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Abstract
In this paper, we propose a novel neural network that achieves stability within the
fixed time (NFxNN) based on projection to solve the split convex feasibility problems.
Under the bounded linear regularity assumption, the NFxNN admits a solution of the
split convex feasibility problem. We introduce the relationships between NFxNN and
the corresponding neural networks. Additionally, we also prove the fixed-time
stability of the NFxNN. The convergence time of the NFxNN is independent of the
initial states. The effectiveness and superiority of the NFxNN are also demonstrated by
numerical experiments compared with the other methods.

Keywords: Neural network; Finite-time stability; Fixed-time stability; Split convex
feasibility problems; Bounded linear regularity

1 Introduction
Since the split convex feasibility problem (SCFP) was introduced in [1] in 1994, the SCFP
was widely used in retrieval problems [1], image restoration [2], signal processing [3],
IMRT [4], systems biology [5]. Many numerical algorithms have been proposed to solve
the split convex feasibility problem (see, e.g., [5–11]). The SCFP is as follows:

find x ∈ C, y ∈ Q such that Ax = y, (1)

where C ⊂R
n and Q ⊂ R

m are two non-empty, closed and convex sets, and A : Rn →R
m is

a linear mapping. Among them, some classical and semi-alternating CQ algorithms were
proposed to solve the split convex feasible problems in [3, 7]. In fact, the CQ algorithm is
a projected gradient method, and its constrained minimization problem is as follows:

min
x∈C

1
2
‖Ax – PQAx‖2. (2)

As we know, projection method only is related to the orthogonal projection that is easy to
compute, and it does not require matrix inversion. The CQ algorithm is an efficient and
popular method to solve SCFP. The split convex feasibility problem can be converted into
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the CQ algorithm with the following iterative format:

xk+1 = PC
[
xk – λAT (I – PQAxk

]
, k = 0, 1, 2, . . . , (3)

where PC , PQ are the orthogonal projections onto C, Q, respectively, λ is suitable positive
constant, AT is the transpose of A, and I is the identical operator,

In addition, a wide variety of continuous-time algorithms attracted increasing attention
in areas such as optimization, artificial intelligence, image restoration, and optimal con-
trol (see, e.g., [12–15]). The dynamic system method was first proposed in [12] to solve the
linear programming problem of the electronic analog computer. Subsequently, a recurrent
neural network was presented to deal with the nonlinear projection formulation in [13]. To
further solve the optimization problem, a new continuous dynamical system of a gradient-
projection type was proposed and studied in [14]. Some neural network models were in-
troduced to solve projection formulation in [15]. The continuation of the split convex fea-
sibility problem has recently been studied. A projection dynamical system was proposed
to solve the split equality problem in [16]. Continuous CQ algorithms were proposed, and
an exponential convergence was obtained under the bounded linear regularity property in
[17]. Although neural networks and their variants have been widely adopted, discrete al-
gorithms generally focus on the analysis of convergence and complexity, and continuous
algorithms mainly focus on the convergence rate, and theoretical research mainly deals
with the asymptotic or exponential stability (see, e.g., [17–21]). Among the existing works
on the CQ algorithm and variations for the SCFP, the convergence and convergence rate
of algorithms have received great attention (see, e.g., [5, 22]), but a few papers deal with
convergence time.

In practical production, more attention is paid to the convergence time of the method.
As discussed in [23], the design of finite-time convergence based on asymptotic or ex-
ponential stability was of more practical significance than the classical asymptotic and
exponential stability. Nevertheless, the finite-time terminating neural network method
is highly dependent on the initial conditions. To overcome this drawback, the notion of
convergence within a fixed time was introduced in [24]. Recently, some neural networks,
which achieve convergence within a finite time or fixed time, were proposed to solve some
mathematical models, such as �1-minization problem, absolute value equation, and mixed
variational inequalities (see, e.g., [25–31]). First, a novel proximal dynamical system, which
achieves the fixed-time stability, was presented to deal with mixed variational inequality
problems in [26]. For different problems, a new proximal neurodynamic network that is
fixed-time converging (FXPNN) was proposed to solve equilibrium problems (EPs) in [28].
Recently, a dynamical system was released to deal with the split feasibility problem within
the fixed time in [30]. To further decrease the convergence time of the dynamical system, a
novel dynamical system that can update automatically, dynamical stepsize was established
to deal with pseudo-monotone mixed variational inequalities in [31]. As far as we know,
few papers exist for solving split convex feasible problems in fixed-time stability. We want
to combine continuous algorithms with convergence time to make the algorithm more
intuitive and efficient.

Motivated by the above works, we investigate a novel fixed-time stability neural network
(NFxNN) to deal with the SCFP. Further, the fixed-time stability of the NFxNN is obtained
under the bounded linear regularity assumption. Under mild conditions, we prove that the
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equilibrium point of the NFxNN globally converges to a solution of the SCFP. Besides, the
convergence time of the NFxNN is uniformly bounded and is independent of any initial
condition. Numerical examples present the efficiency and competitiveness of the NFxNN
compared with the neural network systems.

Compared with the existing related work, the contributions of this paper can be sum-
marized as follows:

(i) To solve the SCFP, we propose a new fixed-time neural network model. The
stability of the neural network is proved. It is proved that the NFxNN converges to
the solution within a fixed time. The convergence time is uniformly bounded and is
independent of the initial condition.

(ii) The convergence results are compared with the relative methods (such as [17, 30]).
We provide an upper bound formula for the convergence time independent of the
initial condition. Compared with other methods, the NFxNN is faster to solve the
SCFP. Examples in the paper show that the convergence time of the NFxNN is
slightly faster than the fixed-time system in [30] and is faster than the neural
network in [17].

