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Abstract
Opial’s inequality and its ramifications play an important role in the theory of
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1 Introduction
More than sixty years ago, Opial [15] published an inequality that happened to have an
enormous influence in the field of differential and difference equations. For an early appli-
cation, see Willett [22]. Its complicated proof was simplified in the early 1960s by several
authors; see Chap. 1 of Agarwal and Pang [1], who present a comprehensive account of the
state of the art in this field up to 1995. A more recent detailed description of the history of
Opial’s inequality is given in Saker [18]. The situation in 2015 is summarized in Andrić et
al. [2]. The inequality has been extended and generalized in several directions. For an ex-
position of Opial’s inequality for time scales, we refer to Osman, Saker and Anderson [16].

In the next section we present a very general, unifying version of the original Opial
inequality in terms of integration via distribution functions. Observe that a distribution
function may have its support in different time scales, like R, N and qN. In particular, our
probability theoretic inequality incorporates also a discrete version, which is similar to the
one presented by Lasota [10]. We also present the Opial inequality for n-th derivatives,
with the optimal constant. Our inequality improves the constants given in the literature,
e.g., Das [4]; see also Wang, Sun and Yang [21]. This is done in Sect. 3. However, this in-
equality is not sharp for distributions with atoms, in particular for the discrete case. An
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inequality for derivatives of second order that is sharp for these distributions as well, is
proved in Sect. 4. Furthermore, we consider Opial inequalities with weights in Sect. 5. We
study the related Wirtinger inequality briefly in Sect. 6. Our conclusions are presented in
Sect. 7.

Formula (8) in Opial [14] states that for differentiable functions x with x(0) = x(h) = 0
the inequality

∫ h

0

∣∣x(t)x′(t)
∣∣dt ≤ h

π

∫ h

0

∣∣x′(t)
∣∣2 dt, x(0) = x(h) = 0, (1)

holds. As mentioned in (1)–(4) of Opial [15] Item 257 on page 185 of Hardy, Littlewood
and Pólya [7] implies, by the substitution x(t) = y(π t/h), the Wirtinger inequality

∫ h

0

∣∣x(t)
∣∣2 dt ≤ h2

π2

∫ h

0

∣∣x′(t)
∣∣2 dt, x(0) = x(h) = 0, (2)

which, by Cauchy–Schwarz, yields (1); cf. (7) and (8) of Opial [14]. In (5) of Opial [15]
inequality (1) has been sharpened to

∫ h

0

∣∣x(t)x′(t)
∣∣dt ≤ h

4

∫ h

0

∣∣x′(t)
∣∣2 dt, x(0) = x(h) = 0, (3)

where h/4 is the optimal constant. His complicated proof has been simplified successively
by Olech [13], Beesack [3], Levinson [11], Mallows [12] and Pederson [17].

Actually, (3) is a consequence of the more fundamental inequality for differentiable func-
tions x with just x(0) = 0 (cf. (3) of Beesack [3])

∫ h

0

∣∣x(t)x′(t)
∣∣dt ≤ h

2

∫ h

0

∣∣x′(t)
∣∣2 dt, (4)

where h/2 is the optimal constant; see also Remark 2. Often this inequality is also called
Opial inequality. It is this inequality we will focus on, but consequences such as (3) will be
discussed as well.

2 A probability theoretic generalization of Opial’s inequality
In this section we first generalize Opial’s fundamental inequality (4) to integration via
distribution functions. Subsequently, we will discuss a simple extension to an analog of
(3). Opial-type inequalities are, for obvious reasons, presented in terms of a function x
and its derivatives. To formulate our results, we start with the derivative, which we call
ψ , and integrate this function with respect to a distribution function F . Here we define
F(x) = PF (X ≤ x) at x ∈R as the probability that a random variable under F equals at most
x. Note that F is continuous from the right with left hand limits. To compensate for this
asymmetry in the standard definition of a distribution function, we integrate a measurable
function ψ with respect to such a distribution function in a special way, namely

∫ ∞

–∞
ψ(y)

{
1[y<x] +

1
2

1[y=x]

}
dF(y) = EF

(
ψ(Y )

{
1[Y <X] +

1
2

1[Y =X]

} ∣∣∣ X = x
)

. (5)
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We will also consider

∫ ∞

–∞
ψ(y)

{
1[y>x] +

1
2

1[y=x]

}
dF(y) = EF

(
ψ(Y )

{
1[Y >X] +

1
2

1[Y =X]

} ∣∣∣ X = x
)

. (6)

Theorem 1 (Opial’s inequality) Let X and Y be independent and identically distributed
(i.i.d.) random variables with distribution function F on R, and let ψ : R → R be a mea-
surable function. The inequalities

