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Abstract
In this article, by using the notion of quantum calculus, we define a new type
Szász–Mirakjan operators based on the q-integers. We derive a recurrence formula
and calculate the moments �n,q(tm; x) form = 0, 1, 2 and the central moments
�n,q((t – x)m; x) form = 1, 2. We give estimation for the first and second-order central
moments. We present a Korovkin type approximation theorem and give a local
approximation theorem by using modulus of continuity. We obtain a local direct
estimate for the new Szász–Mirakjan operators in terms of Lipschitz-type maximal
function of order α. Finally, we prove a Korovkin type weighted approximation
theorem.

Keywords: q-calculus; q-Bernstein-polynomials; q-Szász-operators; Moments;
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1 Introduction
Approximation theory is one of the most important research areas in mathematics, which
appeared in the nineteenth century. Since then, it has been studied by many mathemati-
cians all over the world. The main goal of this theory is to produce a representation of
any given function using other functions that have a simpler structure and more elemen-
tary properties such as differentiability and integrability. Positive linear operators have an
important place in approximation theory and the theory of these operators has been an
important area of research in the last three decades. Bernstein polynomials are the most
popular and have been used to approximate functions in many areas of mathematics and
also in some other fields. The first generalization of Bernstein polynomials using the con-
cept of q-integers is introduced by A. Lupaş [13] in 1987. Later, in 1996, a different gen-
eralization of Bernstein polynomials using q-integers, is introduced by G.M. Phillips [16].
Until today, there are many generalizations of some positive linear operators based on q-
integers. It is proved by A. Lupas [13] and G.M. Phillips [16] that the rate of convergence
of q-generalizations of these operators are better than the classical ones.

Szász–Mirakjan operator [18] defined by O. Szász in 1950 is as follows:
For f ∈ C[0,∞)

Sn(f ; x) =
∞∑

k=0

pn,k(x)f
(

k
n

)
, x ∈ [0,∞), n = 1, 2, . . . ,
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where pn,k(x) = e–nx (nx)k

k!
.

The moments of the Szász–Mirakjan operator can be found in [11].
The operators Sn(f ; x) defined by O. Szász generalized the Bernstein polynomials to the

infinite interval [0,∞) and they have an important place among all the operators that can
be used to approximate functions on the unbounded intervals. Szász–Mirakjan operators
have a simple structure and they have been widely examined in the recent years. Many
authors from this area introduced and discussed different modifications of classical Szász–
Mirakjan operators and also Szász–Mirakjan operators based on the q-integers (see [2, 3,
5, 7, 9, 14, 15, 17]).

For 0 < q < 1, the q-Szász–Mirakjan operators defined by A. Aral are as follows (see [2]):

Sq
n(f ; x) = Eq

(
–[n]q

x
bn

) ∞∑

k=0

f
(

[k]qbn

[n]q

)
([n]qx)k

[k]q!(bn)k ,

where 0 ≤ x < αq(n), αq(n) = bn
(1–q)[n]q

, f ∈ C(R0) and bn is a sequence of positive numbers
such that limn→∞ bn = ∞. The operators Sq

n are positive and linear and reduce to the clas-
sical Szász–Mirakjan operators in the case q = 1.

On the other hand, q-parametric Szász–Mirakjan operator defined by N.I. Mahmudov
is as follows (see [14]):

For n ∈N, 0 < q < 1 and f : [0,∞) −→ R

Sn,q(f ; x) =
∞∑

k=0

f
(

[k]q

qk–2[n]q

)
sn,k(q, x),

where

sn,k(q, x) = q
k(k–1)

2
[n]k

qxk

[k]q!
1

Eq([n]qx)
.

Like the classical Szász–Mirakjan operator Sn, Mahmudov’s operator Sn,q is also positive
and linear.

In this paper, motivated by the studies mentioned above, we define a new generalization
of the Szász–Mirakjan operators based on the q-integers.

The paper is organized as follows. In Sect. 2, we define new type Szász–Mirakjan op-
erators based on the q-integers, �n,q(f ; x). We derive a recurrence formula and use this
recurrence formula to calculate the moments �n,q(tm; x) for m = 0, 1, 2 and the central
moments �n,q((t – x)m; x) for m = 1, 2. We also present an estimation for the first and
the second order central moments. In Sect. 3, we give a Korovkin-type approximation
theorem and an estimation of the rate of convergence by using modulus of continuity. In
Sect. 4, we present a local approximation theorem by using first and second order modulus
of continuity and obtain a local direct estimate for the new Szász–Mirakjan operators in
terms of Lipschitz-type maximal function of order α. In Sect. 5, we prove a Korovkin-type
weighted approximation theorem.

2 Operators and estimation of their moments
Basic concepts and notations of the q-calculus and applications of q-calculus in operator
theory can be found in [12] and [4].
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Let Bm[0,∞) = {f : |f (x)| ≤ Mf (1 + xm), x ∈ [0,∞), m > 0 and Mf is a constant
depending on f },

Cm[0,∞) =
{

f ∈ Bm[0,∞) ∩ C[0,∞) : ‖f ‖m := sup
x∈[0,∞)

|f (x)|
1 + xm < ∞

}
,

C∗
m[0,∞) =

{
f ∈ Cm[0,∞) : lim

x→∞
|f (x)|
1 + xm < ∞

}
.

