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Abstract
Fractional inequalities play a crucial role in building mathematical mechanisms and
their related solution functions across the majority of practical science domains.
A variety of mathematical disciplines are significantly impacted by convexity as well.
In this article, we describe and verify many new fractional inequalities using a
thorough kind of Riemann–Liouville integral and the convexity criterion of the
functions. Our approach for dealing with fractional integral inequalities is clear and
easy to use, and the current study is a new addition to the literature. Additionally, it is
simple to observe that all the inequalities produced are extensive and may be broken
down into several and different inequalities that were previously in the literature.

1 Introduction
Researchers in geometry and analysis find convex analysis to be one of their most interest-
ing fields. Convex functions differ from other topics due to their geometric, differential,
and other supportive characteristics. Additionally, there are numerous applications for the
convex set and convex function in mathematical physics, optimization theory, and others
[1–6]. As fractional calculus has advanced so quickly in recent years, the connection to
convexity has grown stronger.

Actually, fractional calculus provides several potentially useful techniques for resolving
differential and integral equations, and it also addresses a number of other issues involving
unique mathematical physics functions in addition to their generalizations and extensions
in one or more variables.

In recognition of the significance of fractional calculus, scientists have used it to de-
velop a number of fractional integral inequalities that have proven to be extremely valu-
able in approximation theory. By utilizing inequalities like the Hermite–Hadamard, Simp-
son’s, midpoint, Ostrowski, and trapezoidal inequalities, for instance, we can ascertain
the boundaries of formulas employed in numerical integration. The Hermite–Hadamard-
type and trapezoidal-type inequalities were first established using the Riemann–Liouville
fractional integrals by Sarikaya et al. in [7]. Following that, Set demonstrated in [8] how
the Riemann–Liouville fractional operator produces the Ostrowski inequality for dif-
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ferentiable functions. Using harmonic convexity, Iscan and Wu established Hermite–
Hadamard-type inequalities in [9]. A fractional integral operator and p-convex function
are used to create a new version of Hermite–Hadamard inequalities in [10]. Additionally,
Park in [11] studied the MT -convex functions using Riemann–Liouville fractional inte-
grals and the Hermite–Hadamard inequality for MT -convex functions was also proven
by him. Generalized fractional integrals were recently described by Sarikaya and Ertugral
[12], who used these integrals to demonstrate a generalization of Hermite–Hadamard-
type inequalities for convex functions. We direct readers to these sources [13–18] for ad-
ditional information.

This article uses a comprehensive kind of Riemann–Liouville integral and the convexity
condition of the functions to explain and prove some novel fractional integral inequalities.
Our technique for dealing with fractional integral inequalities is simple and straightfor-
ward, and the current study is a fresh contribution to the body of literature. Additionally,
it is easy to see that all of the inequalities generated are significant and may be divided
into a number of other, distinct inequalities that have already been published in the liter-
ature. We set up our results, which are divided into the following sections, using general-
ized fractional integrals. The first section provides an introduction to some fundamental
concepts, relevant terminology, and the outcomes that pertain to our key goals. Examin-
ing the Hermite–Hadamard inequality’s error estimates with the expanded (μ, θ )-order
Riemann–Liouville integrals is covered in the second section that also studies related in-
equalities. Finally, the conclusion is provided at the end of our study.

2 Preliminaries
Before moving on to the essential outcomes of the research, it is necessary to have a discus-
sion about some of the pertinent terminology and results. A convex function M : [a, b] →
R is one that satisfies the following inequality:

M
(
λx1 + (1 – λ)x2

) ≤ λM(x1) + (1 – λ)M(x2), λ ∈ [0, 1], and x1, x2 ∈ [a, b]. (1)

If the additive inverse of the function M is convex, then the function M is said to have a
concave form. The following Hermite–Hadamard inequality gives us a tangible and geo-
metric description of a convex function.

Theorem 2.1 [19] Given that M : [a, b] → R is a convex function, we acquire the subse-
quent inequality:

M

(
a + b

2

)
≤ 1

b – a

∫ b

a
M(t) dt ≤ M(a) + M(b)

2
. (2)

If M is concave, the converse direction of (2) is valid.

The following are some basics and concepts of fractional calculus that will be utilized
during the current research.

