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Abstract
In this paper, we propose two inertial algorithms with a new self-adaptive step size for
approximating a solution of the split common null-point problem in the framework
of Banach spaces. The step sizes are adaptively updated over each iteration by a
simple process without the prior knowledge of the operator norm of the bounded
linear operator. Under suitable conditions, we prove the weak-convergence results for
the proposed algorithms in p-uniformly convex and uniformly smooth Banach spaces.
Finally, we give several numerical results in both finite- and infinite-dimensional
spaces to illustrate the efficiency and advantage of the proposed methods over some
existing methods. Also, data classifications of heart diseases and diabetes mellitus are
presented as the applications of our methods.

Mathematics Subject Classification: 47H09; 47H10; 47J25; 47J05

Keywords: p-uniformly convex Banach spaces; Weak convergence; Split common
null-point problem; Maximal monotone operator; Self-adaptive algorithm

1 Introduction
In this paper, we consider the following split common null-point problem [13] (see also
[29]): find z ∈ H1 such that

z ∈ A–10 ∩ T–1(B–10
)
, (1.1)

where A : H1 → 2H1 and B : H2 → 2H2 are set-valued maximal monotone operators, T :
H1 → H2 is a bounded linear operator, and H1 and H2 are real Hilbert spaces. We denote
the solution set of the split common null-point problem (1.1) by �. The split common null-
point problem can be applied to solving many real-life problems, for instance, in practices
as a model in intensity-modulated radiation-therapy treatment planning [14, 15] and in
sensor networks in computerized tomography and data compression [19]. In addition, the
split common null-point problem also generalizes several split-type problems that is the
core the modeling of many inverse problems such as the split feasibility problem, the split
equilibrium problem, and the split minimization problem as special cases.
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Byrne et al. [13] introduced the following iterative scheme for solving the split common
null-point problem: for given x0 ∈ H1 and the sequence {xn} generated iteratively by

xn+1 = Rτ

(
xn – λT∗(I – Qμ)Txn

)
, (1.2)

where Rτ = (I + τA)–1 and Qμ = (I + μB)–1 are the resolvent operators of A for τ > 0 and of
B for μ > 0, respectively. They proved the weak-convergence theorem for solving the split
common null-point problem provided the step size λ ∈ (0, 2

‖T‖2 ).
Alofi et al. [5] introduced the following iterative scheme based on a modified Halpern’s

iteration for solving the split common null-point problem in the case that H1 is a Hilbert
space and F is a uniformly convex and smooth Banach space: for given x1 ∈ H1 and the
sequence {xn} generated iteratively by

xn+1 = βnxn + (1 – βn)
(
αnun + (1 – αn)Rτn

(
xn – τnT∗J(I – Qμn )Txn

))
, (1.3)

where Rτ is the resolvent of A for τ > 0 and Qμ is the metric resolvent of B for μ > 0,
{τn}, {μn} ⊂ (0,∞), {αn} ⊂ (0, 1), and {βn} ⊂ (0, 1) that satisfies some appropriate assump-
tions on the parameters, J is the duality mapping on F , T is the bounded linear operator
from H1 to F , and {un} is the sequence in H1 such that un → u. They proved that the se-
quence {xn} generated by (1.3) converges strongly to a point of � provided τn satisfies the
following inequality:

0 < a ≤ τn‖T‖2 ≤ b < 2 (1.4)

for some a, b > 0.
Later, Suantai et al. [39] generalized the result of Alofi et al. [5] in the case that E is

a p-uniformly convex and uniformly smooth Banach space, and F is a uniformly convex
and smooth Banach space. To be more precise, they introduced the following scheme: for
given x1 ∈ E and the sequence {xn} generated iteratively by

⎧
⎪⎪⎨

⎪⎪⎩

zn = JE∗
q (JE

p (xn) – τnT∗JF
p (I – Qμn )Txn),

yn = JE∗
q (αnJE

p (un) + (1 – αn)JE
p (Rτn zn)),

xn+1 = JE∗
q (βnJE

p (xn) + (1 – βn)JE
p (yn)),

(1.5)

where JE
p and JE∗

q are the generalized duality mapping of E into E∗ and the duality mapping
of E∗ into E, respectively, where 1 < q ≤ 2 ≤ p < ∞ with 1

p + 1
q = 1, and T is the bounded

linear operator from E to F . They also proved the strong convergence of the sequence {xn}
generated by (1.3) to a point of � provided τn satisfies the following inequality:

0 < a ≤ τn ≤ b <
(

q
κq‖T‖q

) 1
q–1

(1.6)

for some a, b > 0.
However, several iterative methods involve a step size that requires to compute the norm

of the bounded linear operator ‖T‖ prior to choosing τn. In general, it may not be easy to
compute ‖T‖. In particular, it makes the algorithms not easily implemented when the
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computation of ‖T‖ is complicated. To overcome this drawback, a new step-size strategy
without the prior knowledge of the operator norm of the bounded linear operator has been
proposed by López et al. [28]. This method is known as a self-adaptive method that was
first used to solve the split feasibility problem when the step-size criterion is independent
of the operator norm of the bounded linear operator.

In optimization theory, the inertial technique has been widely used to accelerate the rate
of convergence of the algorithms. This technique was motivated by the implicit time dis-
cretization of second-order dynamical systems (or a heavy ball with friction). Based on the
inertial technique, Alvarez and Attouch [7] proposed the following so-called inertial prox-
imal point algorithm for finding a zero point of a set-valued maximal monotone operator
A: for given x0, x1 ∈ H and the sequence {xn} generated iteratively by

xn+1 = Rτn

(
xn + θn(xn – xn–1)

)
, (1.7)

where Rτn is the resolvent of A and xn + θn(xn – xn–1) is called the inertial term. They also
proved that the sequence {xn} generated by (1.7) converges weakly to a zero point of A
provided {τn} is increasing and θn ∈ [0, 1) is chosen so that

∑∞
n=1 θn‖xn – xn–1‖2 < ∞. In

recent years, the inertial method was further studied intensively and it also has been used
to solve some other optimization problems (see, for example, [16, 21, 32, 37, 38, 41, 45]).

In 2019, Tang [43] proposed the following inertial algorithm for solving the split com-
mon null-point problem in the case that H1 is a Hilbert space, and F is a 2-uniformly
convex and smooth Banach space: for given x1 ∈ H1 and α ∈ [0, 1), choose θn such that
0 < θn < θ̄n, where

θ̄n =

⎧
⎨

⎩
min{α, εn(max{‖xn – xn–1‖2,‖xn – xn–1‖})–1}, xn 
= xn–1,

α, otherwise,
(1.8)

where {εn} ⊂ (0,∞) such that
∑∞

n=1 εn < ∞. Compute the sequence {xn} generated itera-
tively by

⎧
⎨

⎩
un = xn + θn(xn – xn–1),

xn+1 = Rr(I – τnT∗J(I – Qμ)T)un
(1.9)

with the step size

τn = ρn
f (un)

‖F(wn)‖2 + ‖H(un)‖2 , (1.10)

where {ρn} ⊂ (0, 4), f (un) = 1
2‖J(I – Qμ)Tun‖2, F(un) = T∗J(I – Qμ)Twn, and H(un) =

(I – Rr)un. The weak convergence of the sequence {xn} is established without the prior
knowledge of the operator norm of the bounded linear operator.

Recently, several inertial algorithms for solving the split common null-point problem in
Hilbert spaces have been studied by many authors (see, for example, [8, 17, 24, 30, 51]).
However, such methods have been studied in Banach spaces by a few authors (see, for
example, [43, 44]).



Promkam et al. Journal of Inequalities and Applications        (2023) 2023:136 Page 4 of 32

Inspired and motivated by the works mentioned above, in this paper, we introduce two
new inertial self-adaptive algorithms that are based on the classical inertial method and
relaxed inertial method for finding a solution of the split common null-point problem in
Banach spaces. The weak-convergence theorems are proved without the prior knowledge
of the operator norm of the bounded linear operator. We provide numerical implemen-
tations to show that our algorithms are efficient and competitive with some related algo-
rithms. Our results are new and complement some previous results in the literature.

The contributions of this paper can be summarized as follows:
(1) The weak-convergence result of iterative scheme (1.9) of Tang [43] is proved in a

Hilbert space and a 2-uniformly convex smooth Banach space where this result can
only be implemented in �p for p ∈ (1, 2] exclude the case of p > 2. This is limited in
practical applications of such a method. In this paper, our results generalize the
weak-convergence result of Tang [43] from between two of those spaces to
p-uniformly convex and uniformly smooth Banach spaces, and as a result our
results can be implemented in �p for p > 1.

(2) Even though the step size of the iterative scheme (1.9) of Tang [43] is computed
without the prior knowledge of the operator norms it requires calculation of
‖T∗J(I – Qμ)un‖2 and ‖(I – Rτ )un‖2 in order to choose the step size τn. This could
be computationally expensive during implementations, especially in the case where
the resolvent of A and the metric resolvent of B are difficult to compute. In this
paper, our step size τn defined by (3.3), is adaptively updated by a cheap
computation without the prior knowledge of the operator norms and only requires
us to compute one metric resolvent of B.

(3) For the iterative scheme (1.5) of Suantai et al. [39], the choice of the sequence of step
size depends on the bounded linear operator ‖T‖, which is a difficult task during
the implementation of the algorithm. In this paper, the choice of the sequence of our
step size τn defined by (3.3), is independent of the operator norm of the bounded
linear operator. As a result, we do not require to calculate the norm ‖T‖ in order to
choose the step size τn, which is easier to implement than such a method.