EF

(∣∣∣∣EF

(
ψ(Y )

{
1[Y <X] +

1
2

1[Y =X]

} ∣∣∣ X
)

ψ(X)
∣∣∣∣
)

(7)

≤ EF

(∣∣ψ(X)ψ(Y )
∣∣
{

1[Y <X] +
1
2

1[Y =X]

})
≤ 1

2
EF

(
ψ2(X)

)

and

EF

(∣∣∣∣EF

(
ψ(Y )

{
1[Y >X] +

1
2

1[Y =X]

} ∣∣∣ X
)

ψ(X)
∣∣∣∣
)

(8)

≤ EF

(∣∣ψ(X)ψ(Y )
∣∣
{

1[Y >X] +
1
2

1[Y =X]

})
≤ 1

2
EF

(
ψ2(X)

)

hold with equalities if and only if ψ is constant F-almost everywhere.

Proof Without loss of generality, we assume EF (ψ2(X)) < ∞. Since the absolute value of a
(conditional) expectation of a random variable is bounded from above by the expectation
of the absolute value of the random variable itself, the left-hand side of (7) is bounded by
the middle term

EF

(∣∣ψ(X)ψ(Y )
∣∣
{

1[Y <X] +
1
2

1[Y =X]

})
= EF

(∣∣ψ(X)ψ(Y )
∣∣
{

1[Y >X] +
1
2

1[Y =X]

})
, (9)

where the equality holds because X and Y are i.i.d. In view of

1[y<x] + 1[y>x] + 1[y=x] = 1[(x,y)∈R2]

and (9), the left-hand sides of (7) and (8) are bounded by

1
2

EF
(∣∣ψ(X)ψ(Y )

∣∣) ≤ 1
2

EF
(
ψ2(X)

)
.

The last inequality is valid by Cauchy–Schwarz, which also shows that equality can hold
only if ψ(X) is constant F-almost everywhere. Indeed, for ψ = 1 the left-hand sides of (7)
and (8) equal

P(Y < X) +
1
2

P(Y = X) = P(X < Y ) +
1
2

P(Y = X)

and the sum of these two terms equals

P(Y < X) + P(Y > X) + P(Y = X) = 1. �
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Remark 1 The continuous Opial inequality has also been generalized to fractional inte-
gral operators; for a recent comprehensive paper on this topic, see, e.g., Vivas-Cortez,
Martínez, Nápoles Valdes and Hernández [20]. For absolutely continuous distribution
functions F with density f in (5) and (6) there is some similarity to fractional integral
operators, in which f (y) is replaced by a function of (x – y), in the notation of (5) and (6).

Remark 2 If F has no point masses, i.e., if P(X = Y ) = 0 holds, then (7) simplifies to

EF
(∣∣EF

(
ψ(Y )1[Y <X] | X

)
ψ(X)

∣∣) ≤ 1
2

EF
(
ψ2(X)

)
.

In particular, if X and Y have a uniform distribution on the interval [0, h], then this reduces
to Opial’s inequality (4)

∫ h

0

∣∣∣∣
(∫ x

0
ψ(y) dy

)
ψ(x)

∣∣∣∣dx ≤ h
2

∫ h

0
ψ2(x) dx. (10)

In Opial’s notation we have the absolutely continuous function x(t) =
∫ t

0 ψ(y) dy, which is
Lebesgue almost everywhere differentiable with derivative x′(t) = ψ(t) and x(0) = 0.

With x(t) =
∫ 2h

t ψ(y) dy, h ≤ t ≤ 2h, we also have x(2h) = 0. Then by symmetry inequality
(10) implies

∫ 2h

h

∣∣∣∣
(∫ 2h

x
ψ(y) dy

)
ψ(x)

∣∣∣∣dx ≤ h
2

∫ 2h

h
ψ2(x) dx,

which combined with (10) itself yields inequality (3) of Opial, where h is replaced by 2h,
namely

∫ 2h

0

∣∣∣∣
(∫ x

0
ψ(y) dy

)
ψ(x)

∣∣∣∣dx ≤ h
2

∫ h

0
ψ2(x) dx +

h
2

∫ 2h

h
ψ2(x) dx =

2h
4

∫ 2h

0
ψ2(x) dx.

Note that for continuity of x at h we need
∫ h

0 ψ(y) dy =
∫ 2h

h ψ(y) dy. In a similar way as
above, two inequalities as in (7) may be glued together; see Corollary 2.1 below.