Definition 2.1 [20] Let M ∈ L1[a, b], a, b ∈ R with a < b. The fractional r-order integrals
of Riemann–Liouville are suggested as:

N r
a+M(x) =

1
�(r)

∫ x

a
(x – t)r–1

M(t) dt, x > a, (3)
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N r
b–M(x) =

1
�(r)

∫ b

x
(t – x)r–1

M(t) dt, x < b, (4)

respectively. Here, �(r) =
∫ ∞

0 tr–1 exp(t) dt, and N 0
a+M(x) = N 0

b–M(x) = M(x).

In their paper [21], Jarad et al. offered further exhaustive fractional integrals. In addi-
tion, they contributed a few features as well as links that included a variety of fractional
integrals.

Definition 2.2 [21] Let M ∈ L1[a, b]. If μ > 0 and θ ∈ (0, 1], the expanded (μ, θ )-order
Riemann–Liouville integrals are defined by:

μN θ
a+M(x) =

1
�(μ)

∫ x

a

(
(x – a)θ – (t – a)θ

θ

)μ–1
M(t)

(t – a)1–θ
dt, x > a (5)

and

μN θ
b–M(x) =

1
�(μ)

∫ b

x

(
(b – x)θ – (b – t)θ

θ

)μ–1
M(t)

(b – t)1–θ
dt, x < b, (6)

respectively.

It is interesting that Sarikaya et al. [7] established the subsequent inequality of Hermite–
Hadamard type by employing Riemann–Liouville integrals N μ

a+ and N μ

b–.

Theorem 2.2 Let M ∈ L1[a, b]. If M is convex and M > 0, then we have:

M

(
a + b

2

)
≤ �(μ + 1)

2(b – a)μ
[
N μ

a+M(b) + N μ

b–M(a)
] ≤ M(a) + M(b)

2
. (7)

In addition, Sarikaya and Yldrm [15] gave another inequality of Hermite–Hadamard
type about the operators N μ

a+ and N μ

b–.

Theorem 2.3 Suppose M : [a, b] → R is convex, M ∈ L1[a, b], and M > 0. Then, the next
inequalities are correct:

M

(
a + b

2

)
≤ 2μ–1�(μ + 1)

(b – a)μ
[
N μ

( a+b
2 )+M(b) + N μ

( a+b
2 )–M(a)

] ≤ M(a) + M(b)
2

. (8)

Set et al. [16] proposed an important Hermite–Hadamard-type inequality by making
use of the fractional integrals in equations (5) and (6).

Theorem 2.4 Given that M is a convex and positive function that goes from [a, b] to R,
with M being in L1[a, b], the operators μN θ

a+ and μN θ
b– fulfill the following inequality:

M

(
a + b

2

)
≤ �(μ + 1)θμ

2(b – a)θμ

[
μN θ

a+M(b) + μN θ
b–M(a)

] ≤ M(a) + M(b)
2

, (9)

where Re(μ) > 0 and θ ∈ [0, 1].
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Based on Hermite–Hadamard form, Gözpınar [17] created an inequality for convex and
positive functions that included the fractional operators (5) and (6) in the following man-
ner:

Theorem 2.5 Assume that M is a convex and positive function that goes from [a, b] to R,
with M being in L1[a, b]. Then, the operators μN θ

a+ and μN θ
b– attain the following inequal-

ity:

M

(
a + b

2

)
≤ 2θμ–1�(μ + 1)θμ

(b – a)θμ

[
μN θ

( a+b
2 )+

M(b) + μN θ

( a+b
2 )–

M(a)
]

≤ M(a) + M(b)
2

.

(10)

3 Main outcomes
First, in order to investigate the error estimates of the Hermite–Hadamard inequality, the
following integral identity is established:

Lemma 3.1 Let a, b ∈ R with a < b and M : [a, b] →R be a function, also let Z : [a, b] →R

be a strictly monotone function such that M ◦Z–1 is differentiable and (M ◦Z–1)′ ∈ L[a, b].
Then, the following identity holds:

M(a) + M(b)
2θμ

–
�(μ + 1)

2(Z(b) – Z(a))μθ

(
μN θ

Z(a)+M(b) + μN θ
Z(b)–M(a)

)

=
Z(b) – Z(a)

2

∫ 1

0

([
1 – tθ

θ

]μ

–
[

1 – (1 – t)θ

θ

]μ)

× (
M ◦ Z–1)′(tZ(a) + (1 – t)Z(b)

)
dt.

