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Abstract
In this short paper we tackle two subjects. First, we provide a lower bound for the first
eigenvalue of the antiperiodic problem for a Hill’s equation based on Lp-conditions,
and as a consequence, we introduce an adjusted statement of the main result about
the asymptotic stability of periodic solutions for the general Duffing equation in
(Torres in Mediterr. J. Math. 1(4):479–486, 2004) (Theorem 4). This appropriate version
of the result arises because of one subtlety in the proof provided in (Torres in Mediterr.
J. Math. 1(4):479–486, 2004). More precisely, the lower bound of the first antiperiodic
eigenvalue associated with Hill’s equations of potential a(t) employed there may be
negative, thus the conclusion is not completely attained. Hence, the adjustments
considered here provide a mathematically correct result. On the other hand, we apply
this result to obtain a lateral asymptotic stable periodic oscillation in the Comb-drive
finger MEMS model with a cubic nonlinear stiffness term and linear damping. This
fact is not typical in Comb-drive finger devices, thus our results could provide a new
possibility; a new design principle for stabilization in Comb-drive finger MEMS.

Keywords: MEMS; Comb-drive; Periodic solution; Asymptotic stability; Lower and
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1 Introduction
This paper aims to provide a lower bound for the first eigenvalue of the antiperiodic prob-
lem for a Hill’s equation. By combining this estimation with other inequalities we prove a
result about asymptotic stability of periodic solutions for certain Duffing equations in the
line of [1]. First, we shall introduce some basic notions.

For a given f ∈ L1(0, T), we write f � 0 if f (t) ≥ 0 for almost every t and it is positive in a
subset of positive measure. Let us define the set W = {u ∈ W 2,1(0, T) : u(0) = u(T), u̇(0) =
u̇(T)}. For a given a ∈ L1(0, T) and c ≥ 0, the differential operator L : W → L1(0, T) defined
as

Lu := ü + cu̇ + a(t)u,

is called inversely positive if it is invertible and Lu � 0 implies u > 0. The notion of an
inversely positive operator, also known as a maximum principle, has relevant applications
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in the study of nonlinear oscillators. In reference [1], Corollary 2.5 provides a sufficient
condition that is incorrect because it is based on the use of inequality (2.4) therein. We
shall explain the details in Sect. 2 and develop the correct version of the results towards
the end of this introduction. In particular, we obtain sufficient conditions over L for the
inversely positive property (see Theorem 2). In Sect. 3 we shall apply these new theoretical
results to the study of the dynamics of some MEMS. More precisely, we obtain a result
about the existence of a positive and asymptotically locally stable periodic solution for the
Comb-drive finger MEMS model with cubic stiffness and linear damping, a novel result
that is not yet reported in the literature to our knowledge.

Finding interesting and deep connections between topological degree and asymptotic
stability, the seminal papers [2–4] provide sufficient conditions to obtain at least one
asymptotically locally stable periodic solution for differential equations of Liénard type.
The author in [1] generalized the results in [4] for Duffing equations ẍ + cẋ + g(t, x) = 0
(c > 0) with weaker conditions of Lp type over g . The proofs of this author employ a lower
bound of the corresponding first eigenvalue λA

0 for the antiperiodic problem of a Hill’s
equation due to Zhang ([5]) that only works when λA

0 ≥ 0. Here, we provide a lower bound
of λA

0 for the negative case (Theorem 5). This permits us to present complete forms of the
results in [1] and some consequences. Next, we shall complete the main results in [1]
(Corollary 2.4, Corollary 2.5, Lemma 3.2, and Theorem 4.2) by means of a redefinition of
the set �p,c there. It seems to us that �p,c has been employed in works like [6–9], so we
believe that the results obtained here could be of interest for those authors.

The solution is simple. The set �p,c in [1] should be redefined by the following: For any
p ∈ [1,∞] and c > 0 consider

�̂p,c :=
{

a ∈ L∞(0, T) : a � 0, ‖a‖p <
(

1 +
c2

4‖a‖∞

)
K

(
2p∗, T

)}
, (1)

where K(p, T) is the best Sobolev constant in the inequality

C‖u‖2
p ≤ ‖u̇‖2

2,

for all u ∈ H1
0 (0, T) and p∗ be the conjugated exponent of p.

