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Abstract
Solutions of a group of conjugate time-varying matrix equations are discussed in this
paper. Through mathematical derivation, the solutions to this group of equations are
equivalent to the solutions to a class of conjugate time-invariant matrix equations.
Further, the related conditions of solvability are obtained and the general explicit
solutions are represented by using quasicontrollability and quasiobservability
matrices. A detailed algorithm is presented to make the calculation process clear, and
the effectiveness of the algorithm is verified by a concrete example. The proposed
algorithm can provide complete solutions to the considered equation in explicit
parametric form and its main computation includes solving an ordinary linear
algebraic equation and some matrix multiplication operations.

Keywords: Explicit solutions; Conjugate; Time-varying matrix equations;
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1 Introduction
Because solving matrix equations has extensive applications in mathematics, control,
computers, physics, and other fields, it has been widely studied by scholars in both control
and mathematics fields. A complex matrix equation refers to the matrix equation whose
coefficient matrix and unknown matrix to be solved are both taken from the complex
field. It is widely used in stability analysis and system synthesis in the control field and has
attracted extensive attention [1–5]. In [1], a complex Riccati equation is studied and an it-
erative algorithm based on an HSS-like method is proposed, whose convergence is proven.
In [2], time-invariant equations possessing the form of AXB + CXD = E are investigated in
a complex field and the minimal norm solutions are derived in the sense of least squares.
The complex equations applied to a regulation problem are considered and the solutions
are provided in an explicit and parametric formulation in [3]. The solutions of a class of
complex Sylvester equations are presented in [4] in closed form. In [5], the solutions to an
anti-Riccati matrix equation are utilized to deal with the regulation controller design of
antilinear systems in a discrete case.

A periodic system is a kind of time-varying system, which has been extensively applied
to many engineering fields. For example, a multirate sampling digital system is usually
modeled as a cyclic system. Many dynamic systems including periodic properties can be
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naturally represented as periodic systems. For instance, the dynamic behavior of a pendu-
lum, a helicopter, satellite attitude, and other objects has been modeled as periodic systems
in the existing literature [6]. Periodic equations including periodic Lyapunov, Riccati, and
Sylvester equations are widely used in performance analysis and robust control of peri-
odic systems [7, 8]. Therefore, a large number of research achievements have been made.
For example, in [9], by weighting the estimation results of the current step and the pre-
vious step, an iterative algorithm is constructed to approximate the unknown matrices in
periodic Lyapunov equations. For the same equation, [10] proposes another iterative algo-
rithm, and its convergence rate depends on a tunable parameter. Solving complex Sylvester
periodic, time-varying equations via a numerical algorithm is investigated in [11]. Gradi-
ent neural-network models with various activation functions are used to approximate the
solutions of the periodic, time-varying Sylvester equations in [12]. Numerical iterative so-
lutions to periodic, coupled equations and periodic, bimatrix equations are investigated
in [13] and [14], respectively. Periodic regulation equations are discussed in [15], and the
parametric solutions with sufficient degrees of freedom are derived.

Matrix multiplication, as one of the basic operations of matrices, plays an important
role in solving matrix equations ([16]). In control theory, complex matrix equations can
describe the behavior of systems, helping us to understand and design control systems.
In signal processing, complex matrix equations can represent the coefficients of filters,
helping us to design and apply various filters. Therefore, the solutions of complex ma-
trix equations have been widely studied. In [17], time-derivative information of complex
matrix coefficients is utilized to build finite-time convergent neural dynamics for solving
a class of linear complex matrix equation and the upper bound of the convergence time
is presented. Two algorithms based on the Moore–Penrose inverse are provided to solve
the least-squares Hermitian problem of the complex matrix equation AXB + CXD = E and
AXB = E in [18]. In [19], a Modified Hermitian and skew-Hermitian splitting method is
proposed to solve a large, sparse Sylvester equation with non-Hermitian and complex sym-
metric positive-definite/semidefinite matrices, which is a four-parameter iteration proce-
dure where the iterative sequence is unconditionally convergent to the unique solution of
the Sylvester equation. For more research on similar topics, one can refer to the references
in the mentioned literature.