The spaces mentioned above are equipped with the norm

‖f ‖m = sup
x∈[0,∞)

|f (x)|
1 + xm .

We introduce new type Szász–Mirakjan operators based on the q-integers as follows:

Definition 1 Let 0 < q < 1 and n ∈N. For f : [0,∞) →R, a new type of the Szász–Mirakjan
operators based on the q-integers is defined as follows:

�n,q(f ; x) =
1

ε[n]qx

∞∑

k=0

(1 + 1)k
q

(
[n]qx

2

)k 1
[k]q!

f
(

[k]q

[n]q

)
, (1)

where (1 + 1)k
q =

∏k–1
j=0 (1 + qj) and ε[n]qx =

∑∞
k=0(1 + 1)k

q( [n]qx
2 )k 1

[k]q ! .

Note that if we take q = 1, the operators �n,q(f ; x) reduce to the classical Szasz–Mirakjan
operators Sn(f ; x).

Moments and central moments play an important role in approximation theory. In the
following lemma we derive a recurrence formula for �n,q(tm+1; x) which will be used to
calculate moments �n,q(tm; x) for m = 0, 1, 2 and the central moments �n,q((t – x)m; x) for
m = 1, 2.

Lemma 2 Let 0 < q < 1, m ∈ Z
+ ∪ {0} and n ∈N. For the operators �n,q(f ; x), we have

�n,q
(
tm+1; x

)
=

x
2

m∑

j=0

(
m
j

)
qj

[n]m–j
q

{
�n,q

(
tj; x

)
+

ε[n]qqx

ε[n]qx �n,q
(
tj; qx

)}
. (2)

Proof By using the definition of the operators �n,q(f ; x), we have

�n,q
(
tm+1; x

)
=

1
ε[n]qx

∑∞
k=0

(1 + 1)k
q

(
[n]qx

2

)k 1
[k]q!

[k]m+1
q

[n]m+1
q

=
1

ε[n]qx

∞∑

k=0

(1 + 1)k+1
q

(
[n]qx

2

)k+1 1
[k + 1]q!

[k + 1]m+1
q

[n]m+1
q

=
1

ε[n]qx

∞∑

k=0

(1 + 1)k+1
q

(
[n]qx

2

)k+1 1
[k]q!

[k + 1]m
q

[n]m+1
q

.
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With the help of the binomial formula, we can write [k + 1]m
q = (1 + q[k]q)m =

∑m
j=0

(m
j
) ×

(q[k]q)j. Thus

�n,q
(
tm+1; x

)
=

1
ε[n]qx

∑∞
k=0

(1 + 1)k+1
q

(
[n]qx

2

)k+1 1
[k]q!

1
[n]m+1

q

m∑

j=0

(
m
j

)(
q[k]q

)j

=
1

ε[n]qx

m∑

j=0

(
m
j

) ∞∑

k=0

(1 + 1)k+1
q

(
[n]qx

2

)k+1 1
[k]q!

1
[n]m+1

q

(
q[k]q

)j,

now by using the identity (1 + 1)k+1
q = (1 + 1)k

q(1 + qk), we get

�n,q
(
tm+1; x

)
=

1
ε[n]qx

m∑

j=0

(
m
j

) ∞∑

k=0

(1 + 1)k
q
(
1 + qk)

(
[n]qx

2

)k+1 1
[k]q!

1
[n]m+1

q

(
q[k]q

)j

=
1

ε[n]qx

m∑

j=0

(
m
j

) ∞∑

k=0

(1 + 1)k
q

(
[n]qx

2

)k+1 1
[k]q!

1
[n]m+1

q

(
q[k]q

)j

+
1

ε[n]qx

m∑

j=0

(
m
j

) ∞∑

k=0

qk(1 + 1)k
q

(
[n]qx

2

)k+1 1
[k]q!

1
[n]m+1

q

(
q[k]q

)j

= S1 + S2,

where

S1 =
1

ε[n]qx

m∑

j=0

(
m
j

) ∞∑

k=0

(1 + 1)k
q

(
[n]qx

2

)k+1 1
[k]q!

1
[n]m+1

q

(
q[k]q

)j

=
1

ε[n]qx

m∑

j=0

qj x
2

1
[n]m–j

q

(
m
j

) ∞∑

k=0

(1 + 1)k
q

(
[n]qx

2

)k 1
[k]q!

[k]j
q

[n]j
q

=
m∑

j=0

qj x
2

1
[n]m–j

q

(
m
j

)
�n,q

(
tj; x

)

and

S2 =
1

ε[n]qx

∑m

j=0

(
m
j

) ∞∑

k=0

qk(1 + 1)k
q

(
[n]qx

2

)k+1 1
[k]q!

1
[n]m+1

q

(
q[k]q

)j

=
1

ε[n]qx

∑m

j=0
qj x

2
1

[n]m–j
q

(
m
j

)∑

k=0

∞
(1 + 1)k

q

(
[n]qqx

2

)k 1
[k]q!

[k]j
q

[n]j
q

=
ε[n]qqx

ε[n]qx

∑m

j=0
qj x

2
1

[n]m–j
q

(
m
j

)
1

ε[n]qqx

∑

k=0

∞
(1 + 1)k

q

(
[n]qqx

2

)k 1
[k]q!