(11)

Proof First, we calculate the next integral:

∫ 1

0

[
1 – (1 – t)θ

θ

]μ(
M ◦ Z–1)′(tZ(a) + (1 – t)Z(b)

)
dt

=
–M(a)

θμ(Z(b) – Z(a))

+
μ

(Z(b) – Z(a))

∫ 1

0

[
1 – (1 – t)θ

θ

]μ–1

× (
M ◦ Z–1)(tZ(a) + (1 – t)Z(b)

) dt
(1 – t)1–θ

=
–M(a)

θμ(Z(b) – Z(a))

+
μ

(Z(b) – Z(a))μθ+1

∫ Z(a)

Z(b)

[
(Z(b) – Z(a))θ – (u – Z(a))θ

θ

]μ–1

× (
M ◦ Z–1)(u)

du
(u – Z(a))1–θ

=
–M(a)

θμ(Z(b) – Z(a))
+

�(μ + 1)
(Z(b) – Z(a))μθ+1 Jμ

Z(a)+M(b).

(12)



Hyder et al. Journal of Inequalities and Applications        (2023) 2023:137 Page 5 of 12

In a similar vein, the equation that follows can be obtained from integration by parts:

∫ 1

0

[
1 – tθ

θ

]μ(
M ◦ Z–1)′(tZ(a) + (1 – t)Z(b)

)
dt

=
M(b)

θμ(Z(b) – Z(a))
–

�(μ + 1)
(Z(b) – Z(a))μθ+1

μN θ
Z(b)–M(a).

(13)

The left-hand side can be obtained by employing (12) and (13) in the right-hand side of
(11). �

Theorem 3.1 Let a, b ∈ R with a < b and M : [a, b] →R be a function, also let Z : [a, b] →
R be a strictly monotone function such that M◦Z–1 is differentiable and (M◦Z1)′ ∈ L[a, b].
If |(M ◦ Z–1)′| is convex, then the following inequality holds:

∣
∣∣∣
M(a) + M(b)

2θμ
–

�(μ + 1)
2(Z(b) – Z(a))μθ

(
μN θ

Z(a)+M(b) + μN θ
Z(b)–M(a)

)
∣
∣∣∣

≤ |Z(b) – Z(a)|
2θ (μ+1)

((
M ◦ Z–1)′

Z(a) +
(
M ◦ Z–1)′

Z(b)
)

×
(

β

(
1
2θ

,
1
θ

,μ + 1
)

– β

(
1 –

1
2θ

,μ + 1,
1
θ

))
.

(14)

Proof By involving the property of the function of the absolute value in Lemma 3.1, one
can obtain the following inequality:

∣∣
∣∣
M(a) + M(b)

2θμ
–

�(μ + 1)
2(Z(b) – Z(a))μθ

(
μN θ

Z(a)+M(b) + μN θ
Z(b)–M(a)

)
∣∣
∣∣

≤ |Z(b) – Z(a)|
2

∫ 1

0

∣∣∣
∣

[
1 – tθ

θ

]μ

–
[

1 – (1 – t)θ

θ

]μ∣∣∣
∣

× ∣∣(M ◦ Z–1)′(tZ(a) + (1 – t)Z(b)
)∣∣dt.

(15)

The following inequality can be obtained by employing the convexity of (M ◦Z–1)′ on the
right-hand side of the preceding inequality (15):

∣∣
∣∣
M(a) + M(b)

2θμ
–

�(μ + 1)
2(Z(b) – Z(a))μθ–1

(
μN θ

Z(a)+M(b) + μN θ
Z(b)–M(a)

)
∣∣
∣∣

≤ |Z(b) – Z(a)|
2

∫ 1

0

∣
∣∣
∣

[
1 – tθ

θ

]μ

–
[

1 – (1 – t)θ

θ

]μ∣
∣∣
∣

× ∣∣(M ◦ Z–1)′(tZ(a) + (1 – t)Z(b)
)∣∣dt

≤ |Z(b) – Z(a)|
2

(∫ 1
2

0

[
1 – tθ

θ

]μ

–
[

1 – (1 – t)θ

θ

]μ

× ∣
∣(M ◦ Z–1)′(tZ(a) + (1 – t)Z(b)

)∣∣dt

+
∫ 1

1
2

[
1 – (1 – t)θ

θ

]μ

–
[

1 – tθ

θ

]μ∣
∣(M ◦ Z–1)′(tZ(a) + (1 – t)Z(b)

)∣∣dt
)

