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Abstract
In this paper, we generalize and extend the Baskakov-Kantorovich operators by
constructing the (p,q)-Baskakov Kantorovich operators

(ϒn,b,p,qh)(x) = [n]p,q
∞∑

b=0

qb–1υp,q
b,n (x)

∫

R

h(y)�
(
[n]p,q

qb–1

pn–1
y – [b]p,q

)
dp,qy.

The modified Kantorovich (p,q)-Baskakov operators do not generalize the
Kantorovich q-Baskakov operators. Thus, we introduce a new form of this operator.
We also introduce the following useful conditions, that is, for any 0 ≤ b ≤ ω, such that
ω ∈N, �ω is a continuous derivative function, and 0 < q < p ≤ 1, we have∫
R
xb�ω(x)dp,qx = 0. Also, for every � ∈ L∞,
(a) there exists a finite constant γ such that γ > 0 with the property � ⊂ [0,γ ],
(b) its first ω moment vanishes, that is, for 1≤ b ≤ ω, we have that∫

R
yb�(y)dp,qy = 0,

(c) and
∫
R
�(y)dp,qy = 1.

Furthermore, we estimate the moments and norm of the new operators. And finally,
we give an upper bound for the operator’s norm.
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1 Introduction and preliminaries
It has been three decades since Alexandru Lupas [18] for the first time introduced the no-
tion of quantum calculus in the field of approximation theory. Since there, the area has
become more active in research due to its application in different fields of science, engi-
neering, and mathematics. Many researchers work on the extension of operators (see in
Aral et al. [5]), the extended operators were known as exponential-type operators, which
include Baskakov operators, Szász-Mirakyan operators, Meyer-König-Zeller operators,
Picard operators, Weierstrass operators, and Bleiman, Butzer and Hahn operators. More-
over, q-analogue of standard integral operators of Kantorovich- and Durrmeyer-type was
introduced.
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The classical Baskakov operators for functions that are continuous on [0,∞) were estab-
lished by Baskakov [6], and the Baskakov-Kantorovich operators using integration were
constructed by Ditzian and Totik [10]. In 2009, Zhang and Zhu [27] investigated some
preservation properties, including monotonicity, smoothness, and convexity of Baskakov-
Kantorovich operators. Aral and Gupta [3] and Radu [26] generalized the Baskakov oper-
ators using a q-integer. With the use of q-integration Gupta and Radu [12] proposed the
following Kantorovich variant of the q-Baskakov operators:

(ξn,b,qh)(x) = [n]q

∞∑

b=0

qb–1Cq
b,n(x)

∫ [b+1]q
[n]q

q[b]q
[n]q

h
(
q1–by

)
dqy, (1.1)

where

Cq
b,n =

(
n + b – 1

b

)
xb

(1 + x)n+b
q

q
b(b–1)

2 .

Recently, many researchers have established and investigated the approximation proper-
ties of positive linear operators by employing the techniques of post-quantum calculus.
Several operators have been defined, and their approximation properties are discussed in
[14–17, 20–24].

(p, q)-calculus play a vital role in differential equations, physical sciences, hypergeomet-
ric series, and oscillator algebra. For example, Burban [8] uses the concept of (p, q)-calculus
to present the (p, q)-analogue of two-dimensional conformal field theory based on the
(p, q)-deformation of the su(1, 1) subalgebra of the Virasoro algebra.

Based on (p, q)-calculus, Aral and Gupta [4] constructed the (p, q)-analogue of classical
Baskakov operators for x ∈ [0,∞) and 0 < q < p ≤ 1, which is given as

(�n,p,qh)(x) =
∞∑

b=0

υ
p,q
n,b (x)h

(
pn–1[b]p,q

qb–1[n]p,q

)
, (1.2)

where

υ
p,q
n,b (x) =

(
n + b – 1

b

)

p,q
p

b+n(n–1)
2 q

b(b–1)
2

xb

(1 ⊕ x)n+b
p,q

.

Furthermore, Aral and Gupta [4] give the moments of operators (1.2). That is, for ej(x) = xj,
such that j = 0, 1, 2 and n ∈N, the following holds:

(�n,p,qe0)(x) = 1, (�n,p,qe1)(x) = x, (�n,p,qe2)(x) = x2 + x
pn–1

[n]p,q

(
1 +

p
q

x
)

(1.3)

for x ∈ [0, 1] and 0 < q < p ≤ 1.
Acar et al. [1] defined a (p, q)-analogue of modified Kantrovich-Baskakov operators,

such that for x ∈ [0,∞) and 0 < q < p ≤ 1, the Kantrovich variant of modified (p, q)-
Baskakov operators is presented as follows:

(Bn,p,qh)(x) = [n]p,q

∞∑

b=0

υ
p,q
n,b (x)q–b

∫ [b+1]p,q
[n]p,q

p[b]p,q
[n]p,q

h
(

pn–1y
qb–1

)
dp,qy. (1.4)
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Definition 1.1 Suppose that 0 < q < p ≤ 1, then for any nonnegative integer n, we have
the (p, q)-integer denoted by [n]p,q and defined as:

[n]p,q =
pn – qn

p – q
and [0]p,q = 0.

