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1 Introduction and preliminaries

Information theory is a branch of science concerned with the storage, quanti“cation, and
transmission of data. Information is di cult to quantify since it is an abstract object. In
his “rst of two important and essential theorems, Claude Shannod][ who created the
idea of information theory, presented entropy as the fundamental unit of information in
1948. The probability density function may also be used to measure the information. The
distance between the two probability distributions is calculated using the divergence mea-
sure. Divergence measure is a concept in probability theory that is used to overcome a
number of problems. Divergence measures, which compare two probability distributions
and are employed in statistics and information theory, are described in the literature. Sen-
sor networks P], “nance [3], economics ], and approximation of probability distribu-
tions [5] are all areas where information and divergence measures are highly valuable and
play a signi“cant role.

In[6], Adeel et al. generealized the Levinson inequality and gave fruitful results in infor-
mation theory. Khan[7] etal., used Abel...Gontscharo interpolation to present Levinson-
type inequalities for convex functions of higher order. Adeel et al., calculated Shannon en-
tropy and estimated -divergence in B] by utilising new Lidstone polynomials and Green
functions in association with Levinson-type inequalities. By using Hermite interpolating
polynomial, Khan P] et al., were successful to achieve Levinson type inequality for the
convex functions of higher order and provided estimates for the Shannon entropy and
f-divergence. In [LO], Adeel et al. used Bullen-type inequalities to estimate di erent en-
tropies and f-divergence via Finkes identity. Khaid]] et al. gave various entropy results
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related to Levinson-type inequalities using Green functions and also presented results for
Hermite interpolating polynomial. For 2n-convex functions, Khanl?] et al. generalized
Levinson-type inequalities by applying Lidstone interpolating polynomial. 143], Adeel
et al. used Green functions to obtain generalize Levinson-type inequalities via Mont-
gomery identity. They also found bounds for di erent entropies and divergences. How-
ever, in [6, 11, 13], all the generalizations and results are proved using only two Green
functions. In this study, four newly de“ned 3-convex Green functions are used to gener-
alize the Levinson-type inequalities, and the bounds for di erent entropies are given.
Higher-order convex functions are de“ned using divided di erence techniques.

Definition 1.1 [14, p. 14] For a functionh : [, @] — R, the divided di erence of order
n, at mutually exclusive pointsly, ... U, € [, @] is recursively de“ned by

[us;h]=h(u,), o=0,...n,

[ug,....un;h] ... fo, ... Un...ih]
Un ..Up '

1)

[ug, ... un;h]=

Itis clear that (1) is identical to

h(Ug), Whel’e|(U) = H(U ..Ue)-

[Ug, ... un;h]= -
0=0 I (uz) e=0

The nth-order divided di erence is used to de“ne a real valued convex function in the
following formulation (see [L4, p. 15]).

Definition 1.2 For (n + 1) di erent points Uy, . .. Uy € [@1, @], a functionf : [o, 2] —
R is calledn-convex (0< n) if and only if

[ug,...un;f] >0
holds.

If [uo,...un;f] <0, thenf is n-concave.
Criteria for n-convex function is given in L4, p. 16], as follows:

Theorem 1.1 f is n-convex if and only if f ™ > 0, given that f ™ exists.

Levinson [L5], extended the Ky Fanss inequality to the class of functions which are 3-
convex as follows:

Theorem A Suppose f : I, = (0,2y) — R with f ®)(z) is non-negative. Consider x,, € (0,y)
and p, >0.Then

U

1 < 1 o 1
P_Zpof(xo)--f<P_Zpaxa>fp_zpaf(zy--xa)
N 5=1 n

T =1 o=1

...f(Pina(Zy ..x0)>. 2)
T g=1
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Popoviciu [L6], noted that Levinsones Inequalityd) has important role on (0, 2), but in
[17], Bullen proved distinctive conformation of Popoviciuss “ndings with the converse of

@.