≤ |Z(b) – Z(a)|
2

((
M ◦ Z–1)′

Z(a)
(∫ 1

2

0
t
[

1 – tθ

θ

]μ

dt –
∫ 1

2

0
t
[

1 – (1 – t)θ

θ

]μ

dt (16)
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+
∫ 1

1
2

t
[

1 – (1 – t)θ

θ

]μ

dt –
∫ 1

1
2

t
[

1 – tθ

θ

]μ

dt
)

+
(
M ◦ Z–1)′

Z(b)
(∫ 1

2

0
(1 – t)

[
1 – tθ

θ

]μ

dt –
∫ 1

2

0
(1 – t)

[
1 – (1 – t)θ

θ

]μ

dt

+
∫ 1

1
2

(1 – t)
[

1 – (1 – t)θ

θ

]μ

dt –
∫ 1

1
2

(1 – t)
[

1 – tθ

θ

]μ

dt
))

=
|Z(b) – Z(a)|

2θ (μ+1)

((
M ◦ Z–1)′

Z(a) +
(
M ◦ Z–1)′

Z(b)
)

×
(

β

(
1
2θ

,
1
θ

,μ + 1
)

– β

(
1 –

1
2θ

,μ + 1,
1
θ

))
.

This completes the proof. �

Corollary 3.1 If θ = 1 in the inequality (14), then one can obtain the next inequality:

∣
∣∣
∣
M(a) + M(b)

2
–

�(μ + 1)
2(Z(b) – Z(a))μ

(
μN θ

Z(a)+M(b) + μN θ
Z(b)–M(a)

)
∣
∣∣
∣

≤ |Z(b) – Z(a)|
2(μ + 1)

(
1 –

1
2μ

)(∣∣(M ◦ Z–1)′
Z(a)

∣
∣ +

∣
∣(M ◦ Z–1)′

Z(b)
)∣∣.

(17)

Corollary 3.2 If Z(x) = 1
x in the inequality (14), then one can obtain the next inequality:

∣
∣∣∣
M(a) + M(b)

2θμ
–

�(μ + 1)
2

(
ab

b – a

)μθ(
μN θ

( 1
a )+M ◦ g

(
1
b

)
+ μN θ

( 1
b )–M ◦ g

(
1
a

))∣
∣∣∣

≤ b – a
2abθμ+1

(
a2
M

′(a) + b2
M

′(b)
)
(

β

(
1
2θ

,
1
θ

,μ + 1
)

– β

(
1 –

1
2θ

,μ + 1,
1
θ

))
,

(18)

where g(s) = 1
s .

Corollary 3.3 If Z(x) = 1
x and θ = 1 in the inequality (14), then one can obtain the next

inequality:

∣∣∣
∣
M(a) + M(b)

2
–

�(μ + 1)
2

(
ab

b – a

)μ–1(
μN θ

( 1
a )+M ◦ g

(
1
b

)
+ μN θ

( 1
b )–M ◦ g

(
1
a

))∣∣∣
∣

≤ b – a
2ab

(
a2
M

′(a) + b2
M

′(b)
)(

β

(
1
2

, 1,μ + 1
)

– β

(
1
2

,μ + 1, 1
))

,
(19)

where g(s) = 1
s .

Corollary 3.4 If Z(x) = 1
x , μ = 1 and θ = 1 in the inequality (14), then one can obtain the

next inequality:

∣
∣∣
∣
M(a) + M(b)

2
–

ab
(b – a)

∫ 1
a

1
b

M ◦ g(s) ds
∣
∣∣
∣ ≤ b – a

8ab
{∣∣a2

M
′(a) + b2

M
′(b)

∣∣}, (20)

where g(t) = 1
t .
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Theorem 3.2 Let a, b ∈ r with a < b and M : [a, b] →R be a function, also let Z : [a, b] →
R be a strictly monotone function such that M◦Z–1 is differentiable and (M◦Z1)′ ∈ L[a, b].
If |(M ◦ Z–1)′|q, q > 1 is convex, then the following inequality holds:

∣∣
∣∣
M(a) + M(b)

2θμ
–

�(μ + 1)
2(Z(b) – Z(a))μθ

(
μN θ

Z(a)+M(b) + μN θ
Z(b)–M(a)

)
∣∣
∣∣

≤ |Z(b) – Z(a)|
2

1
q θ (μ+1)

(
β

(
1
2θ

,
1
θ

,μ + 1
)

– β

(
1 –

1
2θ

,μ + 1,
1
θ

))

× (∣∣(M ◦ Z–1)′(
Z(a)

)∣∣q +
∣∣(M ◦ Z–1)′(

Z(b)
)∣∣q) 1

q .