(iii) The relations between the parameters of the NFxNN and the fixed-time stability
are discussed through the combination of theory and simulation. In this paper, the
influence of parameters γ , α1, α2 on the NFxNN is presented. This provides a
reference for us to choose the appropriate parameters when solving the SCFP with
this model.

The rest of this article is structured as follows: Sect. 2 reviews useful notions and defini-
tions. A new fixed-time stability neural network model and the consistent discretization
of the NFxNN are presented, and its global convergence is proved in Sect. 3. Numerical
examples also confirm the effectiveness of the method in Sect. 4. Section 5 gives a conclu-
sion.

2 Preliminaries
In this paper, let Rn be the n-dimensional Euclidean space with the inner products 〈·, ·〉
and the Euclidean norm ‖ · ‖. � denotes the solution set of the split convex feasibil-
ity problem. For the sets U ⊆ R

n and V ⊆ R
m, the family of k-times continuously dif-

ferentiable functions from U to V is denoted by Ck(U , V ), i.e., Ck(U , V ) := {f : f : U →
V is k-times continuously differentiable mapping}. The supremum of a set S, denoted as
sup(S), is the smallest real number M such that M is greater than or equal to every element
in S.

2.1 Definitions and notions
We first review some common definitions and facts.

Definition 1 [32] Let F : Rn →R
n be a mapping. F is called

(i) μ-Lipschitz continuous on R
n if there is a constant μ > 0 that satisfies

μ‖x – y‖ ≥ ∥
∥F(x) – F(y)

∥
∥, ∀x, y ∈R

n,

and F is said to be nonexpansive if it is 1-Lipschitz continuous.
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(ii) β strongly monotone on R
n if there is a constant β > 0 to satisfy

〈
F(x) – F(y), x – y

〉 ≥ β
∥∥F(x) – F(y)

∥∥2, ∀x, y ∈R
n.

F is said to be firmly nonexpansive if it is 1-inverse strongly monotone.
(iii) �-averaged mapping if it is reformulated into

F(x) = (1 – �)I + �T ,

where � ∈ (0, 1), I is the identity mapping, and T : Rn →R
n denotes a

nonexpansive mapping.
(iv) Firmly nonexpansive iff

‖x – y‖2 –
∥∥(I – F)x – (I – F)y

∥∥2 ≥ ∥∥F(x) – F(y)
∥∥2, ∀x, y ∈ R

n.

Property 1 We give the nonexpansive projection mapping:
(i) Both PC and I – PC are firmly nonexpansive, iff

〈
x – PC(x), y – PC(x)

〉 ≤ 0, ∀x ∈R
n, y ∈ C,

and

〈
PC(x) – PC(y), x – y

〉 ≥ ∥
∥PC(x) – PC(y)

∥
∥2, ∀x, y ∈ R

n.

(ii) A mapping is said to be nonexpansive if it is averaged or firmly nonexpansive.

Definition 2 [17] Suppose that the solution set � of the SCFP is non-empty, the SCFP is
called to satisfy the bounded linear regularity property if, for any r > 0, such that B(0, r) ∩
� 
= ∅, there is a 	r > 0 to satisfy

dis(x,�) ≤ 	r dis(Ax, Q), ∀x ∈ B(0, r) ∩ C, (4)

where � is the solution set of the SCFP, and dis(·, ·) is the distance function, B(x, r) and
B(x, r) denote the open and closed ball with center at x and radius r, respectively.

We consider the following differential equation:

ẏ = f (y), (5)

where f : Rn → R
n is a vector valued function, and f (0) = 0. Suppose that the solution of

differential equation (5) exists. Without loss of generality, we suppose that the origin is the
unique equilibrium point of equation (5).

Definition 3 [33] The origin is called to be a finite-time stability equilibrium of equation
(5) if equation (5) is Lyapunov stable and finite-time convergent, i.e., for any y(0) ∈ O \
{0}, limt→T y(t) = 0, where O is some open neighborhood of the origin and T = T(y(0)) <
∞. The origin is called to be a globally finite-time stability equilibrium of equation (5)
whenever O = R

n.
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Definition 4 [24] The origin is called to be a fixed-time stability equilibrium of equation
(5) if it is globally finite-time stability, and the setting time T(y(0)) is uniformly bounded,
i.e., there exists T̄ < ∞ such that supx(0)∈Rn T(y(0)) ≤ T̄ .

Lemma 1 [33] Suppose that there is a positive definite function V ∈ C1(D,R) to satisfy

V̇ (y) + cV (y)α ≤ 0, ∀y ∈ V \ {0}, (6)

where D ⊆ R
n is a neighborhood of the origin, an open neighborhood V ⊆ D of the origin,

c > 0 and α ∈ (0, 1) are constants. Then, the origin is a finite-time stability equilibrium point
of equation (5) with the setting time T ≤ V (y(0))1–α

c(1–α) .

Lemma 2 [24] Suppose that there exists a positive definite function V ∈ C1(Rn,R) to satisfy

V̇ (y) ≤ –mV (y)a – nV (y)b, ∀y ∈ V\{0}, (7)

where m, n > 0, 0 < a < 1 and b > 1. Then, equation (5) is a fixed-time stability with settling
time T ≤ 1

m(1–a) + 1
n(b–1) .

2.2 Neural network approach
In this subsection, we present a projection-based neural network approach to solve the
SCFP (1). We give some decision methods for solving the SCFP (1).

