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Abstract
In this paper we focus on solving the classical variational inequality (VI) problem. Most
common methods for solving VIs use some kind of projection onto the associated
feasible set. Thus, when the involved set is not simple to project onto, then the
applicability and computational effort of the proposed method could be arguable.
One such scenario is when the given set is represented as a finite intersection of
sublevel sets of convex functions. In this work we develop an outer approximation
method that replaces the projection onto the VI’s feasible set by a simple, closed
formula projection onto some “superset”. The proposed method also combines
several known ideas such as the inertial technique and self-adaptive step size.
Under standard assumptions, a strong minimum-norm convergence is proved and

several numerical experiments validate and exhibit the performance of our scheme.
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1 Introduction
Let H be a real Hilbert space with a nonempty, closed, and convex set C ⊆ H . Let ‖ · ‖ and
〈·, ·〉 denote the induced norm and inner product on H , respectively, and let F : H → H
be a single-valued mapping. The variational inequality (VI) problem formulated by (1) is
an age-old problem in mathematical analysis with present relevance. It was introduced in-
dependently by Fichera [15] and Stampacchia [40], and since then, numerous researchers
have developed various methods for solving the VIs with applications in diverse fields,
such as the sciences, engineering, medicine, cryptography, image processing, signal pro-
cessing, optimal control, etc., see [2, 3, 13, 14, 17, 18, 21, 22, 27, 29, 33], for more details.
The VI, with solution set denoted by VI(C, F), is defined as finding a point p ∈ C such that

〈Fp, z – p〉 ≥ 0, ∀z ∈ C. (1)
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Two main known methods for solving VIs are the projection and regularization meth-
ods. The foremost projection method is the gradient method (GM) that generates a se-
quence {xn} according to the following rule:

xn+1 = PC(xn – νFxn), (2)

where PC is the metric projection of H onto the feasible set C. Although the GM has a
simple structure, it has two major drawbacks. The first is the quite strong monotonicity
assumption required for its convergence and the second is the need for computing the
projection onto the feasible set C, per iteration.

As a way to overcome the first GM’s monotonicity limitation, Korpelevich [31] (Antipin
[5] independently) proposed the extragradient method (EGM) that, on the one hand, con-
verges under a weaker monotonicity assumption but requires the evaluation of two pro-
jections onto C, per iteration. Censor et al. [9] introduced the subgradient extragradient
method (SEGM) in which one of the projections is replaced by an easy-closed formula
projection onto a “superset” containing C. Other modifications in this directions can be
found, for example in [32, 47].

Other relevant EGM extensions are Tseng’s extragradient method (TEGM) [49], and the
projection and contraction method (PCM) [41], see also [10, 13, 19, 50]. Both methods use
only one projection onto C, per iteration. The PCM, for example, generates {xn} according
to the following rule:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 ∈ H ,

yn = PC(xn – ξFxn),

d(xn, yn) := (xn – yn) – ξ (Fxn – Fyn),

xn+1 = xn – ρβnd(xn, yn),

(3)

where ρ ∈ (0, 2), ξ ∈ (0, 1
L ), L is the Lipschitz constant of F , βn := α(xn ,yn)

‖d(xn ,yn)‖2 , α(xn, yn) :=
〈xn – yn, d(xn, yn)〉, ∀n ≥ 1.

As the implementation of the above methods (SEGM, TEGM, and PCM) still requires
the computation of PC for each iteration, a need for a “free-projection” method encour-
aged many researchers to come up with some creative ideas. One such idea is the two-
subgradient method (TSEGM) of Censor et al. [9]. Suppose that the closed and convex set
C can be represented as a sublevel set of some convex function c : H → R, that is

C =
{

x ∈ H : c(x) ≤ 0
}

. (4)

Denote by ∂c(x), the subdifferential of the convex function c(·) at x. The TSEGM gener-
ates {xn} according to the following rule:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 ∈ H ,

yn = PCn (xn – λFxn),

Cn := {x ∈ H : c(xn) + 〈ζn, x – xn〉 ≤ 0},
xn+1 = PCn (xn – λFyn),

(5)
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where ζn ∈ ∂c(xn). Observe that if ζn = 0 then Cn = H and otherwise it is a half-space
containing the set C. The convergence of (5) was raised as an open problem in [9].

Recently, Cao and Guo [8] as well as Ma and Wang [34] partially answered this open
question by proposing an inertial two-subgradient extragradient method (ITSEGM), and
self-adaptive TSEGM for solving a Lipschitz continuous and monotone variational in-
equality problem with weak convergence properties.

Other relevant works related to the subgradient extragradient method are of He and
Wu [24], in which a line search is involved and the two projections onto the set C are
replaced by projections onto two particular half-spaces. He et al. [23] proposed a relaxed
projection and contraction method where again the projections onto the set C are replaced
by projection onto a particular constructible half-space.

In this paper, we are interested in studying VIs where the feasible set C is given as a finite
intersection of sublevel sets of convex functions defined as follows:

C :=
k⋂

i=1

Ci :=
{

z ∈ H : ci(z) ≤ 0
}

, (6)

where k is a positive integer and ci : H →R for all i ∈ I := {1, 2, . . . , k} are convex functions.
A very recent result for solving VIs defined over sets of the form (6) is the He et al. [25]

totally relaxed self-adaptive subgradient extragradient.

Remark 1.1 Although all the above results, He and Wu [24], He et al. [23], He et al. [25],
Cao and Guo [8], and Ma and Wang [34] managed to replace successfully the projections
onto C by some closed-formula projections onto some set, there are still some limita-
tions. First, we note that their proposed methods either require knowledge of the Lips-
chitz constants of F and the Gâteaux differential c′(·) of c(·) (which are often unknown or
very difficult to estimate) or employed a line-search procedure, which is known to be time
consuming to implement. In addition, all results obtain weak convergence, that is known
to be a drawback when solving optimization problems, see, e.g., Bauschke [6].

Following the above methods and results, in this paper we establish a totally relaxed,
inertial, self-adaptive projection and contraction method (TRISPCM) for solving VI
(1) defined over a finite intersection of some closed, convex sublevel sets (as seen in
(6)). Our method employs projections onto some constructable “supersets” and inertial
([4, 10, 20, 37, 42, 50, 52])) and relaxation [28] techniques are incorporated to speed up
the convergence rate of our method. Although we assume that F is Gâteaux differentiable,
and c′

i(·) of ci(·) are Lipschitz continuous, our method does not require any line-search
procedure, rather we employ a more efficient self-adaptive step-size technique that gen-
erates a nonmonotonic sequence of step sizes. Moreover, under suitable conditions we
prove strong convergence to a minimum-norm solution of the problem. Relevant numer-
ical experiments at the end of this paper clearly display the efficiency of our methods over
those in the literature.

The remainder of this paper is organized as follows. Section 2 contains definitions and
existing results relevant to our analysis. In Sect. 3, the proposed algorithm is presented and
its strong convergence is established in Sect. 4. Numerical experiments and comparisons
with related methods are given in Sect. 5, illustrating the performance of our scheme.
Finally, some concluding remarks on our work are presented in Sect. 6.
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2 Preliminaries
In this section, we review basic definitions and important lemmas, vital in proving our
main results.

Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Also, through-
out this paper, we let the strong and weak convergence of a sequence {xn} to a point x∗ ∈ H
be denoted by xn → x∗ and xn ⇀ x∗, respectively. The set of weak limits of {xn}, denoted
by wω(xn), is defined by

wω(xn) :=
{

x∗ ∈ H : xnk ⇀ x∗ for some subsequence {xnk } of {xn}
}

. (7)

The metric projection PC : H → C ([1]) is defined, for each x ∈ H , as the unique element
PCx ∈ C such that

‖x – PCx‖ = inf
{‖x – z‖ : z ∈ C

}
.

It is known that PC is nonexpansive (see [4, 38]). For more interesting features of the
metric projection, see Lemma 2.1.

Lemma 2.1 [25, 30] Let H be a real Hilbert space, and I be the identity map on H . Let C
be a nonempty, closed, and convex subset of H . We have the following results for any x ∈ H
and f , g ∈ C:

(i) g = PCx ⇐⇒ 〈x – g, g – f 〉 ≥ 0;
(ii) 〈(I – PC)x – (I – PC)f , x – f 〉 ≥ ‖(I – PC)x – (I – PC)f ‖2;

(iii) ‖f – PCx‖2 + ‖x – PCx‖2 ≤ ‖x – f ‖2;
(iv) 〈x – f , PCx – PCf 〉 ≥ ‖PCx – PCf ‖2;
(v) Let D = {u ∈ H : 〈x, u – d〉 ≤ 0} be a half-space, where x �= 0, and d ∈R. Then, for

a ∈ H ,

PD(a) = a – max

{

0,
〈x, a – d〉

‖x‖2

}

x. (8)

Note that (8) is the explicit formula for the orthogonal projection onto the half-space D.

Definition 2.2 [44, 51] Let F : H → H be a mapping defined on a real Hilbert space H .
Then, F is said to be:

(i) L-Lipschitz continuous, where L > 0, if

‖Fu – Fv‖ ≤ L‖u – v‖, ∀u, v ∈ H .

A contraction if L ∈ [0, 1), and nonexpansive, if L = 1;
(ii) λ- strongly monotone, if there exists λ > 0 such that

〈u – v, Fu – Fv〉 ≥ λ‖u – v‖2, ∀u, v ∈ H ;

(iii) monotone, if

〈Fu – Fv, u – v〉 ≥ 0, ∀u, v ∈ H .
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Lemma 2.3 [43, 50] Let H be a real Hilbert space. Then, the following results hold, for all
x, y ∈ H and ζ ∈R:

(i) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉;
(ii) ‖x + y‖2 = ‖x‖2 + 2〈x, y〉 + ‖y‖2;

(iii) ‖ζx + (1 – ζ )y‖2 = ζ‖x‖2 + (1 – ζ )‖y‖2 – ζ (1 – ζ )‖x – y‖2.

Definition 2.4 [36] Let c : H →R be a real-valued function. Then,
(i) c is said to be Gâteaux differentiable at z ∈ H , if there exists an element in H ,

denoted by c′(z), such that

lim
t→0

c(z + th) – c(z)
t

=
〈
h, c′(z)

〉
, ∀h ∈ H , (9)

where c′(z) (also written as ∇c(z)), is known as the Gâteaux differential (or
gradient) of c at z.

(ii) If c is convex, then c is said to be subdifferentiable at point z ∈ H , if ∂c(z) is
nonempty, where ∂c(z) is defined as follows:

∂c(z) :=
{

x ∈ H : c(y) ≥ c(z) + 〈x, y – z〉 ∀y ∈ H
}

. (10)

c is said to be subdifferentiable on H , if for each z ∈ H , c is subdifferentiable at z.
(iii) c is said to be weakly lower semicontinuous (w-lsc) at z ∈ H , if zn ⇀ z implies

c(z) ≤ lim inf
n→∞ c(zn). (11)

c is said to be w-lsc on H if for each z ∈ H , c is w-lsc at z.

Remark 2.5 We note the following from Definition 2.4:
(i) Each element in ∂c(z) is referred to as a subgradient of c at z. Also, (10) is said to be

the subdifferential inequality of c at z, where ∂c(z) is the subdifferential of c at z.
(ii) It is also known that if c is Gâteaux differentiable at z, then c is subdifferentiable at z,

and ∂c(z) = {c′(z)}, in particular, ∂c(z) is a singleton set (see [25]).

Lemma 2.6 [7] Let c : H → R∪{+∞} be convex. Then, the following results are equivalent:
(i) c is weakly sequential lower semicontinuous;

(ii) c is lower semicontinuous.

Lemma 2.7 [45] Let {ξn} and {μn} be two nonnegative real sequences such that

ξn+1 ≤ ξn + μn, ∀n ≥ 1.

If
∑∞

n=1 μn < +∞, then limn→∞ ξn exists.

Lemma 2.8 [12] Suppose C is a nonempty, closed, and convex subset of H , and suppose
F : C → H is a continuous monotone mapping, with x ∈ C, then

x ∈ VI(C, F) ⇐⇒ 〈Fy, y – x〉 ≥ 0, ∀y ∈ C.
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Lemma 2.9 [39] Suppose {xn} is a sequence of nonnegative real numbers, {αn} is a sequence
in (0, 1) with

∑∞
n=1 αn = +∞ and {zn} is a sequence of real numbers. Let

xn+1 ≤ (1 – αn)xn + αnzn, for all n ≥ 1,

if lim supk→∞ znk ≤ 0 for every subsequence {xnk } of {xn} satisfying lim infk→∞(xnk+1 – xnk ) ≥
0, then limn→∞ xn = 0.

Lemma 2.10 [26, 35] Let C be a set defined as in (6), and let F : h → H be an operator. Sup-
pose the solution set VI(C, F) is nonempty. Then, the following alternating theorem holds
for the solution of the VI(C,F), that is, given ẑ ∈ C, ẑ ∈ VI(C, F) if and only if one of the
following holds.

(i) Fẑ = 0; or
(ii) ẑ ∈ bd(C), and there exist βẑ > 0 (depending on the point ẑ), and

κ ∈ conv{c′
i(ẑ) : i ∈ I∗

ẑ } such that F(ẑ) = –βẑκ , where bd(C) denotes the boundary of
the set C, I∗

κ = {i ∈ I : ci(ẑ) = 0} and conv{c′
i(ẑ) : i ∈ I∗

ẑ } is the convex hull of the set
{c′

i(ẑ) : i ∈ I∗
ẑ }.

3 Proposed method
Here, we present our algorithm: A totally relaxed inertial self-adaptive projection and con-
traction method (TRISPCM) for solving the monotone variational inequality problem de-
fined over the feasible set (6). Our results are based on the following assumptions:

Assumption A
(A1) F : H → H is monotone and J – Lipschitz continuous on H .
(A2) The solution set VI(C, F) is nonempty.
(A3) For all i ∈ H , the family of functions ci : H →R satisfy the following conditions:

(i) Any ci(i ∈ I) is convex on H .
(ii) Any ci(i ∈ I) is weakly lower semicontinuous on H .

(iii) Any ci(i ∈ I) is Gâteaux differentiable and c′
i(i ∈ I) is Li– Lipschitz on H .