Remark 3 Lasota [10] presented a discrete Opial inequality, an analog of (3). Its proof
contains the more basic discrete version of (4) as formulated in Theorem 5.2.4 of Agarwal
and Pang [1]. With ai = ∇xi denoting the backward shift operator, their Theorem 5.2.4
presents the inequality

N∑
i=1

∣∣∣∣∣
i∑

j=1

aiaj

∣∣∣∣∣ ≤ N + 1
2

N∑
i=1

a2
i , ai ∈ R, i = 1, . . . , N . (11)

With F uniform on {1, . . . , N} and ψ(i) = ai, i = 1, . . . , N , the second inequality in (7) yields

N∑
i=1

i∑
j=1

|aiaj| ≤ N + 1
2

N∑
i=1

a2
i , ai ∈ R, i = 1, . . . , N , (12)

which is equivalent to (11); replace ai by |ai|.
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Corollary 2.1 Let X and Y be i.i.d. with distribution function F and let c be a constant
satisfying PF (X ≤ c) = p, 0 < p < 1. Then the inequalities

EF

(∣∣∣∣EF

(
ψ(Y )

{
1[Y <X] +

1
2

1[Y =X]

} ∣∣∣ X, Y ≤ c
)

ψ(X)
∣∣∣∣
∣∣∣ X ≤ c, Y ≤ c

)

+ EF

(∣∣∣∣EF

(
ψ(Y )

{
1[Y >X] +

1
2

1[Y =X]

} ∣∣∣ X, Y > c
)

ψ(X)
∣∣∣∣
∣∣∣ X > c, Y > c

)

≤ EF

(∣∣ψ(X)ψ(Y )
∣∣
{

1[Y <X] +
1
2

1[Y =X]

} ∣∣∣ X ≤ c, Y ≤ c
)

(13)

+ EF

(∣∣ψ(X)ψ(Y )
∣∣
{

1[Y <X] +
1
2

1[Y =X]

} ∣∣∣ X > c, Y > c
)

≤ 1
2

EF
(
ψ2(X)

[
1[X≤c]/p + 1[X>c]/(1 – p)

])

hold with equalities if and only if ψ is F-almost everywhere constant on (–∞, c] and on
(c,∞) with possibly different constants.

In case F is continuous and c is a median of F , the inequalities become

EF
(∣∣EF

(
ψ(Y )1[Y <X] | X, Y ≤ c

)
ψ(X)

∣∣1[X≤c,Y≤c]
)

+ EF
(∣∣EF

(
ψ(Y )1[Y >X] | X, Y > c

)
ψ(X)

∣∣1[X>c,Y >c]
)

(14)

≤ EF
(∣∣ψ(X)ψ(Y )

∣∣1[Y <X]1[X≤c,Y≤c]
)

+ EF
(∣∣ψ(X)ψ(Y )

∣∣1[Y <X]1[X>c,Y >c]
)

≤ 1
4

EF
(
ψ2(X)

)
.

Proof Recall that X and Y are i.i.d. Consequently, they are i.i.d. under the condition X > c,
Y > c too. Therefore the first inequality of (13) holds; cf. (9). Applying Theorem 1 to both
expectations on the right-hand side of the first inequality conditionally on X ≤ c, Y ≤ c
and X > c, Y > c, respectively, we see that the left-hand sides of (13) are bounded from
above by

1
2

EF
(
ψ2(X) | X ≤ c, Y ≤ c

)
+

1
2

EF
(
ψ2(X) | X > c, Y > c

)

=
1
2

EF
(
ψ2(X)

[
1[X≤c]/p + 1[X>c]/(1 – p)

])
.

As in Theorem 1, equalities hold if and only if ψ is constant F-almost everywhere on
(–∞, c] and on (c,∞) with possibly different constants.

For the case where F is continuous and c is a median of F , we have PF (Y = X) = 0, p = 1/2,

EF
(∣∣EF

(
ψ(Y )1[Y <X] | X, Y ≤ c

)
ψ(X)

∣∣ | X ≤ c, Y ≤ c
)

= 4 × EF
(∣∣EF

(
ψ(Y )1[Y <X] | X, Y ≤ c

)
ψ(X)

∣∣1[X≤c,Y≤c]
)

and similarly for the subsequent three terms. �
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Remark 4 Taking F uniform on [0, h] in (14), we obtain c = h/2, p = 1/2 and

∫ h/2

0

∣∣∣∣ψ(x)
∫ x

0
ψ(y) dy

∣∣∣∣dx +
∫ h

h/2

∣∣∣∣ψ(x)
∫ h

x
ψ(y) dy

∣∣∣∣dx

≤
∫ h/2

0

∫ x

0

∣∣ψ(x)ψ(y)
∣∣dy dx +

∫ h

h/2

∫ h

x

∣∣ψ(x)ψ(y)
∣∣dy dx ≤ h

4

∫ h

0
ψ2(x) dx.

