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Abstract
This paper provides convergence analysis of some variants of the hybrid
extragradient algorithm (HEA) in Hilbert spaces. We employ the HEA to compute the
common solution of the equilibrium problem and split fixed-point problem
associated with the finite families of k-demicontractive mappings. We also
incorporate appropriate numerical results concerning the viability of the proposed
variants with respect to various real-world applications.
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1 Introduction
The class of split inverse problems (SIP) plays a prominent role in medical image recon-
struction and in signal processing. One of the important generalizations of the SIP is the
split common fixed-point problem (SCFPP). The class of SCFPP associated with a vari-
ety of nonlinear mappings has been analyzed in the framework of Hilbert as well as Ba-
nach spaces. In this paper, we are interested in solving the SCFPP for finite families of
k-demicontractive mappings in Hilbert spaces.

In 1994, Blum and Oettli [14] proposed the (monotone-) equilibrium problem (EP) the-
ory in Hilbert spaces. Since then, several iterative algorithms have been employed to com-
pute the optimal solution of the (monotone-) EP as well as EP together with the fixed-point
problem (FPP). In 2006, Tada and Takahashi [32] suggested a hybrid framework for the
analysis of monotone EP and FPP in Hilbert spaces. However, the iterative algorithm pro-
posed in [32] fails for the case of pseudomonotone EP. To overcome this drawback, Anh
[2] employed the hybrid extragradient method, based on the seminal work of Korpelevich
[27], to compute the optimal common solution of the pseudomonotone EP and the FPP.

Inspired and motivated by the ongoing research, it is natural to study the pseudomono-
tone EP together with the SCFPP associated with the class of k-demicontractive mappings
in Hilbert spaces. We propose some accelerated variants, based on the inertial extrapo-
lation technique [29] (see also [1, 3–12, 15–17, 19, 21–24]), of the hybrid extragradient
algorithm in Hilbert spaces.
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The rest of the paper is organized as follows. We present some relevant preliminary con-
cepts and useful results regarding the pseudomonotone EP and SCFPP in Sect. 2. Section 3
comprises strong convergence results of the proposed variants of the hybrid inertial ex-
tragradient algorithm under a suitable set of constraints. In Sect. 4, we provide numerical
results for the demonstration of the main results in Sect. 3 as well as the viability of the
proposed variants with respect to various real-world applications.

2 Preliminaries
Let K be a nonempty, closed, convex subset of a real Hilbert space H1. The metric pro-
jector PK from H1 onto K is defined for each μ ∈ H1 there exists a unique nearest point
PKμ in K such that ‖μ –PKμ‖ ≤ ‖μ – ν‖, ∀ν ∈K. A subset X of K is said to be proximal
if for each μ ∈ K, there exists ν ∈ X such that d(μ,X ) = ‖μ – ν‖. Throughout the rest of
the paper, we denote by CB(H1), CC(H1), and PB(H1) the families of nonempty, closed,
bounded subsets, nonempty, closed, convex subsets, and nonempty, proximal, bounded
subsets of H1. The Hausdorff metric on CB(H1) is defined as:

D(A, B) := max
{

sup
μ∈A

d(μ, B), sup
ν∈B

d(ν, A)
}

, ∀A, B ∈ CB(H1),

where d(μ, B) = infb∈B ‖μ – b‖.
Let T : H1 → 2H1 be a multivalued mapping with a nonempty, closed, and convex fixed-

point set denoted by Fix(T ) := {ν ∈H1;ν ∈ T ν}. Recall that the multivalued mapping T is
said to be a (i) contraction if there exists k ∈ (0, 1) such that D(T μ,T ν) ≤ k‖μ – ν‖ for all
μ,ν ∈H1; (ii) nonexpansive if D(T μ,T ν) ≤ ‖μ – ν‖ for all μ,ν ∈H1; (iii) quasinonexpan-
sive if Fix(T ) �= ∅ and D(T μ,ν) ≤ ‖μ – ν‖ for all μ ∈H1, ν ∈ Fix(T ); (iv) demicontractive
[20] if Fix(T ) �= ∅, and there exists k ∈ [0, 1) such that D(T μ,T ν)2 ≤ ‖μ–ν‖2 +kd(μ,T ν)2

for all μ ∈H1, ν ∈ Fix(T ). It is worth mentioning that every multivalued quasinonexpan-
sive mapping T with Fix(T ) �= ∅ is demicontractive, but not all multivalued demicontrac-
tive mappings are quasinonexpansive (see Example 2.2 in Ref. [25] for the proper inclu-
sion).

Recall that the best approximation operator PT of a multivalued mapping T : H1 →
PB(H1) is defined as PT (μ) := {ν ∈ T μ : d(μ,T μ) = ‖μ – ν‖}. Observe that Fix(T ) =
Fix(PT ) and PT satisfies the endpoint condition, i.e., T μ = {μ}, for all μ ∈ Fix(T ). Mean-
while, there is an example for the best approximation operator PT that is nonexpan-
sive, but T is not necessarily nonexpansive [31]. Recall also that the multivalued map-
ping T : H1 → CB(H1) satisfies the demiclosedness principle at 0 if for any sequence (xk)
in H1 that converges weakly to μ ∈ H1 and the sequence (‖xk – yk‖) converges strongly
to 0, where yk ∈ T xk , then μ ∈ Fix(T ). The Hilbert space H1 satisfies Opial’s condi-
tion if for a sequence (νk) ⊂ H1 with νk ⇀ ν then the inequality lim infk→∞ ‖νk – ν‖ <
lim infk→∞ ‖νk – μ‖ holds for all μ ∈ H1 with ν �= μ. Moreover, H1 satisfies the Kadec–
Klee property, i.e., if νk ⇀ ν and ‖νk‖ → ‖ν‖ as k → ∞, then ‖νk – ν‖ → 0 as k → ∞.