(iv) There exists a positive constant K such that for all ẑ ∈ bd(C), the following
holds:

‖Fẑ‖ ≤ K inf
{∥
∥m(ẑ)

∥
∥ : m(ẑ) ∈ con

{
c′

i(ẑ) : i ∈ I∗
ẑ
}}

,

where I∗
ẑ is defined as in Lemma 2.10.

Assumption B
(B1) Let τ > 0, γ1 > 0, � ∈ (0, 2), δ ∈ (0, 2–�

2–�+2K );
(B2) αn ∈ (0, 1), limn→∞ αn = 0,

∑∞
n=1 αn = +∞, {θn} ⊂R+ such that limn→∞ θn

αn
= 0;

(B3) Let μn be a nonnegative sequence such that
∑∞

n=1 μn < +∞.

We show our algorithm below:

Algorithm 3.1
Step 0. Set n = 1, and let x0, x1 ∈ H be two arbitrary initial points.
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Step 1. Given the (n – 1)th and nth iterates, choose τn such that 0 ≤ τn ≤ τ̂n with τ̂n

defined by

τ̂n =

⎧
⎨

⎩

min{τ , θn
‖xn–xn–1‖ }, if xn �= xn–1,

τ , otherwise.
(12)

Step 2. Compute

wn = (1 – αn)
(
xn + τn(xn – xn–1)

)
. (13)

Step 3. Given the current iterate wn, construct the family of half-spaces

Ci
n =

{
w ∈ H : ci(wn) +

〈
c′

i(wn), w – wn
〉 ≤ 0

}
, i ∈ I. (14)

Set,

Cn :=
⋂

i∈I

Ci
n (15)

and compute:

yn := PCn (wn – γnFwn). (16)

If wn = yn, then stop, wn ∈ SOL(C, F), otherwise, proceed to Step 4.
Step 4. Compute:

xn+1 = wn – �ψndn,

where, dn := wn – yn – γn(Fwn – Fyn), and

ψn =

⎧
⎨

⎩

〈wn–yn ,dn〉
‖dn‖2 , if dn �= 0,

0, otherwise.
(17)

Update:

γn+1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min{ δ‖wn–yn‖
‖Fwn–Fyn‖+‖c′in (wn)–c′in (yn)‖ ,γn + μn},

if ‖Fwn – Fyn‖ + ‖c′
in (wn) – c′

in (yn)‖ �= 0,

γn + μn, otherwise,

(18)

where ‖c′
in (wn) – c′

in (yn)‖ = maxi∈I{‖c′
i(wn) – c′

i(yn)‖}. Set n := n + 1 and return to
Step 1.

Remark 3.2 We highlight below some of the key features of our proposed Algorithm 3.1.
(i) Observe that the feasible set is constructed as a finite intersection of sublevel sets,

as seen in (6), which is more general than the feasible set adopted in
[8, 19, 23, 24, 34]. Also, observe that in (14), if c′

i(wn) = 0, then we have that Ci
n = H .
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(ii) We note that our proposed algorithm completely avoids projection onto the
feasible set, but rather allows only one projection onto some half-space, as seen in
(14)–(16). This obviously ensures easier computation, since projection onto
half-spaces can be calculated using an explicit formula, see (8).

(iii) We note that our Algorithm 3.1 employs the relaxation and inertial techniques to
improve its rate of convergence. Also, we observe that Step 1 of our proposed
algorithm is easily implemented, since we have prior knowledge of the estimate
‖xn – xn–1‖ before choosing τn.

(iv) We emphasize that while the cost operator is Lipschitz continuous, our algorithm
does not require any line-search procedure (unlike the methods of [23–25]).
Instead, we adopt a more efficient self-adaptive step-size technique that generates
nonmonotonic sequence of step sizes (as seen in (18)).

(v) We also point out that unlike the results in [8, 23–25, 34], our proposed algorithm
generates a strong convergence sequence, which converges to a minimum-norm
solution of the VI.

Remark 3.3 By applying condition (B2), from (12) we have that

lim
n→∞ τn‖xn – xn–1‖ = 0 and lim

n→∞
τn

αn
‖xn – xn–1‖ = 0.

4 Convergence analysis
In this section, we carry out the convergence analysis of our proposed algorithm. First, we
establish some lemmas that are needed to prove the strong convergence theorem for the
proposed algorithm.

Lemma 4.1 Let C and Cn be the sets defined by (6) and (15), respectively, then we have
that C ⊂ Cn, ∀n ≥ 1.

Proof For all i ∈ I , let Ci := {x ∈ H : ci(x) ≤ 0}. Thus,
we see that C =

⋂
i∈I Ci. Then, for each i ∈ I and any x ∈ Ci, by the subdifferential in-

equality, it follows that

ci(wn) +
〈
c′

i(wn), x – wn
〉 ≤ ci(x) ≤ 0. (19)

By definition of the sets Ci
n (14), we see that x ∈ Ci

n. It then follows that Ci ⊂ Ci
n, ∀n ≥ 1,

i ∈ I . Hence, C ⊂ Cn, ∀n ≥ 1 as required. �

Lemma 4.2 If yn = wn for some n ≥ 1 in Algorithm 3.1, then wn ∈ VI(C, F).

Proof Suppose yn = wn for some n ≥ 1. Then, by (16), we obtain

wn = PCn (wn – γnFwn). (20)

From (20), it follows that wn ∈ Cn, in particular, wn ∈ Ci
n for each i ∈ I and n ≥ 1. Then,

we have that ci(wn) + 〈c′
i(wn), wn – wn〉 ≤ 0, by the definition of Ci

n. From this, we obtain
ci(wn) ≤ 0 for each i ∈ I . Thus, wn ∈ C.
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Next, by (20) and (2), we have wn ∈ VI(Cn, F), which implies that

〈Fwn, z – wn〉 ≥ 0, ∀z ∈ Cn. (21)

Therefore, from the fact that wn ∈ C ∈ Cn and (21), the conclusion follows. �

Lemma 4.3 Let {γn} be the sequence generated by (18). Then, {γn} is well defined and
limn→∞ γn = γ , where γ ∈ [min{ δ

M ,γ1},γ1 +�], for some constants M > 0 and � =
∑∞

n=1 �n.

Proof Since c′
i and F are both Lipschitz continuous, considering the case ‖Fwn – Fyn‖ +

‖c′
in (wn) – c′

in (yn)‖ �= 0 in (18), we obtain for all n ≥ 1, that

δ‖wn – yn‖
‖Fwn – Fyn‖ + ‖c′

in (wn) – c′
in (yn)‖ ≥ δ‖wn – yn‖

J ‖wn – yn‖ + L‖wn – yn‖

≥ δ‖wn – yn‖
(J + L)‖wn – yn‖ =

δ

M
,

where M := (J + L) > 0, L = max{Li : i ∈ I}. Thus, by the definition of γn+1, it is obvious that
the sequence {γn} has upper bound and lower bound γ1 + � and min{ δ

M ,γ1}, respectively.
Hence, by Lemma 2.7, we have that limn→∞ γn exists, and we denote by limn→∞ γn = γ .
Clearly, γ ∈ [min{ δ

M ,γ1},γ1 + �]. �

Lemma 4.4 Let {xn} be a sequence generated by Algorithm 3.1. Suppose Assumptions A
and B are satisfied, then the following inequalities hold for all p ∈ VI(C, F).