With
∫ h

x ψ = –
∫ x

0 ψ these inequalities yield

∫ h

0

∣∣∣∣
∫ x

0
ψ(y) dyψ(x)

∣∣∣∣dx ≤ h
4

∫ h

0
ψ2(x) dx,

our equivalent of (4); see also Remark 2.

Remark 5 With F uniform on {1, . . . , K , . . . , N}, c = K , p = K/N and ψ(i) = ai, i = 1, . . . , N ,
inequality (13) becomes

1
K2

K∑
i=1

∣∣∣∣∣ai

{ i∑
j=1

aj –
1
2

ai

}∣∣∣∣∣ +
1

(N – K)2

N∑
i=K+1

∣∣∣∣∣ai

{ N∑
j=i+1

aj +
1
2

ai

}∣∣∣∣∣

≤ 1
2K

K∑
i=1

a2
i +

1
2(N – K)

N∑
i=K+1

a2
i ,

which for N = 2K and
∑N

i=1 ψ(i) =
∑N

i=1 ai = 0 reduces to

N∑
i=1

∣∣∣∣∣ai

{ N∑
j=i+1

aj +
1
2

ai

}∣∣∣∣∣ =
N∑

i=1

∣∣∣∣∣ai

{ i–1∑
j=1

aj +
1
2

ai

}∣∣∣∣∣ ≤ N
4

N∑
i=1

a2
i

( N∑
i=1

ai = 0

)
. (15)

This inequality is sharp, as can be seen via the choices a1 = · · · = aK = 1, aK+1 = · · · = aN =
–1. For odd N this inequality also holds, as we will show next. Define bh = ψ(�h/2	) =
a�h/2	, h = 1, . . . , 2N . In view of

∑2N
h=1 bh = 2

∑N
i=1 ai = 0 inequality (15) yields

2N∑
h=1

∣∣∣∣∣bh

{ h–1∑
k=1

bk +
1
2

bh

}∣∣∣∣∣ ≤ 2N
4

2N∑
h=1

b2
h = N

N∑
i=1

a2
i .

Discerning between odd and even h, we see that this inequality can be rewritten in terms
of the ai as

N∑
i=1

(
1
2

∣∣∣∣∣ai

{ i–1∑
j=1

aj +
3
4

ai

}∣∣∣∣∣ +
1
2

∣∣∣∣∣ai

{ i–1∑
j=1

aj +
1
4

ai

}∣∣∣∣∣
)

≤ N
4

N∑
i=1

a2
i .

Since the absolute value function | · | is convex, this inequality implies (15) for odd N .
The discrete Opial inequality in Theorem 1.2 of Lasota [10] states

N∑
i=1

∣∣∣∣∣ai

i–1∑
j=1

aj

∣∣∣∣∣ ≤ 1
2

⌊
N + 1

2

⌋ N∑
i=1

a2
i

( N∑
i=1

ai = 0

)
; (16)
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see also Theorem 5.2.1 of Agarwal and Pang [1]. Again, for even N = 2K equality holds for
a1 = · · · = aK = 1, aK+1 = · · · = aN = –1.

Note that the left-hand side of Lasota’s inequality (16),

N∑
i=1

∣∣∣∣∣ai

i–1∑
j=1

aj

∣∣∣∣∣ =
N∑

i=1

∣∣∣∣∣ai

N∑
j=i

aj

∣∣∣∣∣,

lacks the symmetry that the left-hand side of our inequality (15) has.

3 A generalization of Opial’s inequality for the n-th derivative
Let X be a random variable with distribution function F , let ψ be a measurable function,
and let n be a natural number. We define the n-th order integral

IF ,n,ψ (x) =
∫

(–∞,x)

∫
(–∞,xn–1)

· · ·
∫

(–∞,x1)
ψ(x0) dF(x0) · · · dF(xn–2) dF(xn–1).

Note that for n = 1, we have

IF ,1,ψ (x) =
∫

(–∞,x)
ψ(x0) dF(x0) = EF

(
ψ(Y )1[Y <X] | X = x

)
.

We generalize the n-th order derivative version of Opial’s inequality, as given by Das [4],
and improve the constant in this generalization to its optimal value.

Theorem 2 With the above notation

EF
(∣∣IF ,n,ψ (X)ψ(X)

∣∣) ≤ 1
(n + 1)!

EF
(
ψ2(X)

)
(17)

holds with equality if and only if F is continuous and ψ is a constant F-almost everywhere.