It follows that x ∈ C is a solution of the SCFP (1) iff it is a solution of the following:

Find x ∈ C such that y = Ax ∈ Q.

Based on CQ algorithm (3), the paper [17] proposed a continuous neural network (NN)
to deal with the SCFP (1). For simplicity, let us use the following auxiliary functions:

U = I – γ AT (I – PQ)A, (8)

where x ∈ R
n and γ ∈ (0, 2

‖A‖2 ). The neural network (NN) method is as follows:

ẋ = –λ{x – PC ◦ Ux}, (9)

where the function U is defined by (8) for γ ∈ (0, 2
‖A‖2 ) and λ > 0. As a convenience, we let


(x) = x – PC ◦ Ux.

Lemma 3 [34] Assume that the solution set � of the SCFP is non-empty. The following
statements are the same:

(i) x∗ solves the SCFP.
(ii) PC ◦ Ux∗ = x∗, i.e., � = {x|
(x) = 0}.

(iii) x∗ ∈ C and Ux∗ = x∗.
(iv) x∗ ∈ C and Ax∗ = PQAx∗.
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2.3 Blanket assumptions
Assumption 1 The SCFP is satisfied with bound linear condition with a constant 	 .

Assumption 2 The parameter γ ∈ (0, 2
L ) with L = ‖A‖2.

Assumption 3 If 	 2L < 1, we take γ ∈ (0, 1–
√

1–	 2L
L ) or γ ∈ ( 1+

√
1–	 2L
L , 2

L ).

Assumption 4 There exists x ∈R
n, such that 
(x) = 0.

Remark 1 Assumption 2 guarantees that the NFxNN (10) has a unique solution. Assump-
tions 1 and 3 guarantee that the NFxNN (10) achieves stability within the fixed time. As-
sumption 4 guarantees a consistent discretization of the NFxNN (10).

Lemma 4 [3] If Assumption 2 holds, then U : Rn →R
n is an averaged mapping.

Lemma 5 Assumption 2 holds. Then,

∥∥
(x) – 
(y)
∥∥ ≤ 2‖x – y‖, ∀x, y ∈R

n.

Proof It is proved in [17, Theorem 1, p. 2993]. �

3 Fixed-time stability of the NFxNN and its convergence time estimation
A novel neural network is introduced to deal with the split convex feasibility problem.
The fixed-time stability of the proposed neural network is obtained, and the upper bound
forum of its convergence time is uniformly bounded. Moreover, it is irrelevant to the initial
states.

3.1 A fixed-time converging neural network to deal with the SCFP
Inspired by [17, 31], we now present a new fixed-time converging neural network
(NFxNN) to solve the SCFP (1):

ẋ = –ρ(x)(x – PC ◦ Ux), (10)

where λ > 0, γ ∈ (0, 2
‖A‖2 ), U is defined by (8), and

ρ(x) :=

⎧
⎨

⎩
ρ1

1
‖
(x)‖1–α1 + ρ2

1
‖
(x)‖1–α2 + ρ3

1
‖
(x)‖ , if x ∈R

n \ E(
),

0, else.

Where ρ1,ρ2,ρ3 > 0, α1 ∈ (0, 1), α2 > 1 are tunable parameters, 
(x) = x – PC ◦ Ux, and
E(
) = {x ∈ R

n|
(x) = 0} is the equilibrium points set of 
 .
Carefully observe NFxNN (10), which can also be expressed as:

ẋ = –ω(x)ρ1

(∥∥
(x)
∥∥α1

(
1 +

ρ2

ρ1

∥∥
(x)
∥∥α2–α1

)
+

ρ3

ρ1

)
, (11)

where –ω(x) = 
(x)
‖
(x)‖ = x–PC◦Ux

‖
(x)‖ . From the perspective of algorithm design, ω(x) can be
deemed as a search direction, and αt := ρ1(‖
(x)‖α1 (1 + ρ2

ρ1
‖
(x)‖α2–α1 ) + ρ3

ρ1
) can be
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deemed as stepsize at the current iterate x = x(t) in NFxNN (10). The stepsize αt can be
self-update with respect to t whenever ρ1, ρ2, ρ3 and α1, α2 are given. If ρ3 = 1, the NFxNN
(10) is reduced to

ẋ = –ω(x)ρ1

(∥∥
(x)
∥∥α1

(
1 +

ρ2

ρ1

∥∥
(x)
∥∥α2–α1

)
+

1
ρ1

)
.

If ρ1 = ρ2 = 0 in the NFxNN (10), the NFxNN (10) is reduced to neural network (NN) in
[17]

ẋ = –ρ3ω(x). (12)

If ρ2 = ρ3 = 0, the NFxNN (10) is reduced to the following finite-time converging neural
network (FiNN):

ẋ = –ρ1ω(x)(x – PC ◦ Ux)α1 . (13)

If ρ3 = 0 in, specially the tunable parameter α = 1 in [30], the NFxNN (10) degenerates
into the fixed-time dynamical system (FxDS) in [30].

ẋ = –ω(x)
(
ρ1(x – PC ◦ Ux)α1 + ρ2(x – PC ◦ Ux)α2

)
. (14)

Besides, the stepsize αt in NFxNN (10) when ρ3 > 0 is larger than that when ρ3 = 0. Gen-
erally, the larger stepsize can speed up the convergence rate of the numerical algorithms.
It will be showed in Sect. 5. So, the NFxNN (10) is distinct of the fixed-time dynamical
system in [30].