The complex-conjugate, periodic Sylvester matrix equation considered here is A(j)X(j)–
X(j + 1)F(j) = B(j)Y (j), whose coefficient matrices and unknown matrices are all ω-
periodic and complex. This type of equation usually originates from the analysis and de-
sign of complex systems and isotropic systems. When the coefficient matrices are real,
this equation becomes a periodic Sylvester matrix equation. When coefficient matrices
take constant values, this equation becomes a complex-valued Sylvester matrix equation.
It becomes a common Sylvester matrix equation when coefficient matrices of this equa-
tion are precisely constant and real, which often appears in linear systems. In summary,
the complex-conjugate, periodic Sylvester matrix equation covers many kinds of periodic,
time-varying or time-invariant matrix equations as its special forms, and each of them is
essential in specific fields of control theory and engineering practice. Therefore, the study
of this equation has important scientific significance and engineering value.

In this paper, we aim to provide a group of solutions to a complex-conjugate, periodic,
time-varying Sylvester matrix equation in explicit parametric form. The conditions of the
existence of the solutions will also be considered. The related conditions of solvability are
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obtained and the general explicit solutions are represented by using quasicontrollability
and quasiobservability matrices. The arrangement of the article is as follows. Some nota-
tions and operations of complex matrices are provided in Sect. 2. Section 3 provides the
solving condition and derives the parametric solutions to the considered conjugate, time-
varying matrix equations. Section 4 checks the validity of the proposed algorithm by a
numerical example and the last section summarizes the article.

In the remainder of this section, some simple notations are listed. [a] is the truncation
of real a satisfying a = [a] + q, where 0 ≤ q < 1. A represents the conjugate of matrix A.
λ(A) indicates the set of all the poles of matrix A. Denote AT as the transpose of matrix A.
In addition, j, k is used to stand for {j, j + 1, . . . , k} when j < k.

2 Notations and operations of complex matrices
Given arbitrary complex matrix A ∈ C

m×n, by rewriting A as A = A1 + A2j, we can obtain
the real transformations of A as

Aσ =

[
A1 A2

A2 –A1

]
∈ R

2m×2n, (1)

where i =
√

–1, and A1, A2 are both real matrices. The real transformations of complex
matrices have some good properties that can be usually utilized in seeking the solutions
to complex matrix equations, one can refer to the literature [20].

Next, we will give the definition of the complex-conjugate operation that plays an im-
portant role in the deduction of this paper. Given matrix A ∈ C

m×n and integer number
l > 0, complex-conjugate operation A∗l is defined as

A∗l =

⎧⎨
⎩A if l is even,

A if l is odd.

From the above definition, we can easily obtain that A∗k = A∗(l–1) and A∗0 = A.
For convenience of description, we present several complex field operators.

Definition 1 [21] Let A ∈ C
n×n and j > 0 be an integer. Define the complex operations A

←−
k

and A
−→
k as

A
−→
k � (AA)[ k

2 ]Ak–2[ k
2 ],

A
←−
k � Ak–2[ k

2 ](AA)[ k
2 ].

From the notation of [a], we can see that

A
−→
1 = A, A

−→
2 = AA, A

−→
3 = AAA

and

A
←−
1 = A, A

←−
2 = AA, A

←−
3 = AAA.

For more useful properties of the two operations, one can refer to reference [21].
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Given matrices A ∈ C
n×n, B ∈ C

n×r , and C ∈ C
p×n, define the quasicontrollability and

quasiobservability matrices as

−→
Ctrt(A, B) =

[
B AB · · · A

−→
t–1B∗(t–1)

]
, (2)

−→
Ctr(A, B) =

−→
Ctrn(A, B),

←−−
Obst(A, C) =

⎡
⎢⎢⎢⎢⎣

C
CA
· · ·

C∗(t–1)A
←−
t–1

⎤
⎥⎥⎥⎥⎦ , (3)

←−−
Obs(A, C) =

←−−
Obsn(A, C).

It can be easily seen that when A, B, C are all real matrices, then the quasicontrollability

matrix
−→
Ctr(A, B) becomes a so-called controllability matrix in linear system theory and the

quasiobservability matrix
←−−
Obs(A, C) becomes a so-called observability matrix.

Finally, for a group of matrices Di ∈C
r×r , i ∈ 0, t, denote

St(D) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1 D2 D3 D4 · · · Dt

D2 D3 D4 · · · Dt

D3 D4 · · · Dt

· · · · · · · · ·
D∗(t–1)

t–1 D∗(t–1)
t

D∗t
t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

3 An explicit method
This section focuses on the explicit solutions to the complex, periodic, time-varying
Sylvester equation derived in parametric form and a detailed algorithm will be presented.