‖wn – yn‖2 ≤ 1
�2

(
γn+1 + δγn

γn+1 – δγn

)2

‖wn – xn+1‖2 (22)

and

‖xn+1 – p‖2 ≤ ‖wn – p‖2 –
[

2 – �

�
–

2Kδ

�

γn

(γn+1 – δγn)

]

‖wn – xn+1‖2. (23)

Proof From (18), we obtain

γn+1 = min

{
δ‖wn – yn‖

‖Fwn – Fyn‖ + ‖c′
in (wn) – c′

in (yn)‖ ,γn + μn

}

(24)

≤ δ‖wn – yn‖
‖Fwn – Fyn‖ + ‖c′

in (wn) – c′
in (yn)‖ ,

which implies that

‖Fwn – Fyn‖ +
∥
∥c′

in (wn) – c′
in (yn)

∥
∥ ≤ δ

γn+1
‖wn – yn‖, ∀n ≥ 1. (25)

Since both terms on the left-hand side of (25) are positive terms, then it implies that

∥
∥c′

in (wn) – c′
in (yn)

∥
∥ ≤ δ

γn+1
‖wn – yn‖, ∀n ≥ 1. (26)
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Next, we proceed to prove the first inequality (22). From the definition of ψn, if dn �= 0
and by applying (25), we have

ψn‖dn‖2 = 〈wn – yn, dn〉 ≥ ‖wn – yn‖2 – γn‖Fwn – Fyn‖‖wn – yn‖

≥ ‖wn – yn‖2 – γn

(
δ

γn+1

)

‖wn – yn‖2

=
(

1 –
δγn

γn+1

)

‖wn – yn‖2. (27)

Also,

‖dn‖ ≤ ‖wn – yn‖ + γn‖Fwn – Fyn‖

≤ ‖wn – yn‖ +
δγn

γn+1
‖wn – yn‖

=
(

1 +
δγn

γn+1

)

‖wn – yn‖. (28)

From (27), we obtain

(
ψn‖dn‖2)2 ≥

(

1 –
δγn

γn+1

)2

‖wn – yn‖4.

From the last inequality and by applying (28), we obtain

ψ2
n‖dn‖2 ≥

(

1 –
δγn

γn+1

)2 ‖wn – yn‖4

‖dn‖2

≥ (1 – δγn
γn+1

)2‖wn – yn‖4

(1 + δγn
γn+1

)2‖wn – yn‖2

=
(1 – δγn

γn+1
)2

(1 + δγn
γn+1

)2
‖wn – yn‖2. (29)

Observe that (29) still holds when dn = 0. Hence, from (29) and the definition of xn+1, we
have that

‖xn+1 – wn‖2 = ‖wn – �ψndn – wn‖2 = ‖�ψndn‖2 = �2ψ2
n‖dn‖2

≥ �2
(1 – δγn

γn+1
)2

(1 + δγn
γn+1

)2
‖wn – yn‖2.

Hence,

‖wn – yn‖2 ≤ 1
�2

(
γn+1 + δγn

γn+1 – δγn

)2

‖wn – xn+1‖2,

as required.
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Next, we proceed to prove the second inequality (23). Now, if there exists n∗ ≥ 1 such
that dn∗ = 0, then xn∗+1 = wn∗ , and hence, (23) holds. Hence, we consider the nontrivial
case, where dn �= 0, for each n ≥ 1.

Let p ∈ VI(C, F). Then, from (17), we have that

‖xn+1 – p‖2 = ‖wn – �ψndn – p‖2

= ‖wn – p‖2 – 2�ψn〈wn – p, dn〉 + �2ψ2
n‖dn‖2. (30)

By the definition of dn, we obtain

〈wn – p, dn〉 = 〈wn – yn, dn〉 + 〈yn – p, dn〉
= 〈wn – yn, dn〉 +

〈
yn – p, wn – yn – γn(Fwn – Fyn)

〉

= 〈wn – yn, dn〉 + 〈yn – p, wn – yn – γnFwn〉
+ γn〈yn – p, Fyn〉. (31)

By the monotonicity of F , we have that 〈yn – p, Fyn – Fp〉 ≥ 0, which implies that

〈yn – p, Fyn〉 ≥ 〈yn – p, Fp〉. (32)

Also, since yn = PCn (wn – γnFwn) and by Lemma 2.1, we have

〈wn – yn – γnFwn, yn – p〉 ≥ 0. (33)

By (31), (32), and (33), we obtain

〈wn – p, dn〉 ≥ 〈wn – yn, dn〉 + γn〈yn – p, Fp〉. (34)

Now, we consider the following two cases:
Case 1: Fp = 0. If Fp = 0, then from (34) we obtain

〈wn – p, dn〉 ≥ 〈wn – yn, dn〉. (35)

Then, it follows from (30), (35), the definition of ψn, and the conditions imposed on the
control parameter that

‖xn+1 – p‖2 ≤ ‖wn – p‖2 – 2�ψn〈wn – yn, dn〉 + �2ψ2
n‖dn‖2

= ‖wn – p‖2 – 2�ψ2
n‖dn‖2 + �2ψ2

n‖dn‖2

= ‖wn – p‖2 –
2 – �

�
‖�ψndn‖2

= ‖wn – p‖2 –
2 – �

�
‖wn – xn+1‖2. (36)

Hence, the desired inequality (23) follows from (36).
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Case 2: Fp �= 0. By applying Lemma 2.10, we have that p ∈ bd(C) and we have

Fp = –βp
∑

i∈I∗p

αic′
i(p), (37)

where βp is some positive constant, I∗
p = {i ∈ I : ci(p) = 0}, and {αi}i∈I∗p are nonnegative

numbers satisfying
∑

i∈I∗p αi = 1. Then, by the subdifferential inequality, we obtain

ci(p) +
〈
c′

i(p), yn – p
〉 ≤ ci(yn), ∀n ≥ 0, i ∈ I∗

p . (38)

Since p ∈ bd(C), we have that ci(p) = 0, for each i ∈ I∗
p , and then

〈
c′

i(p), yn – p
〉 ≤ ci(yn), ∀n ≥ 0, i ∈ I∗

p . (39)

We have from (37) and (39) that

〈–Fp, yn – p〉 ≤ βp
∑

i∈I∗p

αici(yn). (40)

Since yn ∈ Cn =
⋂

i∈I Ci
n, we have

ci(wn) +
〈
c′

i(wn), yn – wn
〉 ≤ 0. (41)

Then, by the differential inequality, we obtain

ci(yn) +
〈
c′

i(yn), wn – yn
〉 ≤ ci(wn), ∀n ≥ 0, i ∈ I∗

p . (42)

From (41) and (42), and by applying (26) we have

ci(yn) +
〈
c′

i(yn), wn – yn
〉 ≤ –

〈
c′

i(wn), yn – wn
〉

�⇒ ci(yn) ≤ 〈
c′

i(wn) – c′
i(yn), wn – yn

〉

=
〈
c′

i(yn) – c′
i(wn), yn – wn

〉

≤ ∥
∥c′

i(yn) – c′
i(wn)