Therefore, the Corollary 2.4, Corollary 2.5, and Lemma 3.2 in [1] could be changed with
the following alternative inequality:

‖A‖p <
(

1 +
c2

4‖a‖∞

)
K

(
2p∗, T

)
,

with A = a+, a, and a+, respectively.
The cornerstone result in the referred article consists in assuming conditions in order

to guarantee that λA
0 [a] + c2

4 > 0. Thus, we obtain our first main result that relies on our
key statement about a lower bound of the eigenvalue for the antiperiodic problem in Hill’s
equations (Theorem 5 in Sect. 2).

Theorem 1 Let p ∈ [1,∞] and assume that a ∈ �̂p,c. Then, λA
0 [a] + c2

4 > 0.

As a consequence, we formulate a result that should be considered as a corrected version
of Lemma 2.3 in [1].
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Theorem 2 Let p ∈ [1,∞] and assume that a ∈ �̂p,c. Then, the operator L is inversely
positive.

In this way, the main result in [1] (Theorem 4.2) can be reformulated as follows. First,
we shall introduce a definition from the Lower and Upper Solutions approach. Consider
the general Duffing equation

ẍ + cẋ + g(t, x) = 0, (2)

where c > 0 and g : [0, T]× ]x1, x2[→ R is a L1-Carathéodory function (x1 < x2) such that
the partial derivative gx exists and it is also L1-Carathéodory. We say that a function x(t) ≡
�(t) (resp., x(t) ≡ u(t)) is a lower (resp., upper) solution of the periodic problem associated
with (2) if the left-hand side of (2) evaluated in x(t) is ≥ 0 (resp., ≤ 0). Additionally, when
the strict inequality is verified then these solutions are called strict lower (resp., upper)
solutions.

Theorem 3 Let � > u be a couple of strict lower and upper solutions of equation (2). Assume
that for a given p ∈ [1,∞] there exists a ∈ �̂p,c verifying that

gx(t, x) ≤ a(t), for a.e. t ∈ [0, T], ∀x ∈ [u(t),�(t)].

Then, (2) has at least an asymptotically locally stable T-periodic solution v(t) such that
u < v < �, provided that the number of T-periodic solutions between u and � is finite.

Remark 1 The conditions in the precedent theorem can we rewritten as

‖a‖∞‖a‖p

‖a‖∞ + c2
4

≤ K
(
2p∗, T

)
, (3)

thus we have a control by means of two measures over a and the friction. The condition
trivially holds when c is very large and also when a is “very small”. On the other hand, note
that

‖a‖∞‖a‖p

‖a‖∞ + c2
4

≤ Gp,c
(‖a‖∞

)
,

where Gp,c(u) = u2T1/p

u2+ c2
4

is an increasing function on [0,∞] with Gp,c(0) = 0. Thus, there

exists a unique ζp ∈ ]0,∞[ such that Gp,c(ζp) = K(2p∗, T) and Gp,c(u) < K(2p∗, T) for all
u ∈ ]0, ζp[. In particular, we have the following sufficient condition:

a � 0, ‖a‖∞ < ζp.

For the case p = ∞, the set �̂∞,c is defined by the above condition with

ζ∞ :=
K +

√
K(K + c2)
2

, K = K(2, T) =
(

π

T

)2

.
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2 Proofs
Next, we present the proofs of the Theorems in the Introduction. Let us consider the fol-
lowing second-order differential equation

ü +
(
a(t) + λ

)
u = 0, (4)

where a(t) is a real-valued T-periodic function for T > 0 such that a � 0 (a ∈ L∞(0, T))
and λ ∈ R. Henceforth, we shall consider the following boundary conditions associated
with (4)

u(0) = u(T) = 0 (5)

and

u(0) = –u(T), u̇(0) = –u̇(T). (6)

Let λD
0 [a] and λA

0 [a] be the first eigenvalues associated to the corresponding homo-
geneous Dirichlet problem (problem (4)+(5)) and the antiperiodic problem (problem
(4)+(6)), respectively.

