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Abstract
In this paper, four new Green functions are used to generalize Levinson-type
inequalities for the class of 3-convex functions. The f-divergence, Renyi entropy, Renyi
divergence, Shannon entropy, and the Zipf–Mandelbrot law are also used to apply
the main results to information theory.
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1 Introduction and preliminaries
Information theory is a branch of science concerned with the storage, quantification, and
transmission of data. Information is difficult to quantify since it is an abstract object. In
his first of two important and essential theorems, Claude Shannon [1], who created the
idea of information theory, presented entropy as the fundamental unit of information in
1948. The probability density function may also be used to measure the information. The
distance between the two probability distributions is calculated using the divergence mea-
sure. Divergence measure is a concept in probability theory that is used to overcome a
number of problems. Divergence measures, which compare two probability distributions
and are employed in statistics and information theory, are described in the literature. Sen-
sor networks [2], finance [3], economics [4], and approximation of probability distribu-
tions [5] are all areas where information and divergence measures are highly valuable and
play a significant role.

In [6], Adeel et al. generealized the Levinson inequality and gave fruitful results in infor-
mation theory. Khan [7] et al., used Abel–Gontscharoff interpolation to present Levinson-
type inequalities for convex functions of higher order. Adeel et al., calculated Shannon en-
tropy and estimated f -divergence in [8] by utilising new Lidstone polynomials and Green
functions in association with Levinson-type inequalities. By using Hermite interpolating
polynomial, Khan [9] et al., were successful to achieve Levinson type inequality for the
convex functions of higher order and provided estimates for the Shannon entropy and
f -divergence. In [10], Adeel et al. used Bullen-type inequalities to estimate different en-
tropies and f-divergence via Fink’s identity. Khan [11] et al. gave various entropy results
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related to Levinson-type inequalities using Green functions and also presented results for
Hermite interpolating polynomial. For 2n-convex functions, Khan [12] et al. generalized
Levinson-type inequalities by applying Lidstone interpolating polynomial. In [13], Adeel
et al. used Green functions to obtain generalize Levinson-type inequalities via Mont-
gomery identity. They also found bounds for different entropies and divergences. How-
ever, in [6, 11, 13], all the generalizations and results are proved using only two Green
functions. In this study, four newly defined 3-convex Green functions are used to gener-
alize the Levinson-type inequalities, and the bounds for different entropies are given.

Higher-order convex functions are defined using divided difference techniques.

Definition 1.1 [14, p. 14] For a function h : [�1,�2] →R, the divided difference of order
n, at mutually exclusive points u0, . . . , un ∈ [�1,�2] is recursively defined by

[uσ ; h] = h(uσ ), σ = 0, . . . , n,

[u0, . . . , un; h] =
[u1, . . . , un; h] – [u0, . . . , un–1; h]

un – u0
. (1)

It is clear that (1) is identical to

[u0, . . . , un; h] =
n∑

σ=0

h(uσ )
l′(uσ )

, where l(u) =
n∏

e=0

(u – ue).

The nth-order divided difference is used to define a real valued convex function in the
following formulation (see [14, p. 15]).

Definition 1.2 For (n + 1) different points u0, . . . , un ∈ [�1,�2], a function f : [�1,�2] →
R is called n-convex (0 ≤ n) if and only if

[u0, . . . , un; f ] ≥ 0

holds.

If [u0, . . . , un; f ] ≤ 0, then f is n-concave.
Criteria for n-convex function is given in [14, p. 16], as follows:

Theorem 1.1 f is n-convex if and only if f (n) ≥ 0, given that f (n) exists.

Levinson [15], extended the Ky Fan’s inequality to the class of functions which are 3-
convex as follows:

Theorem A Suppose f : I2 = (0, 2γ ) → R with f (3)(z) is non-negative. Consider xσ ∈ (0,γ )
and pσ > 0. Then

1
Pη

η∑

σ=1

pσ f (xσ ) – f

(
1

Pη

η∑

σ=1

pσ xσ

)
≤ 1

Pη

η∑

σ=1

pσ f (2γ – xσ )

– f

(
1

Pη

η∑

σ=1

pσ (2γ – xσ )

)
. (2)
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Popoviciu [16], noted that Levinson’s Inequality (2) has important role on (0, 2γ ), but in
[17], Bullen proved distinctive conformation of Popoviciu’s findings with the converse of
(2).

Theorem B (i) Assume f : I0 = [�1,�2] → R be a convex function of order three and
xσ , yσ ∈ I0 for σ = 1, 2, . . . ,η, pσ > 0 so that

min{y1 . . . yη} ≥ max{x1 . . . xη}, y1 + x1 = · · · = yη + xη (3)

then

1
Pη

η∑

σ=1

pσ f (xσ ) – f

(
1

Pη

η∑

σ=1

pσ xσ

)
≤ 1

Pη

η∑

σ=1

pσ f (yσ ) – f

(
1

Pη

η∑

σ=1

pσ yσ

)
. (4)

(ii) For pσ > 0. If f is continuous and (4) holds for all xσ , yσ satisfying (3), then f is 3-
convex.

In the following result, Pečarić [18] gave Inequality (4) by weakening Condition (3).

Theorem C Assume f : I0 →R be so that 0 ≤ f 3(t) and 0 < pσ . Also, let xσ , yσ ∈ I0 be such
that xσ + yσ = 2c̆, for σ = 1, . . . ,η, xσ + xη–σ+1 ≤ 2c̆ and pσ xσ +pη–σ+1xη–σ+1

pσ +pη–σ+1
≤ c̆. Then (4) is true.

In [19], Mercer showed that (4) is true after substituting symmetric point variances for
the symmetric conditions.

Theorem D Suppose a 3-convex function f , defined on I0 and pσ be such that
∑η

σ=1 pσ = 1.
Choose xσ , yσ such that min{y1 . . . yη} ≥ max{x1 . . . xη} and

η∑

σ=1

pσ

(
xσ –

η∑

σ=1

pσ xσ

)2

=
η∑

σ=1

pσ

(
yσ –

η∑

σ=1

pσ yσ

)2

, (5)

then (4) holds.

