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Abstract
In our research work generalized Hyers-Ulam stability of the following functional
inequalities is analyzed by using fixed point approach:

∥
∥
∥f (2x + y) + f (2x – y) – 2f (x + y) – 2f (x – y) – 12f (x)

– ρ
(

4f
(

x +
y

2

)

+ 4
(

f
(

x –
y

2

)

– f (x + y) – f (x – y)
)

– 6f (x), r
)∥
∥
∥ ≥ r

r + ϕ(x, y)
(0.1)

and

∥
∥
∥f (2x + y) + f (2x – y) – 4f (x + y) – 4f (x – y) – 24f (x) + 6f (y)

– ρ
(

8f
(

x +
y

2

)

+ 8
(

f
(

x –
y

2

)

– 2f (x + y) – 2f (x – y)
)

– 12f (x) + 3f (y), r
)∥
∥
∥

≥ r

r + ϕ(x, y)
(0.2)

in the setting of fuzzy matrix, where ρ �= 2 is a real number.
We also discussed Hyers-Ulam stability from the application point of view.

1 Introduction
The abstract characterization of linear spaces of bounded Hilbert space operators in terms
of matricially normed spaces [35] implies that quotients, mapping spaces, and different
tensor products of operator spaces can be considered operator spaces anew. As a result of
this conclusion, the theory of operator spaces is having an increasing impact on operator
algebra theory [12].

The proof in [35] made use of the theory of ordered operator spaces [8]. Effros and Ruan
[15] demonstrated that the technique of Pisier [32] and Haagerup [21] (as modified in [16])
may be used to provide a purely metric demonstration of this important theorem.

Ulam [45] created the issue of functional equation stability in the year 1940.
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Numerous mathematicians later investigated the issue of functional equationś stability.
Hyers [22] was the first of them to respond affirmatively to Ulaḿs question in the context
of Banach spaces. Aoki [1], Th.M. Rassias [37], Găvruta [18], and many more researchers
went on to expand and generalize Hyersś results.

Hyers–Ulam stability investigates the following question: Suppose one has a function
y(t) that is close to solving an equation; is there an exact solution x (t) of the equation that
is close to y(t)? The following system can be studied mathematically [22, 26]:

dx
dt

= f (x ). (1.1)

If (1.1) has an exact solution, then it is Ulam–Hyers stable, and if ∀ε > 0 there is δ > 0 such
that if the approximation for solution of (1.1) is xα(t), then there is an exact solution x (t)
of (1.1) that is close to xα , i.e.,

∥
∥
∥
∥

dx0

dt
– f xα(t)

∥
∥
∥
∥

< δ ⇒ ∥
∥x (t) – x0(t)

∥
∥ < ε (1.2)

∀t > 0.
This definition is relevant since it implies that if one is investigating a Hyers–Ulam stable

system then it does not mean that one has to reach the exact solution (which is usually
rather difficult or time consuming). All that is required is to obtain a function that satisfies
(1.2). Hyers–Ulam stability ensures that a close exact solution exists.

Cauchy functional equation is

f (α + β) = f (α) + f (β), (1.3)

and its solution is known as additive mapping.
Quadratic functional equation is

f (α + β) + f (α – β) = 2f (α) + 2f (β), (1.4)

and its solution is known as quadratic mapping.
While discussing the stability, the following techniques are frequently used: extending a

function defined on a given set to a solution of the equation in question; determining the
form of the solution (which typically satisfies some additional conditions); and using fixed
point theorem applications in function spaces. To prove novel fixed point theorems with
applications, Rassias and Isac [23] were the first to present applications of the stability
theory of functional equations in the year 1996 with the goal of proving applications of
fresh fixed point theorems. Stability issues have been thoroughly researched by an array
of writers using the fixed point approach; for interesting results concerning this problem,
see [10, 17, 23, 25, 31, 33, 38–42].

The Ulam–Hyers stability idea is very important in realistic problems in numerical anal-
ysis, biology, and economics. The logistic equation (both differential and difference), the
SIS epidemic model, the Cournot model in economics, and the reaction diffusion equation
are all generalized to nonlinear systems.
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In the year 2022 Pachaiyappan et al. [13] proposed a new method in image security sys-
tem, they used m-cubic and m-quartic functional equations for encryption and decryp-
tion.

To create fuzzy vector topological structure on the space, Katsaras [52] created a fuzzy
norm on a vector space. These norms have been defined by certain mathematicians from
a variety of angles ([48, 54, 55]). In particular, Bag and Samanta [3] provided an idea of a
fuzzy norm in the manner in which Cheng and Mordeson [49] provided a fuzzy metric of
the Kramosil and Michalek type [53]. They devised a theorem for how a fuzzy norm can
be broken down into a group of crisp norms and looked into some of the characteristics
of fuzzy normed spaces [4].