[k]j
q

[n]j
q

=
ε[n]qqx

ε[n]qx

∑m

j=0
qj x

2
1

[n]m–j
q

(
m
j

)
�n,q

(
tj; qx

)
.
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Now combining S1 and S2, we obtain

�n,q
(
tm+1; x

)
=

x
2

m∑

j=0

qj 1
[n]m–j

q

(
m
j

){
�n,q

(
tj; x

)
+

ε[n]qqx

ε[n]qx �n,q
(
tj; qx

)}
.

�

From Lemma 2, by using the recurrence formula (2), we obtain explicit formulas for the
moments �n,q(tj; x) for j = 0, 1, 2.

Remark 3 Let 0 < q < 1 and n ∈N. We have

�n,q(1; x) = 1,

�n,q(t; x) =
x
2

{
1 +

ε[n]qqx

ε[n]qx

}
,

�n,q
(
t2; x

)
=

x2

4

(
q + q

ε[n]qqx

ε[n]qx + q2 ε[n]qqx

ε[n]qx + q2 ε[n]qq2x

ε[n]qx

)
+

x
2[n]q

(
1 +

ε[n]qqx

ε[n]qx

)
.

Now by using the linearity property of the operators �n,q(f ; x) and Remark 3, we obtain
central moments �n,q((t – x)j; x) for j = 1, 2.

Lemma 4 Let 0 < q < 1 and n ∈N. For every x ∈ [0,∞), we have the following equalities:

�n,q
(
(t – x); x

)
=

x
2

(
ε[n]qqx

ε[n]qx – 1
)

and (3)

�n,q
(
(t – x)2; x

)

=
x2

4

(
q + q

ε[n]qqx

ε[n]qx + q2 ε[n]qqx

ε[n]qx + q2 ε[n]qq2x

ε[n]qx – 4
ε[n]qqx

ε[n]qx

)
+

x
2[n]q

(
1 +

ε[n]qqx

ε[n]qx

)
. (4)

In the following lemma, we give estimations for the first- and second-order central mo-
ments.

Lemma 5

(i)
∣∣�n,q

(
(t – x); x

)∣∣ ≤ x2

2
(
1 – qn),

(ii) �n,q
(
(t – x)2; x

) ≤ x2

4
(
2(1 – q)(2 + q) + 2x

(
1 – qn)) +

x
[n]q

. (5)

Proof (i) From the previous lemma, we know that |�n,q((t – x); x)| = | x
2 ( ε[n]qqx

ε[n]qx – 1)|. We

start by finding an estimation for | ε[n]qqx

ε[n]qx – 1|.

ε[n]qqx

ε[n]qx – 1 =
1

ε[n]qx

(
ε[n]qqx – ε[n]qx)

=
1

ε[n]qx

∞∑

k=0

(1 + 1)k
q

(
[n]qx

2

)k 1
[k]q!

(
qk – 1

)

= (q – 1)
1

ε[n]qx

∞∑

k=0

(1 + 1)k+1
q

(
[n]qx

2

)k+1 1
[k]q!
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=
[n]qx

2
(q – 1)

1
ε[n]qx

(
ε[n]qx + ε[n]qqx) =

x
2
(
qn – 1

) 1
ε[n]qx

(
ε[n]qx + ε[n]qqx)

=
x
2
(
qn – 1

)(
1 +

ε[n]qqx

ε[n]qx

)
. (6)

Now we get

∣∣∣∣
ε[n]qqx

ε[n]qx – 1
∣∣∣∣ =

∣∣∣∣
x
2
(
qn – 1

)(
1 +

ε[n]qqx

ε[n]qx

)∣∣∣∣,

which implies

1 –
ε[n]qqx

ε[n]qx =
x
2
(
1 – qn)

(
1 +

ε[n]qqx

ε[n]qx

)
. (7)

≤ x
(
1 – qn). (8)

Thus

∣∣�n,q
(
(t – x); x

)∣∣ ≤ x2

2
(
1 – qn).

(ii) By using Lemma 4, we write

�n,q
(
(t – x)2; x

)

=
∣∣�n,q

(
(t – x)2; x

)∣∣

=
∣∣∣∣
x2

4

(
q + q

ε[n]qqx

ε[n]qx + q2 ε[n]qqx

ε[n]qx + q2 ε[n]qq2x

ε[n]qx – 4
ε[n]qqx

ε[n]qx

)
+

x
2[n]q

(
1 +

ε[n]qqx

ε[n]qx

)∣∣∣∣

≤ x2

4

∣∣∣∣q + q
ε[n]qqx

ε[n]qx + q2 ε[n]qqx

ε[n]qx + q2 ε[n]qq2x

ε[n]qx – 4
ε[n]qqx

ε[n]qx

∣∣∣∣ +
x

2[n]q

(
1 +

ε[n]qqx

ε[n]qx

)
.

We start with the estimation of the term in modulus.