Let g : H1 ×H1 →R∪ {+∞} be a monotone bifunction, i.e., g(μ,ν) + g(ν,μ) ≤ 0, for all
μ,ν ∈H1, then the equilibrium problem associated with the bifunction g is to find μ ∈H1

such that g(μ,ν) ≥ 0 for all ν ∈ H1. The set of solutions of the equilibrium problem is
denoted by EP(g).

Assumption 2.1 ([13, 14]) Let g : H1 ×H1 → R ∪ {+∞} be the bifunction satisfying the
following assumptions:
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(A1): g(μ,ν) ≥ 0 ⇒ g(μ,ν) ≤ 0, for all μ,ν ∈H1 (pseudomonotonicity);
(A2): There exist constants d1 > 0 and d2 > 0 for Lipschitz-type continuity such that

g(μ,ν) + g(ν, ξ ) ≥ g(μ, ξ ) – d1‖μ – ν‖2 – d2‖ν – ξ‖2, for all μ,ν, ξ ∈H1;

(A3): If μ,ν ∈ H1 and two sequences (μk), (νk) such that μk ⇀ μ and νk ⇀ ν , respec-
tively, then f (μk ,νk) → f (μ,ν) (weakly continuity property of g);

(A4): For a fixed μ ∈H1, the function g(μ, ·) is convex and subdifferentiable on H1.

The set EP(g) is weakly closed and convex provided that the bifunction g satisfies As-
sumption 2.1. For a finite family of bifunctions gi satisfying Assumption 2.1, we can com-
pute the same Lipschitz coefficients (d1, d2) for the family of bifunctions gi by employing
the condition (A2) as

gi(μ, ξ ) – gi(μ,ν) – gi(ν, ξ ) ≤ d1,i‖μ – ν‖2 + d2,i‖ν – ξ‖2 ≤ d1‖μ – ν‖2 + d2‖ν – ξ‖2,

where (d1, d2) = max1≤i≤M(d1,i, d2,i). Therefore, gi(μ,ν) + gi(ν, ξ ) ≥ gi(μ, ξ ) – d1‖μ – ν‖2 –
d2‖ν – ξ‖2. In addition, for all j = 1, 2, . . . N , let Tj : H1 → CB(H1) and Sj : H2 → CB(H2)
be finite families of multivalued demicontractive mappings with constants kj and k̃j, re-
spectively, such that Tj – Id and Sj – Id are demiclosed at zero. If we assume � : H1 →H2

to be a bounded linear operator then the solution set of the SCFPP for two finite families
of multivalued mappings (Tj)N

j=1 and (Sj)N
j=1, is denoted as

� =:

{
ν ∈

N⋂
j=1

Fix(Tj) : �ν ∈
N⋂

j=1

Fix(Sj)

}
.

In [34], it was shown that the fixed-point set of a multivalued demicontractive mapping
is closed and convex provided it satisfies the endpoint condition. In a similar fashion, we
can choose (k, k̃) = sup1≤j≤N (kj, k̃j). Suppose that � := (

⋂M
i=1 EP(gi)) ∩ � �= ∅. Then, we are

interested in the following problem:

ν∗ ∈ �. (2.1)

Lemma 2.2 Let μ,ν ∈H1 and θ ∈R, then

‖μ + ν‖2 ≤ ‖μ‖2 + 2〈ν,μ + ν〉.

Lemma 2.3 ([26]) Let T : H1 → CB(H1) be a k-demicontractive multivalued mapping. If
μ ∈ Fix(T ) such that T μ = (μ), then the following inequalities hold: for all μ̃ ∈H1, ν̃ ∈ T μ̃,

(I) 〈μ̃ – ν̃,μ – ν̃〉 ≤ 1+k
2 ‖μ̃ – ν̃‖2;

(II) 〈μ̃ – ν̃, μ̃ – μ〉 ≥ 1–k
2 ‖μ̃ – ν̃‖2.

Lemma 2.4 ([18]) Let H1 be a Hilbert space and (νk) be a sequence in H1. Then, for any
given (αk)∞k=1 ⊂ (0, 1) with

∑∞
k=1 αk = 1 and for any positive integer i, j with i ≤ j,

∥∥∥∥∥
∞∑

k=1

αkνk

∥∥∥∥∥
2

≤
∞∑

k=1

αk‖νk‖2 – αiαj‖νi – νj‖2.



Arfat et al. Journal of Inequalities and Applications          (2024) 2024:3 Page 4 of 16

Lemma 2.5 ([33]) Assume a convex and subdifferentiable function h : K → R defined on
a nonempty, closed, convex subset K of a real Hilbert space H1. A point ν∗ solves the convex
problem min{h(ν) : ν ∈ K} if and only if 0 ∈ ∂h(ν∗) + NK(ν∗), where ∂h(·) indicates the
subdifferential of h and NK(ν̄) is the normal cone of K at ν̄ .