(21)

Proof The proof can be divided into two cases. Case 1: q = 1. By using the property of the
absolute value function and the convexity of |(M ◦ Z–1)′| in Lemma 3.1, inequality (14) is
obtained.

Case 2: q > 1. By using the property of the absolute value function and power mean
inequality on the right-hand side of inequality (11), the following inequality is established:

∣
∣∣
∣
M(a) + M(b)

2θμ
–

�(μ + 1)
2(Z(b) – Z(a))μθ

(
μN θ

Z(a)+M(b) + μN θ
Z(b)–M(a)

)
∣
∣∣
∣

≤ |Z(b) – Z(a)|
2

(∫ 1

0

∣∣
∣∣

[
1 – tθ

θ

]μ

–
[

1 – (1 – t)θ

θ

]μ∣∣
∣∣

)1– 1
q

×
(∫ 1

0

∣
∣∣
∣

[
1 – tθ

θ

]μ

–
[

1 – (1 – t)θ

θ

]μ∣
∣∣
∣

× ∣
∣(M ◦ Z–1)′(tZ(a) + (1 – t)Z(b)

)∣∣q dt
) 1

q
.

(22)

We also have that
∫ 1

0

∣
∣∣∣

[
1 – tθ

θ

]μ

–
[

1 – (1 – t)θ

θ

]μ∣
∣∣∣dt

=
∫ 1

2

0

([
1 – tθ

θ

]μ

–
[

1 – (1 – t)θ

θ

]μ)
dt

+
∫ 1

1
2

([
1 – (1 – t)θ

θ

]μ

–
[

1 – tθ

θ

]μ)
dt

=
2

θμ+1

(
β

(
1
2θ

,
1
θ

,μ + 1
)

– β

(
1 –

1
2θ

,μ + 1,
1
θ

))
.

(23)

Also, by the convexity of |(M ◦ Z–1)′|q, we obtain the following inequality:

∫ 1

0

∣∣
∣∣

[
1 – tθ

θ

]μ

–
[

1 – (1 – t)θ

θ

]μ∣∣
∣∣
∣
∣(M ◦ Z–1)′(tZ(a) + (1 – t)Z(b)

)∣∣q dt

≤
∫ 1

2

0

[
1 – tθ

θ

]μ

–
[

1 – (1 – t)θ

θ

]μ

× (t
∣∣(M ◦ Z–1)′(

Z(a)
)∣∣q + (1 – t)

∣∣(M ◦ Z–1)′(
Z(b)

)∣∣q)dt

+
∫ 1

1
2

[
1 – (1 – t)θ

θ

]μ

–
[

1 – tθ

θ

]μ
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× (t
∣∣(M ◦ Z–1)′(

Z(a)
)∣∣q + (1 – t)

∣∣(M ◦ Z–1)′(
Z(b)

)∣∣q)dt

≤ ∣
∣(M ◦ Z–1)′(

Z(a)
)∣∣q

(∫ 1
2

0
t
[

1 – tθ

θ

]μ

dt –
∫ 1

2

0
t
[

1 – (1 – t)θ

θ

]μ

dt (24)

+
∫ 1

1
2

t
[

1 – (1 – t)θ

θ

]μ

dt –
∫ 1

1
2

t
[

1 – tθ

θ

]μ

dt
)

+
∣∣(M ◦ Z–1)′(

Z(b)
)∣∣q

(∫ 1
2

0
(1 – t)

[
1 – tθ

θ

]μ

dt –
∫ 1

2

0
(1 – t)

[
1 – (1 – t)θ

θ

]μ

dt

+
∫ 1

1
2

(1 – t)
[

1 – (1 – t)θ

θ

]μ

dt –
∫ 1

1
2

(1 – t)
[

1 – tθ

θ

]μ

dt
)

=
1

θμ+1 (
∣
∣(M ◦ Z–1)′(

Z(a)
)∣∣q

+
∣
∣(M ◦ Z–1)′(

Z(b)
)∣∣q)

(
β

(
1
2θ

,
1
θ

,μ + 1
)

– β

(
1 –

1
2θ

,μ + 1,
1
θ

))
.