(4) We use the inertial and relaxed inertial techniques to improve the rate of
convergence of our algorithms that makes the algorithms converge faster and
computationally more efficient for solving the split common null-point problem in
Banach spaces. Note that these inertial techniques in this paper are studied outside
Hilbert spaces for solving such a problem.

(5) We present numerical results of our algorithms in Banach spaces to illustrate the
efficiency and advantage over iterative scheme (1.5) of Suantai et al. [39] that gives
the strong convergence and we also present several numerical results of our
algorithms in finite-dimensional spaces. Moreover, we apply our results to data
classifications for two datasets of heart diseases and diabetes mellitus.

Our paper is organized as the following four parts. In Sect. 2, we give some of the basic
facts and notation that will be used in the paper. In Sect. 3, we propose two new iner-
tial self-adaptive algorithms and prove our convergence results, and finally, in Sect. 4, we
present several numerical results to verify the advantages and efficiency of the proposed
algorithms.
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2 Preliminaries
In this section, we give some definitions and preliminary results that will be used in prov-
ing the main results.Throughout this paper, we denote the set of real numbers and the set
of positive integers by R and N, respectively. Let E be a real Banach space with norm ‖ · ‖
with its the dual space E∗. We denote 〈u, j〉 by the value of a functional j in E∗ at u ∈ E, that
is, 〈u, j〉 = j(u) for all u ∈ E. We write un → x to indicate that a sequence {un} converges
strongly to u. Similarly, un ⇀ u and un ⇀∗ u will symbolize the weak and weak∗ conver-
gence, respectively. Let SE = {u ∈ E : ‖u‖ = 1} and BE = {u ∈ E : ‖u‖ ≤ 1} be a unit sphere
and unit ball of E, respectively.

Let 1 < q ≤ 2 ≤ p < ∞ with 1
p + 1

q = 1. The modulus of convexity of E is the function
δE : [0, 2] → [0, 1] defined by

δE(ε) = inf

{
1 –

‖u + v‖
2

: u, v ∈ BE ,‖u – v‖ ≥ ε

}
.

The modulus of smoothness of E is the function ρE : [0,∞) → [0,∞) defined by

ρE(t) = sup

{‖u + tv‖ + ‖u – tv‖
2

– 1 : u, v ∈ SE

}
.

Definition 2.1 A Banach space E is said to be:
(1) strictly convex if ‖u+v‖

2 < 1 for all u, v ∈ SE and u 
= v;
(2) smooth if limt→0

‖u+tv‖–‖u‖
t exists for each u, v ∈ SE ;

(3) uniformly convex if δE(ε) > 0 for all ε ∈ (0, 2];
(4) p-uniformly convex if there is a κp > 0 such that δE(ε) ≥ κpε

p for all ε ∈ (0, 2];
(5) uniformly smooth if limt→0

ρE(t)
t = 0;

(6) q-uniformly smooth if there exists a κq > 0 such that ρE(t) ≤ κqtq for all t > 0.

Remark 2.2 It is known that if E is uniformly convex, then E is reflexive and strictly convex;
if E is uniformly smooth, then E is reflexive and smooth (see [2]). From the Definition 2.1,
one can see that every p-uniformly convex (q-uniformly smooth) space is a uniformly
convex (uniformly smooth) space. Moreover, it is also known that E is p-uniformly convex
(q-uniformly smooth) if and only if E∗ is q-uniformly smooth (p-uniformly convex) (see
[2, 49]).

For the Lebesgue spaces Lp, sequence spaces lp, and Sobolev spaces W m
p , it is also known

that [23, 50]

Lp(lp) or W m
p is

⎧
⎨

⎩
p-uniformly smooth, 2-uniformly convex for 1 < p ≤ 2,

p-uniformly convex, 2-uniformly smooth for 2 ≤ p < ∞.
(2.1)

For p > 1. The mapping Jp : E → 2E∗ defined by

Jp(u) =
{

u∗ ∈ E∗ :
〈
u, u∗〉 = ‖u‖p,

∥∥u∗∥∥ = ‖u‖p–1}

is called the generalized duality mapping of E. In particular, J2 = J is called the normalized
duality mapping and if E is a Hilbert space, then Jp = I , where I is the identity mapping. The
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duality mapping Jp of a smooth Banach space E is said to be weakly sequentially continuous
if for any sequence {un} ⊂ E such that un ⇀ u implies Jp(un) ⇀∗ Jp(u). For the generalized
duality mapping, the following facts are known [2, 18, 34]:

(i) Jp is homogeneous degree p – 1, that is, Jp(αu) = |α|p–1 sign(α)Jp(u) for all u ∈ E,
α ∈R. In particular, Jp(–u) = –Jp(u) for all u ∈ E.

(ii) If E is smooth, then Jp is monotone, that is, 〈u – v, Jp(u) – Jp(v)〉 ≥ 0 for all u, v ∈ E.
Moreover, if E is strictly convex, then Jp is strictly monotone.

(iii) If E is uniformly smooth, then Jp is single valued from E into E∗ and it is uniformly
continuous on bounded subsets of E.

(iv) If E is reflexive, smooth, and strictly convex, then the inverse J–1
p = J∗

q is single
valued, one-to-one, and surjective, where J∗

q is the duality mapping from E∗ into E.

Lemma 2.3 ([49]) If E is a q-uniformly smooth Banach space, then there is a constant
κq > 0 such that

‖u – v‖q ≤ ‖u‖q – q
〈
v, Jq(u)

〉
+ κq‖v‖q, ∀u, v ∈ E,

where κq is called the q-uniform smoothness coefficient of E.

Remark 2.4 The exact values of the constant κq can be found in [35, 50].

We next recall the definition of Bregman distance. Let E be a real smooth Banach space
and f be a convex and Gâteaux differentiable function on E. The bifunction Df : E × E →
[0,∞) defined by

Df (u, v) = f (u) – f (v) –
〈
u – v,∇f (v)

〉

is called the Bregman distance with respect to f . Note that the Bregman distance is not a
metric due to its lack of symmetry and failure to satisfy the triangle inequality. If fp(x) =
1
p‖x‖p for p > 1, then ∇f = Jp. Hence, we have the Bregman distance with respect to f = fp

given by

Dfp (u, v) =
1
p
‖u‖p –

1
p
‖v‖p –

〈
u – v, Jp(v)

〉

=
1
p
‖u‖p +

1
q
‖v‖p –

〈
u, Jp(v)

〉
.

Moreover, if p = 2, then 2Df2 (u, v) = ‖u‖2 – ‖v‖2 – 2〈u, J(v)〉 = φ(u, v), where φ is called the
Lyapunov function studied in [4, 31]. Also, if E is a Hilbert space, then φ(u, v) = ‖u – v‖2.
The following properties of the Bregman distance are well known: for each u, v, w ∈ E,

Dfp (u, v) = Dfp (u, w) – Dfp (v, w) +
〈
u – v, Jp(w) – Jp(v)

〉
(2.2)

and

Dfp (u, v) + Dfp (v, u) =
〈
u – v, Jp(u) – Jp(v)

〉
. (2.3)
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For a p-uniformly convex space, it holds that [36]

τ‖u – v‖p ≤ Dfp (u, v) ≤ 〈
u – v, Jp(u) – Jp(v)

〉
, (2.4)

where τ > 0 is some fixed number.
Also, we define a function Vfp : E × E∗ → [0,∞) by

Vfp
(
u, u∗) =

1
p
‖u‖p –

〈
u, u∗〉 +

1
q
∥
∥u∗∥∥q

for all u ∈ E and u∗ ∈ E∗. Note that Vfp is nonnegative, convex in the second variable and
Vfp (u, u∗) = Dfp (u, Jq(u∗)) for all u ∈ E and u∗ ∈ E∗. Moreover, the following property is
known:

Vfp
(
u, u∗) +

〈
J–1
p
(
u∗) – u, v∗〉≤ Vfp

(
u, u∗ + v∗) (2.5)

for all u ∈ E and u∗, v∗ ∈ E∗.
Let C be a nonempty, closed, and convex subset of a smooth, strictly convex, and reflex-

ive Banach space. Then, for any u ∈ E, there exists a unique element w ∈ C such that

‖u – w‖ = min
v∈C

‖u – v‖.

The mapping PC defined by w = PC(u) is called the metric projection of E onto C. We know
the following property [36]:

〈
v – PC(u), Jp

(
u – PC(u)

)〉≤ 0, ∀v ∈ C.

Recall that the Bregman projection with respect to fp is defined by

�
fp
C (u) = argmin

v∈C
Dfp (u, v), ∀u ∈ E.

If p = 2, then �
fp
C becomes the generalized projection and denoted by �C . Also, in this

case, if E is a Hilbert space, then �C becomes the metric projection denoted by PC . We
also know the following property [11]:

〈
v – �

fp
C (u), Jp(u) – Jp

(
�

fp
C (u)

)〉≤ 0, ∀v ∈ C. (2.6)

Let C be a nonempty subset of E and T : C → C be a mapping. We denote the fixed-
point set of T by F(T) = {u ∈ C : u = Tu}. Let A : E → 2E∗ be a set-valued mapping. The
domain of A is denoted by D(A) = {u ∈ E : Au 
= ∅} and the range of A is also denoted by
R(A) =

⋃{Au : u ∈ D(A)}. The set of zeros of A is defined by A–10 = {u ∈ D(A) : 0 ∈ Au}.
It is known that A–10 is closed and convex (see [40]). A set-valued mapping A is said to be
monotone if

〈x – y, u – v〉 ≥ 0, ∀x, y ∈D(A), u ∈ Ax and v ∈ Ay.
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A monotone operator A on E is said to be maximal if its graph is not properly contained
in the graph of any other monotone operator on E.