Lemma 2.6 ([28]) Let K be a nonempty, closed, convex subset of a real Hilbert space H1.
For every p, q, r ∈H1 and γ ∈ R, the following set is closed and convex:

D =
{

v ∈K : ‖q – v‖2 ≤ ‖p – v‖2 + 〈r, v〉 + γ
}

.

3 Algorithm and convergence analysis
Our main iterative algorithm of this section has the following architecture (Algorithm 1).

Theorem 3.1 Let the following conditions:
(C1)

∑∞
k=1 ξk‖νk – νk–1‖ < ∞;

(C2)
∑N

j=1 α̃k,j = 1 and lim infk→∞ α̃k,j > 0, for all j = 1, 2, . . . N ;
(C3)

∑N
j=0 β̃k,j = 1 and lim infk→∞ β̃k,j > 0, for all j = 1, 2, . . . N ;

hold. Then, the sequence (νk) generated by Algorithm 1 converges strongly to an element
in �.

Algorithm 1 Hybrid Inertial Extragradient Algorithm (Alg.1)
Initialization: Choose arbitrarily ν0,ν1 ∈ C0 = H1. Set k ≥ 1 and nonincreasing se-
quences (α̃k,j), (β̃k,j) ⊂ (0, 1), 0 < ϑ < min( 1

2d1
, 1

2d2
) and λ ∈ (0, 1–k̃

‖�‖2 ). Choose the inertial
parameter

ξk =

⎧⎨
⎩

min{ pk
‖νk –νk–1‖ , ξ} if νk �= νk–1;

ξ otherwise,

where {pk} is a positive sequence such that
∑∞

k=1 pk < ∞ and ξ ∈ [0, 1).
Iterative Steps: Given νk ∈H1, calculate:
Step 1. Compute

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

bk = νk + ξk(νk – νk–1);

uk = argmin{ϑgi(bk , ỹ) + 1
2‖bk – ỹ‖2 : ỹ ∈K}, i = 1, 2, . . . , M;

wk = argmin{ϑgi(uk , ỹ) + 1
2‖bk – ỹ‖2 : ỹ ∈K}, i = 1, 2, . . . , M;

yk = wk +
∑N

j=1 α̃k,jλ�∗(Sj(�wk) – �wk), j = 1, 2, . . . , N ;

zk = β̃k,0yk +
∑N

j=1 β̃k,jTjyk , j = 1, 2, . . . , N .

If zk = yk = wk = uk = bk = νk then terminate and νk is the required solution. Otherwise,
Step 2. Construct

Ck+1 =
{

z∗ ∈ Ck :
∥∥zk – z∗∥∥2 ≤ ∥∥νk – z∗∥∥2 + ξ 2

k ‖νk – νk–1‖2 + 2ξk
〈
νk – z∗,νk – νk–1

〉}
,

νk+1 = PH1
Ck+1

ν1,∀k ≥ 1.

Put k =: k + 1 and execute Step 1 again.
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The following result is crucial for the strong convergence result of Algorithm 1.

Lemma 3.2 ([2, 30]) Suppose that ν∗ ∈ EP(gi), then

∥∥wk – ν∗∥∥2 ≤ ∥∥bk – ν∗∥∥2 – (1 – 2ϑd1)‖uk – bk‖2 – (1 – 2ϑd2)‖uk – wk‖2,

where νk , bk , uk , and vk are defined in Algorithm 1.

Proof of Theorem 3.1 Step 1. Algorithm 1 is well defined.
It is obvious by recalling Lemma 2.6 that the set Ck is closed and convex. Moreover, the

set � is closed and convex. Therefore, � is nonempty, closed, and convex. For any ν∗ ∈ �,
it follows from Algorithm 1 that

∥∥bk – ν∗∥∥2 =
∥∥νk – ν∗ + ξk(νk – νk–1)

∥∥2

≤ ∥∥νk – ν∗∥∥2 + ξ 2
k ‖νk – νk–1‖2 + 2ξk

〈
νk – ν∗,νk – νk–1

〉
. (3.1)

Recalling the estimate (3.1), Lemmas 2.3 and 2.4, and Lemma 3.2, we obtain

∥∥yk – ν∗∥∥2 =

∥∥∥∥∥wk +
N∑

j=1

α̃k,jλ�∗(Sj(�wk) – �wk
)

– ν∗
∥∥∥∥∥

2

=

∥∥∥∥∥
N∑

j=1

α̃k,j
(
wk – ν∗ + λ�∗(Sj(�wk) – �wk

))
∥∥∥∥∥

2

≤
N∑

j=1

α̃k,j
∥∥wk – ν∗ + λ�∗(Sj(�wk) – �wk

)∥∥2

=
N∑

j=1

α̃k,j
(∥∥wk – ν∗∥∥2 + λ2∥∥�∗(Sj(�wk) – �wk

)∥∥2

+ 2λ
〈
wk – ν∗,�∗(Sj(�wk) – �wk

)〉)

≤
N∑

j=1

α̃k,j
(∥∥wk – ν∗∥∥2 + λ2‖�‖2∥∥Sj(�wk) – �wk

∥∥2

+ 2λ
〈
wk – ν∗,�∗(Sj(�wk) – �wk

)〉)
. (3.2)