From the variational characterization of the spectrum of (4) we have that

λA
0 [a] = min

{
λD

0 [as] : s ∈R
}

, (7)

where as(t) ≡ a(t + s) and

λD
0 [a] = min

u∈H1
0 (0,T),‖u‖2=1

q(u), (8)

where q is the quadratic form

q(t) =
∫ T

0
u̇2(t) dt –

∫ T

0
a(t)u2(t) dt. (9)

We remark that λD
0 [a] is simple, and if φ is an eigenfunction associated with the homo-

geneous Dirichlet problem then the equality in (8) is satisfied. In that sense, there exists
exactly one function φ0 ∈ H1

0 (0, T) such that ‖φ0‖2 = 1, φ0 > 0 on ]0, T[ and φ0 is a solution
of (4)+(5).

Next, we recall a lower bound of λD
0 [a] that is based on the ideas in [5] and [10]. First,

let us consider for any p ∈ [1,∞] the best Sobolev constant in the inequality

C‖u‖2
p ≤ ‖u̇‖2

2,

for all u ∈ H1
0 (0, T) and let p∗ be the conjugated exponent of p. Thus, we have that for u ∈

H1
0 (0, T) such that ‖u‖2 = 1, the Hölder inequality and the definition of the best Sobolev
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constant K(2p∗, T) imply that

q(u) = ‖u̇‖2
2 –

∫ T

0
a(t)u2(t) dt

≥ ‖u̇‖2
2 – ‖a‖p‖u‖2

2p∗

≥ ‖u̇‖2
2

(
1 –

‖a‖p

K(2p∗, T)

)
.

(10)

As a consequence of the previous inequality we have the following result ([5] and [10]).

Theorem 4 Let p ∈ [1,∞], and consider the equation (4) where the potential a(t) is a real-
valued T-periodic function in L∞(0, T) for T > 0, and a � 0. If ‖a‖p ≤ K(2p∗, T), then for
some s0 ∈R, λA

0 [a] = λD
0 [as0 ] ≥ K(2, T)(1 – ‖a‖p

K (2p∗ ,T) ) ≥ 0.

Now, we are able to present our second main result.

Theorem 5 Let p and s0 be as in Theorem 4. Assume that λA
0 [a] = λD

0 [as0 ] < 0. Then, ‖a‖p >
K(2p∗, T) and λA

0 [a] ≥ ‖a‖∞(1 – ‖a‖p
K (2p∗ ,T) ).

Proof The first assertion is a direct consequence of Theorem 4. In order to prove the sec-
ond part, let us consider φ0 defined above for the coefficient as0 . Hence,

∫ T

0
φ̈0(t)φ0(t) dt = –

∫ T

0

(
as0 (t) + λD

0 [as0 ]
)
φ2

0 (t) dt (11)

and thus

∫ T

0
φ̇0

2(t) dt =
∫ T

0

(
a(t + s0) + λD

0 [as0 ]
)
φ2

0 (t) dt (12)

and since the hypothesis implies that (as0 (t) + λD
0 [as0 ])φ2

0 (t) ≤ as0 (t)φ2
0 (t) for all t ∈ [0, T]

and ‖φ0‖2 = 1 we conclude the following

‖φ̇0‖2
2 ≤

∫ T

0
a(t + s0)φ2

0 (t) dt

≤ ‖a‖∞.
(13)

Finally, the inequality in (10) with φ0 shows that

λA
0 [a] = λD

0 [as0 ]

= q(φ0)

≥ ‖φ̇0‖2
2

(
1 –

‖a‖p

K(2p∗, T)

)

≥ ‖a‖∞

(
1 –

‖a‖p

K(2p∗, T)