3.2 Convergence analysis of the NFxNN with the fixed time
We establish the globally convergence of the NFxNN. Futhermore, its convergence time
estimation is obtained under the bounded linear regularity assumption and the Lipschitz
continuity assumption. For proving the convergence of the NFxNN (10), we give the fol-
lowing auxiliary lemmas.

Lemma 6 x∗ ∈ � is a solution of the NN (9) iff it is a solution of the NFxNN (10).

Proof If x∗ ∈ � is a solution of the NFxNN (10), then

ρ
(
x∗)(x∗ – PC ◦ Ux∗) = 0

⇒ ρ1

(x∗)

‖
(x∗)‖1–α1
+ ρ2


(x∗)
‖
(x∗)‖1–α2

+ ρ3

(x∗)

‖
(x∗)‖ = 0 or ρ
(
x∗) = 0

⇒ 

(
x∗)

(
ρ1

1
‖
(x∗)‖1–α1

+ ρ2
1

‖
(x∗)‖1–α2
+ ρ3

1
‖
(x∗)‖

)
= 0 or x∗ ∈ E(
)

⇒ 

(
x∗) = 0 or x∗ ∈ E(
),

it means that x∗ is a solution of the equation (9).
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On the other hand, if x∗ is a solution of the equation (9), 
(x∗) = 0, we get

ρ
(
x∗)(PC ◦ Ux∗ – x∗) = 0,

which gets that x∗ is a solution of the NFxNN (10). So far, we have completed the proof. �

Remark 2 The significant idea of the projection neural approach is to establish the equiva-
lence between optimization problems and Brouwer’s fixed-point problems. The SCFP (1)
is equivalent to the solution of equation (9). Due to Lemma 6, the NFxNN (10) can solve
the SCFP (1).

Lemma 7 Let x(t) be the trajectory of system (10). Where x(t0) = x0 ∈ C and x∗ ∈ �, which
satisfies x(t) → x∗. Let x∗ ∈ � be a solution of the SCFP. Let Assumptions 1, 2, and 3 hold.
Then, ‖PC ◦ Ux – P�x‖ ≤ τ‖x – P�x‖, where 0 < τ =

√
1 – γ (2–γ L)

	 2 < 1, and U is defined by
(8).

Proof Due to nonexpansive property of projection mapping, we get

∥
∥PC ◦ Ux – PC ◦ U(P�x)

∥
∥2 ≤ ∥

∥Ux – U(P�x)
∥
∥2. (15)

Recalling the definition of U in (8), we have

∥∥Ux – U(P�x)
∥∥2

=
∥
∥x – P�x – γ AT (I – PQ)Ax + γ AT (I – PQ)AP�x

∥
∥2

= ‖x – P�x‖2 +
∥
∥γ AT (I – PQ)Ax – γ AT (I – PQ)A(P�x)

∥
∥2

– 2
〈
x – P�x,γ AT (I – PQ)Ax – γ AT (I – PQ)A(P�x)

〉
.

We now estimate the last two terms of the above formula. Using (iii) of Lemma 3 and the
L definition of Assumption 2, we have that

∥
∥γ AT (I – PQ)Ax – γ AT (I – PQ)A(P�x)

∥
∥2 ≤ γ 2L

∥
∥(I – PQ)Ax

∥
∥2.

From (i) of Property 1 and (iv) of Lemma 3, we get

–2
〈
x – P�x,γ AT (I – PQ)Ax – γ AT (I – PQ)A(P�x)

〉

= –2γ
〈
Ax – A(P�x), (I – PQ)Ax – (I – PQ)A(P�x)

〉

≤ –2γ
∥
∥(I – PQ)Ax

∥
∥2.

Substitute the above two inequalities into (15), we get

∥
∥PC ◦ Ux – PC ◦ U(P�x)

∥
∥2 ≤ ‖x – P�x‖2 – γ (2 – γ L)

∥
∥(I – PQ)Ax

∥
∥2.

Sine x(t) ∈ C for all t ≥ t0 was proved in [17, Lemma 3.4, p. 2998], and the bounded linear
regularity property holds, there is a 	 > 0 and t̄ ≥ t0 such that

dist(x,�) = ‖x – P�x‖ ≤ 	
∥∥(I – PQ)Ax

∥∥, ∀t ≥ t̄.
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So,

–γ (2 – γ L)
∥
∥(I – PQ)Ax

∥
∥2 ≤ –

γ (2 – γ L)
	 2 ‖x – P�x‖2.

If 	 2L ≥ 1, then 0 < γ (2–γ L)
	 2 ≤ 1. If 	 2L < 1, we take γ ∈ (0, 1–

√
1–	 2L
L ) or γ ∈ ( 1+

√
1–	 2L
L , 2

L ),
then 0 < γ (2–γ L)

	 2 < 1. We can get that

∥
∥Ux – U(P�x)

∥
∥2 ≤

(
1 –

γ (2 – γ L)
	 2

)
‖x – P�x‖2. (16)

By Lemma 3, we have PC ◦ U(P�x) = P�x. It follows from (15) and (16) that

‖PC ◦ Ux – P�x‖ ≤ τ‖x – P�x‖,

with τ =
√

1 – γ (2–γ L)
	 2 ∈ (0, 1). It completes the proof. �

Theorem 1 Let x(t) be the trajectory of system (10). Where x(t0) = x0 ∈ C and x∗ ∈ �

satisfy x(t) → x∗. Let x∗ ∈ � be a solution of the SCFP. Assumptions 1, 2, and 3 hold. Then
the solution of the SCFP is a globally fixed-time equilibrium point of the NFxNN, and the
convergence time is given as

T(x0) ≤ 1
N1(1 – p1)

+
1

N2(p2 – 1)
,

where x0 is an initial point of the NFxNN (10), and p1 = 1+α1
2 , p2 = 1+α2

2 , N1 = 2
1+α1

2 ρ1 ×
1–τ

(1+τ )1–α1 , N2 = 2
1+α2

2 (1 – τ )α2 (ρ2 + ρ3
1

‖
(x)‖α2 ) for x ∈R
n and τ =

√
1 – γ (2–γ L)

	 2 ∈ (0, 1).