Let E be a p-uniformly convex and uniformly smooth Banach space and A : E → 2E∗

be a maximal monotone operator. Following [10], for each u ∈ E and τ > 0, we define the
resolvent of A by

Rτ (u) = (Jp + τA)–1Jp(u), ∀u ∈ E.

One can see that A–10 = F(Rτ ) for τ > 0. We also know the following property [26]:

Dfp
(
v, Rτ (u)

)
+ Dfp

(
Rτ (u), u

)≤ Dfp (v, u) (2.7)

for all u ∈ E and v ∈ A–10.
For each u ∈ E and μ > 0, we define the metric resolvent of A for μ > 0 by

Qμ(u) =
(
I + μJ–1

p A
)–1(u), ∀u ∈ E. (2.8)

It is clear that in a Hilbert space, the metric resolvent operator is equivalent to the resolvent
operator. From (2.8), one can see that 0 ∈ Jp(Qμ(u) – u) + μAQμ(u) and A–10 = F(Qμ) for
μ > 0. The monotonicity of A implies that

〈
Qμ(u) – Qμ(v), Jp

(
u – Qμ(u)

)
– Jp

(
v – Qμ(v)

)〉≥ 0 (2.9)

for all u, v ∈ E. If A–10 
= ∅, then

〈
Qμ(u) – v, Jp

(
u – Qμ(u)

)〉≥ 0 (2.10)

for all u ∈ E and v ∈ A–10 (see [9]). For any sequence {xn} in E, we see that

‖xn – v‖∥∥xn – Qμ(xn)
∥
∥p–1 ≥ 〈

xn – v, Jp
(
xn – Qμ(xn)

)〉

≥ 〈
xn – Qμ(xn), Jp

(
xn – Qμ(xn)

)〉

=
∥∥xn – Qμ(xn)

∥∥p. (2.11)

This implies that ‖xn – Qμ(xn)‖ ≤ ‖xn – v‖. If {xn} is bounded, then {xn – Qμ(xn)} is also
bounded.

Let E be a p-uniformly convex and uniformly smooth Banach space and f : E → R →
(–∞, +∞] be a proper, convex, and lower semicontinuous function. The subdifferential of
f at x is defined by

∂f (x) =
{

z ∈ E∗ : f (x) + 〈y – x, z〉 ≤ f (y),∀y ∈ E
}

.

Let C be a closed and convex subset of E. The indicator function δC of C at x is defined by

δC(x) =

⎧
⎨

⎩
0, if x ∈ C,

+∞, if x /∈ C.
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The subdifferentiable ∂δC is a maximal monotone operator since δC is a proper, convex,
and lower semicontinuous function (see [33]). Moreover, we also know that

∂δC(x) = NC(x) =
{

z ∈ E∗ : 〈y – x, z〉 ≤ 0,∀y ∈ C
}

,

where NC is the normal cone of C. In particular, if we define the resolvent of ∂δC for τ > 0 by
Rτ (u) = (Jp + τ∂δC)–1Jp(u) for all u ∈ E, then Rτ = �

fp
C , where �

fp
C is the Bregman projection

with respect to fp (see [48]). Moreover, we also have (∂δC)–10 = C. Also, if we define the
metric resolvent of ∂δC for μ > 0 by Qμ(u) = (I + μJ–1

p ∂δC)–1(u) for all u ∈ E, then

z = Qμ(u) ⇔ 0 ∈ Jp(z – u) + μAz

⇔ Jp(u – z)
μ

∈ Az = ∂δC(z) = NC(z)

⇔ 〈
y – z, Jp(u – z)

〉≤ 0, ∀y ∈ C

⇔ z = PC(u),

where PC is the metric projection of E onto C.
Throughout this paper, we adopt the notation [a]+ := max{a, 0}, where a ∈R.

Lemma 2.5 ([6]) Let {ϕn}, {αn}, and {βn} be three nonnegative real sequences such that

ϕn+1 ≤ ϕn + αn(ϕn – ϕn–1) + βn, ∀n ≥ 1,

with
∑∞

n=1 βn < ∞ and there exists a real number α such that 0 ≤ αn ≤ α < 1 for all n ∈ N.
Then, the following results hold:

(i)
∑∞

n=1[ϕn – ϕn–1]+ < ∞;
(ii) There exists ϕ∗ ∈ [0,∞) such that limn→∞ ϕn = ϕ∗.

Lemma 2.6 ([42]) Assume that {sn} and {tn} are two nonnegative real sequences such that
sn+1 ≤ sn + tn for all n ≥ 1. If

∑∞
n=1 tn < ∞, then limn→∞ sn exists.

3 Main results
In this paper, we propose two weakly convergent inertial self-adaptive algorithms to solve
the split common null-point problem in Banach spaces. In what follows, we denote JE

p and
JE∗
q by the generalized duality mapping of E into E∗ and the duality mapping of E∗ into E,

respectively, where 1 < q ≤ 2 ≤ p < ∞ with 1
p + 1

q = 1.
In order to prove the results, the following assumptions are needed in the following.
(A1) Let E be a p-uniformly convex and uniformly smooth Banach space and F be a

uniformly convex and smooth Banach space.
(A2) Let A : E → 2E∗ and B : F → 2F∗ be maximal monotone operators.
(A3) Let T : E → F be a bounded linear operator with T 
= 0 and T∗ : F∗ → E∗ be the

adjoint operator of T .
(A4) Let Rτ be a resolvent operator associated with A for τ > 0 and Qμ be a metric

resolvent associated with B for μ > 0.
(A5) The set solution � := A–10 ∩ T–1(B–10) 
= ∅.
The following conditions are also assumed:
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(C1) Let {αn} ⊂ (0, 1] with lim infn→∞ αn > 0;
(C2) Let {μn} ⊂ (0,∞) with lim infn→∞ μn > 0.
The first algorithm is stated as follows:

Algorithm 1 (Inertial self-adaptive algorithm for the split common null-point problem)
Step 0. Given τ1 > 0, β ∈ (0, 1) and μ ∈ (0, q

κq
). Choose {sn} ⊂ [0,∞) such that

∑∞
n=1 sn < ∞ and {βn} ⊂ (0,∞) such that

∑∞
n=1 βn < ∞. Let x0, x1 ∈ E be arbitrary and

calculate xn+1 as follows:
Step 1. Given the iterates xn–1 and xn (n ≥ 1). Choose θn such that 0 ≤ θn ≤ θ̄n, where

θ̄n =

⎧
⎨

⎩

min{β , βn
‖JE

p (xn)–JE
p (xn–1)‖q , βn

Dfp (xn ,xn–1) }, if xn 
= xn–1,

β , otherwise.
(3.1)

Step 2. Compute

⎧
⎪⎪⎨

⎪⎪⎩

un = JE∗
q (JE

p (xn) + θn(JE
p (xn) – JE

p (xn–1))),

yn = JE∗
q (JE

p (un) – τnT∗JF
p (I – Qμn )Tun),

xn+1 = JE∗
q ((1 – αn)JE

p (un) + αnJE
p (Rτn yn)),

(3.2)

where

τn+1 =

⎧
⎨

⎩

min{( μ‖(I–Qμn )Tun)‖p

‖T∗JF
p (I–Qμn )Tun‖q )

1
q–1 , τn + sn}, if T∗JF

p (I – Qμn )Tun 
= 0,

τn + sn, otherwise.
(3.3)

Remark 3.1 If xn+1 = yn = un for some n, then yn is a solution in �. Indeed, if yn = un, we
see that yn = JE∗

q (JE
p (yn) – τnT∗JF

p (I – Qμn )Tun) for τn > 0. This implies that (I – Qμn )Tyn = 0,
that is, Tyn = Qμn Tyn. In addition, if xn+1 = yn, then yn = JE∗

q ((1 – αn)JE
p (yn) + αnJE

p (Rτn yn)).
This implies that yn = Rτn yn. Now, since yn = Rτn yn and Tyn = Qμn Tyn, we have yn ∈ A–10
and yn ∈ T–1(B–10). Therefore, yn ∈ � := A–10 ∩ T–1(B–10).

Remark 3.2 From (3.1), we observe that 0 ≤ θn ≤ β < 1 for all n ≥ 1. Also, we obtain
θn‖JE

p (xn) – JE
p (xn–1)‖q ≤ βn and θnDfp (xn, xn–1) ≤ βn for all n ≥ 1. Since

∑∞
n=1 βn < ∞, we

have

∞∑

n=1

θn
∥∥JE

p (xn) – JE
p (xn–1)

∥∥q < ∞ and
∞∑

n=1

θnDfp (xn, xn–1) < ∞. (3.4)

Lemma 3.3 Let {τn} be a sequence generated by (3.3). Then, we have limn→∞ τn = τ , where

τ ∈
[

min

{(
μ

‖T‖q

) 1
q–1

, τ1

}
, τ1 + s

]
and s =

∞∑

n=1

sn.
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Proof In the case of T∗JF
p (I – Qμn )Tun 
= 0, we see that

μ‖(I – Qμn )Tun‖p

‖T∗JF
p (I – Qμn )Tun‖q

≥ μ‖(I – Qμn )Tun‖p

‖T∗‖q‖JF
p (I – Qμn )Tun‖q

=
μ‖(I – Qμn )Tun‖p

‖T‖q‖(I – Qμn )Tun‖(p–1)q

=
μ

‖T‖q . (3.5)

By the definition of τn and induction, we have

τn ≤ τn–1 + sn–1 ≤ τn–2 + sn–2 + sn–1 ≤ · · · ≤ τ1 +
n–1∑

i=1

si ≤ τ1 +
∞∑

n=1

sn.