Definition 1.2 The (p, q)-power basis is also known as (p, q)-binomial expansion, that is,
for n ∈N, we have:

(ax + by)n
p,q =

n∑

k=0

p
(n–k)(n–k–1)

2 q
k(k–1)

2

(
n
k

)

p,q
an–kbkxn–kyk .

Definition 1.3 The (p, q)-derivative of the function f : R → R is denoted as Dp,qf and is
defined as:

(Dp,qf )(y) =
f (py) – f (qy)

(p – q)y
, for y �= 0.

If f is differentiable at y = 0, then (Dp,qf )(0) = f ′(0) holds. The assertions below hold true

Dp,q(y ⊕ b)n
p,q = [n]p,q(py ⊕ b)n–1

p,q for n ≥ 1,

Dp,q(b ⊕ y)n
p,q = –[n]p,q(b ⊕ qy)n–1

p,q for n ≥ 1,

and Dp,q(b ⊕ y)0
p,q = 0.

The formula for product and quotient (p, q)-derivative is:

Dp,q
(
f (x)h(x)

)
= h(qx)Dp,q

(
f (x)

)
+ f (qx)Dp,q

(
h(x)

)

and Dp,q

(
f (x)
h(x)

)
=

h(qx)Dp,q(f (x)) – f (qx)Dp,q(h(x))
h(qx)h(px)

respectively.

Definition 1.4 Let f : C[a, b] →R for b > a, then the (p, q)-integration of f is:

∫ a

0
h(y) dp,qy = (p – q)a

∞∑

i=0

h
(

qi

pi+1 a
)

qi

pi+1 when
∣∣∣∣
p
q

∣∣∣∣ < 1,

∫ a

0
h(y) dp,qy = (q – p)a

∞∑

i=0

h
(

pi

qi+1

)
pi

qi+1 when
∣∣∣∣
q
p

∣∣∣∣ < 1. (1.5)

The integral in Equation (1.5) is not always positive unless is assumed that h is nonde-
creasing function. Therefore, Acar et al. [1] introduced the following (p, q)-integration to
avoid some technical error during the construction of the Kantorovich modification of
various operators:

∫ b

a
h(y) dp,qy = (p – q)(b – a)

∞∑

n=0

h
(

a + (b – a)
qn

pn+1

)
qn

pn+1 when
∣∣∣∣
q
p

∣∣∣∣ < 1,

∫ b

a
h(y) dp,qy = (q – p)(b – a)

∞∑

n=0

h
(

a + (b – a)
pn

qn+1

)
pn

qn+1 when
∣∣∣∣
p
q

∣∣∣∣ < 1. (1.6)



Moreka et al. Journal of Inequalities and Applications        (2023) 2023:134 Page 4 of 16

2 Construction of operators
Refer to some critical facts on wavelets as defined by Meyer [19] and Graps [11]. The
wavelets formed by dilation and translation of a single function � (known as basic wavelets
or mother wavelets) are the set of functions that take the form

�η,λ(x) = η– 1
2 �

(
x – λ

η

)
, for η > 0 and λ ∈R.

If a and b are integers, then in the Franklin-Stromberg theory, we replace the constant η by
2a, and 2ab replaces λ. Given an arbitrary function h ∈ L2 in analysis of this function, the
wavelets will take the significant part of orthonormal basis, and the function h is defined
as:

h(x) =
∞∑

–∞

∞∑

–∞
β(a, b)�a,b(x),

where,

β(a, b) = 2
a
2

∫

R

h(x)�
(
2ax – b

)
dx.

An orthonormal basis for L2(R) defined in the form 2 a
2 �ω(2ax – b), where a and b are

integers, and ω is the positive integer, was constructed by Daubechies [9] with [0, 2ω+1] as
�ω support. If αω is the order of continuous derivatives of �ω and α is a positive constant,
then for any 0 ≤ b ≤ ω, where ω is a natural number, we have:

∫

R

xb�ω(x) dx = 0. (2.1)

Now, if we put ω = 0, the system reduces to a Haar system. Using wavelets in the con-
struction of Baskakov-type operators, Agratini [2] established the following condition for
� ∈ L∞,

(a) there exists a finite constant γ such that γ > 0 with the property � ⊂ [0,γ ],
(b) its first ω moment vanishes; that is, for 1 ≤ b ≤ ω, we have that

∫
R

yb�(y) dy = 0,
(c)

∫
R

�(y) dy = 1.
With the use of the Haar basis, Agratini [2] constructed wavelet Baskakov operators and
defined them as:

(μn,bh)(x) = n
∞∑

b=0

(
n + b – 1

b

)
xb

(1 + x)n+b

∫

R

h(y)�(ny – b) dy. (2.2)

The operators defined by Equation (2.2) extend the Baskakov-Kantorovich operators de-
fined by Ditzian and Totik [10]. Furthermore, for � ⊂ [0,γ ], Agratini [2] expressed the
operators μn,bh in the form of:

(μn,bh)(x) =
∞∑

b=0

(
n + b – 1

b

)
xb

(1 + x)n+b

∫ γ

0
h
(

y + b
n

)
�(y) dy. (2.3)
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In construction of the q-Baskakov-type operators, Nasiruzzaman et al. [25] introduced
other conditions. Let a positive constant be γ , and let �ω(x) be any continuous derivatives
of order γω. Also, for 0 ≤ b ≤ ω, such that ω ∈ N and q > 0, we have:

∫

R

xb�ω(x) dqx = 0. (2.4)

Note that if we put q = 1, Equation (2.4) reduces to Equation (2.1), and if we take ω = 0 and
q = 1, the system goes to the Haar basis. So, Nasiruzzaman et al. [25] provide the following
conditions ∀� ∈ L∞

(a) there exists a finite constant γ such that γ > 0 with the property � ⊂ [0,γ ],
(b) its first ω moment vanishes; that is, for 1 ≤ b ≤ ω, we have that

∫
R

yb�(y) dqy = 0,
(c)

∫
R

�(y) dqy = 1.
The following is the q-analogy for Baskakov-Kantorovich-type wavelet operators intro-
duced by Nasiruzzaman et al. [25]

(δn,b,qh)(x) = [n]q

∞∑

b=0

qb–1Cq
b,n

∫

R

h(y)�
(
qb–1[n]qy – [b]q

)
dqy. (2.5)

The operators defined by Equation (2.5) extended the Kantorovich q-Baskakov operators
defined by Radu [26]. That is, if we choose ω = 0 and � Haar basis, Equation (2.5) reduces
to operators defined by Equation (1.1). Additionally, by choosing ω = 0, q = 1, and � Haar
basis, we get the Kantorovich modification of Baskakov operators defined by Ditzian and
Totik [10]. For � ⊂ [0,γ ], operators defined by Equation (2.5) can be rewritten as:

(δn,b,qh)(x) =
∞∑

b=0

Cq
b,n

∫ γ

0
h
(

y + [b]q

qb–1[n]q

)
�(y) dqy. (2.6)

Taking q = 1, Equation (2.6) reduces to classical Baskakov-Kantorovich wavelet operators
defined by Equation (2.3).

In this section, the Kantorovich (p, q)-Baskakov operators is constructed with the help
of Daubechies compactly-supported wavelets. Since the modified Kantorovich (p, q)-
Baskakov operators defined by Equation (1.4) do not generalize the Kantorovich q-
Baskakov operators expressed by Equation (1.1), that is, for q = 1, Equation (1.4) is not
equal to Equation (1.1). Therefore, Equation (1.4) must be rewritten. Now, to achieve our
objective of constructing the Kantorovich (p, q)-Baskakov operators, we define the new
operators, generalizing the operators defined by Equation (1.1), as follows:

(
B∗

n,p,qh
)
(x) = [n]p,q

∞∑

b=0

υ
p,q
n,b (x)qb–1

∫ [b+1]p,q
[n]p,q

q[b]p,q
[n]p,q

h
(

qb–1y
pn–1

)
dp,qy. (2.7)

We see that by choosing p = 1, Equation (2.7) reduces to Equation (1.1). Hence, Equation
(1.1) is generalized by Equation (2.7).
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Lemma 2.1 For n ∈N and 0 < q < p ≤ 1. The following holds

∫ [b+1]p,q
[n]p,q

q[b]p,q
[n]p,q

dp,qy =
pb

[n]p,q
,

∫ [b+1]p,q
[n]p,q

q[b]p,q
[n]p,q

y dp,qy =
qpb[b]p,q

[n]2
p,q

+
p2b

(p + q)[n]2
p,q

,

∫ [b+1]p,q
[n]p,q

q[b]p,q
[n]p,q

y2 dp,qy =
q2pb[b]2

p,q

[n]3
p,q

+ 2
p2bq[n]p,q

(p + q)[n]3
p,q

+
p3b

[n]3
p,q(p2 + pq + q2)

.

Proof Using Equation (1.6), we have that

∫ [b+1]p,q
[n]p,q

q[b]p,q
[n]p,q

dp,qy = (p – q)
(

[b + 1]p,q

[n]p,q
–

q[b]p,q

[n]p,q

) ∞∑

n=0

qn

pn+1

=
(p – q)
[n]p,qp

(
pb + q[b]p,q – q[b]p,q

) ∞∑

n=0

(
q
p

)n

=
pb(p – q)

[n]p,qp
p

(p – q)

=
pb

[n]p,q
.

The two remaining parts can be proved similarly as the first part. Note that for some simple
calculation, we have [b + 1]p,q = pb + q[b]p,q and

∑∞
n=0( q

p )n = p
p–q . �

Though we have some conditions that are considered in the construction of the opera-
tors, we have to introduce other conditions to make the wavelets useful in our study. Let
a positive constant be γ and �ω be a continuous derivative of order γω; on top of that,
suppose that for any 0 ≤ b ≤ ω such that ω ∈ N and q > 0, we have:

∫

R

xb�ω(x) dp,qx = 0. (2.8)

Choosing q = 1, the system reduces to Equation (2.4), and for p = q = 1, the system reduces
to Equation (2.1). Equation (2.8) becomes a Haar system by choosing ω = 0 an p = q = 1.
Now, we present the following conditions. For every � ∈ L∞,

(a) there exists a finite constant γ such that γ > 0 with the property � ⊂ [0,γ ],
(b) its first ω moment vanishes; that is, for 1 ≤ b ≤ ω, we have that

∫
R

yb�(y) dp,qy = 0,
(c)