)
,

(14)

as ‖a‖p
K (2p∗ ,T) > 1. �
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Proof of Theorem 1 It is a straightforward consequence of Theorem 5 and the definition
in (1). More precisely, if λA

0 [a] ≥ 0 then we have nothing to prove. If λA
0 [a] < 0, then

λA
0 [a] +

c2

4
≥ ‖a‖∞

(
1 –

‖a‖p

K(2p∗, T)

)
+

c2

4
> 0

and the last inequality is equivalent to the hypothesis about the p-norm of a. �

3 Applications: lateral asymptotic locally stable periodic oscillations in MEMS
In this section, we shall introduce our main results regarding the applications to microelec-
tromechanical systems (MEMS). These are micro-scale devices that integrate mechanical
and electronic components in a common substrate, and that are employed in different
fields as the automotive industry, the medical and biomedical industry, the aerospace sec-
tor, etc. (see for example [12]). In this case, we shall consider an interdigitated Comb-drive
MEMS modeled with a cubic stiffness term. This device consists of tow comb-like struc-
tures (with interdigitated fingers or electrodes); the first structure is movable and it is at-
tached to flexures, whereas the second comb is stationary. Because the device is actuated
by a nonconstant periodic input voltage, we have that, in appropriate units of distance
and time, the spring–mass model that describes the behavior of the movable component
is given by (see [11, 12])

ẍ + cẋ + x
(

1 + αx2 –
θV 2(t)

(1 – x2)2

)
= 0, |x| < 1, (15)

where c > 0, α > 2, and θ > 0 are physical constants of the system, and V (t) = Vdc +
δ cos (ωt), δ ∈ ]0, Vdc[, is the nonconstant positive T-periodic input AC–DC voltage func-
tion. Moreover, we shall consider

Vm := min
t∈[0,T]

V (t), VM := max
t∈[0,T]

V (t).

The mathematical study of the dynamics for Comb-drive finger devices and other
MEMS has been of remarkable interest in recent years, see for instance [8, 11, 13–18]. In
fact, regarding the stability of positive, periodic solutions (or lateral solutions) in MEMS
actuators, the authors in [11] studied a cubic Comb-drive finger MEMS without damping
and proved the existence and linear stability of at least one periodic solution under some
conditions on the parameters of the system. Here, we are going to tackle the damped prob-
lem and the possibility of asymptotic stability in this frame.

Let us consider the auxiliary function for this model that is defined by

ϕα(x) =
(
1 + αx2)(1 – x2)2, (16)

and consider the following quantities for each α > 2

ηm :=
1√
θ

, ηM :=
√

ϕα(Cα)
2θ

, Cα :=
√

α – 2
3α

.

Hereafter, we shall use the following claim about the increasing behavior of the maxi-
mum value of the auxiliary function that is given by q(α) := ϕα(Cα) for α > 2. This assertion
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is a direct consequence of the fact that dq
dα

(α) = ∂ϕα

∂α
(Cα) + ∂ϕα

∂x (Cα) dCα

dα
= C2

α(1 – C2
α)2 > 0,

limα→∞ q(α) = ∞, and limα→2+ q(α) = 1.

Claim 1 The function q(α) is a monotonic increasing function. Moreover, there exists α∗ > 2
such that for α > α∗ ϕα(Cα) > 2. In other words, α∗ is the unique root of q(α) = 2 for α > 2.

Next, we follow the lower and upper solution approach. We recall from Sect. 1 that a
constant function x(t) ≡ � (resp., x(t) ≡ u) is a lower (resp., upper) solution of the periodic
problem associated with (15) if the left-hand side of (15) evaluated in x(t) is ≥ 0 (resp.,
≤ 0). Equivalently, when � > 0 (u > 0) the following inequality holds

ϕα(�) – θV 2
M ≥ 0

(
resp., ϕα(u) – θV 2

m ≤ 0
)
.

Thus, we obtain the following result regarding the existence of nonstrict constant lower
and upper solutions for (15).

