φ is semi-algebraic, then it is a KL function.

Theorem 3.1 allows us to avoid the technicality in proving the KL property. Instead, one
can make use of the broad range of semi-algebraic functions and sets [3, 6]. Some of the ex-
amples of semi-algebraic functions include real polynomial functions, and indicator func-
tions of semi-algebraic sets. Apart from that, finite sums and products of semi-algebraic
functions, as well as scalar products, are all semi-algebraic.

We are now ready to give the global convergence result of the proposed model (4)–(7).

Theorem 3.2 (Global convergence) Suppose the objective function L : Rn → R ∪ {+∞}
is a KL function such that Assumption A holds. Then the sequence {xk}k∈N generated by
SEPO-�0 algorithm converges to a critical point x∗.

Proof See Bolte et al. [6]. �

By virtue of Theorem 3.2, we now show that each term in (14) is semi-algebraic since the
finite sum of semi-algebraic functions is also semi-algebraic. It is obvious that the function
in (14) is a sum of a smooth function P(x), �0-norm, and indicator functions. The function
P(x) given by (16) is a linear combination of linear and quadratic functions, and hence P(x)
is a real polynomial function, which in turn is semi-algebraic.

As a specific example given by Bolte et al. [6], the �0-norm is the sparsity measure of the
vector x ∈R

n, which is indeed semi-algebraic. In particular, the graph of ‖ · ‖0 is given by
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a finite union of product sets:

graph‖ · ‖0 =
⋃

I⊂{1,...,n}

( n∏
i=1

JI
i

)
× {

n – |I|}, (40)

where for any given I ⊂ {1, . . . , n}, |I| denotes the cardinality of I and

JI
i =

⎧⎨
⎩

{0}, if i ∈ I,

R \ {0}, otherwise.

It is obvious that (40) is a piecewise linear set, hence the claim. Lastly, the indicator func-
tions IR(x) and IS(x) defined by (11) and (13), respectively, are also semi-algebraic, since
the feasible sets (10) and (12) are convex.

4 Numerical experiments and results
In this section, we study the efficiency of the proposed portfolio optimization model,
SEPO-�0, in maximizing portfolio return and minimizing transaction costs. We test our
algorithm on real data of stock prices and returns of 100 companies across 10 different
sectors in China, collected from January 2019 to June 2019. These data are in turn used to
generate the covariance matrix, which gives us the portfolio variance as in our objective
function (4). We start with equally-weighted portfolio, i.e., x0

i = 1
n for all i. We set ε = 10–7

and stop the algorithm when ‖∇P(xk+1,λk+1)‖ < ε or k > 10000. All computational results
are obtained by running Matlab R2021a on Windows 10 (Intel Core i7 1065G7 16 GB CPU
@ 1.30 ∼ 1.50 GHz).

For testing purposes, we set our penalty parameter ρ = 5 and tuning parameter β2 =
1. The latter means that we set our weight on the portfolio diversification as constant.
Meanwhile, the value of β1 is chosen to be relatively smaller than β2. For illustration, we
present our results for minimum guaranteed return ratio r = 0.1 and r = 0.2.

In Table 1, we present the computational results of the expected return, variance risk,
and sparsity ratio under the proposed SEPO-�0 model and standard MVO model for dif-
ferent values of β1, when we set the minimum guaranteed ratio to be 0.1 and 0.2, respec-
tively. Note that though we leveraged on the variance risk when β1 = 1, the portfolio se-
lection under SEPO-�0 manages to generate expected return of 0.3455 and 0.4014 when
r = 0.1 and r = 0.2, respectively. Meanwhile, the standard MVO is only able to generate
expected return of 0.1560 when we set r = 0.1. The variance risks, however, are higher un-
der SEPO-�0 due to the sparsity, as compared to maximum diversification of the standard
MVO. From the table, we can see that our model offers good sparsity ratio between 0.30
and 0.61 when r = 0.1 and between 0.52 and 0.72 when r = 0.2. This simply means that out
of 100 stocks considered under minimum expected return ratio r = 0.1, one will only need
to invest in the selected 39–70 stocks where the algorithm returns nonzero xi’s. Despite
the sparse portfolio selection and increased risk, we can see that the proposed model is
more promising in terms of a higher expected return.

We also compare the expected return and variance risk for the SEPO-�0 and standard
MVO for r = 0.1 by using a scatterplot seen in Fig. 1. The downward trend of the portfolio
expected return and variance risk mimic the standard MVO as β1 approaches 1. Note that
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Table 1 The values of portfolio expected return, variance risk, and sparsity ratio for different β1 with
minimum guaranteed return ratio r = 0.1 and r = 0.2 under SEPO-�0 and standard MVO

β1 r = 0.1 r = 0.2

SEPO-�0 Standard MVO SEPO-�0

E.R. V.R. Spar E.R. V.R. Spar E.R. V.R. Spar

0.1 0.6355 3.2835 0.58 0.6889 2.3603 0 0.7441 4.3108 0.72
0.2 0.6279 2.9577 0.61 0.5735 1.5138 0 0.6732 3.2822 0.66
0.3 0.5050 2.1304 0.47 0.4555 1.0320 0 0.5829 2.4655 0.58
0.4 0.5180 2.0288 0.53 0.3760 0.8114 0 0.5796 2.2333 0.64
0.5 0.4865 1.7976 0.51 0.3003 0.6689 0 0.5374 1.9056 0.64
0.6 0.4237 1.5684 0.39 0.2646 0.5785 0 0.4675 1.6193 0.52
0.7 0.3677 1.4070 0.30 0.2223 0.5324 0 0.4655 1.4800 0.59
0.8 0.3581 1.3248 0.31 0.2057 0.4930 0 0.4521 1.3289 0.63
0.9 0.3787 1.2635 0.44 0.1750 0.4704 0 0.4182 1.2149 0.56
1 0.3455 1.1802 0.40 0.1560 0.4501 0 0.4014 1.1204 0.56