∫
R

�(y) dp,qy = 1.
For x ∈ [0,∞) and 0 < q < p ≤ 1, below is the (p, q)-analogue of the Baskakov-Kantorovich-
type wavelet operators:

(ϒn,b,p,qh)(x) = [n]p,q

∞∑

b=0

qb–1υ
p,q
b,n (x)

∫

R

h(y)�
(

[n]p,q
qb–1

pn–1 y – [b]p,q

)
dp,qy. (2.9)
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The operators ϒn,b,p,q extend Kantorovich (p, q)-Baskakov operators defined by Equation
(2.7), that is, for the choice of ω = 0 and � Haar basis, Equation (2.9) reduces to Equa-
tion (2.7), in addition to that, for p = 1, Equation (2.9) reduces to Kantorovich q-Baskakov
operators defined by Equation (1.1). Furthermore, for the choice of ω = 0, p = q = 1 and
� Haar basis, Equation (2.9) reduces to classical Kantorovich-Baskakov operators defined
by Ditzian and Totik [10]. Now, for � ⊂ [0,γ ], Equation (2.9) is rewritten in the form:

(ϒn,b,p,qh)(x) =
∞∑

b=0

υ
p,q
b,n (x)

∫ γ

0
h
(

pn–1(y + [b]p,q)
[n]p,qqb–1

)
�(y) dp,qy. (2.10)

Note that clearly for the choice of p = 1, Equations (2.9) and (2.10) reduce to q-Baskakov
Kantorovich wavelet operators defined by Equations (2.5) and (2.6), respectively. Similarly,
for the choice of p = q = 1, the Equations (2.9) and (2.10) reduce to classical Baskakov-
Kantorovich wavelet operators defined by the Equations (2.3) and (2.4), respectively.

3 Main results
3.1 Moments of ϒn,b,p,q

In this section, we present the moments of wavelet Kantorovich (p, q)-Baskakov operators.
That is for 0 < q < p ≤ 1, we have the following theorem:

Theorem 3.1 Let ej = yj, ∀0 ≤ j ≤ ω and ω ∈ N. Then, for x ∈ [0,∞], we have
(ϒn,b,p,qej)(x) = (�n,b,p,qej)(x).

Proof To prove this theorem, refer to Inequality (2.10). Now, Equation (2.10) can be writ-
ten as:

(ϒn,b,p,qej)(x) =
∞∑

b=0

υ
p,q
b,n (x)

∫

R

(
pn–1(y + [b]p,q)

[n]p,qqb–1

)j

�(y) dp,qy

=
∞∑

b=0

υ
p,q
b,n (x)

(
pn–1

[n]p,qqb–1

)j ∫

R

(
y + [b]p,q

)j
�(y) dp,qy

=
∞∑

b=0

υ
p,q
b,n (x)

(
pn–1

[n]p,qqb–1

)j ∫

R

( ∞∑

a=0

(
j
a

)
ya[b]j–a

p,q

)
�(y) dp,qy

=
∞∑

b=0

υ
p,q
b,n (x)

(
pn–1

[n]p,qqb–1

)j

×
[∫

R

[b]j
p,q�(y) dp,qy +

∫

R

∞∑

a=1

(
j
a

)
ya[b]j–a

p,q �(y) dp,qy

]
.

From condition (b) above, given that
∫
R

∑∞
a=1

( j
a
)
ya[b]j–a

p,q �(y) dp,qy = 0, we have

(ϒn,b,p,qej)(x) =
∞∑

b=0

υ
p,q
b,n (x)

(
pn–1

[n]p,qqb–1

)j ∫

R

[b]j
p,q�(y) dp,qy

=
∞∑

b=0

υ
p,q
b,n (x)

(
[b]p,qpn–1

[n]p,qqb–1

)j ∫

R

�(y) dp,qy.
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And from condition (c) above, given that
∫
R

�(y) dp,qy = 1, we have:

(ϒn,b,p,qej)(x) =
∞∑

b=0

υ
p,q
b,n (x)

(
[b]p,qpn–1

[n]p,qqb–1

)j

= (�n,b,p,q,, ej)(x). �

Remark 3.1 Theorem (3.1) implies that the moments of the operators ϒn,b,p,q, defined by
Equation (2.9) is the same as that of the operators �n,b,p,q, defined by Aral and Gupta [4].
So, we have the following Lemma proved by Aral and Gupta [4].

Lemma 3.1 [4] For x ∈ [0, 1] and 0 < q < p ≤ 1, we have
i. (ϒn,b,p,qe0)(x) = 1,

ii. (ϒn,b,p,qe1)(x) = x,
iii. (ϒn,b,p,qe2)(x) = x2 + x pn–1

[n]p,q
(1 + p

q x).

3.2 Characterization of second-order Lipschitz functions
In this section, we shall present some Bernstein-Markov types of inequality of Kantorovich
(p, q)-Baskakov operators, which will be used as our preliminary result to state our main
result of this section. The following facts are also needed:

Peetre’s K-functional defined as:

K2(h, y) = inf
g∈C′′[0,∞)∩CB[0,∞)

{‖h – g‖∞ + y
∥∥g ′′∥∥∞

}
for y > 0. (3.1)

For g /∈ L∞[0,∞), ‖h – g‖∞ = ∞, the K-functional defined by equality (3.1) is equivalent
to the modulus of smoothness. Johnen [13] gives the following relation: for some constant
� > 0 and any ν > 0, we have:

�–1ω2(h, y) ≤ K2
(
h, y2) ≤ �ω2(h, y) such that h ∈ CB and 0 < y ≤ ν, (3.2)

where

ω2(h, t) = sup
0<g≤t

∣∣�2
g h

∣∣∞,

and

�2
g h(x) =

⎧
⎨

⎩
h(x + g) – 2h(x) + h(x – g) for g ≤ x,

0 otherwise.