Let g = [ê1, ê2] ⊂R, ê1 < ê2 and λ = 1, . . . , 4. In [20], Pečarić et al. define new type of Green
functions, Ĝλ : g× g→ R, which are given as:

Ĝ1(ϕ̂,ϑ) =

⎧
⎨

⎩
ϑ – ê1, ê1 ≤ ϑ ≤ ϕ̂,

ϕ̂ – ê1, ϕ̂ ≤ ϑ ≤ ê2,
(6)

Ĝ2(ϕ̂,ϑ) =

⎧
⎨

⎩
ϕ̂ – ê2, ê1 ≤ ϑ ≤ ϕ̂,

ϑ – ê2, ϕ̂ ≤ ϑ ≤ ê2,
(7)

Ĝ3(ϕ̂,ϑ) =

⎧
⎨

⎩
ϕ̂ – ê1, ê1 ≤ ϑ ≤ ϕ̂,

ϑ – ê1, ϕ̂ ≤ ϑ ≤ ê2,
(8)

Ĝ4(ϕ̂,ϑ) =

⎧
⎨

⎩
ϑ – ê2, ê1 ≤ ϑ ≤ ϕ̂,

ϕ̂ – ê2, ϕ̂ ≤ ϑ ≤ ê2.
(9)
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The Abel–Gontscharof-type identities were also proved by them utilising these Green
functions, which are given by;

f (ϕ̂) = f (ê1) + (ϕ̂ – ê1)f ′(ê2) –
∫

g

Ĝ1(ϕ̂,ϑ)f ′′(ϑ) dϑ , (10)

f (ϕ̂) = f (ê2) – (ê2 – ϕ̂)f ′(ê1) +
∫

g

Ĝ1(ϕ̂,ϑ)f ′′(ϑ) dw, (11)

f (ϕ̂) = f (ê2) + (ϕ̂ – ê1)f ′(ê1) – (ê2 – ê1)f ′(ê2) +
∫

g

Ĝ3(ϕ̂,ϑ)f ′′(ϑ) dϑ , (12)

f (ϕ̂) = f (ê1) + (ê2 – ê1)f ′(ê1) – (ê2 – ϕ̂)f ′(ê2) –
∫

g

Ĝ4(ϕ̂,ϑ)f ′′(ϑ) dϑ , (13)

where f : [ê1, ê2] →R.
This work is arranged as follows: in Sect. 2, new type of 3-convex Green functions are

defined, also identities related to these 3-convex Green functions are established. Addi-
tionally, a new class of 3-convex Green functions is used to modify Levinson’s inequality
for the 3-convex function. In Sect. 3, the f-divergence, the Renyi entropy, Renyi divergence,
the Zipf–Mandelbrot law, and the Shannon entropy are used to give results to information
theory.

2 Mian results
Firstly, we define new type of 3-convex Green functions with graphs and using these Green
functions, a lemma is also stated. Then results related to Levinson-type inequalities using
new Green functions are being presented.

Let g = [ê1, ê2] ⊂ (–∞,∞) and λ ∈ {1, 2, 3, 4}. New type of 3-convex Green functions,
Gλ : g× g →R, which are defined as:

G1(ϕ̂,ϑ) =

⎧
⎨

⎩

1
2 (ϑ – ê1)2 + (ϕ̂ – ê1)(ϕ̂ – ê2), ê1 ≤ ϑ ≤ ϕ̂,

(ϕ̂ – ê1)(ϑ – ê2) + (ϕ̂–ê1)2

2 , ϕ̂ ≤ ϑ ≤ ê2,
(14)

G2(ϕ̂,ϑ) =

⎧
⎨

⎩
(ϕ̂ – ê2)(ϑ – ê1) + 1

2 (ϕ̂ – ê2)2, ê1 ≤ ϑ ≤ ϕ̂,
(ϑ–ê2)2

2 + (ϕ̂ – ê1)(ϕ̂ – ê2), ϕ̂ ≤ ϑ ≤ ê2,
(15)

G3(ϕ̂,ϑ) =

⎧
⎨

⎩
(ϕ̂ – ê1)(ϑ – ê2) + (ϕ̂–ê1)2

2 , ê1 ≤ ϑ ≤ ϕ̂,
1
2 (ϑ – ê1)2 + (ϕ̂ – ê1)(ϕ̂ – ê2), ϕ̂ ≤ ϑ ≤ ê2,

(16)

G4(ϕ̂,ϑ) =

⎧
⎨

⎩

(ϑ–ê2)2

2 + (ϕ̂ – ê2)(ϕ̂ – ê1), ê1 ≤ ϑ ≤ ϕ̂,

(ϕ̂ – ê2)(ϑ – ê1) + 1
2 (ϕ̂ – ê2)2, ϕ̂ ≤ ϑ ≤ ê2.

(17)

Figure 1, demonstrates a graphical depiction of Gk (k = 1, . . . , 4). These new Green func-
tions are used to present following lemma.

Lemma 2.1 Consider a function f be defined on g such that f ′′′ exists and Gλ (λ = 1, . . . , 4)
be the two-point right focal problem-type Green functions given by (14)–(17). Then the
following identities are true:

f (ϕ̂) = f (ê1) + (ϕ̂ – ê1)f ′(ê2) + (ϕ̂ – ê1)(ϕ̂ – ê2)f ′′(ê1) –
(ϕ̂ – ê1)2

2
f ′′(ê2)
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Figure 1 Graph of Green functions Gλ for different values of ϕ̂ and ϑ

+
∫

g

G1(ϕ̂,ϑ)f ′′′(ϑ) dϑ , (18)

f (ϕ̂) = f (ê2) – (ê2 – ϕ̂)f ′(ê1) – f ′′(ê1)
(ê2 – ϕ̂)2

2
+ (ϕ̂ – ê1)(ϕ̂ – ê2)f ′′(ê2)

–
∫

g

G2(ϕ̂,ϑ)f ′′′(ϑ) dϑ , (19)

f (ϕ̂) = f (ê2) + (ϕ̂ – ê1)f ′(ê1) – (ê2 – ê1)f ′(ê2)

– f ′′(ê1)
[

(ϕ̂ – ê1)2

2
+ (ϕ̂ – ê1)(ê1 – ê2)

]

+ f ′′(ê2)
[

(ê2 – ê1)2

2
+ (ϕ̂ – ê1)(ϕ̂ – ê2)

]
–

∫

g

G3(ϕ̂,ϑ)f ′′′(ϑ) dϑ , (20)

f (ϕ̂) = f (ê1) + (ê2 – ê1)f ′(ê1) – (ê2 – ϕ̂)f ′(ê2)

+ f ′′(ê1)
[

(ϕ̂ – ê2)(ϕ̂ – ê1) +
(ê2 – ê1)2

2

]

–
[

(ϕ̂ – ê2)(ê2 – ê1) +
(ϕ̂ – ê2)2

2

]
f ′′(ê2) +

∫

g

f ′′′(w)G4(ϕ̂,ϑ) dϑ . (21)

Proof The aforementioned results can be proved by employing the same integrating ap-
proach. As a result, we give proof of (18) only.