Theorem B (i) Assume f : I = [w1,w2] — R be a convex function of order three and
Xo, Yo €lpforo =1,2,...1,p, > 050 that

min{ys ...y,} > max{Xs...X,}, Yyi+Xg = =Y, +X, 3)

then
1< 1 & 1 < 1 @
P_ Zpaf(xo) W (P_ Zpoxa) = P_Zpaf(ya) o (P_ Zpaya)- (4)
N o=1 N o=1 N o=1 " o=1

(i) For p, > 0.If f is continuous and (4) holds for all x,, y, satisfying (3), then f is 3-
convex.

In the following result, Pe ari [18] gave Inequality §) by weakening Condition 8).

Theorem C Assume f :Ip — R be so that 0 < f3(t) and 0 <p,. Also, let X, Y, € Io be such

o o + v .
thatx, +y, = 28,foro = 1,... ), X, +X,. o+1 < 28 and W <& Then (4) is true.
.o

In [19], Mercer showed that 4) is true after substituting symmetric point variances for
the symmetric conditions.

Theorem D Suppose a 3-convex function f, defined on Ip and p, be suchthat >"_ p, = 1.
Choose X, , Y, such that minfy; ...y,} > max{x; .. .x,} and

N

N 2 n n 2
> (xa ...Zpaxa) =D P (ya ...Zpaya> , (5)
o=1 o=1 o=1

o=1

then (4) holds.

Letg=[€1,8,] CR,8; <éandr=1,...,4.InR0], Pe ari etal. de“ne newtype of Green
functions, G, : g x g — R, which are given as:

~ N 19 -é]_, él S 79 E (2)1

Gilg, )= = . (6)
¢ ..B1, @=<1v =<8

A ¢ .8 B =<v<g,

G2(¢,9) = A . (7)
7.9 -821 (4 S 1} S e21

A ~ (2 ély é:I_ < g < (2)1

Gs(p, ) = . . (8)
4 g1, ¢ < 4 <€y,

A 0.8 81<9<¢,

Galg, )= = . )
@ .B, @<V =<8
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The Abel...Gontscharof-type identities were also proved by them utilising these Green
functions, which are given by;

f(@)=f(80) + (¢ ..80)F (&) ... fg G1(@, )" (9) do, (10)
f(@)=f(@)...6..0)f (&) + /g G1(¢,9)f"(9) dw, (11)
f(@)=f (&) + () ..80)F (B1) ... & .. Ba)f ' (B2) + /; Ga(@,0)f"(9) dv, (12)
f(@)=f(81) +(@E2..80) (E1) ... & .. §)f '(2) ... /g Ga(@, " () dv, (13)

wheref :[61,8] — R.

This work is arranged as follows: in Sec2, new type of 3-convex Green functions are
de“ned, also identities related to these 3-convex Green functions are established. Addi-
tionally, a new class of 3-convex Green functions is used to modify Levinsones inequality
for the 3-convex function. In Sect3, the f-divergence, the Renyi entropy, Renyi divergence,
the Zipf...Mandelbrot law, and the Shannon entropy are used to give results to information
theory.

2 Mianresults
Firstly, we de“ne new type of 3-convex Green functions with graphs and using these Green
functions, alemma is also stated. Then results related to Levinson-type inequalities using
new Green functions are being presented.

Let g =[81,82] C (..00,00) and A € {1,2,3,4. New type of 3-convex Green functions,
G, :g x g — R, which are de“ned as:

1 A+ (5 Ao A a A

. 30 B) + (9. B)(@..82), B1=V =9,
Gu@,0)=12" N N R (14)

(@ .. 81)(V .. &) + 515, P <V <8,

. (@ -B)(0 ..B1) +3(9..82% &<V <9,
LR T . (15)

T (9 R)(@ - B)), P <V <8,

A a2

R (@ ..B)(® ..B) + @8 b < <9,
Galp.)=1, =~ T 2 X (16)

50 . 81)°+(9..21)(@ ..82), @<V <8,

P 4 (5 8NG . B ] .

. ¢ ..82) (@ ..81), e1<v <g,
Gu(@,0) = AZA AN lga A2 A . (17)

(@ .80 ..81)+35(0..82)° 9=V =&

Figure 1, demonstrates a graphical depiction @dx (k =1,...,4). These new Green func-
tions are used to present following lemma.