Consider the complex-conjugate, periodic Sylvester matrix equation

A(j)X(j) – B(j)Y (j) = X(j + 1)F(j), (5)

where j ∈ Z, A(j) ∈ Cn×n, B(j) ∈ Cn×r , F(j) ∈ Cm×m are known ω-periodic matrices such
that A(j + ω) = A(j), B(j + ω) = B(j), F(j + ω) = F(j), while X(j) ∈C

n×p, Y (j) ∈C
r×p are matri-

ces to be solved.
Define

�A(k, j) � A(k – 1)A(k – 2)...A∗(k–j–1)(i), ∀k > j. (6)

Furthermore, let

�A(j, j) = In. (7)

We will first discuss the relationship between periodic, time-varying matrix equations and
a special class of time-invariant matrix equations.
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Theorem 1 Let F(j), j ∈ 0,ω – 2 be nonsingular. The conjugate periodic equation (5) is
equivalent to

�A(ω, 0)X∗(ω–1)(0) – B̃Ỹ = X(0)�F(ω, 0), (8)

where

B̃ =
[
�A(ω, 1)B∗(ω–1)(0) �A(ω, 2)B∗(ω–2)(1) · · · �A(ω,ω)B(ω – 1)

]
(9)

Ỹ =
[
Ỹ T(0) Ỹ T(1) · · · Ỹ T(i) · · · Ỹ T(ω – 1)

]T (10)

and

Ỹ (i) = Y ∗(ω–i–1)(i)�∗(ω–i)
F (i, 0), i ∈ 0,ω – 1. (11)

Proof Expanding equation (5) at each time in a period gives

A(0)X(0) – B(0)Y (0) = X(1)F(0) (12)

...

A(ω – 3)X(ω – 3) – B(ω – 3)Y (ω – 3) = X(ω – 2)F(ω – 3) (13)

A(ω – 2)X(ω – 2) – B(ω – 2)Y (ω – 2) = X(ω – 1)F(ω – 2) (14)

A(ω – 1)X(ω – 1) – B(ω – 1)Y (ω – 1) = ω(0)F(ω – 1). (15)

Postmultiplying the two sides of equation (15) with F(ω – 2), one has

A(ω – 1)X(ω – 1)F(ω – 2) – B(ω – 1)Y (ω – 1)F(ω – 2) = X(0)F(ω – 1)F(ω – 2). (16)

Taking the above formula into (14), we can obtain

A(ω – 1)A(ω – 2)X(ω – 2) – B(ω – 1)Y (ω – 1)F(ω – 2)

= X(0)F(ω – 1)F(ω – 2) + A(ω – 1)B(ω – 2)Y (ω – 2).
(17)

Taking this formula into (13), one has

�A(ω,ω – 3)X(ω – 3) – B(ω – 1)Y (ω – 1)F(ω – 2)F(ω – 3)

= X(0)�F(ω,ω – 3)

+ �A(ω,ω – 1)B(ω – 2)Y (ω – 2)F(ω – 3) + �A(ω,ω – 2)B(ω – 3)Y (ω – 3).

(18)

Continuing the same operations until equation (12) is incorporated, we have

�A(ω, 0)X∗(ω–1)(0) – X(0)�F(ω, 0) =
ω–1∑
i=0

�A(ω, i + 1)B∗(ω–i–1)(i)Y ∗(ω–i–1)(i)�∗(ω–i)
F (i, 0).

Noting formulas (9), (10), and (11), one can find the above equation is exactly equation (8).
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Since the above derivation process is reversible, the two equations (5) and (8) have the
same set of solutions. We thus complete the proof. �

Based on the above theorem, according to Lemma 5 of [21], we have the following con-
clusion.

Proposition 1 For matrices A(j) ∈ C
n×n and F(j) ∈ C

n×n, matrix equation (8) has the ex-

clusive resolution when and only when λ(�
−→
2
A (ω, 0)) ∩ λ(�

−→
2
F (ω, 0)) = φ.

In the following, we will give an expression of solutions for the complex, time-invariant
Sylvester equation (8).