We examine the Hyers-Ulam stability of cubic and quartic ρ-functional inequalities in
fuzzy matrix using the notion of fuzzy normed spaces given in [3, 50, 51], and [47].

2 Some fundamental result in fixed point theory
Definition 2.1 [56, 57] Let U �= φ. A function g : U × U → [0,∞] is called a generalized
metric on U if g satisfies:

(1) g(α,β) = 0 if and only if α = β ;
(2) g(α,β) = g(β ,α) ∀α,β ∈ U;
(3) g(α,γ ) ≤ g(α,β) + g(β ,γ ) ∀α, β and γ ∈ U.

Theorem 2.2 [2, 11, 56, 57] Let V : U → U be a strictly contractive mapping with Lipschitz
constant λ < 1. Then, for each α ∈ U, either

g
(

V cα, V c+1α
)

= ∞

∀ nonnegative integers c
or ∃ a positive integer c0 such that
(1) g(V cα, V c+1α) < ∞, ∀c ≥ n0;
(2) Sequence {V cα} converges to the fixed point β∗ of V ;
(3) β∗ is the unique fixed point of V in β = {β ∈ U |g(V c0α,β) < ∞};
(4) g(β ,β∗) ≤ 1

1–λ
g(β , Vβ) ∀β ∈ Y.

To prove novel fixed point theorems with applications, firstly G. Isac and Th.M. Rassias
[24] offered applications of functional equationś stability theory in the year 1996. The sta-
bility issues of numerous functional equations have been thoroughly studied by a number
of writers using fixed point approach (see [6, 27–29, 34]).

We will notate things as follows:
Nm(U) is n × n matrices in U;
zj ∈ N1,m(C) means that all other components are zero except j-component that is 1;
zij ∈ Nm(C) means that all other components are zero except (i, j)-component that is 1;
zij ⊗ α ∈ Nm(C) means that all other components are zero except (i, j)-component that

is α.
For α ∈ Nm(U), β ∈ Nm(U),

α ⊕ β =
(

α0
0β

)

.

Let (U ,‖.‖m) be a
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matrix normed space if and only if (Nm(U),‖.‖m) is a normed space for each positive
integer m and ‖EαD‖v ≤ ‖E‖‖D‖‖α‖m holds for C ∈ Nm(C), α = [αij] ∈ Nm(C) and
D ∈ Nm,v(C));

(U ,‖.‖m) is a
matrix Banach space if and only if U is a Banach space and (U ,‖.‖m) is a matrix normed

space;
matrix Banach space is known as a matrix Banach algebra if U is algebra.
matrix normed space is called an λ∞ – matrix normed space if ‖α ⊕ β‖m+v = max‖α‖m,

‖β‖v holds ∀α ∈ Nm(U), β ∈ Nv(U).

Example 2.3 Let (U ,‖.‖) be a normed space. Define

‖.‖m =
‖x‖

1 + ‖x‖ ; x = [xij] ∈ Nm(U).

Then (U , {‖.‖m}) is a matrix normed space.

Let us have vector spaces S and W . For g : S → W and m ≥ 0, define gm : Nm(S) →
Nm(W ) by

gm
(

[αij]
)

=
[

g(αij)
]

∀[αij] ∈ Nm(S).

Lemma 2.4 [56, 57]: Assume that (U ,‖.‖m) is a matrix normed space
• ‖Zvl ⊗ α‖m = ‖α‖ for α ∈ U ;
• ‖αvl‖ ≤ ‖[αij]‖n ≤ ∑n

i,j=1 ‖αij‖ for [αij] ∈ Nm(U);
• limn→∞ αm = α iff limn→∞ αnij = αij for αn = αij, α = [αij] ∈ Nv(U).

We require the definitions and propositions given in [47] to support the primary result.
In Sects. 3 and 4, we solve (0.1) and (0.2) and prove their Hyers-Ulam stability in fuzzy

matrix Banach algebra by using the fixed point approach; and in Sect. 5, we discuss Hyers-
Ulam stability from the application point of view.

3 Solution of cubic ρ-functional inequality (0.1), a fixed point approach
Throughout the article, U is a matrix normed space with ‖ · ‖n, V is matrix Banach algebra
with ‖ · ‖n, and ρ is a fixed real number with ρ �= 2.