Proof Without loss of generality, we assume EF (ψ2(X)) < ∞. In terms of integrals, the
left-hand side of (17) may be written as

∫ ∞

–∞

∣∣∣∣
∫

(–∞,xn)

∫
(–∞,xn–1)

· · ·
∫

(–∞,x1)
ψ(x0)ψ(xn) dF(x0) · · · dF(xn–2) dF(xn–1)

∣∣∣∣dF(xn),

which is bounded from above by

∫ ∞

–∞

∫
(–∞,xn)

∫
(–∞,xn–1)

· · ·
∫

(–∞,x1)

∣∣ψ(x0)ψ(xn)
∣∣dF(x0) · · · dF(xn–2) dF(xn–1) dF(xn).

(18)

Let Sn+1 be the set of permutations of {0, 1, . . . , n}. Consider the disjoint union

Un+1 =
⋃

π∈Sn+1

{
(x0, . . . , xn) ∈R

n+1 | xπ (0) < xπ (1), . . . < xπ (n)
}
�R

n+1. (19)
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Since each of the (n + 1)! permutations π ∈ Sn+1 applied to (18) yields the same value, we
obtain

(n + 1)! EF
(∣∣IF ,n,ψ (X)ψ(X)

∣∣)

≤
∫ ∞

–∞

∫ ∞

–∞

∫ ∞

–∞
· · ·

∫ ∞

–∞

∣∣ψ(x0)ψ(xn)
∣∣dF(x0) · · · dF(xn–2) dF(xn–1) dF(xn) (20)

=
(
EF

(∣∣ψ(X)
∣∣))2 ≤ EF

(
ψ2(X)

)
.

In view of the inequality sign in (19), the first inequality in (20) can be an equality if and
only if F has no point masses, i.e., if and only if F is continuous. Because of the Cauchy–
Schwarz inequality, the second inequality is an equality if and only if ψ is constant F-
almost everywhere. �

Remark 6 Let F be the uniform distribution function on [a, b] as in Theorem 1 of Das [4].
Then we have

IF ,n,ψ (x) = (b – a)–n
∫ x

a

∫ xn–1

a
· · ·

∫ x1

a
ψ(x0) dx0 · · · dxn–2 dxn–1

and we see that the n-th derivative of (b – a)nIF ,n,ψ (x) equals ψ(x). We conclude that our
Theorem 2 generalizes Theorem 1 of Das [4] with its constant K =

√
n/(2n – 1)/(2(n!))

replaced by the optimal 1/(n + 1)!. (We have K ≥ 1/(n + 1)! with equality only if n = 1.)

Remark 7 For n = 1 and F continuous, Theorem 2 yields (7) of Theorem 1.

4 A sharp inequality for n = 2 and distributions with atoms
If F has point masses, then the probability PF (X0 = X1) is positive and hence P(X ∈
R

n+1 \ Un+1) is. Therefore, in order to improve inequality (17) to a sharp inequality for
distributions with point masses, we have to study the gap between Un+1 and R

n+1; recall
the inequality sign in (19). We do this for n = 2 as follows. Let

U3 =
⋃
π∈S3

{
(x0, x1, x2) ∈R

3 | xπ (0) < xπ (1) < xπ (2)
}

, disjoint union of 6 sets,

V1 =
⋃
π∈S3

{
(x0, x1, x2) ∈R

3 | xπ (0) = xπ (1) < xπ (2)
}

, disjoint union of 3 sets,

V2 =
⋃
π∈S3

{
(x0, x1, x2) ∈R

3 | xπ (0) < xπ (1) = xπ (2)
}

, disjoint union of 3 sets,

W =
{

(x0, x1, x2) ∈R
3 | x0 = x1 = x2

}
.

Now

R
3 = U3 ∪ V1 ∪ V2 ∪ W
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is a partition of R3 consisting of 13 sets. By analogy with (20), using the Tonelli–Fubini
theorem, we have,

EF
(
ψ2(X)

) ≥ (
EF

(∣∣ψ(X)
∣∣))2

=
∫ ∞

–∞

∫ ∞

–∞

∫ ∞

–∞

∣∣ψ(x0)ψ(x2)
∣∣[1U3 + 1V1 + 1V2 + 1W ] dF(x0) dF(x1) dF(x2)

= 6 ×
∫ ∞

–∞

∫
(–∞,x2)

∫
(–∞,x1)

∣∣ψ(x0)ψ(x2)
∣∣dF(x0) dF(x1) dF(x2)

+ 3 ×
∫∫∫

x0=x1<x2

∣∣ψ(x0)ψ(x2)
∣∣dF(x0) dF(x1) dF(x2)