∥
∥‖yn – wn‖

≤ δ

γn+1
‖yn – wn‖2. (43)

Observe that by condition (A3)(iv), we have

βp ≤ K . (44)

Hence, from (40) and by applying (43), (44), and the condition on γn, we obtain

〈–Fp, yn – p〉 ≤ K
δ

γn+1
‖yn – wn‖2

�⇒ 〈Fp, yn – p〉 ≥ –K
δ

γn+1
‖yn – wn‖2
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�⇒ γn〈Fp, yn – p〉 ≥ –K
δγn

γn+1
‖yn – wn‖2. (45)

By substituting (45) into (34), we obtain

〈wn – p, dn〉 ≥ 〈wn – yn, dn〉 – K
δγn

γn+1
‖yn – wn‖2. (46)

Then, substituting (46) into (30), we have

‖xn+1 – p‖2 ≤ ‖wn – p‖2 – 2�ψn

[

〈wn – yn, dn〉 – K
δγn

γn+1
‖yn – wn‖2

]

+ �2ψ2
n‖dn‖2

= ‖wn – p‖2 – 2�ψn〈wn – yn, dn〉 + �2ψ2
n‖dn‖2

+ 2�ψnK
δγn

γn+1
‖yn – wn‖2

= ‖wn – p‖2 –
2 – �

�
‖�ψndn‖2 + 2�ψnK

δγn

γn+1
‖yn – wn‖2

= ‖wn – p‖2 –
2 – �

�
‖wn – xn+1‖2 + 2�ψnK

δγn

γn+1
‖yn – wn‖2. (47)

From (27), we obtain

‖wn – yn‖2 ≤ ψn‖dn‖2

(1 – δγn
γn+1

)
. (48)

Hence, using (48) and the definition of xn+1, we have

2�ψnK
δγn

γn+1
‖yn – wn‖2 ≤ 2�ψnK

δγn

γn+1

ψn‖dn‖2

(1 – δγn
γn+1

)

=
2Kδ

�

γn

(γn+1 – δγn)
‖�ψndn‖2

=
2Kδ

�

γn

(γn+1 – δγn)
‖wn – xn+1‖2. (49)

By substituting (49) into (47), we obtain

‖xn+1 – p‖2 ≤ ‖wn – p‖2 –
[

2 – �

�
–

2Kδ

�

γn

(γn+1 – δγn)

]

‖wn – xn+1‖2,

which is the required inequality. �

Since the limit of {γn} exists, we have that limn→∞ γn = limn→∞ γn+1. Hence, by the con-
ditions imposed on the control parameters, we have that

lim
n→∞

[
2 – �

�
–

2Kδ

�

γn

(γn+1 – δγn)

]

=
[

2 – �

�
–

2K
�

δ

(1 – δ)

]

> 0.
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Thus, there exists n0 ≥ 1 such that for all n ≥ n0, we have

[
2 – �

�
–

2Kδ

�

γn

(γn+1 – δγn)

]

> 0. (50)

Hence, from (23), we have that for all n ≥ n0,

‖xn+1 – p‖ ≤ ‖wn – p‖. (51)

Lemma 4.5 Let {xn} be a sequence generated by Algorithm 3.1 such that Assumptions A
and B hold. Then, {xn} is bounded.

Proof Let p ∈ VI(C, F). Then, by the definition of wn, we have

‖wn – p‖ =
∥
∥(1 – αn)

(
xn + τn(xn – xn–1) – p

)∥
∥

=
∥
∥(1 – αn)(xn – p) + (1 – αn)τn(xn – xn–1) – αnp

∥
∥

≤ (1 – αn)‖xn – p‖ + (1 – αn)τn‖xn – xn–1‖ + αn‖p‖

= (1 – αn)‖xn – p‖ + αn

[

(1 – αn)
τn

αn
‖xn – xn–1‖ + ‖p‖

]

. (52)

From Remark 3.3, we obtain that limn→∞[(1 – αn) τn
αn

‖xn – xn–1‖ + ‖p‖] = ‖p‖. Thus, there
exists M1 > 0 such that

(1 – αn)
τn

αn
‖xn – xn–1‖ + ‖p‖ ≤ M1, ∀n ≥ 1. (53)

Combining (52) and (53), we obtain

‖wn – p‖ ≤ (1 – αn)‖xn – p‖ + αnM1. (54)

Now, using (54) together with (51), we have

‖xn+1 – p‖ ≤ ‖wn – p‖ ≤ (1 – αn)‖xn – p‖ + αnM1

≤ max
{‖xn – p‖, M1

}

...

≤ {‖xn0 – p‖, M1
}

.

Therefore, we have that the sequence {xn} is bounded. Consequently, {wn} and {yn} are
both bounded. �

Lemma 4.6 Suppose {xn} is a sequence generated by Algorithm 3.1 under Assumptions A
and B. Then, for all p ∈ VI(C, F) the following inequality holds:

[
2 – �

�
–

2Kδ

�

γn

(γn+1 – δγn)

]

‖wn – xn+1‖2 ≤ ‖xn – p‖2 – ‖xn+1 – p‖2 + αnM2.



Uzor et al. Journal of Inequalities and Applications        (2023) 2023:141 Page 15 of 28

Proof Let p ∈ VI(C, F). Then, we see from (54) that

‖wn – p‖2 ≤ (1 – αn)2‖xn – p‖2 + 2αn(1 – αn)M1‖xn – p‖ + α2
nM2

1

≤ ‖xn – p‖2 + αn
(
2(1 – αn)M1‖xn – p‖ + αnM2

1
)

≤ ‖xn – p‖2 + αnM2, (55)

where M2 = supn∈N{2(1 – αn)M1‖xn – p‖ + αnM2
1} > 0.

Then, by substituting (55) into (23), we have

‖xn+1 – p‖2 ≤ ‖xn – p‖2 + αnM2

–
[

2 – �

�
–

2Kδ

�

γn

(γn+1 – δγn)

]

‖wn – xn+1‖2.

The desired result follows from the last inequality. �

Lemma 4.7 Assume that {xn} is a sequence generated by Algorithm 3.1 under Assumptions
A and B. Then, for all p ∈ VI(C, F), the following inequality holds:

‖xn+1 – p‖2 ≤ (1 – αn)‖xn – p‖2

+ αn

[

2(1 – αn)‖xn – p‖ τn

αn
‖xn – xn–1‖

+ τn‖xn – xn–1‖ τn

αn
‖xn – xn–1‖

+ 2‖p‖‖wn – xn+1‖ + 2〈p, p – xn+1〉
]

.