Theorem 3.2 For all h ∈ C[0,∞) ∩ L∞[0,∞), then the following inequalities hold for 0 <
q < p ≤ 1;

i. ‖ϒn,b,p,qh‖∞ ≤ α‖h‖∞‖�‖∞,
ii. ‖ϒ ′

n,b,p,qh‖∞ ≤ 2α[n]p,q‖h‖∞‖�‖∞,
iii. ‖ϒ ′′

n,b,p,qh‖∞ ≤ 4α[n]p,q[n + 1]p,q‖h‖∞‖�‖∞.
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Proof Take into consideration that

∫ γ

0
h
(

pn–1(y + [b]p,q)
[n]p,qqb–1

)
�(y) dp,qy = Jh(n, b, p, q).

Thus, for every h ∈ C[0,∞) ∩ L∞[0,∞), the inequality

∣∣Jh(n, b, p, q)
∣∣ ≤ α‖h‖∞‖�‖∞ holds.

From Equation (2.10), we have

‖ϒn,b,p,qh‖ =

∣∣∣∣∣

∞∑

b=0

υ
p,q
b,n (x)

∫ γ

0
h
(

pn–1(y + [b]p,q)
[n]p,qqb–1

)
�(y) dp,qy

∣∣∣∣∣

=

∣∣∣∣∣

∞∑

b=0

υ
p,q
b,n (x)Jh(n, b, p, q)

∣∣∣∣∣

≤
∞∑

b=0

υ
p,q
b,n (x)

∣∣Jh(n, b, p, q)
∣∣

≤ α‖h‖∞‖�‖∞.

Employing the definition of (p, q)-derivative to prove inequalities (ii) and (iii). That is, in
υ

p,q
b,n (x), we have that

Dp,q

(
xb

(1 ⊕ x)n+b
p,q

)
=

(1 + qx)n+b
p,q [b]p,qxb–1 + (qx)bxpq[n + b]p,q(1 + qx)n+b–1

p,q

(1 + qx)n+b
p,q (1 + px)n+b

p,q

=
1

x(1 + qx)

(
(1 + qx)[b]p,q + xqb+1p[n + b]p,q

(1 + px)n+b
p,q

)
xb.

Here, Dp,q(xb) = [b]p,qxb–1, Dp,q(b ⊕ x)n+b
p,q = –[n + b]p,qpq(1 ⊕ qx)n+b–1

p,q . By making some
simple computations, we have [n + b]p,q = pn[b]p,q + qb[n]p,q.

Therefore, using the facts above, we have that

Dp,q
(
υ

p,q
b,n (x)

)
=

1
x(1 + qx)

(
(1 + qx)[b]p,q + xqb+1p

(
pn[b]p,q + qb[n]p,q

))

×
(

n + b – 1
b

)

p,q
p

b+n(n–1)
2 q

b(b–1)
2

xb

(1 + px)n+b
p,q

� [n]p,q

x(1 + qx)

((
1 + qx + qb+1pn+1x

) [b]p,q

[n]p,q
+ q2b+1px

)
υ

p,q
b,n (x), for x > 0.

For every b ∈ N, we have the following equality:

[b]p,q

[n]p,q

q1–b

pn+1 υ
p,q
b,n (x) = xυ

p,q
b–1,n+2(x).

That is,

[b]p,q

[n]p,q
υ

p,q
b,n (x) = xpn+1qb–1υ

p,q
b–1,n+2(x).
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Hence, we get that

Dp,qυ
p,q
b,n (x) � [n]p,q

(1 + qx)
((

1 + qx + qb+1pn+1x
)
pn+1qb–1υ

p,q
b–1,n+2(x) + q2b+1pυ

p,q
b,n (x)

)

=
[n]p,q

(1 + qx)

∞∑

b=0

Jh(n, b, p, q)
((

1 + qx + qb+1pn+1x
)
pn+1qb–1υ

p,q
b–1,n+2(x)

+ q2b+1pυ
p,q
b,n (x)

)

=
[n]p,q

(1 + qx)

[ ∞∑

b=0

(
1 + qx + qb+1pn+1x

)
pn+1qb–1υ

p,q
b–1,n+2(x)Jh(n, b, p, q)

+
∞∑

b=0

q2b+1pυ
p,q
b,n (x)Jh(n, b, p, q)

]

=
[n]p,q

(1 + qx)

[ ∞∑

b=0

(
1 + qx + qb+1pn+1x

)
pnqbυ

p,q
b,n+1(x)Jh(n, b + 1, p, q)

+
∞∑

b=0

q2b+1pυ
p,q
b,n (x)Jh(n, b, p, q)

]
.