∣∣∣∣q + q
ε[n]qqx

ε[n]qx + q2 ε[n]qqx

ε[n]qx + q2 ε[n]qq2x

ε[n]qx – 4
ε[n]qqx

ε[n]qx

∣∣∣∣

=
∣∣∣∣(q – 1) +

(
1 –

ε[n]qqx

ε[n]qx

)
+

(
q + q2 – 2

)ε[n]qqx

ε[n]qx (9)

+
(
q2 – 1

)ε[n]qq2x

ε[n]qx +
(

ε[n]qq2x

ε[n]qx –
ε[n]qqx

ε[n]qx

)∣∣∣∣

= |I1 + I2 + I3 + I4 + I5|
≤ |I1| + |I2| + |I3| + |I4| + |I5|,

where

|I1| = |q – 1| = 1 – q,

|I2| =
∣∣∣∣1 –

ε[n]qqx

ε[n]qx

∣∣∣∣ = 1 –
ε[n]qqx

ε[n]qx ≤ x
(
1 – qn) from part (i). (10)
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For |I3| and |I4|, since ε[n]qqx

ε[n]qx ≤ 1 and ε[n]qq2x

ε[n]qx ≤ 1, we can write

|I3| =
∣∣∣∣
(
q + q2 – 2

)ε[n]qqx

ε[n]qx

∣∣∣∣ =
(
2 – q – q2)ε[n]qqx

ε[n]qx ≤ 2 – q – q2,

|I4| =
∣∣∣∣
(
q2 – 1

)ε[n]qq2x

ε[n]qx

∣∣∣∣ =
(
1 – q2)ε[n]qq2x

ε[n]qx ≤ 1 – q2.

For |I5|, we write

|I5| =
∣∣∣∣
ε[n]qq2x

ε[n]qx –
ε[n]qqx

ε[n]qx

∣∣∣∣

=
∣∣∣∣
ε[n]qqx

ε[n]qx

(
ε[n]qq2x

ε[n]qqx – 1
)∣∣∣∣ ≤ 1 –

ε[n]qq2x

ε[n]qqx .

Now from the Equation (7), we know that

1 –
ε[n]qqx

ε[n]qx =
x
2
(
1 – qn)

(
1 +

ε[n]qqx

ε[n]qx

)
,

which gives us the following explicit formulas

ε[n]qqx

ε[n]qx =
2 + x(qn – 1)
2 – x(qn – 1)

, (11)

ε[n]qq2x

ε[n]qqx =
2 + qx(qn – 1)
2 – qx(qn – 1)

,

thus

|I5| ≤ 1 –
ε[n]qq2x

ε[n]qqx

= 1 –
2 + qx(qn – 1)
2 – qx(qn – 1)

=
2qx(1 – qn)

2 + qx(1 – qn)
≤ x

(
1 – qn). (12)

For the estimation of the second term, we use again the fact that ε[n]qqx

ε[n]qx ≤ 1, so

x
2[n]q

(
1 +

ε[n]qqx

ε[n]qx

)
≤ x

[n]q
,

and we conclude that

�n,q
(
(t – x)2; x

)

≤ x2

4
(
(1 – q) + x

(
1 – qn) +

(
2 – q – q2) +

(
1 – q2) + x

(
1 – qn)) +

x
[n]q

=
x2

4
(
2(1 – q)(2 + q) + 2x

(
1 – qn)) +

x
[n]q

. �

To show that the first- and the second-order central moments approach zero under some
conditions, we need to prove the following limits.
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Lemma 6 Assume that q = qn ∈ (0, 1), qn → 1 and qn
n → b as n → ∞. Then we have

(a) lim
n→∞

ε[n]qn qnx

ε[n]qn x =
2 + x(b – 1)
2 – x(b – 1)

,

(b) lim
n→∞

(
ε[n]qn q2

nx

ε[n]qn x –
ε[n]qn qnx

ε[n]qn x

)
=

(2 + x(b – 1))2x(b – 1)
(2 – x(b – 1))2 ,

(c) lim
n→∞

(
qn + qn

ε[n]qn qnx

ε[n]qn x + q2
n
ε[n]qn qnx

ε[n]qn x + q2
n
ε[n]qn q2

nx

ε[n]qn x – 4
ε[n]qn qnx

ε[n]qn x

)
=

4x2(b – 1)2

(2 – x(b – 1))2 .

Proof (a) From Equation (11), we know that

ε[n]qn qnx

ε[n]qn x =
2 + x(qn

n – 1)
2 – x(qn

n – 1)
, (13)

since qn → 1 and qn
n → b as n → ∞, we get

lim
n→∞

ε[n]qn qnx

ε[n]qn x = lim
n→∞

2 + x(qn
n – 1)

2 – x(qn
n – 1)

=
2 + x(b – 1)
2 – x(b – 1)

.

(b) For the proof of this part, we write

ε[n]qn q2
nx

ε[n]qn x –
ε[n]qn qnx

ε[n]qn x =
ε[n]qn qnx

ε[n]qn x

(
ε[n]qn q2

nx

ε[n]qn qnx – 1
)

,

and from part (a), we can easily see that

lim
n→∞

(
ε[n]qn q2

nx

ε[n]qn qnx – 1
)

=
2x(b – 1)

2 – x(b – 1)
.

Thus we get

lim
n→∞

(
ε[n]qn q2

nx

ε[n]qn x –
ε[n]qn qnx

ε[n]qn x

)

= lim
n→∞

ε[n]qn qnx

ε[n]qn x

(
ε[n]qn q2

nx

ε[n]qn qnx – 1
)

=
(2 + x(b – 1))2x(b – 1)

(2 – x(b – 1))2 .