∫

g

G4(ϕ̂,ϑ)f ′′′(ϑ) dϑ

=
∫ ϕ̂

ê1

f ′′′(ϑ)
[

(ϑ – ê2)2

2
+ (ϕ̂ – ê2)(ϕ̂ – ê1)

]
dϑ

+
∫ ê2

ϕ̂

f ′′′(ϑ)
[

(ϕ̂ – ê2)(ϑ – ê1) +
(ϕ̂ – ê2)2

2

]
dϑ



Rasheed et al. Journal of Inequalities and Applications        (2023) 2023:124 Page 6 of 19

=
[∣∣∣∣f

′′(ϑ)
{

(ϑ – ê2)2

2
+ (ϕ̂ – ê2)(ϕ̂ – ê1)

}∣∣∣∣
ϕ̂

ê1

–
∫ ϕ̂

ê1

f ′′(ϑ)(ϑ – ê2) dϑ

]

+
[∣∣∣∣f

′′(ϑ)
{

(ϕ̂ – ê2)(ϑ – ê1) +
(ϕ̂ – ê2)2

2

}∣∣∣∣
ê2

ϕ̂

–
∫ ê2

ϕ̂

f ′′(ϑ)(ϕ̂ – ê2) dϑ

]

=
[

f ′′(ϕ̂)
{

(ϕ̂ – ê2)2

2
+ (ϕ̂ – ê2)(ϕ̂ – ê1)

}
– f ′′(ê1)

{
(ϕ̂ – ê2)(ϕ̂ – ê1)

+
(ê1 – ê2)2

2

}
–

∣∣f ′(ϑ)(ϑ – ê2)
∣∣ϕ̂
ê1

+
∫ ϕ̂

ê1

f ′(ϑ) dϑ

]

+
[

f ′′(ê2)
{

(ϕ̂ – ê2)(ê2 – ê1) +
(ϕ̂ – ê2)2

2

}
–

{
(ϕ̂ – ê2)(ϕ̂ – ê1)

+ f ′′(ϕ̂)
(ϕ̂ – ê2)2

2

}
– (ϕ̂ – ê2)

∣∣f ′(ϑ)
∣∣ê2
ϕ̂

]

=
[

(ϕ̂ – ê2)2

2
+ (ϕ̂ – ê2)(ϕ̂ – ê1) – (ϕ̂ – ê2)(ϕ̂ – ê1) –

(ϕ̂ – ê2)2

2

]
f ′′(ϕ̂)

–
[

(ê2 – ê1)2

2
+ (ϕ̂ – ê2)(ϕ̂ – ê1)

]
f ′′(ê1) +

[
(ϕ̂ – ê2)(ê2 – ê1)

+
(ϕ̂ – ê2)2

2

]
f ′′(ê2) – (ϕ̂ – ê2)f ′(ϕ̂) + (ê1 – ê2)f ′(ê1) + f (ϕ̂) – f (ê1)

– (ϕ̂ – ê2)f ′(ê2) + (ϕ̂ – ê2)f ′(ϕ̂)

=
[
(ϕ̂ – ê2) – (ϕ̂ – ê2)

]
f ′(ϕ̂) –

[
(ê2 – ê1)2

2
+ (ϕ̂ – ê2)(ϕ̂ – ê1)

]
f ′′(ê1)

+
[

(ϕ̂ – ê2)(ê2 – ê1) +
(ϕ̂ – ê2)2

2

]
f ′′(ê2) + (ê1 – ê2)f ′(ê1)

– (ϕ̂ – ê2)f ′(ê2) + f (ϕ̂) – f (ê1).

After rearranging, we get Identity (21). �

Remark 2.1 If we apply integration by parts on the integral part of (10)-(13), by choosing
f ′′(ϑ) as first function and Ĝk(ϕ̂,ϑ) (k = 1, 2, 3, 4) as second function, we get (18)–(21),
respectively.

Now, identities associating with Jensen difference of two distinct data points are given
by using newly defined 3-convex Green functions given by (14)–(17).

Theorem 2.2 Assume f ∈ C3[ê1, ê2] be such that f : g = [ê1, ê2] → R, (q1, . . . , q	) ∈ R
	 ,

(p1, . . . , pη) ∈ R
η such that

∑η
σ=1 pσ = 1 and

∑	

τ=1 qτ = 1. Also, let xσ , yτ ,
∑η

σ=1 pσ xσ ,
∑	

τ=1 qτ yτ ∈ g. Then for Gk (k = 1, 4)

D
(
f (·)) =

1
2

[
	∑

τ=1

qτ y2
τ –

(
	∑

τ=1

qτ yτ

)2

–
η∑

σ=1

pσ x2
σ +

(
η∑

σ=1

pσ xσ

)2]

× (
2f (2)(ê1) – f (2)(ê2)

)
+

∫

g

D
(
Gk(.,ϑ)

)
f (3)(ϑ) dϑ , (22)
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and for Gk (k = 2, 3)

D
(
f (·)) =

1
2

[
	∑

τ=1

qτ y2
τ –

(
	∑

τ=1

qτ yτ

)2

–
η∑

σ=1

pσ x2
σ +

(
η∑

σ=1

pσ xσ

)2]

× (
2f (2)(ê2) – f (2)(ê1)

)
–

∫

g

D
(
Gk(.,ϑ)

)
f (3)(ϑ) dϑ , (23)

where

D
(
f (·)) =

	∑

τ=1

qτ f (yτ ) – f

(
	∑

τ=1

qτ yτ

)
–

η∑

σ=1

pσ f (xσ ) + f

(
η∑

σ=1

pσ xσ

)
, (24)

D
(
Gk(·,ϑ)

)
=

	∑

τ=1

qτ Gk(yτ ,ϑ) – Gk

(
	∑

τ=1

qτ yτ ,ϑ

)
–

η∑

σ=1

pσ Gk(xσ ,ϑ)

+ Gk

(
η∑

σ=1

pσ xσ ,ϑ

)
(25)

and Gk (k = 1, 2, 3, 4) are defined in (14)–(17), respectively.