Thus, τn ≤ τ1 +
∑∞

n=1 sn for all n ≥ 1. From (3.5), we see that

τn+1 = min

{(
μ‖(I – Qμn )Tun)‖p

‖T∗JF
p (I – Qμn )Tun‖q

) 1
q–1

, τn + sn

}

≥ min

{(
μ

‖T‖q

) 1
q–1

, τn + sn

}

≥ min

{(
μ

‖T‖q

) 1
q–1

, τn

}

≥ · · · ≥ min

{(
μ

‖T‖q

) 1
q–1

, τ1

}
.

Hence τn ≥ min{( μ

‖T‖q )
1

q–1 , τ1} for all n ≥ 1. Therefore, min{( μ

‖T‖q )
1

q–1 , τ1} ≤ τn ≤ τ1 +
∑∞

n=1 sn for all n ≥ 1. Since τn+1 ≤ τn + sn for all n ≥ 1, we have limn→∞ τn exists by
Lemma 2.6. In this case, we denote τ = limn→∞ τn. Obviously, τ ∈ [min{( μ

‖T‖q )
1

q–1 , τ1},
τ1 + s]. �

Remark 3.4 The adaptive step size τn generated by (3.3) is different from many adaptive
step sizes as studied in [43, 44]. Note that τn is allowed to increase when the iteration
increases. Therefore, it reduces the dependence on the initial step size τ1. Since

∑∞
n=1 sn <

∞, we have limn→∞ sn = 0. As a result, τn may not increase when n is large.

Lemma 3.5 Let {xn} be a sequence generated by Algorithm 1. Then, for each n ≥ 1, the
following inequality holds for all v ∈ �:

Dfp (v, xn+1) ≤ Dfp (v, xn) + θn
(
Dfp (v, xn) – Dfp (v, xn–1)

)
+ ξn(p, q) – δn(p, q),

where ξn(p, q) := θnDfp (xn, xn–1) + κqθ
q
n

q ‖JE
p (xn) – JE

p (xn–1)‖q, δn(p, q) := αnτn(1 –
κqμ

q ( τn
τn+1

)q–1)‖wn‖p + αnDfp (yn, Rτn yn) and wn := Tun – Qμn Tun.
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Proof Let v ∈ � := A–10 ∩ T–1(B–10). From Lemma 2.3, we have

Dfp (v, yn) = Vfp
(
v, JE

p (un) – τnT∗JF
p (I – Qμn )Tun

)

=
1
p
‖v‖p –

〈
v, JE

p (un) – τnT∗JF
p (wn)

〉
+

1
q
∥
∥JE

p (un) – τnT∗JF
p (wn)

∥
∥q

=
1
p
‖v‖p –

〈
v, JE

p (un)
〉
+ τn

〈
Tv, JF

p (wn)
〉
+

1
q
∥
∥JE

p (un) – τnT∗JF
p (wn)

∥
∥q

≤ 1
p
‖v‖p –

〈
v, JE

p (un)
〉
+ τn

〈
Tv, JF

p (wn)
〉
+

1
q
∥∥JE

p (un)
∥∥q – τn

〈
un, T∗JF

p (wn)
〉

+
κqτ

q
n

q
∥
∥T∗JF

p (wn)
∥
∥q

=
1
p
‖v‖p –

〈
v, JE

p (un)
〉
+

1
q
‖un‖q + τn

〈
Tv – Tun, JF

p (wn)
〉
+

κqτ
q
n

q
∥
∥T∗JF

p (wn)
∥
∥q

= Dfp (v, un) + τn
〈
Tv – Tun, JF

p (wn)
〉
+

κqτ
q
n

q
∥∥T∗JF

p (wn)
∥∥q. (3.6)

Note that wn := Tun – Qμn Tun and v ∈ A–10 ∩ T–1(B–10), we have v ∈ A–10 and Tv ∈ B–10.
It then follows from (2.10) that

〈
Tv – Tun, JF

p (wn)
〉

=
〈
Tv – Qμn Tun, JF

p (wn)
〉

︸ ︷︷ ︸
≤0

–
〈
Tun – Qμn Tun, JF

p (wn)
〉

≤ –‖Tun – Qμn Tun‖p = –‖wn‖p. (3.7)

From the definition of τn+1, we have

∥∥T∗JF
p (I – Qμn )Tun

∥∥q ≤ μ

τ
q–1
n+1

∥∥(I – Qμn )Tun
∥∥p. (3.8)

Combining (3.6), (3.7), and (3.8), we obtain

Dfp (v, yn) ≤ Dfp (v, un) – τn

(
1 –

κqμ

q

(
τn

τn+1

)q–1)
‖wn‖p. (3.9)

Now, we estimate Dfp (v, un). From Lemma 2.3, we have

Dfp (v, un) = Vfp
(
v, JE

p (xn) + θn
(
JE
p (xn) – JE

p (xn–1)
))

=
1
p
‖v‖p –

〈
v, JE

p (xn) + θn
(
JE
p (xn) – JE

p (xn–1)
)〉

+
1
q
∥
∥JE

p (xn) + θn
(
JE
p (xn) – JE

p (xn–1)
)∥∥q

≤ 1
p
‖v‖p –

〈
v, JE

p (xn)
〉
– θn

〈
v, JE

p (xn) – JE
p (xn–1)

〉

+
1
q
∥∥JE

p (xn)
∥∥q + θn

〈
xn, JE

p (xn) – JE
p (xn–1)

〉
+

κq

q
∥∥θn

(
JE
p (xn) – JE

p (xn–1)
)∥∥q

=
1
p
‖v‖p –

〈
v, JE

p (xn)
〉
+

1
q
‖xn‖p +

κqθ
q
n

q
∥
∥JE

p (xn) – JE
p (xn–1)

∥
∥q
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+ θn
〈
xn – v, JE

p (xn) – JE
p (xn–1)

〉

= Dfp (v, xn) +
κqθ

q
n

q
∥∥JE

p (xn) – JE
p (xn–1)

∥∥q + θn
〈
xn – v, JE

p (xn) – JE
p (xn–1)

〉
. (3.10)

We observe that

θn
〈
xn – v, JE

p (xn) – JE
p (xn–1)

〉
= θnDfp (v, xn) – θnDfp (v, xn–1) + θnDfp (xn, xn–1). (3.11)

Combining (3.10) and (3.11), we obtain

Dfp (v, un) ≤ Dfp (v, xn) + θn
(
Dfp (v, xn) – Dfp (v, xn–1)

)
+ θnDfp (xn, xn–1)

+
κqθ

q
n

q
∥∥JE

p (xn) – JE
p (xn–1)

∥∥q. (3.12)

Then, from (2.7) and (3.10), we obtain

Dfp (v, xn+1) ≤ (1 – αn)Dfp (v, un) + αnDfp (v, Rτn yn)

≤ (1 – αn)Dfp (v, un) + αnDfp (v, yn) – αnDfp (yn, Rτn yn)

≤ (1 – αn)Dfp (v, un) + αn

[
Dfp (v, un) – τn

(
1 –

κqμ

q

(
τn

τn+1

)q–1)
‖wn‖p

]

– αnDfp (yn, Rτn yn)

= Dfp (v, un) – αnτn

(
1 –

κqμ

q

(
τn

τn+1

)q–1)
‖wn‖p – αnDfp (yn, Rτn yn)

≤ Dfp (v, xn) + θn
(
Dfp (v, xn) – Dfp (v, xn–1)

)
+ θnDfp (xn, xn–1)

+
κqθ

q
n

q
∥
∥JE

p (xn) – JE
p (xn–1)

∥
∥q

– αnτn

(
1 –

κqμ

q

(
τn

τn+1

)q–1)
‖wn‖p – αnDfp (yn, Rτn yn). (3.13)

From the definitions of ξn(p, q) and δn(p, q), then (3.13) can be written in a short form as
follows:

Dfp (v, xn+1) ≤ Dfp (v, xn) + θn
(
Dfp (v, xn) – Dfp (v, xn–1)

)
+ ξn(p, q) – δn(p, q).

Thus, this lemma is proved. �

Theorem 3.6 Let {xn} be a sequence generated by Algorithm 1. Suppose, in addition, that
JE
p is weakly sequentially continuous on E. Then, {xn} converges weakly to a point in �.

Proof Using the fact that limn→∞ τn exists and μ ∈ (0, q
κq

), we have

lim
n→∞

(
1 –

κqμ

q

(
τn

τn+1

)q–1)
=

μ

q

(
q
μ

– κq

)
> 0.
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Then, there exists n0 ∈N such that

1 –
κqμ

q

(
τn

τn+1

)q–1

> 0, ∀n ≥ n0,

and, in consequence,

δn(p, q) := αnτn

(
1 –

κqμ

q

(
τn

τn+1

)q–1)
‖wn‖p + αnDfp (yn, Rτn yn) > 0, ∀n ≥ n0.