Putting Mk = 2λ〈wk – ν∗,�∗(Sj(�wk) – �wk)〉, since Sj is k̃j-demicontractive, then by
Lemma 2.3, we have

Mk = 2λ
〈
�

(
wk – ν∗),Sj(�wk) – �wk

〉

= 2λ
〈
�

(
wk – ν∗) +

(
Sj(�wk) – �wk

)
–

(
Sj(�wk) – �wk

)
,Sj(�wk) – �wk

〉

= 2λ
〈
Sj(�wk) – �ν∗,Sj(�wk) – �wk

〉
–

∥∥Sj(�wk) – �wk
∥∥2

≤ 2λ

(
1 + k̃j

2

)∥∥Sj(�wk) – �wk
∥∥2 –

∥∥Sj(�wk) – �wk
∥∥2

= –(1 – k̃j)λ
∥∥Sj(�wk) – �wk

∥∥2
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≤ –(1 – k̃)λ
∥∥Sj(�wk) – �wk

∥∥2. (3.3)

Utilizing (3.2) and (3.3), we obtain

∥∥yk – ν∗∥∥2 ≤ ∥∥wk – ν∗∥∥2 –
N∑

j=1

α̃k,jλ
(
1 – k̃ – λ‖�‖2)∥∥Sj(�wk) – �wk

∥∥2. (3.4)

Since Tj is kj-demicontractive and by using Lemma 2.4, we have

∥∥zk – ν∗∥∥2 =

∥∥∥∥∥β̃k,0yk +
N∑

j=1

β̃k,jTjyk – ν∗
∥∥∥∥∥

2

≤ β̃k,0
∥∥yk – ν∗∥∥2 +

N∑
j=1

β̃k,j
∥∥Tjyk – ν∗∥∥2 – β̃k,0β̃k,j‖yk – Tjyk‖2

= β̃k,0
∥∥yk – ν∗∥∥2 +

N∑
j=1

β̃k,jd
(
Tjyk – Tjν

∗) – β̃k,0β̃k,j‖yk – Tjyk‖2

≤ β̃k,0
∥∥yk – ν∗∥∥2 +

N∑
j=1

β̃k,jH
(
Tjyk – Tjν

∗) – β̃k,0β̃k,j‖yk – Tjyk‖2

≤ β̃k,0
∥∥yk – ν∗∥∥2 +

N∑
j=1

β̃k,j
(∥∥yk – ν∗∥∥2 + kjd(yk ,Tjyk)

)

– β̃k,0β̃k,j‖yk – Tjyk‖2

≤ β̃k,0
∥∥yk – ν∗∥∥2 +

N∑
j=1

β̃k,j
∥∥yk – ν∗∥∥2‖2 +

N∑
j=1

β̃k,jk‖yk – Tjyk)
∥∥2

– β̃k,0β̃k,j‖yk – Tjyk‖2

=
∥∥yk – ν∗∥∥2∥∥2 – (β̃k,0 – k)β̃k,j‖yk – Tjyk‖2

≤ ∥∥wk – ν∗∥∥2 –
N∑

j=1

α̃k,jλ
(
1 – k̃ – λ‖�‖2)∥∥Sj(�wk) – �wk

∥∥2

– (β̃k,0 – k)β̃k,j‖yk – Tjyk‖2. (3.5)

This shows that � is contained in Ck , for all k ≥ 0. Recalling the definition of the set Ck the
above estimate infers that Algorithm 1 is well defined.

Step 2. The limit limk→∞ ‖νk – ν1‖ exists.
From νk+1 = PH1

Ck+1
ν1, we have 〈νk+1 – ν1,νk+1 – p〉 ≤ 0 for each p ∈ Ck+1. In particular, we

have 〈νk+1 –ν1,νk+1 –ν∗〉 ≤ 0 for each ν∗ ∈ �. This establishes that the sequence (‖νk –ν1‖)
is bounded. Nevertheless, from νk = PH1

Ck
ν1 and νk+1 = PH1

Ck+1
ν1 ∈ Ck+1, we have that

‖νk – ν1‖ ≤ ‖νk+1 – ν1‖.

This infers that (‖νk – ν1‖) is nondecreasing and consequently

lim
k→∞

‖νk – ν1‖ exists. (3.6)
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Step 3. ν̃ ∈ �.
We first compute

‖νk+1 – νk‖2 = ‖νk+1 – ν1 + ν1 – νk‖2

= ‖νk+1 – ν1‖2 + ‖νk – ν1‖2 – 2〈νk – ν1,νk+1 – ν1〉
= ‖νk+1 – ν1‖2 + ‖νk – ν1‖2 – 2〈νk – ν1,νk+1 – νk + νk – ν1〉
= ‖νk+1 – ν1‖2 – ‖νk – ν1‖2 – 2〈νk – ν1,νk+1 – νk〉
≤ ‖νk+1 – ν1‖2 – ‖νk – ν1‖2.