(c) From the Equation (9), we know that

qn + qn
ε[n]qn qnx

ε[n]qn x + q2
n
ε[n]qn qnx

ε[n]qn x + q2
n
ε[n]qn q2

nx

ε[n]qn x – 4
ε[n]qn qnx

ε[n]qn x

= (qn – 1) +
(

1 –
ε[n]qn qnx

ε[n]qn x

)
+

(
qn + q2

n – 2
)ε[n]qn qnx

ε[n]qn x

+
(
q2

n – 1
)ε[n]qn q2

nx

ε[n]qn x +
(

ε[n]qn q2
nx

ε[n]qn x –
ε[n]qn qnx

ε[n]qn x

)

= I1,n + I2,n + I3,n + I4,n + I5,n,
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thus

lim
n→∞

(
qn + qn

ε[n]qn qnx

ε[n]qn x + q2
n
ε[n]qn qnx

ε[n]qn x + q2
n
ε[n]qn q2

nx

ε[n]qn x – 4
ε[n]qn qnx

ε[n]qn x

)

= lim
n→∞(I1,n + I2,n + I3,n + I4,n + I5,n).

Since qn → 1 as n → ∞, we have

lim
n→∞ I1,n = lim

n→∞ I3,n = lim
n→∞ I4,n = 0.

Now from part (a)

lim
n→∞ I2,n = 1 –

2 + x(b – 1)
2 – x(b – 1)

= –
2x(b – 1)

2 – x(b – 1)

and from part (b)

lim
n→∞ I5,n = lim

n→∞

(
ε[n]qn q2

nx

ε[n]qn x –
ε[n]qn qnx

ε[n]qn x

)
=

(2 + x(b – 1))2x(b – 1)
(2 – x(b – 1))2 .

Thus we get

lim
n→∞

(
qn + qn

ε[n]qn qnx

ε[n]qn x + q2
n
ε[n]qn qnx

ε[n]qn x + q2
n
ε[n]qn q2

nx

ε[n]qn x – 4
ε[n]qn qnx

ε[n]qn x

)
=

4x2(b – 1)2

(2 – x(b – 1))2 . �

Corollary 7 Assume that q = qn ∈ (0, 1), qn → 1 and qn
n → 1 as n → ∞. Then we have

(i) lim
n→∞�n,qn

(
(t – x); x

)
= 0

and

(ii) lim
n→∞�n,qn

(
(t – x)2; x

)
= 0.

Proof (i) From Equation (3) and Lemma 6, it is clear that, if qn → 1 and qn
n → 1 as n → ∞,

then

lim
n→∞�n,qn

(
(t – x); x

)
= lim

n→∞
x
2

(
ε[n]qn qnx

ε[n]qn x – 1
)

= 0.

(ii) From Equation (4), we write

lim
n→∞�n,qn

(
(t – x)2; x

)

= lim
n→∞

x2

4

(
qn + qn

ε[n]qn qnx

ε[n]qn x + q2
n
ε[n]qn qnx

ε[n]qn x + q2
n
ε[n]qn q2

nx

ε[n]qn x – 4
ε[n]qn qnx

ε[n]qn x

)

+ lim
n→∞

x
2[n]qn

(
1 +

ε[n]qn qnx

ε[n]qn x

)
.
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Now again from Lemma 6, it is clear that, if qn → 1 and qn
n → 1 as n → ∞, then

lim
n→∞

(
qn + qn

ε[n]qn qnx

ε[n]qn x + q2
n
ε[n]qn qnx

ε[n]qn x + q2
n
ε[n]qn q2

nx

ε[n]qn x – 4
ε[n]qn qnx

ε[n]qn x

)
= 0.

Let us show that also the second term approaches zero. If qn → 1, then for any fixed
positive integer m, we have [n]qn ≥ [m]qn when n ≥ m. Therefore, lim infn→∞[n]qn ≥
limn→∞[m]qn = m. Since m has been chosen arbitrarily, it follows that [n]qn → ∞. Hence,

1
[n]qn

→ 0. Thus we get limn→∞ �n,qn ((t – x)2; x) = 0. �

3 Direct approximation results
In this section, we prove a Korovkin-type approximation theorem and give a rate of con-
vergence for the operators �n,q(f ; x).

Theorem 8 Let qn be a sequence such that qn ∈ (0, 1). For each f ∈ C∗
2 [0,∞), �n,qn (f ; x)

converges to f uniformly on [0, D] if and only if limn→∞ qn = 1.

Proof Suppose that limn→∞ qn = 1 and D > 0 is fixed. Consider the lattice homomorphism
TD : C[0,∞) → C[0, D] defined by

TD(f ) := f|[0,D].

We can obviously see that

TD
(
�n,qn (1)

)
= TD(1), TD

(
�n,qn (t)

) → TD(t) and TD
(
�n,qn

(
t2)) → TD

(
t2)

uniformly on [0, D]. From the proposition 4.2.5, (6) of [1], we can say that C∗
2 [0,∞) is

isomorphic to C[0, 1] and the set {1, t, t2} is a Korovkin set in C∗
2 [0,∞). So the universal

Korovkin-type property (property (vi) of Thm. 4.1.4 in [1]) implies that

�n,qn (f ; x) → f (x) uniformly on [0, D] as n → ∞

provided f ∈ C∗
2 [0,∞) and D > 0.

For the converse result, we use contradiction method. Assume that limn→∞ qn �= 1. Then
it must have a subsequence qnk ∈ (0, 1) such that qnk → β ∈ [0, 1) as k → ∞.