Proof It follows from the global version of the Picard-Lindelöf theorem in [35, Theo-
rem 2.2, p. 38] that the NFxNN (10) can achieve a unique solution under the Assumptions
1, 2, and 3. Since x∗ is a solution of the NFxNN (10), we deduce by the global version of the
Picard-Lindelöf theorem and Lemma 6 that x∗ ∈ R

n is a unique solution of the NFxNN
(10). To simplify the proof, we derive from Lemma 7 that

〈
x – P�x,ω(x)

〉
=

1
‖
(x)‖〈x – P�x, x – P�x + P�x – PC ◦ Ux〉

=
1

‖
(x)‖
(‖x – P�x‖2 – 〈x – P�x, PC ◦ Ux – P�x〉)

≥ (1 – τ )
1

‖
(x)‖‖x – P�x‖2, (17)

where the inequality can be obtained by Lemma 7, i.e.,

〈
x – P�x,
(x)

〉 ≥ (1 – τ )‖x – P�x‖2.

The solution of the NFxNN (10) exists uniquely for any initial state according to [26,
Proposition 2]. Now, consider a candidate Lyapunov function:

V
(
x(t)

)
=

1
2

dist2(x(t),�
)

=
1
2
∥∥x(t) – P�x(t)

∥∥2. (18)
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The time-derivation of the candidate Lyapunov function V along the solution of (10), we
get

V̇ (x) = (x – P�x)�ẋ

= –
(
ρ1

∥∥
(x)
∥∥α1 + ρ2

∥∥
(x)
∥∥α2 + ρ3

)〈
x – P�x,ω(x)

〉

≤ – ρ1(1 – τ )
‖x – P�x‖2

‖
(x)‖α1
– ρ2(1 – τ )

‖x – P�x‖2

‖
(x)‖α2
– ρ3(1 – τ )

‖x – P�x‖2

‖
(x)‖
≤ – ρ1

1 – τ

(1 + τ )1–α1
‖x – P�x‖1+α1

– (1 – τ )α2
(
ρ2 + ρ3

∥
∥
(x)

∥
∥α2)‖x – P�x‖1+α2 , (19)

where the first inequality is established by inequality (17), and the second by Lemma 7.
Then,

V̇ ≤ –M1‖x – P�x‖1+α1 – M2‖x – P�x‖1+α2 , (20)

where M1 = ρ1
1–τ

(1+τ )1–α1 and M2 = (1 – τ )α2 (ρ2 + ρ3‖
(x)‖α2 ).
It can be seen from (18) and (21) that

V̇ (x) ≤ –M1‖x – P�x‖1+α1 – M2‖x – P�x‖1+α2

= –M1
(
2V (x)

) 1+α1
2 – M2

(
2V (x)

) 1+α2
2

≤ –
(
N1V (x)p1 + N2V (x)p2

)
, (21)

where pi = 1+αi
2 , i = (1, 2), Ni = Mi2pi , i = (1, 2). And N1 = M12p1 > 0, p1 = 1+α1

2 ∈ (0, 0.5)
since α1 ∈ (0, 1), N2 = Mp2

2 > 0, p2 = 1+α2
2 ∈ (1,∞) since α2 ∈ (1,∞). It then follows from

Lemma 2, (ii) and (iv) of Lemma 3, and the intersection of two convex sets is still convex,
that the equilibrium point x∗ of the NFxNN (10) is globally fixed-time stability, and the
settling time satisfies

T
(
x(0)

) ≤ 1
N1(1 – p1)

+
1

N2(p2 – 1)
, (22)

where x(0) is an initial condition of the NFxNN (10) and N1 = 2
1+α1

2 ρ1
1–τ

(1+τ )1–α1 and N2 =

2
1+α2

2 (1 – τ )α2 (ρ2 +ρ3
1

‖
(x)‖α2 ). Here, ‖
(x)‖α2 > 0, for x ∈R
n, and since ρ3 > 0, ρ3

1
‖
(x)‖α2 >

0. We can find that the NFxNN (10) reduces the upper bound of the convergence time,
and the method is also independent of the initial state. The proof is completed. �

Theorem 2 Let x(t) be the trajectory of the FiNN (13). Where x(t0) = x0 ∈ C, and x∗ ∈ �

satisfies x(t) → x∗. Assumptions 1, 2, and 3 hold. For each α1 ∈ (0, 1), ρ1 > 0, the FiNN (13)
is finite-time stability with the convergence time

T ≤ V (x(0))1–β

c(1 – β)
,

where c = 2
1+α1

2 ρ1
1–τ

(1+τ )1–α1 > 0, β = 1+α1
2 ∈ (0.5, 1), 0 ≤ τ =

√
1 – γ (2–γ L)

	 2 < 1 and V (x(t)) =
1
2 dist2(x(t),�).
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Proof Follow the proof of Theorem 1. Then, the time-derivation of the candidate Lya-
punov function V along the solution of (13), one has