Theorem 3.1 Define a function ϕ : U2 → [0,∞) such that ∃ L < 1 resulting in

n
∑

e,f =1

ϕ(�ef ,σef ) ≤
n

∑

e,f =1

1
8

Lϕ(2�ef , 2σef )

∀� = [�ef ], σ = [σef ] ∈ Mn(U).
Let p : U → V satisfy

∥
∥
∥
∥

pn
(

2[�ef ] + [σef ]
)

+ pn
(

2[�ef ] – [σef ]
)

– 2pn
(

[�ef ] + [σef ]
)
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– 2pn
(

[�ef ] – [σef ]
)

– 12pn
(

[�ef ]
)

– ρ

(

4pn

(

[�ef ] +
[σef

2
]
)

+ 4pn

(

[�ef ] –
[σef ]

2

)

– pn
(

[�ef ] + [σef ]
)

– pn
(

[�ef ] – [σef ]
)

– 6pn
(

[�ef ]
)

, r
)∥

∥
∥
∥

n

≥
n

∑

e,f =1

r
r + ϕ([�ef ], [σef ])

(3.1)

∀� = [�ef ], σ = [σef ] ∈ Mn(U), and r > 0.
Then ∃(�) := N – limn→∞ 8np( �

2n ) for each � ∈ Mn(U), and a cubic mapping is defined as
A : U → V satisfying

∥
∥pn

(

[�ef ]
)

– A
(

[�ef ]
)∥
∥

n ≥
n

∑

e,f =1

(16 – 16L)r
(16 – 16L)r + Lϕ(�ef , 0)

(3.2)

∀� = [�ef ] ∈ Mn(U) and r > 0.

Proof Setting n = 1 in (3.1) and (3.2), we get

∥
∥
∥
∥

p(2� + σ ) + p(2� – σ ) – 2p(� + σ ) – 2p(� – σ ) – 12p(�)

– ρ(4p
(

� +
σ

2

)

+ 4
(

p
(

� –
σ

2

)

– p(� + σ ) – p(� – σ )
)

– 6p
(

(�), r
)
∥
∥
∥
∥

≥ r
r + ϕ(�,σ )

(3.3)

and

∥
∥p(�) – A(�)

∥
∥ ≥ (16 – 16L)r

(16 – 16L)r + Lϕ(�, 0)
. (3.4)

By assuming p : U → V satisfies (3.3).
Set � = 0. (3.3) ⇒

∥
∥
(

2p(2�) – 16p(�)
)

, k
∥
∥ ≥ r

r + ϕ(�, 0)
, (3.5)

so ‖(p(�) – 8p( �

2 ), r
2 ) ≥ r

r+ϕ( �
2 ,0) ∀� ∈ U.

Consider

D = {j : U → V}.

Proceed with generalized metric on D:

g(j, h) = inf

{

μ ∈ R+ :
∥
∥j(�) – h(�),μr

∥
∥ ≥ r

r + ϕ(�, 0)
,∀� ∈ U and r > 0

}

,

where infφ = +∞. (D, g) is complete (see [46], Lemma 2.1).
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Consider the linear mapping Z : D → D as

Zg(�) := 8g
(

�

2

)

∀� ∈ U.
Let j, h ∈ D be given such that g(j, h) = ε. Then

‖j(�) – h(�, εr) ≥ r
r + ϕ(�, 0)

, ∀� ∈ U, and r > 0.

Thus

∥
∥Zj(�) – Zh(�), Lεr

∥
∥ =

∥
∥
∥
∥

8j
(

�

2

)

– 8h
(

�

2

)

, Lεr
∥
∥
∥
∥

=
∥
∥
∥
∥

j
(

�

2

)

– h
(

�

2
,

L
8
εr

)

≥
Lr
8

Lr
8 + ϕ( �

2 , 0)

∀� ∈ U and all r > 0. As in Theorem 3.1 [2],

d(Zj, Zh) ≤ Lε

∀j, h ∈ D.
(3.5) ⇒

∥
∥
∥
∥

p(�) – 8p
(

�

2

)

,
L
16

r
∥
∥
∥
∥

≥ r
r + ϕ(�, 0)

, ∀� ∈ U and r > 0.

So g(p, Zp) ≤ L
16 . Then from Theorem 2.2 ∃A : U → V satisfying: (1) K is a fixed point of

Z, i.e.,

K
(

�

2

)

=
1
8

K(�) (3.6)

∀ � ∈ U. Then K is a unique fixed point of Z in

M =
{

ι ∈ D : g(p, ι) < ∞}

.

⇒ K is a unique mapping satisfying (3.6) such that ∃ μ ∈ (0,∞) satisfying

∥
∥p(�) – K(�),μr

∥
∥ ≥ r

r + ϕ(�, 0)

∀� ∈ U;
(2) g(Znp, K) → 0 as n → ∞. ⇒

N – lim
n→∞ 8np

(
�

2n

)

= K(�)

∀� ∈ U;
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(3) g(p, K) ≤ 1
1–L g(p, Zp), ⇒

g(p, K) ≤ L
16 – 16L

.