Lemma 1 Assume that α > α∗ for α∗ defined in Claim 1 and that

Vm, VM ∈ ]ηm,ηM[. (17)

Then, there exist roots ui (resp., �i) (i = 1, 2) on ]0, 1[ for the equation ϕα(x) – h = 0 with
h = θV 2

m (resp., h = θV 2
M), verifying that

0 < u1 < �1 < Cα < �2 < u2 < 1. (18)

Proof Note that from Claim 1, if α > α∗ then ηm < ηM . In addition, the condition (17)
implies that ϕα(0) = 1 < θV 2

m and θV 2
M < ϕα(Cα). Moreover, the function ϕα(x) is even, it

has a local minimum at x = 0 and exactly one local maximum on ]0, 1[ that is reached
at x = Cα , thus ϕ′

α(x) > 0 on ]0, Cα[ and ϕ′
α(x) < 0 on ]Cα , 1[. Then, the Intermediate Value

Theorem guarantees the existence of exactly one root of ϕα(x) – h = 0 on ]0, Cα[ and ]Cα , 1[
for h = θV 2

m and h = θV 2
M , respectively. Moreover, the order of the roots in (18) is easy to

deduce from the previous remarks about ϕα(x). �

Remark 2 The roots �i (resp., ui) (i = 1, 2) given by the former lemma are nonstrict con-
stant lower (resp., upper) solutions of (15). Nevertheless, hereafter we shall also consider
the corresponding strict lower Li (resp., upper Ui) solutions defined by Li = �i + (–1)i+1εi

(resp., Ui = ui + (–1)iεi) for suitable fixed, positive constants εi = εi(α) � 1, and such that
0 < U1(α) < L1(α) < Cα < L2(α) < U2(α) < 1.

Now let us consider the function g : R× ] – 1, 1[→ R defined by

g(t, x) = x + αx3 –
θV 2(t)x
(1 – x2)2 .

With a view to applying the main result of the previous section, we are interested in study-
ing multiplicity for periodic solutions between the lower solution U1 and the upper solu-
tion L1. Hence, we need to compute an α-interval for which gxx is different from zero on
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R× ]U1, L1[. A straightforward computation shows that for f (x) = 1+x2

(1–x2)4 , we obtain

gxx(t, x) = 6x
(
α – 2θV 2(t)f (x)

)
, (19)

so the sign of gxx onR× ]U1, L1[ is the sign of the functionA(t, x) := α(1–x2)4 –2θV 2(t)(1+
x2) on the same domain.

Therefore, let us assume the same hypotheses as in Lemma 1 and note that f ′(x) =
2x(5+3x2)

(1–x2)5 > 0 for all x ∈ ]0, 1[, thus A(t, x) > 0 on R × [0, Cα] if and only if α verifies on
the same domain the following

α > 2θV 2(t)f (x),

which is equivalent to having that

α > 2θV 2
Mf (Cα)

and then by condition (17) this last inequality is satisfied whenever

α > q(α)f (Cα). (20)

It is not difficult to check that w(x) := α – ϕα(x)f (x) is a decreasing function on ]0, 1[ that
vanishes at x = rα for rα =

√
α–1

3α+1 and w(0) = α – 1 > 0. On the other hand, an easy compu-
tation shows that Cα < rα so (20) holds. Then, we have proved the next lemma.

Lemma 2 Assume that α, Vm, and VM verify the hypotheses in Lemma 1. Then, gxx > 0 on
R× [0, Cα].

Now, let us define for α > α∗ the following function

h(x) :=
1 + 3x2

(1 – x2)3 . (21)

A straightforward computation shows that h′(x) = 12xf (x) for f (x) defined above. Thus, h
is increasing on ]0, 1[.

Theorem 6 Assume that α > α∗ and let Vm, VM verify the condition (17). If there exists
some p ∈ [1,∞] such that a(t) := α – 1 – θV 2(t) verifies

‖a‖p <
(

1 +
c2

4(α – 1 – θV 2
m)

)
K

(
2p∗, T

)
. (22)

Then, (15) has a positive asymptotic locally stable periodic solution v(t), such that

U1 < v(t) < L1.