Then,

ϒ ′
n,b,p,q,h(x) �

∣∣∣∣∣
[n]p,q

(1 + qx)

[ ∞∑

b=0

(
1 + qx + qb+1pn+1x

)
pnqbυ

p,q
b,n+1(x)Jh(n, b + 1, p, q)

+
∞∑

b=0

q2b+1pυ
p,q
b,n (x)Jh(n, b, p, q)

]∣∣∣∣∣

≤ [n]p,q

(1 + qx)

[ ∞∑

b=0

∣∣(1 + qx + qb+1pn+1x
)
pnqbυ

p,q
b,n+1(x)Jh(n, b + 1, p, q)

∣∣

+
∞∑

b=0

∣∣q2b+1pυ
p,q
b,n (x)Jh(n, b, p, q)

∣∣
]

≤ [n]p,q

(1 + qx)

[ ∞∑

b=0

υ
p,q
b,n+1(x)

∣∣Jh(n, b + 1, p, q)
∣∣ +

∣∣ϒn,b,p,q,h(x)
∣∣
]

≤ [n]p,q
[
α‖h‖∞‖�‖∞ + α‖h‖∞‖�‖∞

]

= 2α[n]p,q‖h‖∞‖�‖∞.

In a similar way, we have that

(
ϒ ′′

n,b,p,q,h
)
(x) ≤ [n + 1]p,q

(1 + qx)
(
ϒ ′

n,b,p,q,h
)
(x) +

[
[n]p,q[n + 1]p,q

(1 + qx)
(
ϒ ′

n,b,p,q,h
)
(x)

×
( ∞∑

b=0

υ
p,q
b,n+2(x)Jh(n, b + 2, p, q) +

∞∑

b=0

υ
p,q
b,n+1(x)Jh(n, b + 1, p, q)

)]
.
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Therefore, we have that

∥∥ϒ ′′
n,b,p,q,h

∥∥ ≤
∣∣∣∣∣
[n + 1]p,q

(1 + qx)
(
ϒ ′

n,b,p,q,h
)
(x) +

[
[n]p,q[n + 1]p,q

(1 + qx)
(
ϒ ′

n,b,p,q,h
)
(x)

×
( ∞∑

b=0

υ
p,q
b,n+2(x)Jh(n, b + 2, p, q) +

∞∑

b=0

υ
p,q
b,n+1(x)Jh(n, b + 1, p, q)

)∣∣∣∣∣

]

≤ [n + 1]p,q

(1 + qx)
∥∥ϒ ′

n,b,p,q,h
∥∥ +

[
[n]p,q[n + 1]p,q

(1 + qx)
∥∥ϒ ′

n,b,p,q,h
∥∥

×
( ∞∑

b=0

υ
p,q
b,n+2(x)

∣∣Jh(n, b + 2, p, q)
∣∣ +

∞∑

b=0

υ
p,q
b,n+1(x)

∣∣Jh(n, b + 1, p, q)
∣∣
)]

≤ [n + 1]p,q
∥∥ϒ ′

n,b,p,q,h
∥∥ +

[
[n]p,q[n + 1]p,q

(
α‖h‖∞‖�‖∞ + α‖h‖∞‖�‖∞

)]

≤ 2[n]p,q[n + 1]p,qα‖h‖∞‖�‖∞ + 2[n]p,q[n + 1]p,qα‖h‖∞‖�‖∞

= 4[n]p,q[n + 1]p,qα‖h‖∞‖�‖∞. �

Theorem 3.3 Given that 0 < q < p ≤ 1 and K2 is the Peetre’s K-functional, then for all
h ∈ C′′[0,∞) ∩ CB[0,∞), we have the following

∣∣(ϒn,b,p,qh)(x) – h(x)
∣∣ ≤ (

γ ‖�‖∞ + 1
)
K2

(
h,

γ 2

3[n]2
p,q

+
x

[n]p,q

(
1 +

p
q

x
))

.

Proof Let h ∈ C′′[0,∞) ∩ CB[0,∞), the Taylor series expansion of a function h is given as

g(y) = g(x) + (y – x)g ′(x) +
∫ y

x
(y – v)g ′′(v) dp,qv.

Therefore, using Equation (1.3) and Theorem 3.1, we have

∣∣(ϒn,b,p,qg)(x) – g(x)
∣∣ =

∣∣∣∣ϒn,b,p,q

((∫ y

x
(y – v)g ′′(v)dp,q(v)

)
, x

)∣∣∣∣

=

∣∣∣∣∣

∞∑

b=0

υ
p,q
b,n (x)

∫ γ

0

(∫ pn–1(y+[b]p,q)
[n]p,qqb–1

x

(
pn–1(y + [b]p,q)

[n]p,qqb–1 – v
)

× ∣∣g ′′(x)
∣∣dp,qv

)
�(y) dp,qy

∣∣∣∣∣

≤
∞∑

b=0

υ
p,q
b,n (x)

∫ γ

0

(∣∣∣∣
∫ pn–1(y+[b]p,q)

[n]p,qqb–1

x

pn–1(y + [b]p,q)
[n]p,qqb–1 – v

∣∣∣∣

× ∣∣g ′′(x)
∣∣dp,qv

)
‖�‖∞ dp,qy

≤ ‖�‖∞
∥∥g ′′∥∥∞

∞∑

b=0

υ
p,q
b,n (x)