So, (3.4) holds.
(3.3) ⇒

‖8n
(

p
(

2� + σ

2n

)

+ p
(

2� – σ

2n

)

– 2p
(

� + σ

2n

)

– 2p
(

� – σ

2n

)

– 12p
(

�

2n

))

– 8nρ

(

4p
(

� + σ
2

2n

)

+ 4p
(

� – σ
2

2n

)

– p
(

� + σ

2n

)

– p
(

� – σ

2n

)

– 6p
(

�

2n

)

, 8nr
)

≥ r
r + ϕ( �

2n , σ
2n )

∀�,σ ∈ U, r > 0, and n ∈ N

‖8n
(

p
(

2� + σ

2n

)

+ p
(

2� – �

2n

)

– 2p
(

� + σ

2n

)

– 2p
(

� – σ

2n

)

– 12p
(

�

2n

))

– 8nρ

(

4p
(

� + σ
2

2n

)

+ 4p
(

� – σ
2

2n

)

– p
(

� + σ

2n

)

– p
(

� – σ

2n

)

– 6p
(

�

2n

)

, r
)

≥
1

8n

1
8n + Ln

8n ϕ(�,σ )
.

Since limn→∞
1

8n
1

8n + Ln
8n ϕ(�,σ )

= 1 ∀ �,σ ∈ U and r > 0.

∥
∥K(2� + σ ) + K(2� – σ ) – 2K(� + σ ) – 2K(� – σ ) – 12K(�)

∥
∥

=
∥
∥
∥
∥
ρ

(

4K
(

� +
σ

2

)

+ 4K
(

� –
σ

2

)

– K(� + σ ) – K(� – σ ) – 6K(�)
)∥

∥
∥
∥

∀�,σ ∈ U. By Lemma 2.1 of [47], K : U → V is cubic. �

Example 3.2 Let ψ : R2 → [0,∞) be defined by

ψ(x) =

⎧

⎪⎪⎨

⎪⎪⎩

0, if x = 0;

ζx3, if |x| < 1;

ζ , otherwise,

where ζ > 0 is a constant. Define a function hm : R →R by

hm(x) =
∞

∑

n=0

ψ(2nx)
8

.

Then hm satisfies functional inequality (3.2).
Let

pm(x) = hm(x) + hm(–x),
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pm(x) = ζx3,

pm

(
x
2

)

=
ζx3

23

∀x ∈R. We define the set S = {pm : R →R, pm(0) = 0} and consider the generalized metric
on S as described in the proof of the above theorem. Also consider the mapping j : S → S
such that

Jpm(x) = 8p
(

x
2

)

= p(x).

Now

lim
c→∞ 8cp

(
x
2

)

= lim
c→∞ 8c

(
ζx3

23

)

= lim
c→∞ 8c

(
ζx3

23(1–c)

)

= K(x).

It is clear that

K
(

x
2

)

=
1
8

K(x).

Moreover, we have

∥
∥
∥
∥

p(x) – 8p
(

x
2

)∥
∥
∥
∥

=
∥
∥
∥
∥
ζx3 – 8

ζx3

23

∥
∥
∥
∥

≤ ψ

(
x
2

, 0
)

+ ψ

(

–
x
2

, 0
)

≤ L
16

(

ψ(x, 0) + ψ(–x, 0)
)

.

Hence

d(p, Lp) ≤ L
16

.

We can also show that

d(p, K) ≤ 1
1 – L

d(p, Jp).

The above result implies the following:

d(p, K) ≤ 16
16 – 16L

.

Therefore all the conditions are fulfilled, and by Lemma 2.4, K : R →R satisfies (3.2).
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Corollary 3.3 Assume that a real number ρ > 3, θ ≥ 0 and p : U → V satisfies

∥
∥
∥
∥

p
(

2[�ef ] + [σef ]
)

+ p
(

2[�ef ] – [σef ]
)

– 2p
(

[�ef ] + [σef ]
)

– 2p
(

[�ef ] – [σef ]
)

– 12p
(

[�ef ]
)

– ρ

(

4p
(

[�ef ] +
[σef ]

2

)

+ 4
(

p
(

[�ef –
[σef ]

2

)

– p
(

[�ef ] + [σef ]
)

– p
(

[�ef ] – [σef ]
)
)

– 6p
(

[�ef ]
)

, r
)∥

∥
∥
∥

n

≥
n

∑

e,f =1

r
r + θ (‖[�ef ]‖w + ‖[σef ]‖w)

(3.7)

∀� = [�ef ], σ = [σef ] ∈ Mn(U) and r > 0. Then p(�) := N – limn→∞ 8np( �

2n ) exists for each
� = [�ef ] ∈ Mn(U) and defines a cubic mapping A : U → V satisfying

∥
∥
(

p
(

[�ef ]
)

– A
(

[�ef ]
)

, r
)∥
∥

n ≥ 2(2w – 8)r
2(2w – 8)r +

∑n
e,f =1 θ‖[�ef ]‖w

∀� = [�ef ] ∈ Mn(U) and r > 0.