V̇ (x) = (x – x̄)�ẋ

=
〈
x – P�x,ρ1

PC ◦ Ux – x
‖
(x)‖1–α1

〉

=
〈
x – P�x,ρ1

PC ◦ Ux – P�x + P�x – x
‖
(x)‖1–α1

〉

= –ρ1
‖x – P�x‖2

‖
(x)‖1–α1
+

〈
x – P�x,ρ1

PC ◦ Ux – P�x
‖
(x)‖1–α1

〉

≤ –ρ1
‖x – P�x‖2

‖
(x)‖1–α1
+ ρ1

‖x – P�x‖‖PC ◦ Ux – P�x‖
‖
(x)‖1–α1

≤ –ρ1(1 – τ )
‖x – P�x‖2

‖
(x)‖1–α1
, (23)

where the first inequality is established by the Cauchy-Schwarz inequality, and the second
holds by Lemma 7, 
(x) = PC ◦ Ux – x and ψ(x) = PC ◦ Ux. Using Lemma 7, there exists
0 ≤ τ =

√
1 – γ (2–γ L)

	 2 < 1 such that

(1 – τ )‖x – P�x)‖ ≤ ‖x – P�x‖ –
∥
∥ψ(x) – P�x

∥
∥ ≤ ∥

∥x – ψ(x)
∥
∥, ∀x ∈ R

n,
∥
∥x – ψ(x)

∥
∥ ≤ ‖x – P�x‖ +

∥
∥ψ(x) – P�x

∥
∥ ≤ (1 + τ )‖x – P�x)‖, ∀x ∈R

n. (24)

Combining (23) with (24), we have

V̇ (x) ≤ –ρ1
1 – τ

(1 + τ )1–α1
‖x – P�x‖1+α1

= –2
1+α1

2 ρ1
1 – τ

(1 + τ )1–α1
V

1+α1
2

= –cV β ,

where c = 2
1+α1

2 ρ1
1–τ

(1+τ )1–α1 > 0, β = 1+α1
2 ∈ (0.5, 1). Therefore, it follows from Lemma 1 that

for each α1 ∈ (0, 1), the FiNN (13) is globally finite-time stability with the convergence time

T = T
(
x(0)

) ≤ V (x(0))1–β

c(1 – β)
,

which means that x∗ is a finite-time stability solution of the FiNN (13). �

Remark 3 (i) Theorem 1 presents the upper bound of the convergence time of the NFxNN
(10), which is less, and the accuracy is higher. Besides, the the upper bound of the conver-
gence time of the NFxNN (10) is less than that in [30].

(ii) We can see from Fig. 1 that the convergence time of the NFxNN (10) is about 0.01
second, and the convergence time of the FiNN (13) and the FxDS (14) is about 0.025 sec-
ond. The convergence time of the NN (12) is about 0.5 second. It can thus be seen that
the convergence time of the NFxNN (10) is less than that of the NN (12), the FiNN model
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(13), and the FxDS model (14), respectively. The convergence responses of the errors are
different in the NN (12), FiNN (13), FxDS (14), and NFxNN (10). The NFxNN (10) can
reach it quickly under the equal error condition, and NN (12) is much slower than them.

3.3 Consistent discretization of the NFxNN
Continuous-time neural networks provide an effective way to accelerate the design of
schemes for solving the split convex feasibility problems. Typically, discrete-time imple-
mentations use iterative methods to solve problems. We note that the fixed-time con-
vergence of continuous-time neural networks may not hold in discrete cases. Uniform
discretization refers to the discretization scheme that still has the convergence result of
the continuous-time neural network under discrete conditions. In this section, we give the
uniform discretization of the NFxNN (10). We next give the result of the forward-Euler
discretization of the NFxNN (10):

xn+1 – xn

η
= –ρ(xn)(xn – PC ◦ Uxn)), (25)

where η > 0 is the time-step and ρ(·) is given by (10), with ρ1,ρ2,ρ3 > 0, and xk := x(t) with
t = ηn and ẋ = dx

dt .

Theorem 3 Let x∗ be a trajectory of the SCFP. All assumptions of Theorem 1 hold. Then, for
every x0 ∈R

n, ε > 0 and γ ∈ (0, 2
L ), satisfying Assumptions 2, 3, and 4, there exist δ ∈ (0.5, 1),

N1, N2 and η∗ > 0 satisfied for any η ∈ (0,η∗], the sequence xn generated by (25) holds:

∥∥xn – x∗∥∥ <

⎧
⎨

⎩

√
2(

√
N1
N2

tan( π
2 –

√
N1N2δηk))

1
2–2δ + ε, n ≤ n∗;

ε, otherwise,

where n∗ = � π

2
√

N1N2ηδ
�, �x� = [x] + 1. [x] denotes the largest integer not exceeding x, and xn

is a solution of (25) staring from the point x0, and x∗ ∈ R
n is the solution of (10). α1, α2,

N1, N2 is given by Theorem 1.

Proof Since PC ◦ Ux is Lipschitz continuous, 
(x) is continuous. The remainder of proof
is like Theorem 4 in [26]. So, it is omitted. �

4 Numerical experiments
In this section, we aim to illustrate the analytical results with some simulations. We
demonstrate the validity of the proposed approaches to deal with the split convex fea-
sibility problem by several numerical examples. All programs are edited by Matlab 2018.
All programs are executed on a personal computer. Unless otherwise stated, let α = 0.2,
α1 = 0.2, α2 = 1.2, ρ1 = ρ2 = 100 and γ = 1

L .