Proposition 2 Given matrices A(j) ∈ C
n×n, B(j) ∈ C

n×r , F(j) ∈ C
m×m, suppose that

λ(�
−→
2
A (ω, 0)) ∩ λ(�

−→
2
F (ω, 0)) = φ. If there exist two sets of matrices Ni ∈ Cn×r , Di ∈ r×r ,

i ∈ 0, t, with Nt = 0 such that

⎧⎪⎪⎨
⎪⎪⎩

�A(ω, 0)N0 = B̃D0

Ni–1 – �A(ω, 0)Ni = –B̃Di, i ∈ 1, t – 1,

Nt–1 = –B̃Dt

(19)

then the solutions of the considered equation (8) have the following form

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

X(0) =
∑t–1

i=0 NiZ∗i�
←−

i
F (ω, 0)

= N0Z + N1Z�
←−

1
F (ω, 0) + N2Z�

←−
2
F (ω, 0) + · · · + Nt–1Z∗(t–1)�

←−
t–1
F (ω, 0)

Ỹ =
∑t

i=0 DiZ∗i�
←−

i
F (ω, 0)

= D0Z + D1Z�
←−

1
F (ω, 0) + D2Z�

←−
2
F (ω, 0) + · · · + DtZ∗t�

←−
t
F (ω, 0),

(20)

where Z ∈C
r×m is a parameter matrix that can be chosen arbitrarily.

The proof of the above proposition is omitted since it can be taken as a corollary of
Theorem 1 in [21]. It is worth noting that the above proposition gives all possible solutions
of equation (8) in parametric form.

From the above conclusion, one can see that in order to solve equation (8), it is necessary
to find Ni ∈ C

n×r , Di ∈ r×r , i ∈ 0, t, by solving equation (19). This is not so simple and
intuitive. Therefore, it is necessary to convert equation (8) into a simpler form.

Lemma 1 For matrices �A(ω, 0) ∈ C
n×n, B̃ ∈ C

n×r , Di ∈ C
r×r , Ni ∈ C

n×r , i ∈ 0, t, matrices
Ni ∈ Cn×r , Di ∈ r×r , i ∈ 0, t, with Nt = 0 satisfy (19) when and only when Di ∈ Cr×r , i ∈ 0, t
meet

B̃D0 + �
−→
1
A (ω, 0)B̃D1 + �

−→
2
A (ω, 0)B̃D2 + · · · + �

−→
t
A (ω, 0)(B̃Dt)∗t = 0 (21)

and Ni ∈ C
n×r , i ∈ 0, t – 1 meet

[
N0 N1 · · · Nt–1

]
=

−−→
Ctrt

(
�A(T , 0), B̃

)
St(D). (22)
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Proof Let us first prove the necessity. From the recursive expression of (19), it is easily
obtained by simple computation that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nt–1 = –B̃Dt ,

Nt–2 = –B̃Dt–1 – �
−→
1
A (ω, 0)B̃Dt ,

Nt–3 = –B̃Dt–2 – �
−→
1
A (ω, 0)B̃Dt–1 – �

−→
2
A (ω, 0)B̃Dt ,

· · ·
N0 = –B̃D1 – �

−→
1
A (ω, 0)B̃D2 – �

−→
2
A (ω, 0)B̃D3 – · · · – �

−→
t–1
A (ω, 0)(B̃Dt)

∗(t–1)

(23)

and

0 = B̃D0 + �
−→
1
A (ω, 0)B̃D1 + �

−→
2
A (ω, 0)B̃D2 + · · · + �

−→
t
A (ω, 0)(B̃Dt)∗t . (24)

Noting the formulation of (2) and (4), formula (23) can be rewritten as

[
N0 N1 · · · Nt–1

]
=

−−→
Ctrt

(
�A(ω, 0), B̃

)
St(D).

Next, we prove the necessity. From (22) and (21), one has

�A(ω, 0)N0

= –�
−→
1
A (ω, 0)B̃D1 – �

−→
2
A (ω, 0)B̃D2 – �

−→
3
A (ω, 0)B̃D3 – · · · – �

−→
t
A (ω, 0)(B̃Dt)

∗t

= B̃D0.

This is the first formula of (19). Then by (22), we can obtain

Ni =
t∑

j=i+1

�A(ω, 0)
−−−−→
j–(i+1)(B̃Dj)j–(i+1), i ∈ 1, t – 1.