Proof Theorem 3.1 leads to the proof by choosing
∑n

e,f =1 φ(�ef ,σef ) :=
∑n

e,f =1 θ (‖[�ef ]‖w +
‖[σef ]‖w) ∀� = [�ef ], σ = [σef ] ∈ Mn(U). Then we can set L = 23–w to get the desired re-
sult. �

Theorem 3.4 Let ϕ : U2 → [0,∞) and ∃ L < 1 resulting in

n
∑

e,f =1

ϕ
(

[�ef ], [σef ]
) ≤

n
∑

e,f =1

8Lϕ

(
[�ef ]

2
,

[σef ]
2

)

∀� = [�ef ], σ = [σef ] ∈ Mn(U).
Assume a mapping p : U → V such that

∥
∥
∥
∥

pn
(

2[�ef ] + [σef ]
)

+ pn
(

2[�ef ] – [σef ]
)

– 2pn
(

[�ef ] + [σef ]
)

– 2pn
(

[�ef ] – [σef ]
)

– 12pn
(

[�ef ]
)

– ρ

(

4pn

(

[�ef ] +
[σef ]

2

)

+ 4pn

(

[�ef ] –
[σef ]

2

)

– pn
(

[�ef ] + [σef ]
)

– pn
(

[�ef ] – [σef ]
)

– 6pn
(

[�ef ]
)

, r
)∥

∥
∥
∥

n

≥
n

∑

e,f =1

r
r + ϕ([�ef ], [σef ])

(3.8)

∀� = [�ef ], σ = [σef ] ∈ Mn(U) and r > 0.
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Then ∃(�) := N – limn→∞ 1
8n p(2n�) for each � ∈ Mn(U), and it defines the cubic mapping

A : U → V satisfying

∥
∥pn

(

[�ef ]
)

– A
(

[�ef ]
)∥
∥

n ≥
n

∑

e,f =1

(16 – 16L)r
(16 – 16L)r + Lϕ([�ef ], 0)

(3.9)

∀� = [�ef ] ∈ Mn(U) and r > 0.

Proof From the proof of Theorem 3.1, (D, g) is a generalized metric space.
(3.5) ⇒

∥
∥
∥
∥

p(�) –
1
8

p(2�),
1

16
r
∥
∥
∥
∥

≥ r
r + ϕ(�, 0)

∀� = [�ef ] ∈ Mn(U) and r > 0. Consider the linear mapping Z : D → D satisfying

Zj(�) :=
1
8

j(2�)

∀� = [�ef ] ∈ Mn(U). Then g(p, Zp) ≤ 1
16 . Hence

g(p, C) ≤ 1
16 – 16L

.

So, (3.9) holds.
The rest is comparable to the proof of Theorem 3.1. �

Corollary 3.5 Assume that a real number with 0 < p < 3, θ ≥ 0 and p : U → V satisfies
(3.7). Then ∃(�) := N – limn→∞ 1

8n p(2n�) for each � = [�ef ] ∈ Mn(U), and it defines a cubic
mapping A : U → V satisfying

∥
∥
(

p
(

[�ef ]
)

– A
(

[�ef ]
)

, r
)∥
∥

n ≥ 2(8 – 2w)r
2(8 – 2w)r +

∑n
e,f =1 θ‖[�ef ]‖w

∀� = [�ef ] ∈ Mn(�) and r > 0.

Proof The proof follows from Theorem 3.4 by taking
∑n

e,f =1 φ([�ef ], [σef ]) :=
∑n

e,f =1 θ (‖[�ef ]‖w + ‖[σef ]‖w) ∀� = [�ef ], σ = [σef ] ∈ Mn(U). Then we can choose L = 2w–3,
and we get the desired result. �

4 Solution of quartic ρ-functional inequality (0.2), a fixed point approach
Theorem 4.1 Assume that a function ϕ : U2 → [0,∞) s.t. ∃ L < 1 resulting in

n
∑

e,f =1

ϕ
(

[�ef ], [σef ]
) ≤

n
∑

i,j=1

1
16

Lϕ
(

2[xij], 2[yij]
)