Thus from Equation (13) and the fact that limk→∞(qnk )nk = 0,

ε[nk ]qnk x

ε[nk ]x → 2 – x
2 + x

as k → ∞ and
2 – x
2 + x

�= 1 for x ∈ (0,∞)

and we get

�nk ,qnk
(t; x) – x =

x
2

{
1 +

ε[nk ]qnk x

ε[nk ]x

}
– x

� 0.

This leads to a contradiction. Thus limn→∞ qn = 1 as n → ∞. �
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Theorem 9 Let 0 < q < 1, f ∈ C2[0,∞) and ωA+1(f , δ) = sup {|f (t) – f (x)| : |t – x| ≤ δ, x, t ∈
[0, A + 1]} be the modulus of continuity of f on the closed interval [0, A + 1], where A > 0.
Then we have

∥∥�n,q(f ; x) – f (x)
∥∥

C[0,A] ≤ 4Mf
(
1 + A2)αn(A) + 2ωA+1

(
f ;

√
αn(A)

)
, (14)

where αn(A) = A2

4 (2(1 – q)(2 + q) + 2A(1 – qn)) + A
[n]q

.

Proof For x ∈ [0, A] and t ≥ 0, we have

∣∣f (t) – f (x)
∣∣ ≤ 4Mf

(
1 + A2)(t – x)2 +

(
1 +

|t – x|
δ

)
ωA+1(f ; δ)

(see Equation 3.3 in [10]).

By using Cauchy–Schwarz inequality, we obtain

∣∣�n,q(f ; x) – f (x)
∣∣

≤ �n,q
(∣∣f (t) – f (x)

∣∣; x
)

≤ 4Mf
(
1 + A2)�n,q

(
(t – x)2; x

)
+

(
1 + �n,q

( |t – x|
δ

; x
))

ωA+1(f ; δ)

≤ 4Mf
(
1 + A2)�n,q

(
(t – x)2; x

)
+ ωA+1(f ; δ)

(
1 +

1
δ

(
�n,q

(
(t – x)2; x

)) 1
2

)
.

For x ∈ [0, A], using Lemma 5,

�n,q
(
(t – x)2; x

) ≤ x2

4
(
2(1 – q)(2 + q) + 2x

(
1 – qn)) +

x
[n]q

≤ A2

4
(
2(1 – q)(2 + q) + 2A

(
1 – qn)) +

A
[n]q

= αn(A).

Thus we get

∣∣�n,q(f ; x) – f (x)
∣∣ ≤ 4Mf

(
1 + A2)αn(A) + ωA+1(f ; δ)

(
1 +

1
δ

(
αn(A)

) 1
2

)
.

Now, choosing δ =
√

αn(A), we obtain the desired result. �

4 Local approximation
In this section, we examine local approximation properties of the operators �n,q(f ; x) and
we give a local direct estimate in terms of Lipschitz-type maximal function of order α.
Let CB[0,∞) denote the space of all bounded, real valued continuous functions on [0,∞).
This space is equipped with the norm

‖f ‖ = sup
x∈[0,∞)

∣∣f (x)
∣∣.
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On the other hand, Peetre’s K-functional is defined by

K2(f ; δ) = inf
g∈C2

B[0,∞)

{‖f – g‖ + δ
∥∥g ′′∥∥}

, δ ≥ 0,

where C2
B[0,∞) := {g ∈ CB[0,∞) : g ′, g ′′ ∈ CB[0,∞)}. By Theorem 2.4 in [6], there exists an

absolute constant L > 0 such that

K2(f ; δ) ≤ Lω2(f ;
√

δ), (15)

where ω2(f ; δ) is the second-order modulus of smoothness defined as

ω2(f ; δ) = sup
0<ω≤δ

sup
x∈[0,∞)

∣∣f (x + 2ω) – 2f (x + ω) + f (x)
∣∣.

In the following theorem we give a local approximation for the operators �n,q(f ; x) in terms
of the first modulus of continuity and the second modulus of smoothness.

Theorem 10 Let f ∈ CB[0,∞). Then, for every x ∈ [0,∞), there exists a constant L > 0 such
that

∣∣�n,q(f ; x) – f (x)
∣∣ ≤ Lω2

(
f ;

√
δn(x)

)
+ ω

(
f ;βn(x)

)
,

where

δn(x) = �n,q
(
(t – x)2; x

)
+

(
�n,q

(
(t – x); x

))2

=
x2

4

(
q + q

ε[n]qx

ε[n]x + q2 ε[n]qx

ε[n]x + q2 ε[n]q2x

ε[n]x – 4
ε[n]qx

ε[n]x

)
+

x
2[n]

(
1 +

ε[n]qx

ε[n]x

)

+
x2

4

(
ε[n]qx

ε[n]x – 1
)2

and

βn(x) =
∣∣�n,q

(
(t – x); x

)∣∣ =
x
2

(
1 –

ε[n]qx

ε[n]x

)
.

Proof Let

∗�n,q(f ; x) = �n,q(f ; x) + f (x) – f
(
ρn(x)

)
,

where f ∈ CB[0,∞], ρn(x) = �n,q((t – x); x) + x = x
2 ( ε[n]qqx

ε[n]qx + 1). Note that ∗�n,q((t – x); x) = 0.
Using the Taylor’s formula, we get

g(t) = g(x) + g ′(x)(t – x) +
∫ t

x
(t – s)g ′′(s) ds, g ∈ C2

B[0,∞).