Employing the lim sup and recalling (3.6), we have

lim
k→∞

‖νk+1 – νk‖ = 0. (3.7)

By recalling (bk) from Algorithm 1 and the condition (C1), we have

lim
k→∞

‖bk – νk‖ = 0. (3.8)

By recalling the estimates (3.7), (3.8), and the following triangle inequality:

‖bk – νk+1‖ ≤ ‖bk – νk‖ + ‖νk – νk+1‖,

we have

lim
k→∞

‖bk – νk+1‖ = 0. (3.9)

Recall that νk+1 ∈ Ck+1, therefore we have

‖zk – νk+1‖ ≤ ‖νk – νk+1‖ + 2ξk‖νk – νk–1‖ + 2ξk〈νk – νk+1,νk – νk–1〉.

Recalling the estimate (3.7) and the condition (C1), the above estimate infers that

lim
k→∞

‖zk – νk+1‖ = 0. (3.10)

By employing the estimates (3.7), (3.10), and the following triangular inequality:

‖zk – νk‖ ≤ ‖zk – νk+1‖ + ‖νk+1 – νk‖,

we obtain

lim
k→∞

‖zk – νk‖ = 0. (3.11)

In view of Lemma 3.2, it is easy to obtain the following variant of the estimate (3.5):

(1 – 2ϑd1)‖uk – bk‖2 – (1 – 2ϑd2)‖uk – wk‖2
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≤ (∥∥νk – ν∗∥∥ +
∥∥zk – ν∗∥∥)‖νk – zk‖ + ξ 2

k ‖νk – νk–1‖2 + 2ξk
∥∥νk – ν∗∥∥‖νk – νk–1‖.

Recalling the estimate (3.11) and the condition (C1), we have

(1 – 2ϑd1) lim
k→∞

‖uk – bk‖2 – (1 – 2ϑd2) lim
k→∞

‖uk – wk‖2 = 0. (3.12)

The estimate (3.12) implies that

lim
k→∞

‖uk – bk‖2 = lim
k→∞

‖uk – wk‖2 = 0. (3.13)

We can also extract the following two inequalities from the estimate (3.5):

N∑
j=1

α̃k,jλ
(
1 – k̃ – λ‖�‖2)∥∥Sj(�wk) – �wk

∥∥2

≤ ∥∥wk – ν∗∥∥2 –
∥∥zk – ν∗∥∥2

≤ (∥∥νk – ν∗∥∥ +
∥∥zk – ν∗∥∥)‖νk – zk‖ + ξ 2

k ‖νk – νk–1‖2

+ 2ξk
〈
νk – ν∗,νk – νk–1

〉
(3.14)

and

(β̃k,0 – k)β̃k,j‖yk – Tjyk‖2

≤ ∥∥wk – ν∗∥∥2 –
∥∥zk – ν∗∥∥2

≤ (∥∥νk – ν∗∥∥ +
∥∥zk – ν∗∥∥)‖νk – zk‖ + ξ 2

k ‖νk – νk–1‖2

+ 2ξk
〈
νk – ν∗,νk – νk–1

〉
. (3.15)

Utilizing (3.14) and the conditions (C1) and (C2), we have

lim
k→∞

∥∥Sj(�wk) – �wk
∥∥ = 0, for all j = 1, 2, . . . N . (3.16)

Since lim infk→∞(β̃k,0 – k)β̃k,j > 0, we obtain from (3.15) that

lim
k→∞

∥∥(Id – Tj)yk
∥∥ = 0 for all j = 1, 2, . . . N . (3.17)

In order to establish the claim of this section, we first show that ν∗ ∈ ⋂M
i=1 EP(gi).

Observe that

uk = arg min

{
ϑgi(bk , ỹ) +

1
2
‖bk – ỹ‖2 : ỹ ∈K

}
.

Recalling Lemma 2.5, we obtain

0 ∈ ∂2

{
ϑgi(bk , ỹ) +

1
2
‖bk – ỹ‖2

}
(uk) + NK(uk).
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This implies the existence of p ∈ ∂2gi(bk , uk) and p̄ ∈ NK(uk) such that

ϑp + bk – uk + p̄. (3.18)

Since p̄ ∈ NK(uk) and 〈p̄, ỹ – uk〉 ≤ 0 for all ỹ ∈ K. Hence, recalling the estimate (3.18), we
have

ϑ〈p, ỹ – uk〉 ≥ 〈uk – bk , ỹ – uk〉, ∀ỹ ∈K. (3.19)

Since p ∈ ∂2gi(bk , uk),

gi(bk , ỹ) – gi(bk , uk) ≥ 〈p, ỹ – uk〉, ∀ỹ ∈K. (3.20)

Therefore, recalling the estimates (3.19) and (3.20), we obtain

ϑ
(
gi(bk , ỹ) – gi(bk , uk)

) ≥ 〈uk – bk , ỹ – uk〉, ∀ỹ ∈K. (3.21)

Since (νk) is bounded, there exists a subsequence (νkt ) of (νk) such that νkt ⇀ ν̃ ∈ H1 as
t → ∞. This also implies that zkt ⇀ ν̃ and wkt ⇀ ν̃ as t → ∞. Since uk ⇀ ν̃ , therefore,
recalling the assumption (A3) and the estimate (3.21), we deduce that 0 ≤ gi(ν̃, y) for all
y ∈K and i ∈ {1, 2, 3, . . . , M}. This infers that ν̃ ∈ ⋂M

i=1 EP(gi).
Finally, we show that ν̃ ∈ �. Since xkt ⇀ ν̃ as t → ∞, recalling the demiclosed principal

along with the estimate (3.16) and (3.17), we have ν̃ ∈ �. Hence, ν̃ ∈ �.
Step 4. νk → ν∗ = PH1

� ν1.
Since ν∗ = PH1

� ν1 and ν̃ ∈ �, we have

∥∥ν1 – ν∗∥∥ ≤ ‖ν1 – ν̃‖ ≤ lim inf
t→∞ ‖ν1 – νkt ‖ ≤ lim sup

t→∞
‖ν1 – νkt ‖ ≤ ‖ν1 – ν̃‖.