Lemma 2.1 Consider a function f be defined on g such that f”” existsand G, (A =1,...,4)
be the two-point right focal problem-type Green functions given by (14)—(17). Then the
following identities are true:

(¢ ..B1)?

F@)=f@)+ (@20 ) + (@ .- 8@ -2 "(Ba) .. ———1"(E2)
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Figure 1 Graph of Green functior, for di erent values ofp and

+ / Gi(p, )" (9)dv,
g

(2. 9)?
2

f(@)=1@2)...&..9)f '(€1) ..f"(&1)

/ Ga(p, 9)f " (9)do,

g
1) =1+ (0 £ @) . & £ B2
[(p ..81)°
T2
C(a. A2
Gt a0

f(@)=F@)+ @22 '(61) ... & .. 9)'(62)

_ o
w17@)] @ 2@ 2 + )

...|:(¢ L B)) (B .. B) + (@ "zéZ)Z

2)

(9>

(8 +(¢..81)(; ..

>

+f7(&2)

+(¢ .-B1)(¢

2)_ f Ga(@, )" () dv,
g

]f”(éz)+ [ w00,
g

(18)

(19)

(20)

(21)

Proof The aforementioned results can be proved by employing the same integrating ap-

proach. As a result, we give proof ofLg) only.
JRXREOLE
g

5 A2
- /:(pf’”(ﬁ)[% +(3 B¢ ..él)} do

¥ fezf’”w)[@ )0 b+ @ 'fﬂ @
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A.\2 @ %
:[f”(ﬁ){(ﬁ "252) +(¢..é2)(<;3..é1)}A ...fwf”(z?)(z?..éz)dﬁ]
A a2 |82 )
+[f”(ﬁ){(¢..éz)(ﬂ..é1)+(“’"2’32) } o f”(ﬁ)(@..éz)dz?]

PRY)
:[f”(@){("’"”) +(¢..éz)(¢..é1)} ..I”(él){(@..éz)(é..él)

2
o (7
él+/él f (ﬁ)dz}}

(¢ .. 82)°
2

A A2
+(e1..e2)

5 } L) ..8)

+ [f ”(é»{(@ B2)(Es . B) ¢ } ...{@ B .2)

~ A \2 N
((p..zez) }_,_@..é2)|f’(z9)|;2]

A A2 D .82
[ C 6200 20 200 20 L5 10)

[(ég..él)z
B

PAEPRY
L (@.8)

+17(¢)

(6 E)@ ..él)]f“(él) + [(@ B)Cs . B1)

]f”(éz) @ BRI (9) + (B .. ) (B1) + (@) .. ()

@ B (82) + (9 .. B2)f (9)

A A2
2.-21)°
2

(@ --éz)z}
2

=[G .-82) ... 6 .- 8)]f(§) [ @ ..82)(® ..él):|f”(é1)

+ [(@ ~Bo)(E2..81) + f7(82) + (81 .. 82)f'(81)

@ LB (8 +T (@) .. F(B).
After rearranging, we get Identity 21). O
Remark 2.1 If we apply integration by parts on the integral part oflQ)-(13), by choosing
f”(¥) as “rst function and Gk(gb,ﬂ) (k=1,2,3,4) as second function, we getg)...21),

respectively.

Now, identities associating with Jensen di erence of two distinct data points are given
by using newly de“ned 3-convex Green functions given by4)...17).

Theorem 2.2 Assume f € C3[é1,8,] be such that f : g = [61,8] — R, (u,... o) € R,

(P1,---py) € R such that 37_;p, =1 and Y%.;q, = 1. Also, let X,, Yz, 3 =1 PoXo,
3%, 0.y, € 6. Then for Gy (k=1,4)

) 0 2 g n 2
D(f() = %[quyf ---(quyf) Y PeX+ (me) ]
=1 =1 o=1 o=1

x (24P@) ..fAE,)) + / D (Gi(.,1))f O() dv, (22)
g
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and for G (k=2,3)

0 2 n 2
D(f() = {quyf -(Z%w) ---Zpax(zﬁ(Zpaxa)]
=1 o=1 o=1

x (21@(8,) ..1@@y) ... / D (Gk(.,9))f D) dv, (23)
g

where

D(f() quf(yf) f(quyf) ---Zpaf(xa)”(Zpgxg), (24)
=1 o=1
Gk( 19) thGk(yraﬁ) Gk(quyr, )---Zpon(Xmﬁ)

o=1

+Gk (Z paxg,z}) (25)
o=1

and Gk (k=1, 2, 3,4)are defined in (14)—(17), respectively.