∫ γ

0

(
pn–1(y + [b]p,q)

[n]p,qqb–1 – x
)2

dp,qy

= γ ‖�‖∞
∥∥g ′′∥∥∞

(
γ 2

3[n]2
p,q

+
γ

[n]p,q
μn,1,p,q(x) + μn,2,p,q(x)

)

= γ ‖�‖∞
∥∥g ′′∥∥∞

(
γ 2

3[n]2
p,q

+
x

[n]p,q

(
1 +

p
q

x
))

.
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Using Theorem 3.2 (i) and taking infimum over all g ∈ C′′[0,∞) ∩ CB[0,∞), we have the
following:

∣∣(ϒn,b,p,qh)(x) – h(x)
∣∣ ≤ inf

g∈C′′[0,∞)∩CB[0,∞)

{∥∥ϒn,b,p,q(h – g)
∥∥∞ + ‖h – g‖∞

+
∣∣(ϒn,b,p,qg)(x) – g(x)

∣∣}.

That is,

∣∣(ϒn,b,p,qh)(x) – h(x)
∣∣ ≤ inf

g∈C′′[0,∞)∩CB[0,∞)

{(
γ ‖�‖∞ + 1

)‖h – g‖∞ + γ ‖�‖∞
∥∥g ′′∥∥∞

+ γ ‖�‖∞
∥∥g ′′∥∥∞

(
γ 2

3[n]2
p,q

+
x

[n]p,q

(
1 +

p
q

x
))}

≤ (
γ ‖�‖∞ + 1

)
inf

g∈C′′[0,∞)∩CB[0,∞)

{
‖h – g‖∞

+
∥∥g ′′∥∥∞

(
γ 2

3[n]2
p,q

+
x

[n]p,q

(
1 +

p
q

x
))}

=
(
γ ‖�‖∞ + 1

)
K2

(
γ 2

3[n]2
p,q

+
x

[n]p,q

(
1 +

p
q

x
))

. �

From Theorem 3.3, let N = γ ‖�‖∞, ξ = γ 2

3 and ϕn,b,p,q = x(1 + p
q x). The following corol-

lary holds for the operators (ϒn,b,p,qh).

Corollary 3.1 For any 0 < q < p ≤ 1 and h ∈ CB[0,∞), then

∣∣(ϒn,b,p,qh)(x) – h(x)
∣∣ ≤ (N + 1)K2

(
h,

ξ

[n]2
p,q

+
ϕn,b,p,q

[n]p,q

)
,

where K2 defined by Equality (3.1).

Furthermore, if Theorem 3.3 and Inequality (3.2) are well known, we easily obtain the
following results explained by corollary below.

Corollary 3.2 For any 0 < ρ < 2 and h ∈ CB[0,∞), if ω2(h, y) = O(yρ) then

∣∣(ϒn,b,p,qh)(x) – h(x)
∣∣ ≤ k

(
ξ

[n]2
p,q

+
ϕn,b,p,q

[n]p,q

) ρ
2

holds for the operators (ϒn,b,p,qh). Such that k > 0 is a constant, ξ = γ 2

3 and ϕn,b,p,q = x(1 +
p
q x).

Remark 3.2 Corollary 3.2 gives the main result of this section. The function ϕ control the
rate of convergence of the operators ϒn,b,p,q.

3.3 The norm of the operators ϒn,b,p,q in Lp

In this section, we present the norm of ϒn,b,p,q in Lp space. We shall use r to avoid confusion
of using p as its already used in different definition and facts of (p, q)-calculus. Therefore,
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we shall write Lr instead of Lp. In this section, we shall use Theorem 3.2 and the Riesz-
Thorin theorem given below (also see in the book [7]).

Theorem 3.4 (Riesz-Thorin) Suppose that 0 < r < ∞ and 1 < s < ∞, also let T : S0(dμ;
C) → Lloc(dν;C) be a linear operator. Now, if in the domain of T the following inequalities
are valid:

∥∥T(h)
∥∥

sk ≤ Nk‖h‖rk , k = 0, 1,

then T extends by continuity to an operator acting from Lr(ϑ)(dμ;C) into Ls(ϑ)(dμ;C). The
norm of this operator does not exceed N1–ϑ

0 Nϑ
1 .

Now, we state the main theorem of this section.

Theorem 3.5 Let n > 1, 1 ≤ r ≤ ∞, h ∈ Lr[0,∞). Then, we have

‖ϒn,b,p,qh‖r ≤ Cr‖h‖r ,

where Cr is a constant.

Remark 3.3 We shall not directly prove Theorem 3.5 because by the Riesz-Thorin Theo-
rem 3.4 and Theorem 3.2, we shall consider only one case for r = 1. Therefore, we prove
Theorem 3.6 below, and then we generalize it to Theorem 3.4 by finding the value of Cr .

Theorem 3.6 Suppose that γ ≤ k for k ∈ Z
+, then for any h ∈ L1[0,∞), we have the fol-

lowing

‖ϒn,b,p,qh‖1 ≤ N1‖h‖1,

where N1 = k[n]p,q
[n–1]p,q

‖�‖∞.