Recalling the uniqueness of the metric projection operator yields that ν̃ = ν∗ = PH1
� ν1.

This completes the proof. �

If for each j = 1, 2, . . . , N , let Sj = Id, then we have the following result:

Corollary 3.3 Let K ⊆ H1 be a nonempty, closed, convex subset of a real Hilbert space
H1 and let gi : K×K →R∪ {+∞} be a finite family of bifunctions satisfying Assumptions
2.1 for all i = 1, 2, . . . , M. For all j = 1, 2, . . . , N , let Tj : H1 → CB(H1) be a finite family of
multivalued kj-demicontractive mappings such that Tj – Id are demiclosed at zero. Assume
that � :=

⋂M
i=1 EP(gi) ∩ ⋂N

j=1 Fix(Tj) �= ∅ and calculate

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bk = νk + ξk(νk – νk–1);

uk = argmin{ϑgi(bk , ỹ) + 1
2‖bk – ỹ‖2 : ỹ ∈K}, i = 1, 2, . . . , M;

wk = argmin{ϑgi(uk , ỹ) + 1
2‖bk – ỹ‖2 : ỹ ∈K}, i = 1, 2, . . . , M;

zk = β̃k,0wk +
∑N

j=1 β̃k,jTjwk , j = 1, 2, . . . , N ;

Ck+1 = {z∗ ∈ Ck : ‖zk – z∗‖2

≤ ‖νk – z∗‖2 + ξ 2
k ‖νk – νk–1‖2 + 2ξk〈νk – z∗,νk – νk–1〉};

νk+1 = PH1
Ck+1

ν1, ∀k ≥ 1.

(3.22)
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Assume that the conditions (C1) and (C3) hold, then the sequence (νk) generated by (3.22)
converges strongly to an element in �.

As a direct application of Theorem 3.1, we have the following result for the variational
inequality problem (i.e., find ν̄ ∈K for which 〈Aν̄, μ̄– ν̄〉 ≥ 0 ∀μ̄ ∈K, where A : K →H1 is
a nonlinear, monotone mapping defined on a nonempty, closed, convex subset K ⊆H1):

Theorem 3.4 Let K ⊆ H1 be a nonempty, closed, convex subset of a real Hilbert space
H1 and for each i = 1, 2, . . . , M let Ai : K → H1 be a finite family of pseudomonotone
and L-Lipschitz continuous mappings. For all j = 1, 2, . . . , N , let Tj : H1 → CB(H1) and
Sj : H2 → CB(H2) be two finite families of multivalued, demicontractive mappings with
constants kj and k̃j, respectively, such that Tj – Id and Sj – Id are demiclosed at zero. Let
� =

⋂M
i=1 VI(K, Ai) ∩ � �= ∅. Let ξk be a bounded real sequence and 0 < λ < 1–k̃

‖�‖2 . Given
νk ∈H1, calculate

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bk = νk + ξk(νk – νk–1);

uk = PC(bk – ϑAi(bk)), i = 1, 2, . . . , M;

wk = PC(bk – ϑAi(uk)), i = 1, 2, . . . , M;

yk = wk +
∑N

j=1 α̃k,jλ�∗(Sj(�wk) – �wk), j = 1, 2, . . . , N ;

zk = β̃k,0yk +
∑N

j=1 β̃k,jTjyk , j = 1, 2, . . . , N ;

Ck+1 = {z∗ ∈ Ck : ‖zk – z∗‖2

≤ ‖νk – z∗‖2 + ξ 2
k ‖νk – νk–1‖2 + 2ξk〈νk – z∗,νk – νk–1〉},

νk+1 = PH1
Ck+1

ν1, ∀k ≥ 1.

(3.23)

Assume that the conditions (C1)–(C3) hold, then the sequence (νk) generated by (3.23) con-
verges strongly to an element in �.

Proof Let gi(ν̄, μ̄) = 〈Ai(ν̄), μ̄ – ν̄〉 for all ν, y ∈K and i = 1, 2, . . . , M. Since Ai is L-Lipschitz
continuous, we observe that for all ν̄, μ̄, ξ̄ ∈ C

gi(ν̄, μ̄) + gi(μ̄, ξ̄ ) – gi(ν̄, ξ̄ ) =
〈
Ai(ν̄), μ̄ – ν̄

〉
+

〈
Ai(μ̄), ξ̄ – μ̄

〉
–

〈
Ai(ν̄), ξ̄ – ν̄

〉

= –
〈
Ai(μ̄) – Ai(ν̄), μ̄ – ξ̄

〉

≥ –
∥∥Ai(μ̄) – Ai(ν̄)

∥∥‖μ̄ – ξ̄‖
≥ –L‖μ̄ – ν̄‖‖μ̄ – ξ̄‖
≥ –

L
2
‖μ̄ – ν̄‖2 –

L
2
‖μ̄ – ξ̄‖2.