Proof Using Lemma 2.3 and (51), we obtain

‖xn+1 – p‖2 ≤ ‖wn – p‖2

=
∥
∥(1 – αn)(xn – p) + (1 – αn)τn(xn – xn–1) – αnp

∥
∥2

≤ ∥
∥(1 – αn)(xn – p) + (1 – αn)τn(xn – xn–1)

∥
∥2

+ 2αn〈–p, wn – p〉
≤ (1 – αn)2‖xn – p‖2 + 2(1 – αn)τn‖xn – p‖‖xn – xn–1‖

+ τ 2
n ‖xn – xn–1‖2 + 2αn〈p, p – wn〉

= (1 – αn)2‖xn – p‖2 + 2(1 – αn)τn‖xn – p‖‖xn – xn–1‖
+ τ 2

n ‖xn – xn–1‖2 + 2αn〈p, xn+1 – wn〉 + 2αn〈p, p – xn+1〉
≤ (1 – αn)‖xn – p‖2

+ αn

[

2(1 – αn)‖xn – p‖ τn

αn
‖xn – xn–1‖

+ τn‖xn – xn–1‖ τn

αn
‖xn – xn–1‖
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+ 2‖p‖‖wn – xn+1‖ + 2〈p, p – xn+1〉
]

,

which is the required inequality. �

Lemma 4.8 Let {wn} and {yn} be two sequences generated by Algorithm 3.1 such that As-
sumptions A and B hold. If there exists a subsequence {wnk } of {wn} such that wnk ⇀ x∗ ∈ H
and limk→∞ ‖wnk – ynk ‖ = 0, then x∗ ∈ VI(C, F).

Proof Assume that {wn} and {yn} are two sequences generated by Algorithm 3.1 with
subsequences {wnk } and {ynk }, respectively, such that wnk ⇀ x∗. By the hypothesis of the
lemma, we have ynk ⇀ x∗. Since ynk ∈ Cnk by the definition of Cn, we have

ci(wnk ) +
〈
c′

i(wnk ), ynk – wnk

〉 ≤ 0. (56)

By applying the Cauchy–Schwarz inequality, from (56) we obtain

ci(wnk ) ≤ ∥
∥c′

i(wnk )
∥
∥‖ynk – wnk ‖. (57)

By the Lipschitz continuity of c′
i(·) and the fact that {wnk } is bounded, then {c′

i(wnk )} is
bounded. This implies that there exists a constant M4 > 0, such that ‖ci(wnk )‖ ≤ M4, ∀k ≥
0. Hence, we see from (57) that

ci(wnk ) ≤ M4‖ynk – wnk ‖. (58)

Since ci(·) is continuous, then it is lower semicontinuous. Also, since ci(·) is convex, then
by Lemma 2.6, ci(·) is weakly lower semicontinuous. Then, we have from (58) and the
definition of weakly lower semicontinuity that

ci
(
x∗) ≤ lim inf

k→∞
ci(wnk ) ≤ lim

k→∞
M4‖ynk – wnk ‖. (59)

Hence, by the hypothesis of the lemma it follows from (59) that x∗ ∈ C. By the property of
the projection map (see Lemma 2.1), we have

〈ynk – wnk + γnk Fwnk , p – ynk 〉 ≥ 0, ∀p ∈ C ⊂ Cnk .

Then, by the monotonicity of F , we obtain

0 ≤ 〈ynk – wnk , p – ynk 〉 + γnk 〈Fwnk , p – ynk 〉
= 〈ynk – wnk , p – ynk 〉 + γnk 〈Fwnk , p – wnk 〉 + γnk 〈Fwnk , wnk – ynk 〉
≤ 〈ynk – wnk , p – ynk 〉 + γnk 〈Fp, p – wnk 〉 + γnk 〈Fwnk , wnk – ynk 〉. (60)

Since limk→∞ ‖ynk – wnk ‖ = 0 and limk→∞ γnk = γ > 0, then by letting k → ∞ in (60), we
have

〈
Fp, p – x∗〉 ≥ 0, ∀p ∈ C.

Hence, by Lemma 2.8, we have that x∗ ∈ VI(C, F).
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At this juncture, we proceed to prove the strong convergence theorem of our proposed
Algorithm 3.1. �

Theorem 4.9 Let {xn} be a sequence generated by Algorithm 3.1 under Assumptions A
and B. Then, {xn} converges strongly to an element x̂ ∈ VI(C, F), where ‖x̂‖ = min{‖p‖ : p ∈
VI(C, F)}.

Proof Since ‖x̂‖ = min{‖p‖ : p ∈ VI(C, F)}, then we have x̂ = PVI(C,F)(0). From Lemma 4.7
we obtain

‖xn+1 – x̂‖2 ≤ (1 – αn)‖xn – x̂‖2 (61)

+ αn

[

2(1 – αn)‖xn – x̂‖ τn

αn
‖xn – xn–1‖

+ τn‖xn – xn–1‖ τn

αn
‖xn – xn–1‖

+ 2‖x̂‖‖wn – xn+1‖ + 2〈x̂, x̂ – xn+1〉
]

= (1 – αn)‖xn – x̂‖2 + αndn, (62)

where, dn = [2(1–αn)‖xn – x̂‖ τn
αn

‖xn –xn–1‖+τn‖xn –xn–1‖ τn
αn

‖xn –xn–1‖+2‖x̂‖‖wn –xn+1‖+
2〈x̂, x̂ – xn+1〉].

Now, we claim that limn→∞ ‖xn – x̂‖ = 0. To verify this claim, it suffices to show by
Lemma 2.9 that limk→∞ dnk ≤ 0, for every subsequence {‖xnk – x̂‖} of {‖xn – x̂‖} satisfying

lim inf
k→∞

(
(‖xnk+1 – x̂‖ – ‖xnk – x̂‖) ≥ 0. (63)

We assume that {‖xnk – x̂‖} is a subsequence of {‖xn – x̂‖} such that (63) holds. Then, from
Lemma 4.6 we have

[
2 – �

�
–

2Kδ

�

γnk

(γnk +1 – δγnk )

]

‖wnk – xnk +1‖2 ≤ ‖xnk – x̂‖2

– ‖xnk +1 – x̂‖2 + αnk M2. (64)

By applying (63) and the fact that limk→∞ αnk = 0, we obtain

[
2 – �

�
–

2Kδ

�

γnk

(γnk +1 – δγnk )

]

‖wnk – xnk +1‖2 → 0, k → ∞.

Hence, by (50) we obtain

‖wnk – xnk +1‖ → 0, k → ∞. (65)

Also, from (22) and (65), we obtain

‖wnk – ynk ‖ → 0, k → ∞. (66)



Uzor et al. Journal of Inequalities and Applications        (2023) 2023:141 Page 18 of 28

By Remark (3.3), the definition of wn, and the fact that limk→∞ αnk = 0, we have

‖wnk – xnk ‖ =
∥
∥(1 – αnk )

(
xnk + τnk (xnk – xnk –1) – xnk

)∥
∥

=
∥
∥(1 – αnk )(xnk – xnk ) + (1 – αnk )τnk (xnk – xnk –1) – αnk xnk

∥
∥

≤ (1 – αnk )‖xnk – xnk ‖ + (1 – αnk )τnk ‖xnk – xnk –1‖ + αnk ‖xnk ‖
→ 0, k → ∞. (67)

From (65) and (67), we obtain

‖xnk – xnk +1‖ ≤ ‖xnk – wnk ‖ + ‖wnk – xnk +1‖ → 0, k → ∞. (68)

To complete the proof, we need to show that wω(xn) ⊂ VI(C, F). Since {xn} is bounded,
then wω(xn) �= ∅. Now, let x∗ ∈ wω(xn) be an arbitrary element. Then, there exists a sub-
sequence {xnk } of {xn} such xnk ⇀ x∗ as k → ∞. It follows from (67) that wnk ⇀ x∗

as k → ∞. Then, by Lemma 4.8 together with (66), we see that x∗ ∈ VI(C, F). Hence,
wω(xn) ⊂ VI(C, F) since x∗ ∈ wω(xn) was chosen arbitrarily.