Proof Let k = 4 and using (21) in (24), we have

D
(
f (·))

=
	∑

τ=1

qτ

[
f (ê1) + (ê2 – ê1)f (1)(ê1) – (ê2 – yτ )f (1)(ê2)

+ f (2)(ê1)
(

(ê2 – ê1)2

2
+ (yτ – ê1)(yτ – ê2)

)

– f (2)(ê2)
(

(yτ – ê2)(ê2 – ê1) +
(yτ – ê2)2

2

)
+

∫

g

G4(yτ ,ϑ)f (3)(ϑ) dϑ

]

–

[
f (ê1) + (ê2 – ê1)f (1)(ê1) –

(
ê2 –

	∑

τ=1

qτ yτ

)
f (1)(ê2)

+ f (2)(ê1)

(
(ê2 – ê1)2

2
+

(
	∑

τ=1

qτ yτ – ê1

)(
	∑

τ=1

qτ yτ – ê2

))
– f (2)(ê2)

×
((

	∑

τ=1

qτ yτ – ê2

)
(ê2 – ê1) +

(
∑	

τ=1 qτ yτ – ê2)2

2

)

+
∫

g

G4

(
	∑

τ=1

qτ yτ ,ϑ

)
f (3)(ϑ) dϑ

]
–

η∑

σ=1

pσ

[
f (ê1) + (ê2 – ê1)f (1)(ê1)

– (ê2 – xσ )f (1)(ê2) + f (2)(ê1)
(

(ê2 – ê1)2

2
+ (xσ – ê1)(xσ – ê2)

)

– f (2)(ê2)
(

(xσ – ê2)(ê2 – ê1) +
(xσ – ê2)2

2

)
+

∫

g

G4(xσ ,ϑ)f (3)(ϑ) dϑ

]

+

[
f (ê1) + (ê2 – ê1)f (1)(ê1) –

(
ê2 –

η∑

σ=1

pσ xσ

)
f (1)(ê2)
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+ f (2)(ê1)

(
(ê2 – ê1)2

2
+

(
η∑

σ=1

pσ xσ – ê1

)(
η∑

σ=1

pσ xσ – ê2

))

– f (2)(ê2)

((
η∑

σ=1

pσ xσ – ê2

)
(ê2 – ê1) +

(
∑η

σ=1 pσ xσ – ê2)2

2

)

+
∫

g

G4

(
η∑

σ=1

pσ xσ ,ϑ

)
f (3)(ϑ) dϑ

]

=

[
f (ê1) + (ê2 – ê1)f (1)(ê1) –

(
ê2 –

	∑

τ=1

qτ yτ

)
f (1)(ê2)

+ f (2)(ê1)

(
(ê2 – ê1)2

2
+

	∑

τ=1

qτ y2
τ – (ê1 + ê2)

	∑

τ=1

qτ yτ + ê1ê2

)

–

((
	∑

τ=1

qτ yτ – ê2

)
(ê2 – ê1) +

∑	

τ=1 qτ y2
τ – 2ê2

∑	

τ=1 qτ yτ + ê2
2

2

)

× f (2)(ê2) +
	∑

τ=1

qτ

∫

g

G4(yτ ,ϑ)f (3)(ϑ) dϑ – f (ê1) – (ê2 – ê1)f (1)(ê1)

+

(
ê2 –

	∑

τ=1

qτ yτ

)
f (1)(ê2) – f (2)(ê1)

(
(ê2 – ê1)2

2
+

(
	∑

τ=1

qτ yτ

)2

– (ê1 + ê2)
	∑

τ=1

qτ yτ + ê1ê2

)
+ f (2)(ê2)

((
	∑

τ=1

qτ yτ – ê2

)
(ê2 – ê1)

+

{(
	∑

τ=1

qτ yτ

)2

– 2ê2

	∑

τ=1

qτ yτ + ê2
2

}
1
2

)
–

∫

g

G4

(
	∑

τ=1

qτ yτ ,ϑ

)
f (3)(ϑ) dϑ

]

– f (ê1) – (ê2 – ê1)f (1)(ê1) +

(
ê2 –

η∑

σ=1

pσ xσ

)
f (1)(ê2)

– f (2)(ê1)

(
(ê2 – ê1)2

2
+

η∑

σ=1

pσ x2
σ – (ê1 + ê2)

η∑

σ=1

pσ xσ + ê1ê2

)

+ f (2)(ê2)
(∑η

σ=1 pσ x2
σ – 2ê2

∑η
σ=1 pσ xσ + ê2

2
2

)

–
η∑

σ=1

pσ

∫

g

G4(xσ ,ϑ)f (3)(ϑ) dϑ

+ f (ê1) + (ê2 – ê1)f (1)(ê1) –

(
ê2 –

η∑

σ=1

pσ xσ

)
f (1)(ê2)

+ f (2)(ê1)

(
(ê2 – ê1)2

2
+

(
η∑

σ=1

pσ xσ

)2

– (ê1 + ê2)
η∑

σ=1

pσ xσ + ê1ê2

)

– f (2)(ê2)
(

(
∑η

σ=1 pσ xσ )2 – 2ê2
∑η

σ=1 pσ xσ + ê2
2

2

)

+
∫

g

G4

(
η∑

σ=1

pσ xσ ,ϑ

)
f (3)(ϑ) dϑ



Rasheed et al. Journal of Inequalities and Applications        (2023) 2023:124 Page 9 of 19