Example 1 [6, 17] Consider the SCFP (1), where

A =

⎡

⎢
⎣

2 –1 3
4 2 5
2 0 2

⎤

⎥
⎦ , B = I, C =

{
x ∈R

3|x1 + x2
2 + 2x3 ≤ 0

}
and

Q =
{

y ∈R
3|y2

1 + y2 – y3 ≤ 0
}

.
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Fig. 1 (a) The trajectory of the NN (12) in [17] with initial condition x0 = [1, 1, 1]T ; (b) The trajectory of the FiNN
(13) with initial condition x0 = [1, 1, 1]T ; (c) The trajectory of the FxDS (14) with initial condition x0 = [1, 1, 1]T ;
(d) The trajectory of the NFxNN (10) with initial condition x0 = [1, 1, 1]T ; (e) Convergence responses of the
errors log10 ‖x(t) – x∗‖22 for the neural network (12) (red), the FiNN (13) (green), the FxDS (14) (purple) and the
NFxNN (10) (blue)

All requirements in Theorem 1 can be met. Numerical simulations of the NN system (12)
in [17] achieve the equilibrium point x∗ = [0.2488, 0.0831, –0.2969]T ∈ �. Numerical sim-
ulations of the FiNN system (13) obtain the solution x∗ = [0.2437, 0.0810, –0.2954]T ∈ �.
Numerical simulations of the FxDS system (14) converge to the point x∗ = [0.2129, 0.0703,
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–0.2914]T ∈ �. Numerical simulations of the NFxNN system (10) achieve the solution
x∗ = [0.2237, 0.0758, –0.2905]T ∈ �. Figure 1 presents the convergence trajectories of the
NN (12) in [17] , the FiNN model (13), the NFxNN (10) for initial conditions x0 = [1, 1, 1]T .
We can see from Fig. 1 that the convergence time of the NFxNN (10) is about 0.01 second,
and the convergence time of the FiNN (13) and the FxDS (14) is about 0.025 second. The
convergence time of the NN (12) is about 0.5 second. It can thus be seen that the conver-
gence time of the NFxNN (10) is less than that of the NN (12), the FiNN model (13), and
the FxDS model (14), respectively. The convergence responses of the errors are different
in the NN (12), FiNN (13), FxDS (14), and NFxNN (10). The NFxNN (10) can reach it
quickly under the equal error condition, and NN (12) is much slower than them.

Example 2 [17] We consider SCFP (1): the matrix A = (aij)2×2 and aij ∈ (0, 1) are generated
randomly, and C = {u ∈ R

2|c(u) ≤ 0} and Q = {v ∈ R
2|q(v) ≤ 0} are the non-empty closed

convex set with

c(u) = –u1 + u2
2,

q(v) = v1 + v2
2;

for all u = (u1, u2)T ∈ R
2 and v = (v1, v2)T ∈R

2. We take

A =

[
0.9572 0.8013
0.4854 0.1419

]

and x0 =

[
–10

4

]

,

generated randomly. All conditions of Theorem 1 are satisfied. The trajectory x(t) of
the NN in [17] achieves the point x∗ = [–0.0003956, 0.0005248]T ∈ �. Numerical sim-
ulations of the FiNN system (13) converge to the equilibrium point x∗ = [0.00001986,
–0.00003241]T ∈ �. Numerical simulations of the FxDS (14) obtain the solution x∗ =
[0.00001994, –0.00002881]T ∈ �. Numerical simulations of the NFxNN (10) converge to
the point x∗ = [0.00001994, –0.00002881]T ∈ �.

Figure 2 demonstrates the convergence trajectories of the NN (12) in [17], the FiNN
(13), the FxDS (14), and the NFxNN (10) for initial conditions x0. We can observe from
Fig. 2 that the convergence time of the NFxNN (10) is about 0.05 second. The NFxNN (10)
takes about 0.06 second, and the convergence time of the NN (12) is much more than 0.5
second. The FiNN (13) takes about 0.09 second. We can observe the difference from the
convergence responses of the errors in Fig. 2 (d). It also presents that the convergence rate
of the NFxNN (10) is faster than that of the NN (12) and slightly faster than that of the
FiNN (13) and FxDS (14). So, the convergence time of the NFxNN (10) is less than that of
the NN (12), FiNN (13), and FxDS (14). From the error image, we can also see that the NN
(12) achieves less accuracy than the FiNN (13), FxDS (14), and NFxNN (10).

Example 3 [18] Consider linear equation problem (LEP), find x ∈R
n to satisfy

Bx = b.
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Fig. 2 (a) The trajectory of the NN (12) in [17] with initial condition x0 = [–10, 4]T ; (b) The trajectory of the FiNN
(13) with initial condition x0 = [–10, 4]T ; (c) The trajectory of the the FxDS (14) with initial condition
x0 = [–10, 4]T ; (d) The trajectory of the NFxNN (10) with initial condition x0 = [–10, 4]T ; (e) Convergence
responses of the errors log10 ‖x(t) – x∗‖22 for the neural network (12) (red), the FiNN (13) (green), the FxDS (14)
(purple) and the NFxNN (10) (blue)

When C = R
n and Q = {b}, the LEP can transform into a split feasible problem. In this

case, the algorithm degrades into the following form:

xn+1 = xn + γ BT (b – Bxn), n = 0, 1, 2, . . . ,
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for x0 arbitrary. So, system (9) degrades into the following dynamical system:

ẋ = γ BT (b – Bx), n = 0, 1, 2, . . . .

We consider LEP with

B =

⎡

⎢
⎣

2 –1 3
4 2 5
2 1 2

⎤

⎥
⎦ , b = [1, 4, 7]T .