Proof The proof will be made in several steps.
Step 1. Multiplicity:
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Here, we aim to prove that the equation (15) admits at most two T-periodic solutions
with range in ]U1, L1[. This is a consequence of a known result of disconjugacy for linear
second-order differential equations and a multiplicity result for a Duffing equation with
convex potential in a finite domain. More precisely, if b ∈ �̂p,c is a T-periodic function,
then Theorem 1 reveals that the first eigenvalue of the antiperiodic problem associated
with the linear equation ẍ + cẋ + b(t)x = 0 is positive. Therefore, Lemma 2.1 and the sub-
sequent remark in [1] imply that the distance between consecutive zeros of any nontrivial
solution of this last linear equation is greater than T (disconjugacy property). We note that,
under certain conditions, the disconjugacy property holds for linear differential equations
with potentials bounded above by b(t). The following claim summarizes this result.

Claim 2 Assume that b1 and b are T-periodic functions in L∞(R) such that b1 ≤ b with
b ∈ �̂p,c. Then, ẍ + cẋ + b1(t)x = 0 enjoys the disconjugacy property.

On the other hand, by following the main ideas of Lemma 7.2 part b) in [19], where the
condition (106) can be replaced by (22) because the essential argument in that work is the
disconjugacy property, we obtain the next result.

Claim 3 Assume that bi and b are T-periodic functions in L∞(R) verifying that bi ≤ b for
i = 1, 2 and b ∈ �̂p,c. If b1 � b2, then the linear equations ẍ + cẋ + bi(t)x = 0 do not admit
nontrivial T-periodic solutions simultaneously.

From Claim 3 and the fact that gxx > 0 on R×]U1, L1[ (as a consequence of Lemma 2), it
is not difficult to prove the conclusion of this step by following the ideas in [19, 20]. For the
sake of completeness, let us clarify the last assertion. We can adapt the ideas in [20] (see
Lemma 11 there) and use the disconjugacy property to show that the periodic solutions of
(15) are ordered. Thus, the proof of the multiplicity easily follows: if (15) admits at least
three different periodic solutions, then we obtain two linear differential equations with
ordered potentials as in Claim 3 (by using the Mean Value Theorem, the monotonicity
of gx, and the inequality in (23) from next step), and such that the consecutive differences
between the periodic solutions of (15) solve the corresponding linear equations. This con-
tradicts Claim 3.

Step 2. Existence and stability properties:
First, we have that

gx(t, x) = 1 + 3αx2 – θV 2(t)h(x),

so that the former discussion implies that

gx(t, x) ≤ a(t), ∀(t, x) ∈R× [U1, L1], (23)

as h ≥ 1 and 1 + 3αC2
α = α – 1.

Hence, all hypotheses of Theorem 3 hold. In fact, first, from Step 1 there are only a finite
number of periodic solutions with range in ]U1, L1[. Secondly, θV 2

M < α–1 as ϕα(Cα) < α–1
for α > 2, and from hypothesis θV 2

M < ϕα(Cα). This assertion is straightforward since C2 =
0, ϕ2(C2) = 1, and ∂ϕα

∂α
(Cα) = C2

α(1 – C2
α)2 < 1. Thus, a(t) > 0 for all t ∈ R. This implies that

a ∈ �̂p,c because of (22) and ‖a‖∞ = α –1–θV 2
m. A direct application of Theorem 3 implies
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the existence of a periodic solution v(t) with range in ]U1, L1[ that is locally asymptotically
stable. �

Remark 3 Note that under the hypotheses of Theorem 6 the equilibrium x ≡ 0 is unstable
(hyperbolic) for c small enough because the linearized equation at x ≡ 0 is of the form

ü + cu̇ +
(
1 – θV 2(t)

)
u = 0,

with 1 – θV 2(t) < 0 for all t ∈ R. Typically, a linear Comb-drive finger MEMS stabilizes at
the origin, but in this operation regime the stability is switched to some lateral periodic
solution.