∀� = [�ef ], σ = [σef ] ∈ Mn(U).
Let p : U → V satisfy p(0) = 0 and

∥
∥
∥
∥

pn
(

2[�ef ] + [σef ]
)

+ pn
(

2[�ef ] – [σef ]
)

– 4pn
(

[�ef ] + [σef ]
)

– 4pn
(

[�ef ] – [σef ]
)
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– 24pn
(

[�ef ]
)

+ 6pn
(

[σef ]
)

– ρ

(

8pn

(

[�ef ] +
[σef ]

2

)

+ 8pn

(

[�ef ] –
[σef ]

2

)

– 2pn
(

[�ef ] + [σef ]
)

– 2pn
(

[�ef ] – [σef ]
)

– 12pn
(

[�ef ]
)

+ 3pn
(

[σef ]
)

, r
)∥

∥
∥
∥

n

≥
n

∑

e,f =1

r
r + ϕ([�ef ], [σef ])

(4.1)

∀� = [�ef ], σ = [σef ] ∈ Mn(U) and r > 0.
Then ∃B(x) := N – limn→∞ 16np( �

2n ) for each � ∈ Mn(U), and it defines a quartic mapping
B : U → V satisfying

∥
∥pn

(

[�ef ]
)

– B
(

[�ef ]
)∥
∥

n ≥
n

∑

e,f =1

(32 – 32L)r
(32 – 32L)r + Lϕ([�ef ], 0)

(4.2)

∀� = [�ef ] ∈ Mn(U) and r > 0.

Proof Set n = 1 in (4.1) and (4.2), we get
∥
∥
∥
∥

p(2� + σ ) + p(2� – σ ) – 4p(� + σ ) – 4p(� – σ ) – 24p(�) + 6p(σ )

– ρ

(

8p
(

� +
σ

2

)

+ 8
(

p
(

� –
σ

2

)

– 2p(� + σ ) – 2p(� – σ )
)

– 12p(�) + 3p(σ ), r
)∥

∥
∥
∥

≥ r
r + ϕ(�,σ )

(4.3)

and

∥
∥p(�) – B(�)

∥
∥ ≥ (16 – 16L)r

(16 – 16L)r + Lϕ(�, 0)
(4.4)

∀� = [�ef ] ∈ Mn(U) and r > 0.
When σ = 0, (4.3) ⇒

∥
∥2p(2�) – 32p(�), r

∥
∥ =

∥
∥32p(�) – 2p(2�), r

∥
∥ ≥ r

r + ϕ(�, 0)
(4.5)

∀� ∈ U.
By considering the linear mapping Z : D → D that satisfies

Zj(�) := 16j
(

�

2

)

∀� ∈ U.
Let j, h ∈ D be given such that g(j, h) = ε. Then

‖j(�) – h(�, εr) ≥ r
r + ϕ(�, 0)

, ∀� ∈ U, and r > 0.
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Hence

∥
∥Zj(�) – Zh(�), Lεr

∥
∥ =

∥
∥
∥
∥

16j
(

�

2

)

– 16h
(

�

2

)

, Lεr
∥
∥
∥
∥

= ‖j
(

�

2

)

– h
(

�

2
,

L
16

εr
)

≥
Lr
16

Lr
16 + ϕ( �

2 , 0)
≥

Lr
16

Lr
16 + ϕ(�, 0)

=
r

r + ϕ(�, 0)

∀� ∈ U and r > 0. So g(p, Zp) ≤ L
32 . Following from the evidence of Theorem 2.2, ∃ B : U →

V satisfying:
(1) B is a fixed point of Z, i.e.,

B
(

�

2

)

=
1

16
B(�) (4.6)

∀� ∈ U. Then B is the unique fixed point of Z in

M =
{

j ∈ D : g(p, j) < ∞}

.

⇒ B is the unique mapping satisfying (4.6) such that ∃ μ ∈ (0,∞) satisfying

∥
∥p(�) – B(�),μr

∥
∥ ≥ r

r + ϕ(�, 0)

∀� ∈ U;
(2) g(Znp, B) → 0 as n → ∞.
⇒

N – lim
n→∞ 16np

(
�

2n

)

= B(�)

∀ � ∈ U;
(3) g(p, B) ≤ 1

1–L g(p, Zp).
⇒

g(p, B) ≤ L
32 – 32L

.