Direct computation gives

�A(ω, 0)Ni – B̃Di = –B̃Di + �A(ω, 0)
t∑

j=i+1

�A(ω, 0)
−−−−→
j–(i+1)(B̃Dj)j–(i+1)

= –B̃Di +
t∑

j=i+1

�A(YJIT8173, 0)
−→
j–i(B̃Dj)j–i

=
t∑

j=i

�A(ω, 0)
−→
j–i(B̃Dj)j–i

= Ni–1.

(25)

Hence, the second term of (19) holds. The other two terms of (19) are straightforward.
Based on the sufficiency and the necessity, the conclusion holds true. �
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Denote

L =
[

D0
T D1

T D2
T · · · (

D∗t
t

)T ]T.

Equation (21) is equivalent to

−−−→
Ctrt+1

(
�A(ω, 0), B̃

)
L = 0. (26)

On the basis of the above preparations, the conclusion on the solutions to equation (5)
can be drawn as follows.

Theorem 2 Consider ω-peroidic matrices A(j) ∈C
n×n, B(j) ∈C

n×r , and F(j) ∈C
m×m, and

suppose that λ(�A(ω, 0)�A(ω, 0)) ∩ λ(�F(ω, 0)�F(ω, 0)) = φ. If there exist matrices Di, i ∈
0, t satisfying equation (21), then the following solutions

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X(0) =
[

N0 N1 · · · Nt–1

]←−−
Obst(�F(ω, 0), Z)

=
−−→
Ctrt(�A(ω, 0), B̃)S(D)

←−−
Obst(�F(ω, 0), Z)

Ỹ =
[
D0 D1 · · · Dt

]←−−−
Obst+1(�F(ω, 0), Z)

(27)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ỹ = [ Ỹ (0) Ỹ (1) · · · Ỹ (ω – 1) ]T

Y (j) = (Ỹ (j)(�∗(ω–j)
F (j, 0))( – 1))∗(ω–j–1), j ∈ 0,ω – 1

X(j + 1) = [A(j)X(j) – B(j)Y (j)]F ( – 1)(j), j ∈ 0,ω – 2,

(28)

where Z is an arbitrary parameter matrix with compatible dimension, can meet the
complex-conjugate, periodic Sylvester equation (5) well.

Proof According to Proposition (2), matrix X(0) in (20) has another formulation as

X(0) =
t–1∑
i=0

NiZ∗i�
←−

i
F (ω, 0)

=
[
N0 N1 · · · Nt–1

]←−−
Obst

(
�F(ω, 0), Z

)
=

−−→
Ctrt

(
�A(ω, 0), B̃

)
S(D)

←−−
Obst

(
�F(ω, 0), Z

)
and matrix (̃Y ) in (20) can be rewritten in the form

Ỹ = D0Z + D1Z�F(ω, 0) + D2Z�F(ω, 0)�F(ω, 0) + · · · + DtZ∗t�
←−

t
F (ω, 0)

=
[

D0 D1 · · · Dt

]←−−−−
Obst+1

(
�F(ω, 0), Z

)
.

According to equations (10) and (11), the first two items of formula (28) can be easily
obtained. Further, the third item of formula (28) can be obtained by simply transforming
equation (5).



Ma et al. Journal of Inequalities and Applications        (2023) 2023:133 Page 9 of 12

Based on Theorem 1, we complete the proof. �

For convenience, We summarize a stepwise computational procedure to solve periodic,
time-varying, conjugate equations as follows.

Algorithm 1 (An explicit algorithm on solving a complex-conjugate, periodic Sylvester
matrix equation.)

1. For given matrices A(j), F(j), j ∈ 0,ω – 1, compute �A(ω, 0), �F(ω, 0) and B̃.
2. Determine whether the condition λ(�A(ω, 0)�A(ω, 0)) ∩ λ(�F(ω, 0)�F(ω, 0)) = φ

holds. If this condition holds, proceed to the next step; otherwise, the algorithm fails.
3. According to the conjugate linear equation (26), find unknown matrices Di, i ∈ 0, t.
4. According to (22), compute matrices Ni, i ∈ 0, t – 1.
5. Assign the free parameter matrix Z, and compute matrices X(0), Ỹ according to (27).
6. According to (28), compute X(j), j ∈ 1,ω – 1 and Y (j), j ∈ 0,ω – 1.