This infers that gi is Lipschitz-type continuous with d1 = d2 = L
2 . Moreover, the pseu-

domonotonicity of Ai ensures the pseudomonotonicity of gi. From Algorithm 1, we have

uk = arg min

{
ϑ

〈
Ai(νk),μ – νk

〉
+

1
2
‖νk – μ‖2 : μ ∈K

}
,

wk = arg min

{
ϑ

〈
Ai(uk),μ – uk

〉
+

1
2
‖νk – μ‖2 : μ ∈K

}
.
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Equivalently, we have

uk = arg min

{
1
2
‖ỹ – (νk – ϑAi(νk)‖2 : ỹ ∈K

}
= PK

(
νk – ϑAi(νk)

)
,

wk = arg min

{
1
2
‖ỹ – (νk – ϑAi(uk)‖2 : ỹ ∈K

}
= PK

(
νk – ϑAi(uk)

)
.

Recalling the proof of Theorem 3.1 with the above-mentioned gi(ν,μ) for all i ∈ {1, 2, . . . ,
M} leads to the desired result. �

Setting a terminating criterion by fixing k > kmax for an appropriately chosen large num-
ber kmax, we now propose a Halpern-type variant of Algorithm 1.

Theorem 3.5 If � �= ∅ such that the conditions (C1)–(C3) with C∗ = limk→∞ γ̃k = 0 hold.
Then, the sequence (νk) generated by Algorithm 2 converges strongly to an element in �.

Proof Observe that the set Ck can be expressed as:

Ck =
{
ν∗ ∈ Ck :

∥∥hk – ν∗∥∥2 ≤ γ̃k
∥∥q – ν∗∥∥2 + (1 – γ̃k)

(‖νk – νk+1‖2 + ξ 2
k ‖νk – νk–1‖2

+ 2ξk〈νk – νk+1,νk – νk–1〉
)}

.

Algorithm 2 Hybrid Inertial Halpern-Extragradient Algorithm (Alg.2)
Initialization: Choose arbitrarily q ∈ H1 and ν0,ν1 ∈ C0 = H1, set k ≥ 1 and nonin-
creasing sequence (α̃k,j), (β̃k,j) ⊂ (0, 1), 0 < ϑ < min( 1

2d1
, 1

2d2
), ξk ⊂ [0, 1).

Iterative Steps: Given νk ∈H1, calculate:
Step 1. Compute

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

bk = νk + ξk(νk – νk–1);

uk = argmin{ϑgi(bk , ỹ) + 1
2‖bk – ỹ‖2 : ỹ ∈K}, i = 1, 2, . . . , M;

wk = argmin{ϑgi(uk , ỹ) + 1
2‖bk – ỹ‖2 : ỹ ∈K}, i = 1, 2, . . . , M;

yk = wk +
∑N

j=1 α̃k,jλ�∗(Sj(�wk) – �wk), j = 1, 2, . . . , N ,

zk = β̃k,0yk +
∑N

j=1 β̃k,jTjyk , j = 1, 2, . . . , N ,

hk = γ̃kq + (1 – γ̃k)zk .

If hk = zk = yk = wk then stop and νk is the solution of problem �. Otherwise,
Step 2. Compute

Ck+1 =
{

z∗ ∈ Ck :
∥∥hk – z∗∥∥2 ≤ ∥∥νk – z∗∥∥2 + ξ 2

k ‖νk – νk–1‖2 + 2ξk
〈
νk – z∗,νk – νk–1

〉}
;

νk+1 = PH1
Ck+1

ν1, ∀k ≥ 1.

Put k =: k + 1 and go back to Step 1.
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Recalling the proof of Theorem 3.1, it infers that (i) the sets �andCk are closed and convex,
satisfying � ⊂ Ck+1 for all k ≥ 0; (ii) (νk) is bounded such that

lim
k→∞

‖νk+1 – νk‖ = 0. (3.24)

Since νk+1 = PH1
Ck

(q) ∈ Ck and by the definition of Ck , we have

‖hk – νk+1‖2 ≤ γ̃k‖q – νk+1‖2 + (1 – γ̃k)

× (‖νk – νk+1‖2 + ξ 2
k ‖νk – νk–1‖2

+ 2ξk〈νk – νk+1,νk – νk–1〉
)
.

Recalling the estimate (3.24), the conditions (C1)–(C3) and the boundedness of (νk), we
obtain

lim
k→∞

‖hk – νk+1‖ = 0,

implying that

lim
k→∞

‖hk – νk‖ = 0. (3.25)

Also, observe that

(1 – γ̃k)(1 – 2ϑd1)‖uk – νk‖2 + (1 – 2ϑd2)‖uk – wk‖2

≤ γ̃k
(∥∥q – ν∗∥∥2 –

∥∥νk – ν∗∥∥2) + ‖νk – zk‖
(∥∥νk – ν∗∥∥ +

∥∥zk – ν∗∥∥)
,

for each ν∗ ∈ �. Recalling the estimate (3.24), the conditions (C1)–(C3), and the bound-
edness of (νk), we obtain

lim
k→∞

‖uk – νk‖ = 0 = lim
k→∞

‖wk – νk‖, i ∈ {1, 2, . . . , M}.