Again, since {xnk } is bounded, then there exists a subsequence {xnkj
} of {xnk }, such that

xnkj
⇀ z, and

lim
j→∞〈x̂, x̂ – xnkj

〉 = lim sup
k→∞

〈x̂, x̂ – xnk 〉. (69)

Since x̂ = PVI(C,F)(0), then by the property of the projection map and (69), we obtain

lim sup
k→∞

〈x̂, x̂ – xnk 〉 = lim
j→∞〈x̂, x̂ – xnkj

〉 = 〈x̂, x̂ – z〉 ≤ 0. (70)

By combining (68) and (70), we obtain

lim sup
k→∞

〈x̂, x̂ – xnk +1〉 = lim sup
k→∞

〈x̂, x̂ – xnk 〉 = 〈x̂, x̂ – z〉 ≤ 0. (71)

Using (65), Remark 3.3 together with (71), we clearly see that lim supk→∞ dnk ≤ 0. Then,
by applying Lemma 2.9 to (61), we easily conclude that limn→∞ ‖xn – x̂‖ = 0 as required.
This completes the proof. �

Remark 4.10 We note that our strong convergence analysis completely avoids the “two-
cases” approach, which is usually employed by researchers in the proof of strong conver-
gence theorems (see [32, 46]). However, we adopted a much simpler and more straight-
forward approach in our proofs.

5 Numerical examples
Here, we perform some numerical experiments to illustrate the performance of our
method, Algorithm 3.1 (Proposed Alg.), in comparison with Algorithm A.1 proposed by
Ma and Wang (Ma and Wang Alg.), Algorithm A.2 proposed by He et al. (He et al. Alg.),
Algorithm A.3 by He, Wu et al. (He, Wu et al. Alg.), Algorithm A.4 by Thong and Gibali
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(Thong and Gibali Alg.) and Algorithm A.5 by Thong and Gibali (Thong and Gibali Alg.).
Our experiments were carried out on MATLAB R2021(b).

The choice of values for our parameters are as follows: In Algorithm 3.1, we chose τ =
0.88, θn = ( 2

3n+1 )2, αn = 2
3n+1 , γ1 = 0.99, μn = 30

(3n+4)2 , � = 0.25. Also, we chose γ–1 = 0.0017,
ξ = 0.76, ν = 0.87 in Algorithm A.1, χ = 0.97 in Algorithm A.2 σ = 0.02, ω = 0.05 in Al-
gorithm A.3, g = 0.66, λ = 1.2, δn = 2

3n+1 , βn = 1–δn
2 , in Algorithm A.4 and f (x) = 1

4 x in
Algorithm A.5.

Our numerical experiments will be conducted using the following examples below:

Example 5.1 Let F : R2 →R
2 be defined by F(x1, x2) = (6h(x1), 3x1 + x2) on the feasible set

C := C1 ∩ C2 ⊆R
2, where

C1 :=
{

(x1, x2) ∈R
2 : c1(x1, x2) := x2

1 + x2
2 – 2 ≤ 0

}
,

C2 :=
{

(x1, x2) ∈R
2 : c2(x1, x2) := x2

1 – x2 ≤ 0
}

, and,

h(t) :=

⎧
⎪⎪⎨

⎪⎪⎩

e(t – 1) + e if t > 1,

et if – 1,

e–1(t + 1) + e–1 if t < –1.

We see from Lemma 2.10 that VI(C, F) is nonempty, in particular, the solution, VI(C, F)
of the VI 5.1, is the set {(–1, 1)}. We note that F is monotone and Lipschitz continuous.
The functions c′

i(·) are also Lipschitz continuous, for i = 1, 2, with constants L1 = L2 = 2,
where L = max{L1, L2}. Also, K = 3

√
e2 + 1, and K ′ = 6

√
e2 + 1, see [25]. For this example

we choose δ = 0.068 and set M = K .
We test the algorithms for four different initial points as follows:
Case I: x0 = (5, 5), x1 = (–2, –1);
Case II: x0 = (2, 6), x1 = (1, –2);

Figure 1 Example 5.1: Case I
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Figure 2 Example 5.1: Case II

Figure 3 Example 5.1: Case III

Case III: x0 = (3, 6), x1 = (1, 0);
Case IV: x0 = (5, 5), x1 = (–1, 1).
The stopping criterion used for this example is ‖xn+1 – xn‖ < 10–3. We plot the graphs of

errors against the number of iterations in each case. The numerical results are reported
in Figs. 1–4 and Table 1.

Next, we provide an example in infinite-dimensional spaces for the experiment of our
strong convergence result.



Uzor et al. Journal of Inequalities and Applications        (2023) 2023:141 Page 21 of 28

Figure 4 Example 5.1: Case IV

Table 1 Numerical results for Example 5.1

Case 1 Case 2 Case 3 Case 4

Iter. CPU Time Iter. CPU Time Iter. CPU Time Iter. CPU Time

Ma and Wang Alg. 172 0.0090 172 0.0080 180 0.0080 191 0.0079
He et al. Alg. 335 0.0168 335 0.0169 355 0.0158 389 0.0157
He, Wu et al. Alg. 222 0.0059 222 0.0061 235 0.0056 249 0.0056
Thong and Gibali Alg. 169 0.0064 169 0.0071 170 0.0067 171 0.0065
Thong and Gibali Alg. 322 0.0081 322 0.0078 323 0.0073 325 0.0079
Proposed Alg. 3.1 (noninertial) 159 0.0207 159 0.0213 160 0.0202 160 0.0202
Proposed Alg. 3.1 149 0.0171 149 0.0177 150 0.0170 149 0.0172

Example 5.2 Let F(x) = 3x, ∀x ∈ H , and let C ⊂ H be the closed, convex, feasible set de-
fined as follows:

C :=
m⋂

i=1

Ci :=
m⋂

i=1

{
x ∈ H : ci(x) := ‖xi‖2 – 2 ≤ 0

}
, for each i = 1, . . . , m,

where, H =
(
�2(R),‖ · ‖),‖x‖2 =

( ∞∑

k=1

|xk|2
) 1

2

, 〈x, y〉 =
∞∑

k=1

xkyk , ∀x ∈ �2(R),

and, �2(R) :=

{

x = (x1, x2, . . . , xn, . . .), xk ∈R :
∞∑

k=1

|xk|2 < ∞
}

.

Also, note that F is monotone and 3-Lipschitz continuous, c′
i is Lipschitz continuous, and

K = 1. We chose δ = 0.14 in this example.
We chose different initial values as follows:
Case I: x0 = (–4, 1, – 1

4 , . . .), x1 = ( 1
2 , 1

4 , 1
8 , . . .);

Case II: x0 = (3, 1, 1
3 , . . .), x1 = (1, 0.1, 0.01, . . .);

Case III: x0 = (5, 1, 1
5 , . . .), x1 = (1, –0.1, 0.01, . . .);

Case IV: x0 = (4, 1, 1
4 , . . .), x1 = (– 1

2 , 1
4 , – 1

8 , . . .).
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Figure 5 Example 5.2: Case I

Figure 6 Example 5.2: Case II

The stopping criterion used for this example is ‖xn+1 – xn‖ < 10–3. We plot the graphs of
errors against the number of iterations in each case. The numerical results are reported
in Figs. 5–8 and Table 2.