Using (23) and (24) in (22), the inequality (21) can be obtained. �

Remark 3.1 If θ = 1 in the inequality (21), then one can obtain Theorem 4 in [22].

Corollary 3.5 If Z(x) = x in the inequality (21), then one can obtain the next inequality:

∣
∣∣∣
M(a) + M(b)

2θμ
–

�(μ + 1)
2(b – a)μθ

(
μN θ

(a)+M(b) + μN θ
(b)–M(a)

)
∣
∣∣∣

≤ b – a

2
1
q θ (μ+1)

(
β

(
1
2θ

,
1
θ

,μ + 1
)

– β

(
1 –

1
2θ

,μ + 1,
1
θ

))

×
(∣∣M′(a)

∣∣q +
∣∣(M′(b)

∣∣q
) 1

q
.

(25)

Corollary 3.6 If Z(x) = 1
x in the inequality (21), then one can obtain the next inequality:

∣∣
∣∣
M(a) + M(b)

2θμ
–

�(μ + 1)
2

(
ab

b – a

)μθ(
μN θ

( 1
a )+M ◦ g

(
1
b

)
+ μN θ

( 1
b )–M ◦ g

(
1
a

))∣∣
∣∣

≤ b – a

2
1
q abθ (μ+1)

(
β

(
1
2θ

,
1
θ

,μ + 1
)

– β

(
1 –

1
2θ

,μ + 1,
1
θ

))

×
(

a2q∣∣M′
Z(a)

∣∣q +
∣∣(b2q

M
′
Z(b)

∣∣q
) 1

q
.

(26)

Corollary 3.7 If Z(x) = ln x in the inequality (21), then one can obtain the next inequality:

∣
∣∣
∣
M(a) + M(b)

2θμ
–

�(μ + 1)
2(ln b – ln a)μθ

(
μN θ

ln a+M(b) + μN θ
ln b–M(a)

)
∣
∣∣
∣

≤ ln b – ln a

2
1
q θ (μ+1)

(
β

(
1
2θ

,
1
θ

,μ + 1
)

– β

(
1 –

1
2θ

,μ + 1,
1
θ

))

×
(

aq∣∣M′
Z(a)

∣
∣q +

∣
∣(bq

M
′
Z(b)

∣
∣q

) 1
q

.

(27)
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Corollary 3.8 If Z(x) = xr , r �= 0, in the inequality (21), then one can obtain the next in-
equality:

∣
∣∣∣
M(a) + M(b)

2θμ
–

rμθ�(μ + 1)
2(br – ar)μθ

(
μN θ

(a)+M(b) + μN θ
(b)–M(a)

)
∣
∣∣∣

≤ |br – ar|
2

1
q θ (μ+1)

(
β

(
1
2θ

,
1
θ

,μ + 1
)

– β

(
1 –

1
2θ

,μ + 1,
1
θ

))

×
(

a(1–r)q∣∣M′(a)
∣∣q + b(1–r)q∣∣(M′(b)

∣∣q
) 1

q
.

(28)

The next lemma is helpful to prove the upcoming theorem.

Lemma 3.2 For 0 < α < 1 and 0 ≤ a < b, we have

∣
∣aα – bα

∣
∣ ≤ (b – a)α . (29)

Theorem 3.3 Let a, b ∈ r with a < b and M : [a, b] →R be a function, also let Z : [a, b] →
R be a strictly monotone function such that M◦Z–1 is differentiable and (M◦Z1)′ ∈ L[a, b].
If |(M ◦ Z–1)′|q, q > 1 is convex, then the following inequality holds:

∣∣
∣∣
M(a) + M(b)

2
–

�(μ + 1)
2(Z(b) – Z(a))μθ

(
μN θ

Z(a)+M(b) + μN θ
Z(b)–M(a)

)
∣∣
∣∣

≤ |Z(b) – Z(a)|
21+ 1

q θμ(θμp + 1)
1
p

(∣∣(M ◦ Z–1)′(
Z(a)

)∣∣q +
∣∣(M ◦ Z–1)′(

Z(b)
)∣∣q) 1

q ,
(30)

where 1
p + 1

q = 1.