Then, from Lemma 3.5, we can deduce that

Dfp (v, xn+1) ≤ Dfp (v, xn) + θn
(
Dfp (v, xn) – Dfp (v, xn–1)

)
+ ξn(p, q).

Since ξn(p, q) := θnDfp (xn, xn–1) + κqθ
q
n

q ‖JE
p (xn) – JE

p (xn–1)‖q, it follows from (3.4) that

∞∑

n=1

ξn(p, q) ≤
∞∑

n=1

(
θnDfp (xn, xn–1) +

κqθn

q
∥∥JE

p (xn) – JE
p (xn–1)

∥∥q
)

< ∞. (3.14)

From (3.14), we also have limn→∞ ξn(p, q) = 0. From Lemma 2.5, we can conclude that
limn→∞ Dfp (v, xn) exists and

∞∑

n=1

[
Dfp (v, xn) – Dfp (v, xn–1)

]
+ < ∞.

Thus, we have {Dfp (v, xn)} is bounded and so {xn} is also bounded by (2.4). Moreover, we
obtain

lim
n→∞

[
Dfp (v, xn) – Dfp (v, xn–1)

]
+ = 0. (3.15)

From Lemma 3.5, we see that

δn(p, q) ≤ Dfp (v, xn) – Dfp (v, xn+1) + θn
(
Dfp (v, xn) – Dfp (v, xn–1)

)
+ ξn(p, q).

Since limn→∞ Dfp (v, xn) exists and limn→∞ ξn(p, q) = 0, we have

lim
n→∞ δn(p, q) = lim

n→∞

[
αnτn

(
1 –

κqμ

q

(
τn

τn+1

)q–1)
‖wn‖p + αnDfp (yn, Rτn yn)

]
= 0.

Consequently,

lim
n→∞‖wn‖ = lim

n→∞‖Tun – Qμn Tun‖ = 0 and lim
n→∞ Dfp (yn, Rτn yn) = 0.

By the continuity of JF
p , we have

lim
n→∞

∥∥JF
p (wn)

∥∥ = lim
n→∞

∥∥JF
p (Tun – Qμn Tun)

∥∥ = 0. (3.16)
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Moreover, we have

lim
n→∞‖yn – Rτn yn‖ = 0. (3.17)

By the definition of yn, the continuity of T∗, and from (3.16), we have

lim
n→∞

∥∥JE
p (yn) – JE

p (un)
∥∥ = lim

n→∞ τn
∥∥T∗JF

p (I – Qμn )Tun
∥∥ = 0. (3.18)

On the other hand, by the definition of un and from (3.4), we obtain

lim
n→∞

∥
∥JE

p (un) – JE
p (xn)

∥
∥q = lim

n→∞ θq
n
∥
∥JE

p (xn) – JE
p (xn–1)

∥
∥q

≤ lim
n→∞βq–1θn

∥
∥JE

p (xn) – JE
p (xn–1)

∥
∥q

= 0.

Thus,

lim
n→∞

∥
∥JE

p (un) – JE
p (xn)

∥
∥ = 0. (3.19)

From (3.19), we also have limn→∞ ‖un – xn‖ = 0 by the uniform continuity of JE∗
q . Since

{xn} is bounded, there exists a subsequence {xnk } of {xn} such that xnk ⇀ w ∈ E and so
unk ⇀ w. Put vn = Rτn yn for all n ∈ N. From (3.17) and (3.18), we see that

∥∥JE
p (un) – JE

p (vn)
∥∥ =

∥∥JE
p (un) – JE

p (Rτn yn)
∥∥

≤ ∥∥JE
p (un) – JE

p (yn)
∥∥ +

∥∥JE
p (yn) – JE

p (Rτn yn)
∥∥

→ 0. (3.20)

Consequently, limn→∞ ‖un – vn‖ = 0. Thus,

‖vn – xn‖ ≤ ‖vn – un‖ + ‖un – xn‖ → 0.

Using the above inequality, we also obtain vnk ⇀ w. Since Rτn is the resolvent of A for
τn > 0, we have

vn = Rτn

(
JE∗
q
(
JE
p (un) – τnT∗JF

p (un)
)) ⇔ (

JE
p + τnA

)–1(JE
p (un) – τnT∗JF

p (un)
)
)

⇔ JE
p (un) – τnT∗JF

p (un) ∈ JE
p (vn) + τnAvn

⇔ 1
τn

(
JE
p (un) – JE

p (vn) – τnT∗JF
p (wn)

) ∈ Avn.

Replacing n by nk and using the fact that A is monotone, thus

〈
s – vnk , s∗ –

1
τnk

(
JE
p (unk ) – JE

p (vnk ) – τnk T∗JF
p (wnk )

)〉≥ 0

for all (s, s∗) ∈ A. Now, T∗ is continuous, which is due to the fact that T∗ is a bounded and
linear operator. Then, from (3.16), (3.20), and limk→∞ τnk = τ > 0, we obtain 〈s – w, s∗ –
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0〉 ≥ 0 for all (s, s∗) ∈ A. Note that A is maximal monotone, thus w ∈ A–10. On the other
hand, we know that T is also continuous. This fact, together with ‖unk – xnk ‖ → 0 and
‖Tunk – Qμnk

Tunk ‖ → 0, means that we have Tunk ⇀ Tw and Qμnk
unk ⇀ Tw. Since Qμn is

the metric resolvent of B for μn > 0, we have

JF
p (Tun – Qμn Tun)

μn
∈ BQμn Tun

for all n ∈N. Replacing n by nk , it then follows from the monotonicity of B that

〈
u – Qμnk

Tunk , u∗ –
JF
p (Tunk – Qμnk

Tunk )
μnk

〉
≥ 0

for all (u, u∗) ∈ B. Then, from (3.16) and lim infk→∞ μnk > 0, we obtain 〈u – Tw, u∗ – 0〉 ≥ 0
for all (u, u∗) ∈ B. Note that B is maximal monotone, thus Tw ∈ B–10 and so w ∈ T–1(B–10).
We thus obtain w ∈ � := A–10 ∩ T–1(B–10). In order to prove the weak convergence of
the sequence {xn}, it is sufficient to show that {xn} has a unique weak limit point in �.
In this case, we can assume that {xmk } is another subsequence of {xn} such that xmk ⇀

w′ ∈ �. Note that xnk ⇀ w ∈ �. Indeed, suppose by contradiction that with w′ 
= w. Since
limn→∞ Dfp (v, xn) exists for any v ∈ �, it then follows from (2.2) and the weak sequential
continuity of JE

p that

lim
n→∞ Dfp (w, xn) = lim

k→∞
Dfp (w, xmk ) = lim inf

k→∞
Dfp (w, xmk )

= lim inf
k→∞

(
Dfp

(
w, w′) + Dfp

(
w′, xmk

)
+
〈
w – w′, JE

p
(
w′) – JE

p (xmk )
〉)

≥ lim inf
k→∞

Dfp
(
w, w′) + lim inf

k→∞
Dfp

(
w′, xmk

)

+ lim inf
k→∞

〈
w – w′, JE

p
(
w′) – JE

p (xmk )
〉

> lim inf
k→∞

Dfp
(
w′, xmk

)

= lim
n→∞ Dfp

(
w′, xn

)
. (3.21)

In the same way as above, we can show that

lim
n→∞ Dfp

(
w′, xn

)
> lim

n→∞ Dfp (w, xn),

which is a contradiction with (3.21). Hence, w = w′ and therefore, the sequence {xn} con-
verges weakly to a point in �. This finishes the proof. �

Next, we present a second algorithm that is slightly different from the first proposed
algorithm.

Algorithm 2 (Relaxed inertial self-adaptive algorithm for the split common null-point
problem)

Step 0. Given τ1 > 0, β ∈ (0, 1) and μ ∈ (0, q
κq

). Choose {sn} ⊂ [0,∞) such that
∑∞

n=1 sn < ∞ and {βn} ⊂ (0,∞) such that
∑∞

n=1 βn < ∞. Let x0, x1 ∈ E be arbitrary and
calculate xn+1 as follows:
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Step 1. Given the iterates xn–1 and xn (n ≥ 1). Choose θn such that 0 ≤ θn ≤ θ̄n, where

θ̄n =

⎧
⎨

⎩

min{β , βn
‖JE

p (xn)–JE
p (xn–1)‖ }, if xn 
= xn–1,

β , otherwise.
(3.22)

Step 2. Compute

⎧
⎪⎪⎨

⎪⎪⎩

un = JE∗
q (JE

p (xn) + θn(JE
p (xn–1) – JE

p (xn))),

yn = JE∗
q (JE

p (un) – τnT∗JF
p (I – Qμn )Tun),

xn+1 = JE∗
q ((1 – αn)JE

p (un) + αnJE
p (Rτn yn)),

(3.23)

where τn is defined the same as in (3.3).

Remark 3.7 It should be noted that Algorithm 2 is slightly different from Algorithm 1
but θ̄n of this algorithm is simpler to compute than θ̄n of Algorithm 1, that is, it is chosen
without any prior knowledge of the Bregman distance Dfp at two points xn and xn–1, which
is flexible and easy to implement in solving the problem. This is why we call the technique
proposed in this case a “relaxed inertial algorithm”.