E.R. = Expected return, V.R. = Variance risk, Spar = Sparsity ratio.

a higher value of β1 reflects our leverage on minimizing the variance risk over maximiz-
ing the expected return. At the same time, a higher expected return results means a higher
risk as shown in Table 1. In general, the standard MVO model gives a lower measure for
risk due to maximum diversification, as we can see from Table 1 and Fig. 1. The proposed
SEPO-�0, on the other hand, can lead to a higher expected return and a lower total trans-
action cost due to a sparse portfolio. This shows that SEPO-�0 model is able to provide a
good combination of portfolio selection under sparsity.

To illustrate the reliability of our model, we present the output of the proposed model
for r = 1 using a scatterplot of the variables, as shown in Fig. 2, with β1 as independent
variable on the x-axis, the expected return and sparsity ratio on the left y-axis, while the
risk scale is on the right of y-axis. We can observe a similar trend for the three lines, which
clearly reflects the consistency of our model in obtaining an optimal portfolio selection.

The relationship between the independent variable β1 and the response variables is fur-
ther examined using the deterministic simple linear regression model as follows:

yi = ai + biβ1, i = 1, 2, 3,

where yi are the response variables, ai the y-intercept, and bi the coefficients of β1 ∈ (0, 1].
This model assigns weights to the independent variable β1 to quantify its impact on the
response variables. Here the response variables are expected return y1, variance risk y2,
and sparsity ratio y3. The relationship is presented in Table 2. As we can see from the ta-
ble, the estimates of bi for response variables yi are all negative, which means their values
decrease with the increase of β1. Since the p-values of all response variables are approx-
imately zero, it is clear that these three variables are significant. In particular, β1 has a
significant negative relationship with the expected return, risk, and sparsity ratio.

The significance of β1 on these three dependent variables is supported by the values of
R-squared of univariate regression, standing at 0.9076, 0.8748, and 0.5859 for the expected
return, variance risk, and sparsity ratio, respectively. Since R-squared is the percentage of
total variation contributed by a predictor variable, the high R-squared values, which are
greater than 0.80 for the expected return and risk, mean that β1 explains a high percentage
of the variance in these two response variables. It is slightly lower for the sparsity ratio,
however, any R-squared value greater than 0.50 can be considered as moderately high.
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Figure 1 SEPO-�0 vs standard MVO with minimum guaranteed return ratio r = 0.1

Table 2 Relationship between the independent variable β1 ∈ (0, 1] and the response variables using
a simple linear regression model for SEPO-�0 with r = 0.1

Response variable Estimate for
intercept

Estimate for
coefficient

Standard
error for
coefficient

p-value for
coefficient

R-squared

Expected return, y1 0.6514 –0.3396 0.0383 2.0737e–0.5 0.9076
Variance risk, y2 3.1246 –2.2371 0.2992 7.0894e–0.5 0.8748
Sparsity ratio, y3 0.6013 –0.2679 0.0796 9.8657e–0.5 0.5859

5 Conclusion
The classical Markowitz portfolio scheme or mean–variance optimization (MVO) is one
of the most successful frameworks due to the simplicity in implementation; in particular,
it can be solved by quadratic programming which is widely available. However, it is very
sensitive to input parameter and obtaining acceptable solutions requires the right weight
constraints. Over the past decade, there has been renewed attention in considering non-
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Figure 2 Portfolio expected return, variance risk, and sparsity ratio subjected to minimum guaranteed return
ratio r = 0.1 under SEPO-�0 for different values of β1

quadratic portfolio selection models due to the advancement in optimization algorithms
for a more general class of functions. Here we proposed a new algorithmic framework
that allows portfolio managers to strike a balance between diversifying investments and
minimizing transaction costs, the latter of which is achieved by means of minimizing the
�0-norm, while being subjected to a minimum guaranteed return. This simply means that
the model maximizes sparsity within the portfolio, since the weights xi are forced to be
zero except for large ones. In practice, the regularization of �0 results in a discontinuous
and nonconvex problem. The inequality constraint, as a result of the minimum guaranteed
return, also poses a similar problem.

In this study, we employed the proximal methods such that a function can be “smoothed”
by means of linearizing part of the objective function at some given point and regularizing
by a quadratic proximal term that acts as a measure for the “local error” in the approxi-
mation. Writing our problem in the form of augmented Lagrangian, the unconstrained
problem can be divided into two parts, namely the smooth and nonsmooth terms. These
are then handled separately through their proximal methods via the ADMM method.
The global convergence of the proposed SEPO-�0 algorithm for sparse equity portfolio
has been established. The efficiency of our model in maximizing portfolio expected re-
turn while striking a balance between minimizing transaction cost and diversification has
been analyzed using actual data of 100 companies. Empirically, the implementation of our
model leads to a higher expected return and lower transaction costs. This shows that, de-
spite its higher risk as compared to the standard MVO, the SEPO-�0 model is promising
in generating a good combination for an optimal investment portfolio.
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