Recalling hk = γ̃kq + (1 – γ̃k)zk and the conditions (C2) and (C3) with C∗, we obtain

‖zk – νk‖ ≤ 1
(1 – γ̃k)

‖hk – νk‖ +
γ̃k

(1 – γ̃k)
‖q – νk‖.

Recalling the estimate (3.25) again, the above estimate implies that

lim
k→∞

‖zk – νk‖ = 0.

The rest of the proof of Theorem 3.5 is similar to the proof of Theorem 3.1 and is therefore
omitted here. �

Remark 3.6 From the numerical standpoint, the condition (C1) can easily be aligned in
an algorithm as ‖νk – νk–1‖ is a priorly known before selecting ξk satisfying 0 ≤ ξk ≤ ξ̂k ,
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where

ξ̂k =

⎧⎨
⎩

min{ σk
‖νk –νk–1‖ , ξ} if νk �= νk–1;

ξ otherwise,

where {σk} is a positive sequence such that
∑∞

k=1 σk < ∞ and ξk ∈ [0, 1).

4 Numerical experiment and results
This section provides the effective viability of our algorithm supported by a suitable ex-
ample.

Example 4.1 LetH1 = R = H2 be the set of all real numbers with the inner product defined
by 〈μ,ν〉 = μν , for all μ,ν ∈R and the induced usual norm | · |. For each i = {1, 2, 3, . . . , M}
and K = [0, 1] ⊂ H1, let the bifunctions gi(μ,ν) : K × K → R be defined by gi(μ,ν) =
hi(μ)(ν – μ) with

hi(μ) =

⎧⎨
⎩

0, if 0 ≤ μ ≤ �i,

sin(μ – �i) + exp(μ – �i) – 1, if �i ≤ μ ≤ 1,

where 0 < �1 < �2 < · · · < �m < 1. It is easy to prove that gi(μ,ν) is pseudomonotone
satisfying the Assumptions 2.1 with hi(μ) being 4-Lipschitz continuous. Observe that
EP(gi) = [0,�i] if and only if 0 ≤ μ ≤ �i for all ν ∈ [0, 1]. Hence,

⋂M
i=1 EP(gi) = [0,�1]. For

each j = 1, 2, . . . , N , let Tj and Sj be defined as:

Tj(μ) =

⎧⎨
⎩

0, if μ < 0;

[ μ

j+1 ,μ], if μ ≥ 0

and

Sj(μ) =

⎧
⎨
⎩

[0, |μ|
j+2 ], if μ < j + 2;

[1, j + 1], if μ ≥ j + 2.

It is not difficult to show that Tj and Sj are 0-demicontractive, and Id – Tj and Id – Sj

are demiclosed at zero for all j = 1, 2, . . . , N . We also define a bounded linear operator � :
R → R by �μ = 3μ. Thus, �∗μ = 3μ and � = 3. It is clear that 0 ∈ �, where � = {μ ∈⋂N

j=1 Fix(Tj) : �μ ∈ ⋂N
j=1 Fix(Sj)}. Hence, � =

⋂M
i=1 EP(gi) ∩ � = 0.

Set ξk = ξ = 0.5, α̃k,j = α̃k = 1
2k+1 , β̃k,j = β̃k = 1

2k , ϑ = 1
7 , �i = i

(M+1) , M = 2 × 105 and N =
3 × 105. Since

⎧⎨
⎩

min{ 1
k2‖νk –νk–1‖ , 0.5} if νk �= νk–1;

0.5 otherwise.

The terminating criteria of Algorithm 1 is set as Error = Ek = ‖νk – νk–1‖ < 10–6. Table 1
summarizes the computation of Algorithm 1 and its variant.

The terminating criterion Ek and (νk) summarized in Table 1 for Algorithm 1 are de-
picted in Fig. 1.
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Table 1 Summary of the Numerical Computation for Algorithm 1

No. of Iter. Alg.1, ξk �= 0 CPU(s) Alg.1, ξk �= 0
ξk = 0 ξk = 0

Choice 1. ν0 = (5), ν1 = (2) 90 82 0.076019 0.068766
Choice 2. ν0 = (4.4), ν1 = (1.8) 85 68 0.074187 0.067455
Choice 3. ν0 = (–9), ν1 = (4) 102 88 0.075195 0.063578

Figure 1 Comparison of Alg.1, ξk �= 0, ξk = 0

We can see from Table 1 and Fig. 1 that Alg.1 with ξk �= 0 outperforms Alg.1 with ξk = 0
with respect to the reduction in the error, time consumption, and the number of iterations
required for the convergence towards the common solution.

5 Conclusions
In this paper, we have investigated an inertial-based, parallel, hybrid, extragradient algo-
rithm for constructing iteratively a common solution of the pseudomonotone EP and the
SCFPP associated with the finite families demicontractive mappings in Hilbert spaces. The
abstract formalism of the problem has been strengthened with the computer-assisted sim-
ulation for the algorithm via an appropriate numerical example. We emphasize that our
proposed abstract formalism together with the computer-assisted iterative algorithm arise
naturally in various forms of real-world applications and would be an important topic of
future research.
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