4 A validation example
Example 1 Assume a conjugate, periodic Sylvester matrix equation (5) whose parameter
matrices are as follows

A(0) =

⎡
⎢⎣

1 2 – i i
0 –2i 0
2i 0 0

⎤
⎥⎦ , A(1) =

⎡
⎢⎣

0 –2i 0
0 1 –i

–1 + i 0 –2i

⎤
⎥⎦ , A(2) =

⎡
⎢⎣

i 1 0
0 –i 1
0 i 0

⎤
⎥⎦ ,

B(0) =

⎡
⎢⎣

i
–i
–2

1
0
i

⎤
⎥⎦ , B(1) =

⎡
⎢⎣

2
i
0

1
1
–i

⎤
⎥⎦ , B(2) =

⎡
⎢⎣

0
1
–i

i
2i
1

⎤
⎥⎦ ,

F(0) =

[
1 0
0 –i

]
, F(1) =

[
1 0
2i 1 – i

]
, F(2) =

[
1 – i 0

0 1 + i

]
.

For this matrix equation, it is easy to obtain

�A(3, 0) = A(2)A(1)A(0) =

⎡
⎢⎣

–2 2i 0
–5 + i –5 – i 1 – i

–2i 2 0

⎤
⎥⎦ ,

�F(3, 0) = F(2)F(1)F(0) =

[
1 – i 0

2 – 2i 2

]
,

B̃ = [�A(3, 1)B(0) �A(3, 2)B(1) �A(3, 3)B(2) ]

= [ A(2)A(1)B(0) A(2)B(1) B(2) ]

=

⎡
⎢⎣

–i –1 i 1 + i 0 i
2 – 5i –3 –1 0 1 2i

3 –i 1 i –i 1

⎤
⎥⎦ .

Define the quasicontrollability matrix

−−→
Ctrt

(
�A(3, 0), B̃

)
= [ B̃ �A(3, 0)B̃ �A(3, 0)�A(3, 0)B̃ ]
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and let

L = [ DT(0) DT(1) DT(2) ]T.

Solving the following simple linear equation

B̃D(0) + �A(3, 0)B̃D(1) + �A(3, 0)�A(3, 0)B̃D(2) = 0,

i.e.,
−−→
Ctrt(�A(3, 0), B̃)L = 0, we can find that

D(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

14 – i –2 + 2i 8 + 8i
–2 – 30i 4 + 6i 16 – 12i
–10 – 9i 2 + 2i –8i

0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, D(1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

D(2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Furthermore, by formula (15), we can obtain that

N(0) =

⎡
⎢⎣

–i i 2i
2 – 5i 2i 4

–3 –1 –2

⎤
⎥⎦ , N(1) =

⎡
⎢⎣

0 0 0
0 0 –1
0 0 –i

⎤
⎥⎦ .

Take the free parametric matrix Z as

Z =

⎡
⎢⎣

1 + i 6 – 3i
4 1 + 2i
0 –i

⎤
⎥⎦ .

Then, by formula (25), a group of periodic solutions can be found as

X(0) =

⎡
⎢⎣

1 + 3i
5 + 3i

–5 – 5i

–3 – 5i
–7 – 40i
–17 + 9i

⎤
⎥⎦ , X(1) =

⎡
⎢⎣

–12 + 18i
–7 – 15i
36 + 16i

14 – 4i
–109 + 28i
–12 – 24i

⎤
⎥⎦ ,

X(2) =

⎡
⎢⎣

4i
6

10 + 2i

–2 – 22i
–29 + 7i
–50 + 8i

⎤
⎥⎦ , Y (0) =

[
25 + 13i 95 – 52i
44 – 8i –122 – 176i

]
,

Y (1) =

[
7 + 11i 18 + 97i

0 0

]
, Y (2) =

[
–4i 2 – 2i

4 – 4i 3 – i

]
.
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Simple verification shows that the above solution satisfies equation (5). Furthermore, from
the arbitrariness of the choice of parameter matrix Z, it can be seen that Algorithm 1 can
provide numerous groups of solutions to the considered conjugate, periodic, time-varying
matrix equation.

5 Summary
A set of conjugated periodic time-varying matrix equations are investigated in this paper.
It is first verified that the considered equation has the same solution set with a class of
conjugate time-invariant matrix equation. Then, by some mathematical transformations,
the solvable condition of the conjugate, periodic, time-varying matrix equations is derived
and the calculation steps are given in the proposed algorithm. Finally, a numerical test on a
conjugate, time-varying equation is carried out, which shows that the solutions generated
by the provided algorithm meet the complex, time-varying equation well.
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