6 Conclusion
In this paper, we studied the classical variational inequality problem defined over a
finite intersection of sublevel sets of convex functions. We proposed a new iterative
method called a “Totally relaxed inertial self-adaptive projection and contraction method”
(TRISPCM), in which the projection onto the feasible set is replaced with a projection onto
some half-space. Our method does not require any line-search procedure, rather it uses



Uzor et al. Journal of Inequalities and Applications        (2023) 2023:141 Page 23 of 28

Figure 7 Example 5.2: Case III

Figure 8 Example 5.2: Case IV

Table 2 Numerical results for Example 5.2

Case 1 Case 2 Case 3 Case 4

Iter. CPU Time Iter. CPU Time Iter. CPU Time Iter. CPU Time

Thong and Gibali Alg. 86 0.0147 76 0.0140 93 0.0140 83 0.0146
Thong and Gibali Alg. 106 0.0052 98 0.0056 115 0.0053 107 0.0053
Proposed Alg. 3.1 (noninertial) 54 0.0110 49 0.0118 56 0.0190 53 0.0074
Proposed Alg. 3.1 29 0.0096 28 0.0101 28 0.0091 29 0.0097

a more efficient self-adaptive step-size technique. We also employed the relaxation and
inertial techniques to speed up the rate of convergence of our proposed method. More-
over, under some mild conditions we proved that the sequence generated by our proposed
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algorithm converges strongly to a minimum-norm solution of the problem. Lastly, we con-
ducted some numerical experiments to clearly showcase the computational advantage of
our proposed method over the existing methods in the literature.

Appendix
Algorithm A.1 Algorithm 2 in [34]

Step 0. Choose x–1, x0, y–1 ∈ H ; ξ ,ν ∈ [a, b] ⊂ (0, 1), γ–1 ∈ (0, 1–ξ2

2βpL1
]. Set n = 0.

Step 1. Given γn–1, y–1, and x–1. Let pnn–1 = xn–1 – y–1.

γn :=

⎧
⎨

⎩

γn–1, γn–1‖Fxn–1 – Fyn–1‖ ≤ ξ‖pn–1‖,

γn–1ν, otherwise.

Step 2. Compute

yn = PCn (xn – γnFxn).

Step 3. Compute

xn+1 = PCn

(
yn – γn(Fyn – Fxn)

)
,

where,

Cn :=
{

x ∈ H : c(xn) +
〈
c′

i(xn), x – xn
〉 ≤ 0

}
.

Set n := n + 1 and return to Step 1. Where F : H → H is monotone and L2– Lipschitz
continuous, c′(·) is Lipschitz continuous, and βp is the parameter in Lemma 2.10.

Algorithm A.2 Algorithm 1 in [23]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ H chosen arbitrarily,

yn = PCn (xn – γnFxn),

If xn = yn, stop, xn is a solution. Otherwise,

d(xn, yn) = (xn – yn) – γn(Fxn – Fyn),

xn+1 = xn – �ψnd(xn, yn),

or,

x∗
n+1 = PTn [xn – �ψnγnFyn],

where Cn and Tn are half-spaces given by Cn := {w ∈ H : c(xn) + 〈c′(xn), w – xn〉 ≤ 0} and
Tn := {w ∈ H : 〈xn – yn,γnFyn – d(xn, yn)〉 ≥ 0}, respectively, and

ψn :=
〈xn – yn, d(xn, yn)〉 – Mγn‖xn – yn‖2

‖d(xn, yn)‖2 ,

γn =
χ

M +
√

M2 + L2
n

,

for some constant M > 0 and Ln satisfying certain conditions.
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Algorithm A.3 (Algorithm 3.1 in [25])
Step 0. Set L = max{Li : i ∈ I}, K ′ = KL, where K is defined in Lemma 2.10, and Li(i ∈ I)

is the Lipschitz constant. Choose arbitrarily, x0 ∈ H , ξ ∈ (0, 1), and set n = 0.
Step 1. Given the current iterate xn, construct the family of half-spaces

Ci
n =

{
w ∈ H : ci(xn) +

〈
c′

i(xn), w – xn
〉 ≤ 0

}
, i ∈ I.

Set,

Cn :=
⋂

i∈I

Ci
n

and compute:

yn := PCn (xn – γnFxn);

where, γn = σωgn ,σ > 0,ω ∈ (0, 1),

and gn is the smallest integer, such that

γ 2
n ‖Fxn – Fyn‖2 + K ′γn‖xn – yn‖2 ≤ ξ‖xn – yn‖2.

Step 2. If wn = yn, then stop, xn ∈ SOL(C, F), otherwise, calculate the next iterative step
by:

xn+1 = PCn (xn – γnFyn),

or by,

xn+1 = PTn (xn – γnFyn),

where Tn =
{

w ∈ H : 〈xn – γnFxn – yn, w – yn〉 ≤ 0
}

.

Set n := n + 1 and return to Step 1.

Algorithm A.4 (Algorithm 3.1 in [46])
Step 0. Given λ > 0, g ∈ (0, 1), ν ∈ (0, 1), � ∈ (0, 2). Let x0 ∈ H be chosen arbitrarily.

Given the current iterate xn, calculate xn + 1 as follows:
Step 1. Compute:

yn = PC(xn – γnFxn),

where γn is chosen to be the largest ηn ∈ [λ,λg,λg2, . . .] satisfying

η‖Fxn – Fyn‖ ≤ ν‖xn – yn‖.

If wn = yn, then stop, xn ∈ SOL(C, F), otherwise,
Step 2. Compute:

zn = PTn

(
xn – �γnF(yn)

)
,
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where Tn :=
{

x ∈ H : 〈xn – γnFxn – yn, x – yn〉 ≤ 0
}

, and

dn := xn – yn – γn(Fxn – Fyn).

Step 3. Compute:

xn+1 = (1 – δn – βn)xn + βnzn.

Set n := n + 1 and return to Step 1.

Algorithm A.5 (Algorithm 3.2 in [46])
Step 0. Given λ > 0, g ∈ (0, 1), ν ∈ (0, 1), � ∈ (0, 2). Let x0 ∈ H be chosen arbitrarily.

Given the current iterate xn, calculate xn + 1 as follows:
Step 1. Compute:

yn = PC(xn – γnFxn),

where γn is chosen to be the largest ηn ∈ [λ,λg,λg2, . . .] satisfying

η‖Fxn – Fyn‖ ≤ ν‖xn – yn‖.

If wn = yn, then stop, xn ∈ SOL(C, F), otherwise,
Step 2. Compute:

zn = PTn (xn – �γnFyn),

where Tn :=
{

x ∈ H : 〈xn – γnFxn – yn, x – yn〉 ≤ 0
}

, and

dn := xn – yn – γn(Fxn – Fyn).

Step 3. Compute:

xn+1 = αnf (xn) + (1 – αn)zn.

Set n := n + 1 and return to Step 1.
Where f : H → H is a contraction with constant φ ∈ (0, 1).
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