=

[
	∑

τ=1

qτ y2
τ –

(
	∑

τ=1

qτ yτ

)2

–
η∑

σ=1

pσ x2
σ +

(
η∑

σ=1

pσ xσ

)2]
f (2)(ê1)

–
1
2

[
	∑

τ=1

qτ y2
τ –

(
	∑

τ=1

qτ yτ

)2

–
η∑

σ=1

pσ x2
σ +

(
η∑

σ=1

pσ xσ

)2]
f (2)(ê2)

+
	∑

τ=1

qτ

∫

g

G4(yτ ,ϑ)f (3)(ϑ) dϑ –
∫

g

G4

(
	∑

τ=1

qτ yτ ,ϑ

)
f (3)(ϑ) dϑ

–
η∑

σ=1

pσ

∫

g

G4(xσ ,ϑ)f (3)(ϑ) dϑ +
∫

g

G4

(
η∑

σ=1

pσ xσ ,ϑ

)
f (3)(ϑ) dϑ

=
1
2

[
	∑

τ=1

qτ y2
τ –

(
	∑

τ=1

qτ yτ

)2

–
η∑

σ=1

pσ x2
σ +

(
η∑

σ=1

pσ xσ

)2]

× (
2f (2)(ê1) – f (2)(ê2)

)
+

∫

g

D
(
Gk(.,ϑ)

)
f (3)(ϑ) dϑ .

Similar steps are followed to get (23). �

Corollary 2.1 Suppose f ∈ C3[0, 2γ̂ ] is such that f : I2 = [0, 2γ̂ ] → R, x1, . . . , xη ∈ (0,γ )
and (p1, . . . , pη) ∈ R

η such that
∑η

σ=1 pσ = 1. Let xσ ,
∑η

σ=1 pσ (2γ̂ – xσ ) and
∑η

σ=1 pσ xσ ∈ g.
Then for k = 1, 4

D
(
f (·)) =

∫

g

D
(
Gk(·,ϑ)

)
f (3)(ϑ) dϑ , 0 ≤ ê1 < ê2 ≤ 2γ̂ , (26)

and k = 2, 3

D
(
f (·)) = –

∫

g

D
(
Gk(·,ϑ)

)
f (3)(ϑ) dϑ , 0 ≤ ê1 < ê2 ≤ 2γ̂ , (27)

where D(f (·)) and D(Gk(·,ϑ)) are given in (24) and (25), respectively.

Proof Taking I2 = [0, 2γ̂ ], yτ = (2γ̂ – xσ ), x1, . . . , xη ∈ (0,γ ), pσ = qτ and η = 	 in Theo-
rem 2.2, after simplifications we get (26) and (27). �

To avoid many notions, we have the following class:
	: Let a 3-convex function, f : g = [ê1, ê2] → R. Assume (p1, . . . , pη) ∈ R

η , (q1, . . . , q	) ∈
R

	 to be such that
∑η

σ=1 pσ = 1,
∑	

τ=1 qτ = 1, and xσ , yτ ,
∑η

σ=1 pσ xσ ,
∑	

τ=1 qτ yτ ∈ g.

Theorem 2.3 Assume 	. If

1
2

[
	∑

τ=1

qτ y2
τ –

(
	∑

τ=1

qτ yτ

)2

–
η∑

σ=1

pσ x2
σ +

(
η∑

σ=1

pσ xσ

)2]

× (
2f (2)(ê1) – f (2)(ê2)

) ≥ 0 (28)

and

1
2

[
	∑

τ=1

qτ y2
τ –

(
	∑

τ=1

qτ yτ

)2

–
η∑

σ=1

pσ x2
σ +

(
η∑

σ=1

pσ xσ

)2]
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× (
2f (2)(ê2) – f (2)(ê1)

) ≥ 0, (29)

then we have following equivalent statements:
For f ∈ C3[ê1, ê2]

η∑

σ=1

pσ f (xσ ) – f

(
η∑

σ=1

pσ xσ

)
≤

	∑

τ=1

qτ f (yτ ) – f

(
	∑

τ=1

qτ yτ

)
. (30)

For each ϑ ∈ g

η∑

σ=1

pσ Gk(xσ ,ϑ) – Gk

(
η∑

σ=1

pσ xσ ,ϑ

)
≤

	∑

τ=1

qτ Gk(yτ ,ϑ) – Gk

(
	∑

τ=1

qτ yτ ,ϑ

)
, (31)

where Gk(·,ϑ) are given by (14)–(17) for k = 1, . . . , 4, respectively.

Proof (30) ⇒ (31): Let (30) holds. As the function Gk(·,ϑ)(ϑ ∈ g) is 3-convex, continuous,
it follows that also for this function (30) holds, i.e., (31) is true.

(31) ⇒ (30): Assume a 3-convex function f , then f ′′′ exists preserving generality. Con-
sider a 3-convex function, if f ∈ C3[ê1, ê2] and (31) holds, then f can be written in the form
of (18). Now after simple calculations, we have

	∑

τ=1

qτ f (yτ ) – f

(
	∑

τ=1

qτ yτ

)
–

η∑

σ=1

pσ f (xσ ) + f

(
η∑

σ=1

pσ xσ

)

=
1
2

[
	∑

τ=1

qτ y2
τ –

(
	∑

τ=1

qτ yτ

)2

–
η∑

σ=1

pσ x2
σ +

(
η∑

σ=1

pσ xσ

)2]

× (
2f (2)(ê1) – f (2)(ê2)

)
+

∫

g

(
	∑

τ=1

qτ Gk(yτ , s) – Gk

(
	∑

τ=1

qτ (yτ , s)

)

–
η∑

σ=1

pσ Gk(xσ , s) + Gk

(
η∑

σ=1

pσ xσ ,ϑ

))
f (3)(ϑ) dϑ .

Convexity of f implies f (3)(ϑ) ≥ 0 for all ϑ ∈ g. Hence, if for each ϑ ∈ g (31) is true, then
it is obvious that for each 3-convex function, f define on g with f ∈ C3[ê1, ê2], (30) is
valid. �

Remark 2.2 If the expression

	∑

τ=1

qτ y2
τ –

(
	∑

τ=1

qτ yτ

)2

–
η∑

σ=1

pσ x2
σ +

(
η∑

σ=1

pσ xσ

)2

and any of the (2f (2)(ê1) – f (2)(ê2)), (2f (2)(ê1) – f (2)(ê2)) have opposite signs in (28) and (29),
respectively, then inequalities (30) and (31) are reversed.