4 Concluding remarks
In this paper we have provided sufficient conditions of Lp-type over a Duffing equation
periodically forced with linear damping to obtain at least one asymptotically locally sta-
ble periodic solution, based on the computation of a lower bound for the first eigenvalue
of the antiperiodic problem for Hill’s equations. This result fills some gaps present in the
literature. As an application, we have provided a new design principle for Comb-drive fin-
ger actuators driven by a periodic voltage that enables the appearance of stable, periodic,
lateral oscillations, an uncommon feature in Comb-drive finger MEMS.

On the other hand, by applying Lemma 1 and a classical result of the Lower and Up-
per Solutions Method, it is possible to prove that there exists a positive periodic solution
of (15) with range in ]L2, U2[. This solution could be typically unstable, e.g., if we have
uniqueness of the periodic solution with that range (see [21]). Are there more periodic
solutions for this model? To our knowledge the multiplicity of positive periodic solutions
for this problem still remains open.

Acknowledgements
The authors are grateful to P. Torres for his helpful comments about this paper. This article has been financially supported
by the Pontifical Xavierian University.

Funding
This article has been financially supported by the Pontifical Xavierian University.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author contributions
The first author worked in the Sects. 1 and 2 and the second author worked in Sect. 3. All authors read and approved the
final manuscript.

Received: 4 July 2023 Accepted: 11 October 2023



Núñez and Murcia Journal of Inequalities and Applications        (2023) 2023:142 Page 11 of 11

References
1. Torres, P.J.: Existence and stability of periodic solutions of a Duffing equation by using a new maximum principle.

Mediterr. J. Math. 1(4), 479–486 (2004). https://doi.org/10.1007/s00009-004-0025-3
2. Zitan, A., Ortega, R.: Existence of asymptotically stable periodic solutions of a forced equation of Liénard type.

Nonlinear Anal., Theory Methods Appl. 22(8), 993–1003 (1994). https://doi.org/10.1016/0362-546x(94)90062-0
3. Ortega, R.: Some applications of the topological degree to stability theory. In: Topological Methods in Differential

Equations and Inclusions. NATO ASI Series, vol. 472, pp. 377–409. Springer, Dordrecht (1995).
https://doi.org/10.1007/978-94-011-0339-8_8

4. Njoku, F.I., Omari, P.: Stability properties of periodic solutions of a Duffing equation in the presence of lower and
upper solutions. Appl. Math. Comput. 135(2–3), 471–490 (2003). https://doi.org/10.1016/s0096-3003(02)00062-0

5. Zhang, M., Li, W.: A Lyapunov-type stability criterion using Lα norms. Proc. Am. Math. Soc. 130(11), 3325–3333 (2002).
https://doi.org/10.1090/s0002-9939-02-06462-6

6. Liang, S.: Exact multiplicity and stability of periodic solutions for a Duffing equation. Mediterr. J. Math. 10(1), 189–199
(2012). https://doi.org/10.1007/s00009-012-0189-1

7. Wang, F., Zhu, H.: Existence, uniqueness and stability of periodic solutions of a Duffing equation under periodic and
anti-periodic eigenvalues conditions. Taiwan. J. Math. 19(5), 1457–1468 (2015).
https://doi.org/10.11650/tjm.19.2015.3992

8. Núñez, D., Galán-Vioque, J., Murcia, L.: Stable periodic oscillations in simple parallel-plate MEMS based on a family of
graphene-like materials. Int. J. Non-Linear Mech. 149, 104324 (2023).
https://doi.org/10.1016/j.ijnonlinmec.2022.104324

9. Liang, S.: Exact multiplicity and stability of periodic solutions for Duffing equation with bifurcation method. Qual.
Theory Dyn. Syst. 18(2), 477–493 (2018). https://doi.org/10.1007/s12346-018-0296-x

10. Cabada, A., Cid, J.A., López-Somoza, L.: Maximum Principles for the Hill’s Equation, p. 238. Elsevier/Academic Press,
Amsterdam (2018)