So, (4.2) holds.
By utilizing the same technique of Theorem 3.1 and (4.3) ⇒

∥
∥B(2� + σ ) + B(2� – σ ) – 4B(� + σ ) – 4B(� – σ ) – 24B(�) + 6B(σ )

∥
∥

=
∥
∥
∥
∥
ρ

(

8B
(

� +
σ

2

)

+ 8B
(

� –
σ

2

)

– 2B(� + σ ) – 2B(� – σ )
)

– 12B(�) + 3B(σ )
∥
∥
∥
∥

∀�,σ ∈ U. So, B : U → V is quartic by Lemma 3.1 of [47]. �
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Example 4.2 Let ψ : R2 → [0,∞) be defined by

ψ(x) =

⎧

⎪⎪⎨

⎪⎪⎩

0, if x = 0;

ζx4, if |x| < 1;

ζ , otherwise,

where ζ > 0 is a constant. Define a function hm : R →R by

hm(x) =
∞

∑

n=0

ψ(2nx)
16

.

Then hm satisfies functional inequality (4.2).
By the same steps as in Example 3.2, we can find a mapping satisfying inequality (4.2).

Corollary 4.3 Assume that a real number with ρ > 4, θ ≥ 0 and p : U → V satisfies p(0) = 0
and

∥
∥
∥
∥

p
(

2[�ef ] + [σef ]
)

+ p
(

2[�ef ] – [σef ]
)

– 4p
(

[�ef ] + [σef ]
)

– 4p
(

[�ef ] – [σef ]
)

– 24p
(

[�ef ]
)

+ 6p
(

[σef ]
)

– ρ

(

8p
(

[�ef ] +
[σef ]

2

)

+ 8
(

p
(

[�ef ] –
[σef ]

2

)

– 2p
(

[�ef ] + [σef ]
)

– 2p
(

[�ef ] – [σef ]
)
)

– 12p
(

[�ef ]
)

+ 3p
(

[σef ]
)

, r
)∥

∥
∥
∥

n

≥
n

∑

e,f =1

r
r + θ (‖[�ef ]‖w + ‖[σef ]‖w)

(4.7)

∀� = [�ef ], σ = [σef ] ∈ Mn(U) and r > 0. Then p(�) := N – limn→∞ 16np( �

2n ) exists for each
� = [�ef ] ∈ Mn(U) and defines a quartic mapping B : U → V satisfying

∥
∥
(

p
(

[�ef ]
)

– B
(

[�ef ]
)

, r
)∥
∥

n ≥ 2(2w – 16)r
2(2w – 16)r +

∑n
e,f =1 θ‖[�ef ]‖w

∀� = [�ef ] ∈ Mn(U) and r > 0.

Proof The proof follows from Theorem 4.1 by choosing
∑n

e,f =1 φ([�ef ], [σef ]) :=
∑n

e,f =1 θ (‖[�ef ]‖w + ‖[σef ]‖w) ∀� = [�ef ], σ = [σef ] ∈ Mn(U). Then we can choose L = 24–w

for the desired result. �

Theorem 4.4 Assume a function ϕ : U2 → [0,∞) such that ∃ L < 1 resulting in

n
∑

e,f =1

ϕ
(

[�ef ], [σef ]
) ≤

n
∑

e,f =1

16Lϕ

(
[�ef ]

2
,

[σef ]
2

)

∀� = [xef ], σ = [σef ] ∈ Mn(U).
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Let p : U → V satisfy p(0) = 0 and

∥
∥
∥
∥

pn
(

2[�ef ] + [σef ]
)

+ pn
(

2[�ef ] – [σef ]
)

– 4pn
(

[�ef ] + [σef ]
)

– 4pn
(

[�ef ] – [σef ]
)

– 24pn
(

[�ef ]
)

+ 6pn
(

[σef ]
)

– ρ

(

8pn

(

[�ef ] +
[σef ]

2

)

+ 8pn

(

[�ef ] –
[σef ]

2

)

– 2pn
(

�ef ] + [σef ]
)

– 2pn
(

[�ef ] – [σef ]
)

– 12pn
(

[�ef ]
)

+ 3pn
(

[σef ]
)

, r
)∥

∥
∥
∥

n

≥
n

∑

e,f =1

r
r + ϕ([�ef ], [σef ])

(4.8)

∀� = [�ef ], σ = [σef ] ∈ Mn(U) and r > 0.
Then ∃B(�) := N – limn→∞ 1

16n p(2n�) for each � ∈ Mn(U), and it defines a quartic map-
ping B : U → V satisfying

∥
∥pn

(

[�ef ]
)

– B
(

[�ef ]
)∥
∥

n ≥
n

∑

e,f =1

(32 – 32L)r
(32 – 32L)r + Lϕ([�ef ], 0)

(4.9)

∀� = [�ef ] ∈ Mn(U) and r > 0.