Remark 3.8 From (3.22), we observe that 0 ≤ θn ≤ β < 1 for all n ≥ 1. Also, we obtain
θn‖JE

p (xn) – JE
p (xn–1)‖ ≤ βn for all n ≥ 1. Since

∑∞
n=1 βn < ∞, we have

∑∞
n=1 θn‖JE

p (xn) –
JE
p (xn–1)‖ < ∞ and so

lim
n→∞ θn

∥∥JE
p (xn) – JE

p (xn–1)
∥∥ = 0.

Theorem 3.9 Let {xn} be a sequence generated by Algorithm 2. Suppose, in addition, that
JE
p is weakly sequentially continuous on E. Then, {xn} converges weakly to a point in �.

Proof Let v ∈ � := A–10∩T–1(B–10). Similarly, by using the same argument as in the proof
of Theorem 3.6, we have

Dfp (v, yn) ≤ Dfp (v, un) – τn

(
1 –

κqμ

q

(
τn

τn+1

)q–1)
‖wn‖p. (3.24)

By the definition of un in (3.23), we see that

Dfp (v, un) = Dfp
(
v, JE∗

q
(
(1 – θn)JE

p (xn) + θnJE
p (xn–1)

))

≤ (1 – θn)Dfp (v, xn) + θnDfp (v, xn–1). (3.25)

Thus, we have

Dfp (v, xn+1) ≤ (1 – αn)Dfp (v, un) + αnDfp (v, yn) – αnDfp (yn, Rτn yn)

≤ (1 – αn)Dfp (v, un) + αn

[
Dfp (v, un) – τn

(
1 –

κqμ

q

(
τn

τn+1

)q–1)
‖wn‖p

]

– αnDfp (yn, Rτn yn)
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= Dfp (v, un) – αnτn

(
1 –

κqμ

q

(
τn

τn+1

)q–1)
‖wn‖p – αnDfp (yn, Rτn yn)

≤ (1 – θn)Dfp (v, xn) + θnDfp (v, xn–1) – αnτn

(
1 –

κqμ

q

(
τn

τn+1

)q–1)
‖wn‖p

–αnDfp (yn, Rτn yn). (3.26)

From Theorem 3.6, we know that

δn(p, q) := αnτn

(
1 –

κqμ

q

(
τn

τn+1

)q–1)
‖wn‖p + αnDfp (yn, Rτn yn) > 0, ∀n ≥ n0.

Thus, we can deduce that

Dfp (v, xn+1) ≤ (1 – θn)Dfp (v, xn) + θnDfp (v, xn–1)

≤ max
{

Dfp (v, xn), Dfp (v, xn–1)
}

≤ · · ·max
{

Dfp (v, xn0 ), Dfp (v, xn0–1)
}

.

Hence, {Dfp (v, xn)} is bounded. From (2.4), we also obtain {xn} is bounded. From (3.26), we
have

Dfp (v, xn+1) ≤ Dfp (v, xn) + θn
[
Dfp (v, xn–1) – Dfp (v, xn)

]
+

– αnτn

(
1 –

κqμ

q

(
τn

τn+1

)q–1)
‖wn‖p

– αnDfp (yn, Rτn yn), (3.27)

which implies that

Dfp (v, xn+1) ≤ Dfp (v, xn) + θn
[
Dfp (v, xn–1) – Dfp (v, xn)

]
+ (3.28)

for all n ≥ n0. Using (2.2), we see that

θn
[
Dfp (v, xn–1) – Dfp (v, xn)

]
+ = –θnDfp (xn–1, xn) + θn

〈
v – xn–1, JE

p (xn) – JE
p (xn–1)

〉

≤ θn
〈
v – xn–1, JE

p (xn) – JE
p (xn–1)

〉

≤ θn
∥∥JE

p (xn) – JE
p (xn–1)

∥∥M,

where M := supn≥n0{‖xn–1 – v‖}. From Remark 3.8, we can deduce that

∞∑

n=n0

θn
[
Dfp (v, xn–1) – Dfp (v, xn)

]
+ ≤

∞∑

n=n0

θn
∥∥JE

p (xn) – JE
p (xn–1)

∥∥M < ∞. (3.29)

Thus, from (3.28) with Lemma 2.6, we have the limit of {Dfp (v, xn)} exists. Note that (3.29)
implies that

lim
n→∞ θn

[
Dfp (v, xn–1) – Dfp (v, xn)

]
+ = 0. (3.30)
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From (3.27), we have

αnτn

(
1 –

κqμ

q

(
τn

τn+1

)q–1)
‖wn‖p + αnDfp (yn, Rτn yn)

≤ Dfp (v, xn) – Dfp (v, xn+1) + θn
[
Dfp (v, xn–1) – Dfp (v, xn)

]
+.

This implies by (3.30) that

lim
n→∞‖Tun – Qμn Tun‖ = 0 and lim

n→∞ Dfp (yn, Rτn yn) = 0.

Thus,

lim
n→∞

∥
∥JF

p (Tun – Qμn Tun)
∥
∥ = 0 and lim

n→∞‖yn – Rτn yn‖ = 0.

By the definition of yn, we can show that limn→∞ ‖JE
p (yn) – JE

p (un)‖ = 0. Also, by the defini-
tion of un, we have

lim
n→∞

∥∥JE
p (un) – JE

p (xn)
∥∥ = lim

n→∞ θn
∥∥JE

p (xn) – JE
p (xn–1)

∥∥ = 0.

Consequently, limn→∞ ‖un – xn‖ = 0. Since the rest of the proof is the same as the proof of
Theorem 3.6, we omit the details here. �

Next, we apply our algorithms to solve the split feasibility problem in Banach spaces.
Let C and Q be nonempty, closed, and convex subsets of E and F , respectively. Let T be

a bounded linear operator with its adjoint operator T∗ and T 
= 0. We consider the split
feasibility problem (SFP):

find w ∈ C such that Tw ∈ Q. (3.31)

We denote the set of solutions of SFP by � := C ∩ T–1(Q). The SFP was first introduced
in 1994 by Censor and Elfving [15] for inverse problems of intensity-modulated radiation
therapy (IMRT) in the field of medical care (see [12, 14]).

Setting A := ∂δC and B := ∂δQ in Theorems 3.6 and 3.9, we obtain the following results.

Corollary 3.10 Let E, F , C, Q, T , and T∗ be the same as mentioned above. Let τ1, β , μ,
{sn}, {βn}, {θn}, and {θ̄n} be the same as in Algorithm 1, where {θ̄n} is defined the same as in
(3.1). Suppose that � 
= ∅. Let x0, x1 ∈ E and {xn} be a sequence generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = JE∗
q (JE

p (xn) + θn(JE
p (xn) – JE

p (xn–1))),

yn = JE∗
q (JE

p (un) – τnT∗JF
p (I – PQ)Tun),

xn+1 = JE∗
q ((1 – αn)JE

p (un) + αnJE
p (�fp

C yn)),

τn+1 =

⎧
⎨

⎩

min{( μ‖(I–PQ)Tun)‖p

‖T∗JF
p (I–PQ)Tun‖q )

1
q–1 , τn + sn}, if T∗JF

p (I – PQ)Tun 
= 0,

τn + sn, otherwise.

Suppose, in addition, that JE
p is weakly sequentially continuous on E. Then, the sequence

{xn} converges weakly to a point in �.
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Corollary 3.11 Let E, F , C, Q, T , and T∗ be the same as mentioned above. Let τ1, β , μ,
{sn}, {βn}, {θn}, and {θ̄n} be the same as in Algorithm 2, where {θ̄n} is defined the same as in
(3.22). Suppose that � 
= ∅. Let x0, x1 ∈ E and {xn} be a sequence generated by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un = JE∗
q (JE

p (xn) + θn(JE
p (xn–1) – JE

p (xn))),

yn = JE∗
q (JE

p (un) – τnT∗JF
p (I – PQ)Tun),

xn+1 = JE∗
q ((1 – αn)JE

p (un) + αnJE
p (�fp

C yn)),

τn+1 =

⎧
⎨

⎩

min{( μ‖(I–PQ)Tun)‖p

‖T∗JF
p (I–PQ)Tun‖q )

1
q–1 , τn + sn}, if T∗JF

p (I – PQ)Tun 
= 0,

τn + sn, otherwise.

Suppose, in addition, that JE
p is weakly sequentially continuous on E. Then, the sequence

{xn} converges weakly to a point in �.

4 Numerical and experiments results
In this section, we apply our Algorithms 1 and 2 to numerically solve some problems in
science and engineering and we also compare the numerical performances with the it-
erative scheme (1.8) proposed by Tang [43] (namely, Tang Algorithm) and the iterative
scheme (1.5) proposed by Suantai et al. [39] (namely, Suantai et al. Algorithm).

Problem 4.1 Split feasibility problem in infinite-dimensional Banach spaces
Let E = F = �0

p(R) (1 < p < ∞, p 
= 2), where �0
p(R) is the subspace of �p(R), that is,

�0
p(R) =

{

x = (x1, x2, . . . , xi, 0, 0, 0, . . . ), xi ∈R and
∞∑

i=1

|xi|p < ∞
}

with norm ‖x‖�p = (
∑∞

i=1 |xi|p)1/p and duality pairing 〈x, y〉 =
∑∞

i=1 xiyi for all x = (x1, x2, . . . ,
xi, . . . ) ∈ lp(R) and y = (y1, y2, . . . , yi, . . . ) ∈ lq(R), where 1

p + 1
q = 1. The generalized duality

mapping J�p(R)
p is computed by the following explicit formula (see [3]):

J�p(R)
p (x) =

(|x1|p–2x1, |x2|p–2x2, . . . , |xi|p–2xi, . . .
)
, ∀x ∈ �p(R).