Applying ∗�n,q to both sides of the above equation, we have

∗�n,q(g; x) – g(x)
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= ∗�n,q
(
(t – x)g ′(x); x

)
+∗ �n,q

(∫ t

x
(t – s)g ′′(s) ds; x

)

= g ′(x)∗�n,q
(
(t – x); x

)
+ �n,q

(∫ t

x
(t – s)g ′′(s) ds; x

)
–

∫ ρn(x)

x

(
ρn(x) – s

)
g ′′(s) ds

= �n,q

(∫ t

x
(t – s)g ′′(s) ds; x

)
–

∫ ρn(x)

x

(
ρn(x) – s

)
g ′′(s) ds.

On the other hand,
∣∣∣∣
∫ t

x
(t – s)g ′′(s) ds

∣∣∣∣ ≤
∫ t

x
(t – s)

∣∣g ′′(s)
∣∣ds ≤ ∥∥g ′′∥∥

∫ t

x
(t – s) ds ≤ ∥∥g ′′∥∥(t – s)2

and
∣∣∣∣
∫ ρn(x)

x

(
ρn(x) – s

)
g ′′(s) ds

∣∣∣∣ ≤ ∥∥g ′′∥∥(
ρn(x) – x

)2 =
∥∥g ′′∥∥(

�n,q(t – x; x)
)2,

which implies

|∗�n,q(g; x) – g(x)| ≤
∣∣∣∣�n,q

(∫ t

x
(t – s)g ′′(s) ds; x

)∣∣∣∣ +
∣∣∣∣
∫ ρn(x)

x

(
ρn(x) – s

)
g ′′(s) ds

∣∣∣∣

≤ ∥∥g ′′∥∥{
�n,q

(
(t – x)2; x

)
+

(
�n,q(t – x); x

)2}

=
∥∥g ′′∥∥δn(x). (16)

We also have

|∗�n,q(f ; x)| ≤ ∣∣�n,q(f ; x)
∣∣ +

∣∣f (x)
∣∣ +

∣∣f
(
ρn(x)

)∣∣ ≤ �n,q
(|f |; x

)
+ 2‖f ‖ ≤ 3‖f ‖.

Using (16) and the uniform boundedness of ∗�n,q, we get

∣∣�n,q(f ; x) – f (x)
∣∣

≤ ∣∣∗�n,q(f – g; x)
∣∣ +

∣∣∗�n,q(g; x) – g(x)
∣∣ +

∣∣f (x) – g(x)
∣∣ +

∣∣f
(
ρn(x)

)
– f (x)

∣∣

≤ 4‖f – g‖ +
∥∥g ′′∥∥δn(x) + ω

(
f ,βn(x)

)
.

If we take the infimum on the right-hand side over all g ∈ C2
B[0,∞), we obtain

∣∣�n,q(f ; x) – f (x)
∣∣ ≤ 4K2

(
f ; δn(x)

)
+ ω

(
f ,βn(x)

)
,

which together with (15) gives the proof of the theorem �

Theorem 11 Let α ∈ (0, 1] and A be any subset of the interval [0,∞). Then, if f ∈ CB[0,∞)
is locally Lip(α); i.e., the condition

∣∣f (y) – f (x)
∣∣ ≤ L|y – x|α , y ∈ A and x ∈ [0,∞) (17)

holds, then, for each x ∈ [0,∞), we have

∣∣�n,q(f ; x) – f (x)
∣∣ ≤ L

{
λ

α
2
n,q(x) + 2

(
d(x, A)

)α}
,
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where

λn,q(x) =
x2

4

(
q + q

ε[n]qx

ε[n]x + q2 ε[n]qx

ε[n]x + q2 ε[n]q2x

ε[n]x – 4
ε[n]qx

ε[n]x

)
+

x
2[n]

(
1 +

ε[n]qx

ε[n]x

)
,

L is a constant depending on α and f , d(x, A) is the distance between x, and A defined as

d(x, A) = inf
{|t – x| : t ∈ A

}
.

Proof Assume that A is the closure of A in [0,∞). Then, there exists a point x0 ∈ A such
that |x – x0| = d(x, A). By using the triangle inequality

∣∣f (t) – f (x)
∣∣ ≤ ∣∣f (t) – f (x0)

∣∣ +
∣∣f (x) – f (x0)

∣∣

and (17), we get

∣∣�n,q(f ; x) – f (x)
∣∣ ≤ �n,q

(∣∣f (t) – f (x0)
∣∣; x

)
+ �n,q

(∣∣f (x) – f (x0)
∣∣; x

)

≤ L
{
�n,q

(|t – x0|α ; x
)

+ |x – x0|α
}

≤ L
{
�n,q

(|t – x|α + |x – x0|α ; x
)

+ |x – x0|α
}

≤ L
{
�n,q

(|t – x|α ; x
)

+ 2|x – x0|α
}

.