The next results are related to generalize Bullen-type inequality (for real weights) pre-
sented in [17](see also [21]).



Rasheed et al. Journal of Inequalities and Applications        (2023) 2023:124 Page 11 of 19

Theorem 2.4 Assume 	 with

max{x1, . . . , xη} ≤ min{y1, . . . , y	} (32)

and

η∑

σ=1

pσ

(
xσ –

η∑

σ=1

pσ xσ

)2

=
	∑

τ=1

qτ

(
yτ –

	∑

τ=1

qτ yτ

)2

. (33)

If (28) and (29) hold, then (30) and (31) are equivalent.

Proof By taking xσ and yτ such that (32) and (33) hold in Theorem 2.3, we get desired
result. �

Remark 2.3 If xσ , yτ satisfy (32) and (33) and pσ = qτ are positive, then inequality (30)
reduces to Bullen inequality [21, p. 32, Theorem 2] for 	 = η.

Theorem 2.5 Assume 	. Also, assume x1, . . . , xη and y1, . . . , y	 to be so that xσ + yτ = 2c̆
(σ = 1 . . . ,η), xσ + xη–σ+1 ≤ 2c̆, and pσ xσ +pη–σ+1xη–σ+1

pσ +pη–σ+1
≤ c̆. If (28) and (29) hold, then (30) and

(31) are equivalent.

Proof Applying Theorem 2.3, with given conditions of the statement, we get the desired
result. �

Remark 2.4 If we put 	 = η, pσ = qτ are positive, xσ + yτ = 2c̆, xσ + xη–σ+1 ≤ 2c̆, and
pσ xσ +pη–σ+1xη–σ+1

pσ +pη–σ+1
≤ 2c̆, in Theorem 2.3, then (30) becomes extended form of Bullen in-

equality presented in [21, p. 32, Theorem 4].

Next, we have Mercer condition (5), if σ = τ and 	 = η.

Theorem 2.6 Suppose f : g = [ê1, ê2] → R and f ∈ C3[ê1, ê2], pσ , qσ are positive such that
∑η

σ=1 pσ = 1 and
∑η

σ=1 qσ = 1. Let xσ , yσ satisfy (32) for η = 	 and

η∑

σ=1

pσ

(
xσ –

η∑

σ=1

pσ xσ

)2

=
η∑

σ=1

pσ

(
yσ –

η∑

σ=1

qσ yσ

)2

. (34)

If (28) and (29) hold, then (30) and (31) are the same.

Proof For positive weights, statements (30) and (31) are equivalent if we used (34) and
(32) in Theorem 2.3. �

The following findings depends on generalized form of Levinson-type inequality given
in [15] (see also [21]).

Theorem 2.7 Consider a 3-convex function, f : I2 = [0, 2γ̂ ] → R and f ∈ C3[0, 2γ̂ ],
x1, . . . , xη ∈ (0,γ ), (p1, . . . , pη) ∈ R

η and
∑η

σ=1 pσ = 1. Also, assume xσ ,
∑η

σ=1 pσ (2γ̂ – xσ ),
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∑η
σ=1 pσ xσ ∈ I2. Then the following are equivalent:

η∑

σ=1

pσ f (xσ ) – f

(
η∑

σ=1

pσ xσ

)
≤

η∑

σ=1

pσ f (2γ̂ – xσ ) – f

(
η∑

σ=1

pσ (2γ̂ – xσ )

)
(35)

and

η∑

σ=1

pσ Gk(xσ ,ϑ) – Gk

(
η∑

σ=1

pσ xσ ,ϑ

)

≤
η∑

σ=1

pσ Gk(2γ̂ – xσ ,ϑ)

– Gk

(
η∑

σ=1

pσ (2γ̂ – xσ ),ϑ

)
, ∀ϑ ∈ I2, (36)

where Gk(·,ϑ) (k = 1, . . . , 4) are given in (14)–(17).

Proof Let I2 = [0, 2γ̂ ], (x1, . . . , xη) ∈ (0,γ ), pσ = qτ , 	 = η and yτ = (2γ̂ – xσ ) in Theorem 2.3
with 0 ≤ ê1 < ê2 ≤ 2γ̂ , we have required result. �

Remark 2.5 If pσ are positive in Theorem 2.7, then inequality (35) becomes Levinson in-
equality given in [21, p. 32, Theorem 1].

3 Applications to information theory
Levinson-type inequalities play an essential role in generalizing inequalities for divergence
between probability distributions. In [6, 11, 13], Adeel et al. applied their findings to infor-
mation theory by using two 3-convex Green functions. In this section, the key findings of
Sect. 1 are linked to information theory via f -divergence, Rényi entropy and divergence,
Shannon entropy and Zipf–Mandelbrot law using newly defined 3-convex Green func-
tions (14)–(17).

3.1 Csiszár divergence
Csiszár [22, 23], presented following definition.

Definition 3.1 If f : R+ →R+ be a convex function. Choose ṽ, l̃ ∈R
η
+ such that

∑η
σ=1 vσ =

1 and
∑η

σ=1 lσ = 1. Then Csiszár f -divergence is defines as follows:

If (ṽ, l̃) :=
η∑

σ=1

lσ f
(

vσ

lσ

)
. (37)

In [24], Horv́ath et al. gave generalization of (37) as follows:

Definition 3.2 If f : I → R be such that I ⊂ R. Choose ṽ = (v1, . . . , vη) ∈ R
η and l̃ =

(l1, . . . , lη) ∈ (0,∞)η such that

vσ

lσ
∈ I, σ = 1, . . . ,η.
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Then

Îf (ṽ, l̃) :=
η∑

σ=1

lσ f
(

vσ

lσ

)
. (38)

Throughout the paper, we assume that:
E: Suppose ṽ = (v1, . . . , vη), l̃ = (l1, . . . , lη) be in (0,∞)η and s̃ = (s1, . . . , s	), ũ = (u1, . . . , u	)

are in (0,∞)	 .
And

H(s, u, v, l) :=
1∑	

τ=1 uτ

	∑

τ=1

(sτ )2

uτ

–

(
	∑

τ=1

sτ∑	
τ=1 uτ

)2

–
1∑η

σ=1 lσ

η∑

σ=1

(vσ )2

lσ
+

(
η∑

σ=1

vσ∑η
σ=1 lσ

)2

.