Proof From Theorem 3.1 (D, g) is a generalized metric space
(4.5) ⇒

∥
∥
∥
∥

p(�) –
1

16
p(2�),

1
32

r
∥
∥
∥
∥

≥ r
r + ϕ(�, 0)

∀� = [�ef ] ∈ Mn(U) and r > 0. A linear mapping Z : D → D satisfies

Zj(�) :=
1

16
j(2�)

∀� = [�ef ] ∈ Mn(U). Then g(p, Zp) ≤ 1
32 . Hence

g(p, B) ≤ 1
32 – 32L

.

So, (4.9) holds.
The remainder of the proof is similar to Theorem 4.1. �

Corollary 4.5 Assume that a real number with 0 < ρ < 4, θ ≥ 0 and p : U → V is a map-
ping satisfying p(0) = 0 and (4.7). Then ∃B(�) := N – limn→∞ 1

16n p(2n�) for each � = [�ef ] ∈
Mn(U) and defines a quartic mapping B : U → V satisfying

∥
∥
(

p
(

[�ef ]
)

– B
(

[�ef ]
)

, r
)∥
∥

n ≥ 2(16 – 2w)r
2(16 – 2w)r +

∑n
e,f =1 θ‖[�ef ]‖w

∀� = [�ef ] ∈ Mn(U) and all r > 0.
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Proof The proof follows from Theorem 4.4 by choosing
∑n

e,f =1 φ([�ef ], [σef ]) :=
∑n

e,f =1 θ (‖[�ef ]‖w + ‖[σef ]‖w) ∀ � = [�ef ], σ = [σef ] ∈ Mn(U). Then we can choose L = 2w–4

for the desired result. �

5 Application
The Hyers-Ulam stability idea is very useful in practical applications in numerical anal-
ysis, biology, and economics. The SIS epidemic model, logistic equation (both difference
and differential), a response diffusion equation, and Cournot model in economics are all
generalized to nonlinear systems.

Local Hyers-Ulam stability for nonlinear differential and difference equations will be
investigated using a concept similar to local Lyapunov stability. For this, consider systems
(1.1), (1.2), and suppose

y(t) = x (t) + h(t), (5.1)

also suppose that h(t) is small, so linearize in it. By substituting (1.1) and (1.2), one obtains

h(t) ≤ δf (x )
∫ dx

f 2(x )
. (5.2)

Thus one has the following.

Proposition 5.1 If there is a constantA such that system (1.1) is locally Hyers-Ulam stable,
then

∣
∣
∣
∣
f (x )

∫ dx
f 2(x )

∣
∣
∣
∣

< A. (5.3)

Now consider a discrete system similarly

x (t + 1) = f (x ), t = 0, 1, 2, . . . ,
∣
∣y(t + 1) – f y(t)

∣
∣ < δ (5.4)

by supposing again

y(t) = x (t) + j (t), t = 0, 1, 2, . . . , (5.5)

assume that j (t) is small, so linearize in it. We obtain the following.

Proposition 5.2 A sufficient condition for system (5.4) to be locally Hyers-Ulam stable is
that there is constant A such that

∣
∣
∣
∣

df (x )
dx

< A < 1. (5.6)

Now we are going to discuss some applications of Hyers-Ulam stability.
1: Logistic differential equation

dx
dt

= sx (1 – x ), s > 0, constant t.By (5.7)
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Proposition 5.1 states that system (5.6) is locally Hyers–Ulam stable if there is a con-
stant A such that

|2x – 1 + 2x (1 – x ) log
(∣
∣x /(x – 1)

∣
∣
)

< A ∼= 1.2 ∀x ∈ [0, 1]. (5.8)

2: Logistic difference equation

x (t + 1) = sx (t)
[

1 – x (t)
]

, s > 0, constant t, x ∈ [0, 1]. (5.9)

By applying (5.6), system (5.9) is locally Hyers-Ulam stable if there is a constant A
such that

0 < s < A < 1.

3: SIS infection model in constant population The system is given by the equations

dR
dt

= –cRL,

dR
dt

= –cRL – zL, (5.10)

where N (population size) is divided into R(t) and L(t) (susceptible and infectious
individuals, respectively).

Hence, N = R + L, c, z > 0.
By rescaling N , we obtain (5.7), thus system (5.10) is locally Hyers-Ulam stable.

This is significant since determining the true number of infections can be quite chal-
lenging. Stochastic effects can also be substantial. Thus, if deterministic model is
close enough to reality, its convergence to an exact solution is guaranteed by the lo-
cal Hyers–Ulam stability.

6 Conclusion
In this research article, we have proved generalized Hyers-Ulam stability of cubic and
quartic ρ-functional inequalities in fuzzy matrix by using the fixed point approach, where
ρ �= 2 is a real number. We also provided examples to support our results. Finally, we dis-
cussed Hyers-Ulam stability from the application point of view.
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