+ 3 ×
∫∫∫

x0<x1=x2

∣∣ψ(x0)ψ(x2)
∣∣dF(x0) dF(x1) dF(x2) (21)

+
∫∫∫

x0=x1=x2

∣∣ψ(x0)ψ(x2)
∣∣dF(x0) dF(x1) dF(x2)

= 6 ×
∫ ∞

–∞

∫
(–∞,x2)

∫
(–∞,x1)

∣∣ψ(x0)
∣∣dF(x0) dF(x1)

∣∣ψ(x2)
∣∣dF(x2)

+ 3 ×
∫ ∞

–∞

∫
(–∞,x2)

∣∣ψ(x0)
∣∣PF (X = x0) dF(x0)

∣∣ψ(x2)
∣∣dF(x2)

+ 3 ×
∫ ∞

–∞

∫
(–∞,x2)

∣∣ψ(x0)
∣∣dF(x0)PF (X = x2)

∣∣ψ(x2)
∣∣dF(x2)

+
∫ ∞

–∞
ψ2(x2)P2

F (X = x2) dF(x2).

With the notation

JF ,ψ (x) =
∫

(–∞,x)

∫
(–∞,y)

∣∣ψ(z)
∣∣dF(z) dF(y),

JF ,ψ ,D(x) =
∫

(–∞,x)

∣∣ψ(z)
∣∣[PF (X = z) + PF (X = x)

]
dF(z),

pF (x) = PF (X = x), x ∈R,

we have proved the inequality.

Theorem 3 Let X be a random variable with distribution function F on R, and let ψ :
R →R be a measurable function. The inequality

6 × EF
(
JF ,ψ (X)

∣∣ψ(X)
∣∣) + 3 × EF

(
JF ,ψ ,D(X)

∣∣ψ(X)
∣∣) ≤ EF

(
ψ2(X)

[
1 – p2

F (X)
])

(22)

holds with equality if and only if ψ is constant F-almost everywhere.

Proof The only inequality in (21) stems from Cauchy–Schwarz, which means that equality
in (22) holds if and only ψ is constant F-almost everywhere. �

If F is continuous, i.e., if F has no point masses, then inequality (22) reduces to inequality
(17) with n = 2.
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Remark 8 Let F be uniform on {1, . . . , N} and denote |ψ(i)| = ai, i = 1, . . . , N . Some com-
putation shows that inequality (22) may be rewritten then as

6
N∑

i=1

i∑
j=1

(i – j)aiaj ≤
(
N2 – 1

) N∑
i=1

a2
i ,

which for ai, i = 1, . . . , N , constant is an equality indeed.

5 Opial inequalities with weights
Applying our approach of Theorem 1, we derive Opial inequalities with a weight function.

Theorem 4 Let X and Y be independent and identically distributed (i.i.d.) random vari-
ables with distribution function F on R, let ψ : R → R be a measurable function, and let
χ : R →R be a nonnegative weight function. The inequalities

EF

(∣∣∣∣EF

(
ψ(Y )

{
1[Y <X] +

1
2

1[Y =X]

} ∣∣∣ X
)

ψ(X)
∣∣∣∣χ (X)

)

≤ EF

(∣∣ψ(X)ψ(Y )
∣∣χ (X)

{
1[Y <X] +

1
2

1[Y =X]

})
(23)

≤ 1
2

EF

(
ψ2(X)

[
χ (X)

{
1[Y <X] +

1
2

1[Y =X]

}
+ χ (Y )

{
1[Y >X] +

1
2

1[Y =X]

}])

and

EF

(∣∣∣∣EF

(
ψ(Y )

{
1[Y >X] +

1
2

1[Y =X]

} ∣∣∣ X
)

ψ(X)
∣∣∣∣χ (X)

)

≤ EF

(∣∣ψ(X)ψ(Y )
∣∣χ (X)

{
1[Y >X] +

1
2

1[Y =X]

})
(24)

≤ 1
2

EF

(
ψ2(X)

[
χ (X)

{
1[Y >X] +

1
2

1[Y =X]

}
+ χ (Y )

{
1[Y <X] +

1
2

1[Y =X]

}])

hold with equality if ψ is constant F-almost everywhere. In case χ is nonincreasing or
nondecreasing, the upperbounds in (23) and (24), respectively, are bounded from above
by 1

2 EF (ψ2(X)χ (X)).

Proof We focus on the second inequality in (23). Since X and Y are i.i.d., we have

EF

(∣∣ψ(X)ψ(Y )
∣∣χ (X)

{
1[Y <X] +

1
2

1[Y =X]

})