Theorem 3.1 Let the hypothesis E holds and

vσ

lσ
∈ I, σ = 1, . . . ,η,

and

sτ

uτ

∈ I, τ = 1, . . . ,	.

If

H(s, u, v, l)
(
2f (2)(ê1) – f (2)(ê2)

) ≥ 0, (39)

and

H(s, u, v, l)
(
2f (2)(ê2) – f (2)(ê1)

) ≥ 0, (40)

then the following are equivalent.
(i) For each 3-convex and continuous function f : I →R,

Df̂ (v, s, l, u) ≥ 0. (41)

(ii)

DGk (v, s, l, u) ≥ 0, (42)

where

Df̂ (v, s, l, u) =
1∑	

τ=1 uτ

Îf (s̃, ũ) – f

(
	∑

τ=1

sτ∑	

τ=1 uτ

)

–
1∑η

σ=1 lσ
Îf (ṽ, l̃) + f

(
η∑

σ=1

vσ∑η
σ=1 lσ

)
. (43)
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Proof Using pσ = lσ∑η
σ=1 lσ

, xσ = vσ

lσ , qτ = uτ∑	
τ=1 uτ

and yτ = sτ
uτ

in Theorem 2.3, we get the
required results. �

Remark 3.1 (i) In Remark 2.1, put ê2 = ê1 and constant of integration equals to zero in
first part of piecewise function G1, then the results of Theorem 3.1 coincide with [6, p. 12,
Theorem 6].

(ii) Similarly, in Remark 2.1, take constant of integration equals to zero in second part of
piecewise function G2, also replace ê2 with ê1 and ϕ̂ with ϑ then the results of Theorem 3.1
coincide with [6, p. 12, Theorem 6].

3.2 Shannon entropy
Definition 3.3 (See [25]) For positive probability distribution l̃ = (l1, . . . , lη) the Shannon
entropy is given by

S := –
η∑

σ=1

lσ log(lσ ). (44)

Corollary 3.1 Let the hypothesis E holds. If

H(s, u, v, l) ≥ 0, (45)

and

DGk (v, s, l, u) ≤ 0, (46)

then

DS(v, s, l, u) ≤ 0, (47)

where

DS(v, s, l, u)

=
1∑	

τ=1 uτ

[
S̃ +

	∑

τ=1

sτ log(uτ )

]
+

[
	∑

τ=1

sτ∑	

τ=1 uτ

log

(
	∑

τ=1

sτ∑	

τ=1 uτ

)]

–
1∑η

σ=1 lσ

[
S –

η∑

σ=1

vσ log(lσ )

]
–

[
η∑

σ=1

vσ∑η
σ=1 lσ

log

(
η∑

σ=1

vσ∑η
σ=1 lσ

)]
(48)

and S is defined in (44) and

S̃ := –
	∑

τ=1

sτ log(sτ ).

If log has base less than 1, then (47) and (46) are reversed.

Proof If log has base greater than 1, then the function f (x) �→ –x log(x) is 3-convex. Hence,
substituting f (x) := –x log(x) in (39) and (41), we have required results by Remark 2.2. �
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Remark 3.2 (i) In Remark 2.1, put ê2 = ê1 and constant of integration equals to zero in
first part of piecewise function G1 then the results of Corollary 3.1 meet with [6, p. 13,
Corollary 6].

(ii) Take constant of integration equals to zero in second part of piecewise function G2,
also replace ê2 with ê1 and ϕ̂ with ϑ in Remark 2.1, then the results of Corollary 3.1 meet
with [6, p. 13, Corollary 6].

3.3 Rényi divergence and entropy
In [26], Rényi divergence and entropy are defined as:

Definition 3.4 Suppose ṽ, q̃ ∈R
η
+ is so that

∑η
1 vσ = 1 and

∑	

1 qτ = 1, also let � ≥ 0, � 
= 1.
�-order, Rényi divergence is

D�(ṽ, q̃) :=
1

� – 1
log

(
η∑

σ=1

qσ

(
vσ

qσ

)�
)

(49)

and �-order Rényi entropy is given by

K�(ṽ) :=
1

1 – �
log

(
η∑

σ=1

v�
σ

)
. (50)

For non-negative probability distributions, these definitions are also valid.

Theorem 3.2 Let the hypothesis E holds and

η∑

1

vσ = 1,
η∑

1

lσ = 1,
	∑

1

sτ = 1 and
	∑

1

uτ = 1.

If either 1 < � and base of log is greater than 1 or � ∈ [0, 1) and base of log is less than 1
or if

	∑

τ=1

(uτ )2

sτ

(
sτ

uτ

)2�

–

(
	∑

τ=1

uτ

(
sτ

uτ

)�
)2

–
η∑

σ=1

(lσ )2

vσ

(
vσ

lσ

)2�

+

(
η∑

σ=1

lσ
(

vσ

lσ

)�
)2

≥ 0, (51)

and

η∑

σ=1

vσ Gk

((
vσ

lσ

)�–1

,ϑ
)

– Gk

(
η∑

σ=1

vσ

(
vσ

lσ

)�–1

,ϑ

)

≥
	∑

τ=1

sτ Gk

((
sτ

uτ

)�–1

,ϑ
)

– Gk

(
	∑

τ=1

sτ

(
sτ

uτ

)�–1

,ϑ

)
, (52)

then

η∑

σ=1

vτ log

(
vτ

lτ

)
– D�(ṽ, l̃) ≥

	∑

τ=1

sτ log

(
sτ

uτ

)
– D�(s̃, ũ). (53)
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If either base of log is less than 1 and 1 < � or � ∈ [0, 1) and log has base greater than 1,
then (52) and (53) are reversed.

Proof We prove for � ∈ [0, 1) and base of log is greater than 1 and the other cases can be
proved in a similar manner.