By means of algebraic calculation, it is easy to verify that x∗ = [9, –1, –6]T is a unique solu-
tion. All numerical simulations achieve the unique solution x∗ = [9, –1, –6]T . Figure 3 dis-
plays that the trajectories of dynamical system (12), (13), (14), and (10) with initial point
x0 = [–3, 5, 2]T . And all globally converge to x∗.

Figure 3 presents the convergence trajectories of the NFxNN (10), FxDS (14), FiNN (13),
and NN (12) in [17] for solving the split convex feasibility problem.

We can observe from Fig. 3 (a), (b), (c) the convergence times of the NFxNN (10), FxDS
(14), FiNN (13), and NN (12). The NFxNN (10) takes about 0.1 second. The FxDS (14)
and FiNN (13) are about 0.2 second, and the NN (12) is much more than 2 second. So, the
convergence speed of the NFxNN (10) is faster than that of the FxDS (14), FiNN (13), and
NN (12). The difference on the convergence error of the NFxNN (10), FxDS (14), FiNN
(13), and NN (12) is also shown from the convergence errors in Fig. 3 (d).

Example 4 We use the continuous-time method to solve the problem of recovering noisy
sparse signals from a limited number of samples. The problem was considered in [8]. Let
x ∈ R

n be a K – sparse signal and K � n. The sampling matrix B ∈ R
m×n is stimulated by

the standard Gaussian distribution and vector b = Bx + e with e being an additional noisy.
The main work is to recover the signal x from the data b. The recovering noisy sparse
signals can be converted into the LASSO problem:

min
x∈Rn

1
2
‖Bx – b‖2

2

s.t. ‖x‖1 ≤ t,

where t > 0 is a given constant. We take C = {x : ‖x‖1 ≤ t} and Q = {b}, the above LASSO
problem is converted into SCFP (1). So, we can deal with the problem by dynamical system
(12), (13), (14), and (10). In the process of using the system to solve (such as (12), (13), (14)
and (10)), we take the following set of parameters: the initial point x0 ∈R

n of system (12),
(13), (14), (10) and the matrix B ∈ R

m×n are generated randomly. The true signal x ∈ R
n

with K non-zero elements is generated from uniform distribution in the interval [–2,2]
and vector b = Ax. Let m = n = 100, t = K = 10, γ = 1

‖A‖2 and λ = 5.
We compare the NFxNN (10) with NN (12) in [17], the FiNN (13), and FxDS (14). The

convergence trajectories of the NFxNN (10), the NN (12) in [17], the FiNN (13), the FxDS
(14) are shown in Fig. 4. We can observe from Fig. 4 (a), (b), (c), (d) the convergence time of
the NFxNN (10), FxDS (14), FiNN (12), and NN (9). The NFxNN (10) is about 0.02 second.
The FxDS (14) takes about 0.025 second. The FiNN (12) is about 0.09 second. The NN (9)
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Fig. 3 (a) The trajectory of the NN (12) in [17] with initial condition x0 = [–3, 5, 2]T ; (b) The trajectory of the
FiNN (13) with initial condition x0 = [–3, 5, 2]T ; (c) The trajectory of the FxDS (14) with initial condition
x0 = [–3, 5, 2]T ; (d) The trajectory of the NFxNN (10) with initial condition x0 = [–3, 5, 2]T ; (e) Convergence errors
log10 ‖x(t) – x∗‖22 for the neural network (12) (red), the FiNN (13) (green), the FxDS (14) (purple) and the NFxNN
(10) (blue)

is much more than 0.45 second. So, the convergence rate of the NFxNN (10) is quicker than
that of the FxDS (14), FiNN (13), and NN (12). The difference in the convergence rates of
the NFxNN (10), FxDS (14), FiNN (13), and NN (12) is also shown from the convergence
responses of the errors in Fig. 3 (d). Figure 4 means that the convergence rate of the NFxNN
(10) is faster than that of NN (12) in [17] and the FxDS (14).
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Fig. 4 (a) The trajectory of the NN (12) in [17]; (b) The trajectory of the FiNN (13); (c) The trajectory of the FxDS
(14); (d) The trajectory of the NFxNN (10); (e) Convergence responses of the errors log10 ‖x(t) – x∗‖22 for the NN
(12) (red), the FiNN (13) (green), the FxDS (14) (purple) and the NFxNN (10) (blue)

Taking Example 4 as an example, we explore the influence of parameters on the NFxNN
method. Figure 5 illustrates the influence of parameters γ , α1, and α2 on the NFxNN (10),
i.e., it means that the convergence time of the NFxNN (10) is obtained much less as γ

increase. When α1 tends to 0, the NFxNN (10) can achieve the solution faster. The NFxNN
(10) can converge to the solution faster while α2 tends to 1.
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Fig. 5 (a) The NFxNN (10) method plot of log10 ‖x(t) – x∗‖22 vs. t (time) for various values of γ ; ; (b) The NFxNN
(10) method plot of log10 ‖x(t) – x∗‖22 vs. t (time) for various values of α1; (c) The NFxNN (10) method plot of
log10 ‖x(t) – x∗‖22 vs. t (time) for various values of α2

5 Conclusions
The NFxNN for solving the split convex feasibility problem is proposed by using the pro-
jection method. Under the bound linear regularity assumption, the NFxNN obtains a so-
lution of the SCFP. At the same time, we derive the relationship between the method and
the corresponding neural network. We obtain the results of the global fixed-time stabil-
ity of the NFxNN, i.e., the convergence time of the NFxNN is independent of the initial
conditions, and the convergence time is uniformly bounded. The results obtained are dif-
ferent from the relevant neural network methods (such as [17, 30]). Numerical examples
also present the superiority and availability of the method.
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