= EF

(∣∣ψ(X)ψ(Y )
∣∣χ (Y )

{
1[Y >X] +

1
2

1[Y =X]

})

=
1
2

EF

(∣∣ψ(X)ψ(Y )
∣∣
[
χ (X)

{
1[Y <X] +

1
2

1[Y =X]

}
+ χ (Y )

{
1[Y >X] +

1
2

1[Y =X]

}])

≤ 1
2

EF

(
ψ2(X)

[
χ (X)

{
1[Y <X] +

1
2

1[Y =X]

}
+ χ (Y )

{
1[Y >X] +

1
2

1[Y =X]

}])
.
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Again, since X and Y are i.i.d., the left- and right-hand side of (23) are equal for ψ = 1. In
case χ is nonincreasing, χ (Y )1[Y >X] ≤ χ (X)1[Y >X] holds, which implies the last statement
of the theorem for (23).

The proof for (24) is analogous. �

Remark 9 Note that inequalities (23) and (24) generalize inequalities (7) and (8), as can be
seen by choosing χ = 1.

Remark 10 With F uniform on the interval (0, h), the inequalities from Theorem 4 yield

∫ h

0

∣∣∣∣
∫ x

0
ψ(y) dyψ(x)

∣∣∣∣χ (x) dx ≤ 1
2

∫ h

0
ψ2(x)

{
χ (x)x +

∫ h

x
χ (y) dy

}
dx, (25)

∫ h

0

∣∣∣∣
∫ h

x
ψ(y) dyψ(x)

∣∣∣∣χ (x) dx ≤ 1
2

∫ h

0
ψ2(x)

{
χ (x)(h – x) +

∫ x

0
χ (y) dy

}
dx.

Troy [19] considers the special case of χ (x) = xp, p > –1, and states: “It remains an open
problem to determine the sharpness of . . . and (5).”, which in our notation is

∫ h

0
xp

∣∣∣∣
∫ x

0
ψ(y) dyψ(x)

∣∣∣∣dx ≤ hp+1

2
√

p + 1

∫ h

0
ψ2(x) dx. (26)

However, equalities in (7) and (10) of Troy [19] imply that ψ(x) has to be a multiple of
x in order for this inequality to be an equality. With ψ(x) = x, inequality (26) becomes
hp+4/(2(p+4)) ≤ hp+4/(6

√
p + 1), which is a strict inequality for all p. With χ (x) = xp, p > –1,

the first one of our inequalities in (25) yields

∫ h

0
xp

∣∣∣∣
∫ x

0
ψ(y) dyψ(x)

∣∣∣∣dx ≤ hp+1

2(p + 1)

∫ h

0
ψ2(x)

{
1 + p

(
x
h

)p+1}
dx,

which is less elegant than (26), but it is sharp.

Remark 11 With F uniform on {1, . . . , N} and ψ(i) = ai, χ (i) = wi, i = 1, . . . , N , the second
inequality in (23) yields

N∑
i=1

i∑
j=1

|aiaj|wi ≤ 1
2

N∑
i=1

a2
i

[
(i + 1)wi +

N∑
j=i+1

wj

]
,

which generalizes (12).

6 The Wirtinger inequality
Closely related to Opial’s inequality is Wirtinger’s inequality (2), which is an equality if
and only if x(t) is a constant times sin(πx/h). We apply our approach with integration with
respect to a distribution function and get the following result.

Theorem 5 (Wirtinger’s inequality) Let X and Y be independent and identically dis-
tributed random variables with absolutely continuous distribution function F on R, and
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let ψ : R →R be a measurable function. With EF (ψ(X)) = 0 the inequality

EF
([

EF
(
ψ(Y )1[Y <X] | X

)]2) ≤ 1
π2 EF

(
ψ2(X)

)
(27)

holds with equality if and only if ψ is F-almost everywhere a constant times cos(πF).

Proof We assume EF (ψ2(X)) =
∫ ∞

–∞ ψ2(x) dF(x) =
∫ ∞

–∞ ψ2(x)f (x) dx < ∞, where f is a den-
sity of F . In view of

d
dx

((∫ x

–∞
ψ(y)f (y) dy

)2

cot
(
πF(x)

))

= 2
∫ x

–∞
ψ(y)f (y) dy ψ(x)f (x) cot

(
πF(x)

)

–
(∫ x

–∞
ψ(y)f (y) dy

)2[
1 + cot2(πF(x)

)]
π f (x), F-a.e.,

a similar equation holds, as in a classic proof of Wirtinger’s inequality, namely

(∫ x

–∞
ψ(y)f (y) dy

)2

f (x) +
(

ψ(x)
π

–
(∫ x

–∞
ψ(y)f (y) dy

)
cot

(
πF(x)

))2

f (x)

=
ψ2(x)
π2 f (x) –

2
π

ψ(x)
∫ x

–∞
ψ(y)f (y) dy cot

(
πF(x)

)
f (x) (28)

+
(∫ x

–∞
ψ(y)f (y) dy

)2

cot2(πF(x)
)
f (x) +

(∫ x

–∞
ψ(y)f (y) dy

)2

f (x)

=
ψ2(x)
π2 f (x) –

1
π

d
dx

((∫ x

–∞
ψ(y)f (y) dy

)2

cot
(
πF(x)

))
.