Taking, I = (0,∞) and f (x) = log(x), then 0 < f (3)(x), so f is 3-convex. Thus, putting f (x) =
log(x) and following substitutions

pσ := vσ , xσ :=
(

vσ

lσ

)�–1

, σ = 1, . . . ,η,

and

qτ := sτ , yτ :=
(

sτ

uτ

)�–1

, τ = 1, . . . ,	,

in the reverse of (30) (by Remark 2.2), we obtain

(� – 1)
η∑

σ=1

vσ log

(
vσ

lσ

)
– log

(
η∑

σ=1

lσ
(

vσ

lσ

)�
)

≥ (� – 1)
	∑

τ=1

sτ log

(
sτ

uτ

)
– log

(
	∑

τ=1

uτ

(
sτ

uτ

)�
)

. (54)

Dividing (54) with (� – 1) and using

D�(ṽ, l̃) =
1

� – 1
log

(
η∑

σ=1

lσ
(

vσ

lσ

)�
)

,

D�(s̃, ũ) =
1

� – 1
log

(
	∑

τ=1

uτ

(
sτ

uτ

)�
)

to get (53). �

Remark 3.3 Using all the conditions of Remark 3.1(i), (ii), the inequality (53) coincides
with results given in [6, p. 14, inequality (48)].

Corollary 3.2 Let the hypothesis E holds such that
∑η

1 vσ = 1 and
∑	

1 sτ = 1. Also, let

	∑

τ=1

1
	2sτ

(	sτ )2� –

(
	∑

τ=1

1
	

(	sτ )�
)2

–
η∑

σ=1

1
η2vσ

(ηvσ )2� +

(
η∑

σ=1

1
η

(ηvσ )�
)2

≥ 0 (55)

and

η∑

σ=1

vσ Gk
(
(ηvσ )�–1,ϑ

)
– Gk

(
η∑

σ=1

vσ (ηvσ )�–1,ϑ

)

≥
	∑

τ=1

sτ Gk
(
(	sτ )�–1,ϑ

)
– Gk

(
	∑

τ=1

sτ (	sτ )�–1,ϑ

)
. (56)
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If � and base of log are greater than 1, then

η∑

σ=1

vσ log(vσ ) + K�(ṽ) ≥
	∑

τ=1

sτ log(sτ ) + K�(s̃). (57)

If log has base less than 1, then (56) and (57) are reversed.

Proof Suppose l̃ = ( 1
η

, . . . , 1
η

) and ũ = ( 1
	

, . . . , 1
	

). Then from (49), we have

D�(ṽ, l̃) =
1

� – 1
log

(
η∑

σ=1

η�–1v�
σ

)
= log

(
η∑

σ=1

v�
σ

)
1

� – 1
+ log(η),

and

D�(s̃, ũ) =
1

� – 1
log

(
	∑

τ=1

	�–1s�
τ

)
= log

(
	∑

τ=1

s�
τ

)
1

� – 1
+ log(	).

It implies

K�(ṽ) = log(η) – D�

(
ṽ,

1
η

)
(58)

and

K�(s̃) = log(	) – D�

(
s̃,

1
	

)
. (59)

From Theorem 3.2, it follows l̃ = 1
η

, ũ = 1
	

, (58) and (59), we have

η∑

σ=1

vσ log(ηvσ ) – log(η) + K�(ṽ) ≥
	∑

τ=1

sτ log(	sτ ) – log(	) + K�(s̃). (60)

After simple calculations, we obtain (57). �

Remark 3.4 If all the assumptions of part (i) and (ii) of Remark 3.1 are applied to Corol-
lary 3.2, then the results of Corollary 3.2 meet with [6, p. 16, Corollary 7].

3.4 Zipf–Mandelbrot law
The Zipf law is given as follows (see [27]).

Definition 3.5 A discrete probability distribution with three parameters, φ ∈ [0,∞),M ∈
{1, 2, . . . , }, and w > 0, is called Zipf–Mandelbrot law and is given by

f (ϑ ;M,φ, w) :=
1

(ϑ + φ)wKM,φ,w
, ϑ = 1, . . . ,M,

where

KM,φ,w =
M∑

σ=1

1
(σ + φ)w .
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For each value of M, if the entire mass of the law is considered, then density function of
Zipf–Mandelbrot take the following form

f (ϑ ;φ, w) =
1

(ϑ + φ)wKφ,w
,

for 0 ≤ φ, 1 < w, ϑ ∈M, where

Kφ,w =
∞∑

σ=1

1
(σ + φ)w .

The Zipf–Mandelbrot law changes to the Zipf law, if φ = 0.

Theorem 3.3 Assume that s̃ and ṽ be the Zipf–Mandelbrot laws. If (55) and (56) are true
for vσ = 1

(σ+l)σKM,l,σ
, then sτ = 1

(τ+s)τKM,s,τ
.

If log has base greater than 1, then

η∑

σ=1

1
(σ + l)σKM,l,σ

log

(
1

(σ + l)σKM,l,σ

)
+

1
1 – �

log

(
1

K�
M,l,σ

η∑

σ=1

1
(σ + l)�σ

)

≥
	∑

τ=1

1
(τ + s)τKM,s,τ

log

(
1

(τ + s)τKM,s,τ

)

+
1

1 – �
log

(
1

K�
M,s,τ

	∑

τ=1

1
(τ + s)�τ

)
. (61)

If log has base less than 1, then (56) and (61) are hold in opposite direction.

Proof Similar to Corollary 3.2, the proof uses Definition 3.5 and the hypothesis given in
statement to obtain the desired result. �

Remark 3.5 By following the same conditions and methodology as in parts (i) and (ii) of
Remark 3.1, the Inequality (61) becomes [6, p. 17, inequality (56)].

4 Conclusion
Four newly defined 3-convex Green functions are utilized to generate generalized
Levinson-type inequalities for the class of 3-convex functions. We are able to find applica-
tions to information theory and also the bounds for obtained entropies and divergences.
The newly established new Green functions are generalizations of Green functions given
in [20] as these are 3-convex. Other interpolations, e.g., Lidstone interpolation, Hermite
interpolating polynomial, and Montgomery identity, are also useful to explore the related
results.
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