Proof By using the property of the absolute value function and then Holder’s inequality
on the right-hand side of (2.1), the following inequality is obtained:

∣∣
∣∣
M(a) + M(b)

2θμ
–

�(μ + 1)
2(Z(b) – Z(a))μθ

(
μN θ

Z(a)+M(b) + μN θ
Z(b)–M(a)

)
∣∣
∣∣

≤ |Z(b) – Z(a)|
2

(∫ 1

0

∣
∣∣
∣

[
1 – tθ

θ

]μ

–
[

1 – (1 – t)θ

θ

]μ∣
∣∣
∣

p) 1
p

×
(∫ 1

0

∣
∣(M ◦ Z–1)′(tZ(a) + (1 – t)Z(b)

)∣∣q dt
) 1

q
.

(31)

Using Lemma 3.2, we have

∫ 1

0

∣
∣∣
∣

[
1 – tθ

θ

]μ

–
[

1 – (1 – t)θ

θ

]μ∣
∣∣
∣

p

dt

≤ 1
θμp

∫ 1

0

∣
∣(1 – t)θ – tθ

∣
∣μp dt

≤ 1
θμp

∫ 1

0
|2t – 1|θμp dt =

1
θμp

∫ 1
2

0
(1 – 2t)θμp dt +

1
θμp

∫ 1

1
2

(2t – 1)θμp dt

=
1

θμp(θμp + 1)
.

(32)
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Also, by the convexity of |(M ◦ Z–1)′|q, we obtain the following inequality:

∫ 1

0

∣∣(M ◦ Z–1)′(tZ(a) + (1 – t)Z(b)
)∣∣q dt

≤
∫ 1

0

(
t
∣
∣(M ◦ Z–1)′(

Z(a)
)∣∣q + (1 – t)

∣
∣(M ◦ Z–1)′(

Z(b)
)∣∣q)dt

=
|(M ◦ Z–1)′(Z(a))|q + |(M ◦ Z–1)′(Z(b))|q

2
.

(33)

Therefore, the inequality can be obtained using the aforementioned integral calculations
(30). �

Corollary 3.9 If Z(x) = 1
x in the inequality (30), then one can obtain the next inequality:

∣∣∣
∣
M(a) + M(b)

2θμ
–

�(μ + 1)
2

(
ab

b – a

)μθ(
μN θ

( 1
a )+M ◦ g

(
1
b

)
+ μN θ

( 1
b )–M ◦ g

(
1
a

))∣∣∣
∣

≤ b – a

21+ 1
q abθμ(θμp + 1)

1
p

(
a2q∣∣M′

Z(a)
∣
∣q + b2q∣∣M′

Z(b)
∣
∣q

) 1
q

,

(34)

where g(x) = 1
x .

Corollary 3.10 If Z(x) = ln x in the inequality (30), then one can obtain the next inequality:

∣∣
∣∣
M(a) + M(b)

2θμ
–

�(μ + 1)
2(ln b – ln a)μθ

(
μN θ

(ln a)+M(b) + μN θ
(ln b)–M(a)

)
∣∣
∣∣

≤ ln b – ln a

21+ 1
q θμ(θμp + 1)

1
p

(
aq∣∣M′(a)

∣∣q + bq∣∣M′(b)
∣∣q

) 1
q

.
(35)

Corollary 3.11 If Z(x) = xr , r �= 0, in the inequality (30), then one can obtain the next in-
equality:

∣
∣∣
∣
M(a) + M(b)

2θμ
–

rμθ�(μ + 1)
2(br – ar)μθ

(
μN θ

(a)+M(b) + μN θ
(b)–M(a)

)
∣
∣∣
∣

≤ |br – ar|
21+ 1

q θμ(θμp + 1)
1
p |r|

(
a(1–r)q∣∣M′(a)

∣
∣q + b(1–r)q∣∣(M′(b)

∣
∣q

) 1
q

.
(36)

Remark 3.2 If θ = 1 in the inequality (21), then one can obtain Theorem 5 in [22].

4 Conclusions
As is widely known, in nearly all fields of scientific study, inequalities are important in con-
structing mathematical frameworks and associated state functions. Convexity also has a
significant impact on the optimization topic. This pushes us to address their expansions of
inequalities in a variety of ways. With the use of the enlarged Riemann–Liouville integrals
(5) and (6) and the convexity feature of the functions, we presented and established novel
fractional inequalities in the current study. The technique proposed in this study, with
fractional integral inequalities, is simple and straightforward, and can be applied to many
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different inequalities, like Ostrowski, Minkowski, midpoint, and Simpson inequalities. In
addition, it is easy to recognize that each of the inequalities that have been constructed
are encompassing and may be lowered to numerous other inequalities that were suggested
earlier in the research literature.
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