Because of cot y < 1/y, for 0 < y small, we have

lim sup
x→–∞

(∫ x

–∞
ψ(y)f (y) dy

)2

cot
(
πF(x)

)

≤ lim sup
x→–∞

(∫ x

–∞
ψ2(y)f (y) dy

)
F(x)

1
πF(x)

= 0

and analogously for x → ∞. This implies that the integral with respect to x of the last term
in (28) vanishes. Furthermore, the integral of the second term in (28) is clearly nonnegative
and equals 0 if and only if ψ is F-almost everywhere a constant times cos(πF), as some
computation shows. Integration of (28) proves the theorem. �

Remark 12 With F uniform on [0, h], i.e., with f (x) = 1/h1[0≤x≤h], and with x(t) =∫ t
0 ψ(y) dy, inequality (27) yields (2).

Remark 13 Theorem 5 contains a known Wirtinger inequality with a weight. In the nota-
tion of integrals, inequality (27) reads as

∫ ∞

–∞

[∫ x

–∞
ψ(y)f (y) dy

]2

f (x) dx ≤ 1
π2

∫ ∞

–∞
ψ2(x)f (x) dx,

∫ ∞

–∞
ψ(x)f (x) dx = 0.
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Writing χ = ψ f , this inequality becomes

∫ ∞

–∞

[∫ x

–∞
χ (y) dy

]2

f (x) dx ≤ 1
π2

∫ ∞

–∞
χ2(x)

1
f (x)

dx,
∫ ∞

–∞
χ (x) dx = 0,

or in the notation of Sect. 1 with x(t) =
∫ t

–∞ χ (y) dy, w(t) = Wf (t),

∫ ∞

–∞
x2(t)w(t) dt ≤ W 2

π2

∫ ∞

–∞

(
x′(t)

)2 1
w(t)

dt, x(–∞) = x(∞) = 0,

where χ and x′, respectively, vanish if f does; cf. (2).
This generalizes Theorem 1.1 with p = q = 2 of Giova and Ricciardi [6] and (2.1) of The-

orem 1 with p = 2 of Dragomir [5].

7 Conclusion
There exist several versions of the Opial inequality. We discern two classes, namely the
class of two-sided inequalities, as we will call them, with

∫
ψ dF = 0 and the one-sided

ones without this condition. In Theorem 1 we have presented a generalization of the classic
one-sided inequality that contains both the continuous and the discrete inequalities with
the optimal constants. Our two-sided general inequality from Corollary 2.1 contains the
classic continuous Opial inequality with the optimal constant, but the discrete version of
it deviates a little from the one by Lasota [10]. However, our discrete inequality shows
symmetry and Lasota’s does not.

Theorem 2 presents a general Opial inequality for derivatives of order n. For the con-
tinuous case it has the optimal constant, not known in the literature yet as far as we can
tell. The case with F having discontinuities, in particular the discrete case, is much more
tricky, since one then has to partition R

n+1 in a complicated way. Moreover, the resulting
inequality then contains derivatives/differences of several orders. In Sect. 4 this is illus-
trated for the case n = 2.

Furthermore, Theorem 4 generalizes our Opial inequalities from Theorem 1 by intro-
ducing a weight function. The inequalities obtained are sharp, but less elegant for a uni-
form distribution on an interval than the inequalities of Troy [19], which are not sharp
though.

Finally, we presented our generalization of Wirtinger’s inequality. It automatically in-
cludes a Wirtinger inequality with a weight function.

These results lead us to the conclusion that it might be worthwhile to study inequalities
involving (Lebesgue) integrals of functions and their derivatives by our technique, i.e.,
by integration with respect to distribution functions. This approach is unifying in that
the resulting inequalities often contain a discrete version of the inequality concerned as
well. Typically, the continuous and discrete versions are obtained by choosing uniform
distribution functions on either an interval (of reals) or on an integer interval.

This unifying, generalizing approach was applied before in Klaassen and Wellner [9] and
Klaassen [8].
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