In this example, let p = 3, we have q = 3
2 . Then, the smoothness constant κq ≈ 1.3065.

Let C = {x ∈ �0
3(R) : ‖x‖�3 ≤ 1} and Q = {x ∈ �0

3(R) : 〈x, a〉 ≤ 1}, where a := (1, 1, . . . , 1, 0, 0,
0, . . . ) ∈ �0

3/2(R). Define an operator Tx = x
2 with its adjoint T∗ = T and ‖T‖ = 1

2 . In this
experiment, we only perform the numerical tests of our Algorithms 1, 2, and Suan-
tai et al. Algorithm [39] since Tang Algorithm [43] cannot be implemented in �3(R).
For Algorithms 1 and 2, we set τ1 = 1.99, β = 0.75, μ = 10–5, sn = 1

(n+1)4 , αn = 0.1, and
βn = 1

(n+10)5 . For Suantai et al. Algorithm [39], we set λn = 10–5, αn = 1
n+1 , βn = n

n+1 , and
un = ( 1

n2 , 1
n2 , 1

n2 , 0, 0, 0, . . . )T. The initial points x0 and x1 are generated randomly in �0
p(R).

We use En = ‖xn+1 – xn‖l3 < 10–6 to terminate iterations for all algorithms. To test the ro-
bustness of each algorithm, we run the experiment several times and choose the best four
tests of sequences generated by each algorithm. The numerical results are presented in
Figs. 1 and 2.



Promkam et al. Journal of Inequalities and Applications        (2023) 2023:136 Page 21 of 32

Figure 1 Numerical behavior of all algorithms for Tests 1 and 2

Figure 2 Numerical behavior of all algorithms for Tests 3 and 4

Problem 4.2 [39] Split minimization problem in finite-dimensional spaces

Let E = F = R
3. For each x ∈R

3, let f , g : R3 → (–∞, +∞] be defined by

f (x) = 20‖x‖2 + (33, 14, –95)x + 40

and

g(x) =
1
2
‖Lx – y‖,

where L =
( 1 0 2

–1 3 0
2 –2 4

)
and y =

( 3
2
0

)
. Let T =

( 1 –2 3
0 5 2
2 1 0

)
. In this case, the split common null-point

problem becomes the split minimization problem, that is, find w ∈ (∂f )–10 ∩ T–1(∂g)–10.

Note that T∗ =
( 1 0 2

–2 5 1
3 2 0

)
and ‖T‖2 is the largest eigenvalue of T∗T . In this experiment,

we compare the numerical performances of our Algorithms 1 and 2 with Tang Algorithm
[43] and Suantai et al. Algorithm [39]. For Algorithms 1 and 2, we set τ1 = 1.99, β = 0.75,
μ = 0.1, αn = 0.1, sn = 1

(n+1)4 , βn = 1
(n+1)1.1 , and τn = μn = 0.01. For Tang Algorithm [43], we

set α = 0.75, ρn = 3 – 1
n+1 , εn = 1

(n+1)1.1 , and r = μ = 10–5. For Suantai et al. Algorithm [39],
we set αn = 1

n+1 , βn = 0.5, rn = 1, λn = 0.01, and un = ( 1
n2 , 1

n2 , 1
n2 )T. The initial points x0 and x1

are generated randomly in R
3. We use En = ‖xn+1 –xn‖ < 10–5 to terminate iterations for all
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Figure 3 Numerical behavior of all algorithms for Tests 1 and 2

Figure 4 Numerical behavior of all algorithms for Tests 3 and 4

algorithms. To test the robustness of each algorithm, we run the experiment several times
and choose the best four testes of sequences generated by each algorithm. The numerical
results are presented in Figs. 3 and 4.

Problem 4.3 Signal-recovery problem

In signal processing, compressed sensing involves the recovery of a “sparse signal” from
measured data, aiming to reconstruct the original signal using fewer measurements (see,
e.g [27, 47]). In this context, we can model the compressed sensing as the following un-
certain linear system:

y = Tx + b, (4.1)

where x ∈ R
N is a K-sparse signal K (K � N ), to be recovered, y ∈ R

M is the observed or
measured data with noisy b and T : RN → R

M is a bounded linear operator. It is known
that the above problem can be seen as the following LASSO problem [46]:

min
x∈RN

1
2
‖Tx – y‖2 subject to ‖x‖1 ≤ t, (4.2)
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Figure 5 Restored signal via Algorithms 1, 2, Tang Algorithm, and Suantai et al. Algorithm for K = 10

Figure 6 Restored signal via Algorithms 1, 2, Tang Algorithm, and Suantai et al. Algorithm for K = 20

where t > 0 is a given constant and ‖ · ‖1 is the �1 norm. If C = {x ∈ R
N : ‖x‖1 ≤ t} and

Q = {y}, then (4.2) is a particular case of the SFP (3.31) in the finite-dimensional spaces.
We generated a sparse signal x ∈R

N with K nonzero entries having a of length N = 2048
and made M = 1024 observations. The values of the sparse signal are sampled uniformly
from the interval [–1, 1]. The observation y is generated from Gaussian noise of variance
10–4. The matrix T ∈ R

M×N is generated from a normal distribution with mean zero and
one variance. Additionally, the initial signals x0 = x1 = T∗(Tx – y). In this experiment, we
set τ1 = 1.99, β = 0.75, μ = 10–5, αn = 0.1, sn = 1

(n+1)4 , βn = 1
(n+1)1.1 , and τn = μn = 0.01 in
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Figure 7 Restored signal via Algorithms 1, 2, Tang Algorithm, and Suantai et al. Algorithm for K = 30

Figure 8 Restored signal via Algorithms 1, 2, Tang Algorithm, and Suantai et al. Algorithm for K = 40

Algorithms 1 and 2, we set α = 0.75, ρn = 0.5, εn = 1
(n+1)1.1 , and r = μ = 0.001 in Tang Algo-

rithm [43] and we set αn = βn = 1
n+1 , un = Tx – y, and λn = 0.001 in Suantai et al. Algorithm

[39]. We consider five different tests for the spikes K ∈ {10, 20, 30, 40, 50}. Our stopping
criterion is En = ‖xn+1 – xn‖ < 10–7. The results of the numerical simulations are presented
in Figs. 5–9.

Remark 4.4 We observe from the numerical simulations presented in Figs. 5–9 that our
proposed Algorithms 1 and 2 outperform Tang Algorithm [43] and Suantai et al. Algo-
rithm [39] in the sense that they satisfy the stopping criteria in fewer iterations and less
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Figure 9 Restored signal via Algorithms 1, 2, Tang Algorithm, and Suantai et al. Algorithm for K = 50

computational time in the signal-recovery tests. Furthermore, we observe that while Tang
Algorithm [43] requires fewer iterations to satisfy the stopping criteria compared to Suan-
tai et al. Algorithm [39], the reconstructed signal by Tang Algorithm [43] is NOT very close
to the original signal compared to that reconstructed via Suantai et al. Algorithm [39].

Problem 4.5 Data classifications

In this example, we apply our algorithms to data-classification problems, which are
based on a learning technique called the extreme learning machine (ELM). Let U =
{(xn, yn) : xn ∈ R

N , yn ∈ R
M, n = 1, 2, 3, . . . , K} be a training set of K distinct samples, xn

is an input training data and yn is a training target. For the output of ELM with a single
hidden layer at the ith hidden node is hi(x) = U(〈ai, xn〉 + bi), where U is an activation
function, ai is the weight at the ith hidden node, and bi is the bias at the ith hidden node.
The output function with L hidden nodes is the single hidden-layer feedforward neural
networks (SLFNs)

On =
L∑

i=1

ωihi(xn),

where ωi is the optimal output weight at the ith hidden node. The hidden-layer output
matrix T is defined by

T =

⎡

⎢
⎢
⎣

U(〈a1, x1〉 + b1) · · · U(〈aL, x1〉 + bL)
...

. . .
...

U(〈a1, xK 〉 + b1) · · · U(〈aL, xK 〉 + bL)

⎤

⎥
⎥
⎦ .

The main aim of ELM is to calculate an optimal weight ω = (ω1,ω2, . . . ,ωL)T such that
Tω = b, where b = (t1, t2, . . . , tK )T is the training target data. A successful model used to
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find the solution ω can be translated into the following convex constraint minimization
problem:

min
ω∈RL

1
2
‖Tω – b‖2 subject to ‖ω‖1 ≤ ξ , (4.3)

where ξ > 0 is a given constant. If C = {ω ∈ R
L : ‖ω‖1 ≤ ξ} and Q = {b}, then (4.3) is a

particular case of the SFP (3.31) in the finite-dimensional spaces.
The binary crossentropy loss function along with sigmoid activation function for binary

classification calculates the loss of an example by computing the following average:

Loss = –
1
J

J∑

j=1

(
yj log ŷj + (1 – yj) log(1 – ŷj)

)
, (4.4)

where ŷj is the jth scalar value in the model output, yj is the corresponding target value,
and J is the number of scalar values in the model output.