Now, taking p = 2
α

and q = 2
2–α

in the Hölder inequality, we get

∣∣�n,q(f ; x) – f (x)
∣∣

≤ L
{[

�n,q
(|t – x|αp; x

)] 1
p
[
�n,q

(
1q; x

)] 1
q + 2

(
d(x, A)

)α}

= L
{[

�n,q
(|t – x|2; x

)] α
2 + 2

(
d(x, A)

)α}

= L
{[

x2

4

(
q + q

ε[n]qx

ε[n]x + q2 ε[n]qx

ε[n]x + q2 ε[n]q2x

ε[n]x – 4
ε[n]qx

ε[n]x

)
+

x
2[n]

(
1 +

ε[n]qx

ε[n]x

)] α
2

+ 2
(
d(x, A)

)α

}

= L
{
λn,q(x)

α
2 + 2

(
d(x, A)

)α}

and the proof is completed. �

5 Weighted approximation
In this section, we study weighted approximation theorem for the operators �n,q(f ; x).

Theorem 12 Let q = qn ∈ (0, 1), qn → 1 and qn
n → 1 as n → ∞. Then for each f ∈ C∗

3 [0,∞),
one has

lim
n→∞

∥∥�n,qn (f ; x) – f (x)
∥∥

3 = 0.
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Proof For the proof of this theorem, we will use Korovkin-type theorem on weighted ap-
proximation ([8]) and Remark 3. Thus, it will be sufficient to verify the following condition
for m = 0, 1, 2:

lim
n→∞

∥∥�n,qn

(
tm; x

)
– xm∥∥

3 = 0.

Since �n,qn (1; x) = 1, it is obvious for m = 0.
For m = 1, we have

lim
n→∞

∥∥�n,qn (t; x) – x
∥∥

3 = lim
n→∞ sup

x≥0

|�n,qn (t; x) – x|
1 + x3

= lim
n→∞ sup

x≥0

1
1 + x3

∣∣∣∣
x
2

+
x
2

ε[n]qn qnx

ε[n]qn x – x
∣∣∣∣

= lim
n→∞ sup

x≥0

1
1 + x3

∣∣∣∣
x
2

(
ε[n]qn qnx

ε[n]qn x – 1
)∣∣∣∣

= lim
n→∞ sup

x≥0

x
2(1 + x3)

∣∣∣∣
ε[n]qn qnx

ε[n]qn x – 1
∣∣∣∣

now from Inequality (10), since | ε[n]qn qnx

ε[n]qn x – 1| ≤ x(1 – qn
n), we get

lim
n→∞

∥∥�n,qn (t; x) – x
∥∥

3 ≤ lim
n→∞ sup

x≥0

x2

2(1 + x3)
(
1 – qn

n
) ≤ lim

n→∞
(
1 – qn

n
)

= 0.

For m = 2, we have

lim
n→∞

∥∥�n,qn

(
t2; x

)
– x2∥∥

3

= lim
n→∞ sup

x≥0

|�n,qn (t2; x) – x2|
1 + x3

= lim
n→∞

{
sup
x≥0

1
1 + x3

∣∣∣∣
x2

4

(
qn + qn

ε[n]qn qnx

ε[n]qn x + q2
n
ε[n]qn qnx

ε[n]qn x + q2
n
ε[n]qn q2

nx

ε[n]qn x

)

+
x

2[n]qn

(
1 +

ε[n]qn qnx

ε[n]qn x

)
– x2

∣∣∣∣

}

≤ lim
n→∞

{
sup
x≥0

1
1 + x3

∣∣∣∣
x2

4
(qn – 1)

∣∣∣∣ + sup
x≥0

1
1 + x3

∣∣∣∣
x2

4
(qn – 1)

ε[n]qn qnx

ε[n]qn x

∣∣∣∣

+ sup
x≥0

1
1 + x3

∣∣∣∣
x2

4

(
ε[n]qn qnx

ε[n]qn x – 1
)∣∣∣∣

+ sup
x≥0

1
1 + x3

∣∣∣∣
x2

4
(
q2

n – 1
)ε[n]qn qnx

ε[n]qn x

∣∣∣∣ + sup
x≥0

1
1 + x3

∣∣∣∣
x2

4

(
ε[n]qn qnx

ε[n]qn x – 1
)∣∣∣∣

+ sup
x≥0

1
1 + x3

∣∣∣∣
x2

4
(
q2

n – 1
)ε[n]qn q2

nx

ε[n]qn x

∣∣∣∣ + sup
x≥0

1
1 + x3

∣∣∣∣
x2

4

(
ε[n]qn q2

nx

ε[n]qn x – 1
)∣∣∣∣

+ sup
x≥0

1
1 + x3

x
2[n]qn

(
1 +

ε[n]qn qnx

ε[n]qn x

)}
.
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The terms with (qn – 1) and (q2
n – 1) go to zero since qn → 1. Now from Inequalities (10)

and (12), we have

sup
x≥0

1
1 + x3

∣∣∣∣
x2

4

(
ε[n]qn qnx

ε[n]qn x – 1
)∣∣∣∣ ≤ sup

x≥0

x3

4(1 + x3)
(
1 – qn

n
) ≤ 1 – qn

n

and

sup
x≥0

1
1 + x3

∣∣∣∣
x2

4

(
ε[n]qn q2

nx

ε[n]qn x – 1
)∣∣∣∣ ≤ sup

x≥0

x3

4(1 + x3)
(
1 – qn

n
) ≤ 1 – qn

n,

thus

lim
n→∞

∥∥�n,qn

(
t2; x

)
– x2∥∥

3 = 0

and we conclude that

lim
n→∞

∥∥�n,qn

(
tm; x

)
– xm∥∥

3 = 0, m = 0, 1, 2. �
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