Proof From Equation (2.10) for any h ∈ L1[0,∞), we have

‖ϒn,b,p,qh‖1 =

∥∥∥∥∥

∞∑

b=0

υ
p,q
b,n (x)

∫ γ

0
h
(

pn–1(y + [b]p,q)
[n]p,qqb–1

)
�(y) dp,qy

∥∥∥∥∥
1

≤
∫ ∞/A

0

∞∑

b=0

υ
p,q
b,n (x)

(∫ γ

0

∣∣∣∣h
(

pn–1(y + [b]p,q)
[n]p,qqb–1

)∣∣∣∣‖�‖∞ dp,qy
)

dp,qx

≤ ‖�‖∞
∞∑

b=0

(∫ γ

0

∣∣∣∣h
(

pn–1(y + [b]p,q)
[n]p,qqb–1

)∣∣∣∣dp,qy
)∫ ∞/A

0
υ

p,q
b,n (x) dp,qx.

However, by doing simple calculations in (p, q)-calculus, we have the following facts;

∫ ∞/A

0

xb

(1 ⊕ x)n+b
p,q

dp,qx =
1

K(A, b + 1)
βp,q(b + 1, n – 1).
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But

βp,q(b + 1, n – 1) =
[b]p,q

[n – 1]p,q
βp,q(b, n),

and

K(x, y) =
1

x + 1
xy

(
1 +

1
x

)y

p,q
(1 + x)1–y

p,q .

This implies that

∫ ∞/A

0
υ

p,q
b,n (x) dp,qx =

1
[n – 1]p,q

qb

pn .

Hence we have that

‖ϒn,b,p,qh‖1 =
[n]p,q

[n – 1]p,q
‖�‖∞

∞∑

b=0

∫ pn–1(γ +[b]p,q)
[n]p,qqb–1

pn–1[b]p,q
[n]p,qqb–1

∣∣h(x)
∣∣dp,qx

≤ [n]p,q

[n – 1]p,q
‖�‖∞

∞∑

b=0

∫ pn–1(k+[b]p,q)
[n]p,qqb–1

pn–1[b]p,q
[n]p,qqb–1

∣∣h(x)
∣∣dp,qx

=
[n]p,q

[n – 1]p,q
‖�‖∞

∞∑

b=0

k–1∑

i=0

∫ pn–1[b+i+1]p,q
[n]p,qqb–1

pn–1[b+i]p,q
[n]p,qqb–1

∣∣h(x)
∣∣dp,qx.

Is the same as writing

‖ϒn,b,p,qh‖1 =
[n]p,q

[n – 1]p,q
‖�‖∞

k–1∑

i=0

( ∞∑

b=0

∫ pn–1[b+i+1]p,q
[n]p,qqb–1

pn–1[b+i]p,q
[n]p,qqb–1

∣∣h(x)
∣∣dp,qx

)

≤ [n]p,q

[n – 1]p,q
‖�‖∞

k–1∑

i=0

‖h‖1

=
[n]p,q

[n – 1]p,q
‖�‖∞‖h‖1

k–1∑

i=0

1

= N1‖h‖1. �

Now, let us calculate the value of Cr , which is the upper bound of the operator’s norm.
According to the Riesz-Thorin Theorem 3.4, the norm of the operator ϒn,b,p,q does not
exceed N1–ϑ

1 Nϑ
0 . But, in our case, Nϑ

0 = Nϑ and 1 – ϑ = 1
r for ϑ ∈ (0, 1). Then, from Corol-

lary 3.1, we have N = γ ‖�‖∞, and from Theorem 3.6, we have N1 = k[n]p,q
[n–1]p,q

‖�‖∞. So, we
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have

Cr = N1–ϑ
1 Nϑ

=
(

k[n]p,q

[n – 1]p,q
‖�‖∞

) 1
r (

γ ‖�‖∞
)1– 1

r

= γ 1– 1
r k

1
r

(
[n]p,q

[n – 1]p,q

) 1
r
‖�‖∞.

By choosing � = χ[0,1), we get ‖�‖∞ = 1, γ = 1, and k becomes γ . Then, we have the
following estimation of operators ϒn,b,p,q:

‖ϒn,b,p,qh‖r ≤
(

[n]p,q

[n – 1]p,q

) 1
r
‖h‖r .

4 Conclusion
The constructed operators ϒn,b,p,q generalize the Kantorovich wavelets q-Baskakov oper-
ators and Kantorovich-Baskakov wavelets operators; that is, for the choice of p = 1, we
get operators defined by Equations (2.5) and (2.6), and also by choosing p = q = 1, opera-
tors defined by the Equations (2.9) and (2.10) reduce to Equations (2.2) and (2.3), respec-
tively. Furthermore, operators ϒn,b,p,q extend and generalize the Kantorovich q-Baskakov
operators defined by Equation (1.1) and the classical Kantorovich-Baskakov defined by
Baskakov [6] because, by choosing ω = 0, p = 1 and � a Haar basis, we get ξn,b,q. In ad-
dition to that, for q = 1, we get precisely the classical Kantorovich-Baskakov operators
defined by Baskakov [6]. Using these facts, we can conclude that the constructed opera-
tors are more general as they generalize classical, q, and wavelets Kantorovich-Baskakov
operators. We also observed that the moments of wavelets Kantorovich (p, q)-Baskakov
operators are the same as that of clasical Kantorovich (p, q)-Baskakov operators.
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