The performance evaluation in classification can be justified by precision and recall. The
Recall/True Positive Rate can be defined as the level of accuracy of predictions in positive
classes and the percentage of the number of predictions that are correct on the positive
observations. Then, calculate the accuracy, prediction, and F1-score using the following
standard criteria [22]:

(1) Precision = TP
TP+FP × 100%;

(2) Recall = TP
TP+FN × 100%;

(3) Accuracy = TP+TN
TP+FP+TN+FN × 100%;

(4) F1-score = 2×Precision×Recall
Precision+Recall ,

where a confusion matrix for original and predicted classes is shown in terms of TP :=
True Positive, TN := True Negative, FP := False Positive, and FN := False Negative.

Next, we consider the following two datasets:

Dataset 1 UCI Machine Learning Heart Disease dataset [20]. This dataset contains 14
attributes and 303 records. This dataset contains the attributes: Age, Gender, CP, Trestbps,
Chol, Fbs, Restecg, Thalach, Exang, Oldpeak, Slope, Ca, Thal, and Num (the predicted
attribute). The dataset consists of 138 normal instances versus 165 abnormal instances.

Dataset 2 PIMA Indians diabetes dataset [1]. The dataset contains 768 pregnant female
patients of which 500 were nondiabetics and 268 that were diabetics. This dataset contains
9 attributes: Pregnancies, Glucose, Blood Pressure, Skin Thickness, Insulin, BMI, Diabetes
Pedigree Function, Age, and Outcome (the predicted attribute).

In particular, we apply our algorithms to the optimized weight parameter in training data
for machine learning by using 5-fold crossvalidation [25] in the extreme learning machine
(ELM).

For Dataset 1, we start computation by setting the activation function as a sigmoid, hid-
den nodes L = 80, regularization parameter ξ = 10, x0 = 1 := (1, 1, . . . , 1)︸ ︷︷ ︸

N

∈ R
N , x1 = 0 :=

(0, 0, . . . , 0)︸ ︷︷ ︸
N

∈ R
N , τ1 = 1, sn = 0, βn = 1

(n+1)10 , and αn = n+2
2n+1 . The stopping criteria is the
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Table 1 Numerical results of β for Algorithm 1 when μ = 0.9 for Dataset 1

β Training Loss

Train Test

0.1 0.0808 0.246457 0.224908
0.2 0.0816 0.246016 0.224521
0.3 0.0841 0.245528 0.224100
0.4 0.0824 0.244935 0.223599
0.5 0.0882 0.244198 0.222994
0.6 0.0839 0.243251 0.222248
0.7 0.0794 0.241977 0.221302
0.8 0.0833 0.240139 0.220054
0.9 0.0875 0.237138 0.218174

Table 2 Numerical results of β for Algorithm 2 when μ = 0.9 for Dataset 1

β Training Loss

Train Test

0.1 0.0775 0.247571 0.225920
0.2 0.0774 0.247902 0.226225
0.3 0.0771 0.248156 0.226459
0.4 0.0783 0.248382 0.226669
0.5 0.0755 0.248584 0.226858
0.6 0.0815 0.248767 0.227030
0.7 0.1114 0.248933 0.227185
0.8 0.0784 0.249083 0.227327
0.9 0.0800 0.249221 0.227457

Table 3 Numerical results of μ for Algorithm 1 when β = 0.9 for Dataset 1

μ Training Loss

Train Test

0.1 0.0870 0.245923 0.224461
0.2 0.0846 0.243328 0.222218
0.3 0.0829 0.241784 0.221118
0.4 0.0830 0.240556 0.220319
0.5 0.0838 0.239611 0.219739
0.6 0.0872 0.238817 0.219257
0.7 0.0872 0.238143 0.218838
0.8 0.0870 0.237596 0.218483
0.9 0.0848 0.237138 0.218174

number of iterations 300. We compare the performance of Algorithms 1 and 2 with dif-
ferent parameters β for Dataset 1, as seen in Tables 1 and 2.

From Table 1, we see that β increases from 0.1 to 0.9. The training loss and test loss
decrease, it appears that β = 0.9 performs better for Algorithm 1.

From Table 2, we see that the training loss and test loss increase when β increases, it
appears that β = 0.1 performs better for Algorithm 2. Also, we compare the performance
of Algorithms 1 and 2 with different parameters μ for Dataset 1, as seen in Tables 3 and 4.

From Tables 3 and 4, we see that the training loss and test loss decrease when μ in-
creases, it show that μ = 0.9 gives the highly improved the performance of Algorithm 1
and Algorithm 2 for Dataset 1.

Next, we compare the performance of our algorithms with Tang Algorithm [43] and
Suantai et al. Algorithm [39] for Dataset 1. For Algorithms 1 and 2, we set τ1 = 1, μ =
0.9, sn = 0, and βn = 1

(n+1)10 . Moreover, we set β = 0.9 and β = 0.1 for Algorithms 1 and 2,
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Table 4 Numerical results of μ for Algorithm 2 when β = 0.1 for Dataset 1

μ Training Loss

Train Test

0.1 0.0775 0.250309 0.227553
0.2 0.0802 0.250964 0.229119
0.3 0.0778 0.250372 0.228554
0.4 0.1137 0.249819 0.228024
0.5 0.0883 0.249305 0.227536
0.6 0.0808 0.248827 0.227085
0.7 0.0787 0.248381 0.226668
0.8 0.1336 0.247963 0.226281
0.9 0.0805 0.247571 0.225920

Table 5 The performance of each algorithm for Dataset 1

Algorithms Iterations Training time Precision Recall F1-score Accuracy

Algorithm 1 49 0.0680 87.96 100 93.59 88.21
Algorithm 2 524 0.3763 87.96 100 93.59 88.21
Tang Algorithm [43] 2299 1.4604 87.96 100 93.59 88.21
Suantai et al. Algorithm [39] 1695 0.3028 87.96 100 93.59 88.21

Figure 10 Accuracy and loss plots of Algorithm 1 for Dataset 1

respectively. For Tang Algorithm [43], we set α = 0.6, ρn = 3.5, and εn = 1
n+1 . For Suantai et

al. Algorithm [39], we set αn = 1
n+1 , βn = n–1

2n , un = 1 ∈R
N , and λn = 1

‖T‖2 .
The comparison of all algorithms is presented in Table 5.
From Table 5, we observe that our Algorithms 1 and 2 have fewer iterations than Tang

Algorithm [43] and Suantai et al. Algorithm [39] with the same precision, recall, F1-score,
and accuracy. This shows that our algorithms have the highest probability of correctly
classifying heart disease compared to other algorithms.

Next, we present graphs of the accuracy and loss of training data and testing data for
overfitting of Algorithms 1 and 2 to show that our algorithms have no overfitting in the
training Dataset 1.

From Figs. 10 and 11, we see that our Algorithms 1 and 2 have suitably learned the
training dataset for Dataset 1.

For Dataset 2, we present the comparison of our algorithms with Tang Algorithm [43]
and Suantai et al. Algorithm [39]. We start computation by setting the activation function
as sigmoid, hidden nodes L = 160. For Algorithms 1 and 2, we set τ1 = 1, μ = 0.9, sn = 0, and
βn = 1

(n+1)10 . Moreover, we set β = 0.9 and β = 0.1 for Algorithms 1 and 2, respectively. For
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Figure 11 Accuracy and loss plots of Algorithm 2 for Dataset 1

Table 6 The performance of each algorithm for Dataset 2

Algorithms Iterations Training time Precision Recall F1-score Accuracy

Algorithm 1 14 0.0728 80.97 97.50 88.47 80.03
Algorithm 2 14 0.0612 80.97 97.50 88.47 80.03
Tang Algorithm [43] 33 0.0967 80.97 97.50 88.47 80.03
Suantai et al. Algorithm [39] 44 0.0620 80.97 97.50 88.47 80.03

Figure 12 Accuracy and loss plots of Algorithm 1 for Dataset 2

Figure 13 Accuracy and loss plots of Algorithm 2 for Dataset 2

Tang Algorithm [43], we set α = 0.6, ρn = 3.5, and εn = 1
(n+1)10 . For Suantai et al. Algorithm

[39], we set αn = 1
n+1 , βn = n–1

2n , un = 1 ∈ R
N , and λn = 1

‖T‖2 .
The comparison of all algorithms is presented in Table 6.
From Table 6, we see that Algorithms 1 and 2 have the most efficiency in precision, re-

call, F1-score, and accuracy for Dataset 2. This mean that our algorithms have the highest
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probability of correctly classifying the PIMA Indians diabetes dataset (Dataset 2) com-
pared to Tang Algorithm [43] and Suantai et al. Algorithm [39].

Next, we present graphs of the accuracy and loss of training data and testing data for
overfitting of Algorithms 1 and 2 to show that our algorithms have no overfitting in the
training Dataset 2.

From Figs. 12 and 13, we see that Algorithms 1 and 2 have suitably learned the training
dataset for Dataset 2.

5 Conclusions
In this paper, we have proposed two inertial self-adaptive algorithms to solve the split com-
mon null-point problem for two set-valued mappings in Banach spaces. The step sizes
used in our proposed algorithms are adaptively updated without the prior knowledge of
the operator norm of the bounded linear operator. We have proved the weak-convergence
theorems of the proposed algorithms under suitable conditions in p-uniformly convex,
real Banach spaces that are also uniformly smooth. Finally, we have performed experi-
ments to numerically solve some problems in science and engineering, such as, the split
feasibility problem, the split minimization problem, signal recovery, and data classifica-
tions, and also have compared them with some existing methods to demonstrate the im-
plementability and efficiency of our methods.
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