11. Núñez, D., Perdomo, O., Rivera, A.: On the stability of periodic solutions with defined sign in MEMS via lower and
upper solutions. Nonlinear Anal., Real World Appl. 46, 195–218 (2019). https://doi.org/10.1016/j.nonrwa.2018.09.010

12. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics, vol. 20. Springer, New York (2011).
https://doi.org/10.1007/978-1-4419-6020-7

13. Gutierrez, A., Núñez, D., Rivera, A.: Effects of voltage change on the dynamics in a Comb-drive finger of an
electrostatic actuator. Int. J. Non-Linear Mech. 95, 224–232 (2017). https://doi.org/10.1016/j.ijnonlinmec.2017.05.008

14. Llibre, J., Núñez, D.E., Rivera, A.: Periodic solutions of the Nathanson’s and the Comb-drive models. Int. J. Non-Linear
Mech. 104, 109–115 (2018). https://doi.org/10.1016/j.ijnonlinmec.2018.05.009

15. Núñez, D., Larreal, O., Murcia, L.: Odd periodic oscillations in Comb-drive finger actuators. Nonlinear Anal., Real World
Appl. 61, 103347 (2021). https://doi.org/10.1016/j.nonrwa.2021.103347

16. Larreal, O., Murcia, L., Núñez, D.: Odd periodic oscillations in Comb-drive finger MEMS with cubic stiffness. J. Math.
Control Sci. Appl. 8, 185–197 (2022)

17. Beron, J., Rivera, A.: Periodic oscillations in MEMS under squeeze film damping force. J. Appl. Math. 2022, Article ID
1498981 (2022). https://doi.org/10.1155/2022/1498981

18. Núñez, D., Murcia, L.: On a bi-stability regime and the existence of odd subharmonics in a Comb-drive MEMS model
with cubic stiffness. Nonlinear Anal., Real World Appl. 74, 103938 (2023)

19. Mawhin, J.: Topological degree and boundary value problems for nonlinear differential equations. In: Topological
Methods for Ordinary Differential Equations. Lecture Notes in Mathematics, vol. 1537, pp. 74–142. Springer, Berlin
(1993). https://doi.org/10.1007/bfb0085076

20. Gutiérrez, A., Torres, P.: Nonautonomous saddle-node bifurcation in a canonical electrostatic MEMS. Int. J. Bifurc.
Chaos 23(5), 1350088 (2013). https://doi.org/10.1142/S0218127413500880

21. Dancer, E.N., Ortega, R.: The index of Lyapunov stable fixed points in two dimensions. J. Dyn. Differ. Equ. 6(4), 631–637
(1994). https://doi.org/10.1007/bf02218851

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s00009-004-0025-3
https://doi.org/10.1016/0362-546x(94)90062-0
https://doi.org/10.1007/978-94-011-0339-8_8
https://doi.org/10.1016/s0096-3003(02)00062-0
https://doi.org/10.1090/s0002-9939-02-06462-6
https://doi.org/10.1007/s00009-012-0189-1
https://doi.org/10.11650/tjm.19.2015.3992
https://doi.org/10.1016/j.ijnonlinmec.2022.104324
https://doi.org/10.1007/s12346-018-0296-x
https://doi.org/10.1016/j.nonrwa.2018.09.010
https://doi.org/10.1007/978-1-4419-6020-7
https://doi.org/10.1016/j.ijnonlinmec.2017.05.008
https://doi.org/10.1016/j.ijnonlinmec.2018.05.009
https://doi.org/10.1016/j.nonrwa.2021.103347
https://doi.org/10.1155/2022/1498981
https://doi.org/10.1007/bfb0085076
https://doi.org/10.1142/S0218127413500880
https://doi.org/10.1007/bf02218851

	A remark about asymptotic stability in Dufﬁng equations: lateral stability in Comb-drive ﬁnger MEMS
	Abstract
	Keywords

	Introduction
	Proofs
	Applications: lateral asymptotic locally stable periodic oscillations in MEMS
	Concluding remarks
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author contributions
	References
	Publisher's Note