Proof Letk =4 and using 1) in (24), we have
o(f())

Q
=20 [f (B1) + (B2 .. 2)f V@) ... & ..y ) D(E2)
=1

A AYA
+ f(Z)(él) (@ + (yr -él)(yr -éZ))

...f<2>(éz>(<yf BB B+ %) + [ Gty <3)(z9)d19}
g

[f (61) + (&5 ..8))fD(Ey) ...<é2 »Y qtyr)f(l)(ég)

=1

+1@(ey) ((ez (Z Qe - el) (quyr ..éz>) FO@)
=1

@ R
x ((quyr --ﬁz)(éz ..é1)+(2rzlq+-92)>

=1

o n
+ / G4 (Z OrYe, l9>f () d0:| Z Po |:f (81) + (82 .. 81)fD(&y)
g =1 o=1
) OE) +f<2>(él)(w + (0 B0 --§2)>

..f(z)(éz)<(xa ACIAL: %) + / G, 0)f (3)(2‘/‘)0'9]
g

n
+ |:f (61) + (&2 ..28)F V(@) ...(éz »Y pax(,>f D(ey)
o=1

Page 7 of 19
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(Z PoXo él) (Z Po X éz))
o=1
U " .
---f(z)(éz)<<; PoXo ...éz) (Br..81)+ Qo= pozxo - £2) )
+ / 64(2 poxg,l?>f(3)(z9) dz?j|
g o=1
Q
= |:f (61) + (B2 .. B9)f (1)(é1) (éz Z qryt>f(1)(é2)
=1

N T N A
+1O@) T+ Yy b)) oy ik

+ f(z)(el)(

=1 =1
Q e 2 2 0 A2
<<Z Ocy- ..é2>(é2 LB+ 2oz OrYr o B2 ) ooy O +e2)
=1 2
4
< f@@)+> a. / Ga(yr, M) P @) do . f@1) ... & .. 8)f D(E1)
=1 g
G2, (&
( quyr>f(l)(ez) BLCICh )( 2 (qu)
=1 =1
4
. éz)quyT + éléz) +f(2)(ég)<<2 - Vs ..é2> (@, ..8,)
=1 =1

+i<zg;qy> ﬁzquyﬁez} ) /&(quyn )f@(ﬂ)dﬁ}

LF(B1) .. & B V(@) + (éz Z poxa>f(l)(é2)

o=1

1
1O )( i Zpa &t 8) ) poXo +é1é2)

o=1

+f(z>(é2)<20:1 PoXZ - B2 ) 01 PoXo "’ez)

2

n
Y Po / Ga(Xy, 9)f () do
o=1 g

n
+1(81) + (&2 .. 81)FD(&y) ...<é2 Y P x(,)f(l)(ég)

o=1

+f<2>(é1)((ez (Z PoX ) LE1+8)D poXe +é1é2>

o=1
@) Ot 1 PoXe)? o B 0 1 PoXo + 85
f9(82) >

+ / G4(Z pgxa,ﬁ>f(3)(z9)dz9
g

o=1

Page 8 of 19
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0 0 2 g n 2
- {Z 0ry? (Z qm) LD PoXeH (Z poxg> :|f(2)(él)
=1 =1 o=1 o=1
1@ ) 2 U 2
= {Z 0ey? (Z qu1> LD P+ (Z poxa> ]f‘z’(éz)
=1 =1 o=1 o=1

4

+Zq1/

=1 9

o
Galy:,9) @) dv ... / 64(2 QTYr,ﬂ>f(3)(l7)dz9
g =1

U

---Zpo/

o=1 g

Ga(Xy, ) @) do + / G4(Zpgxg,ﬂ>f(3)(z9)dl9
9

o=1
11 & 4 2 i ?
= > [quyf (Z qryr) Z paxrzr + (Z p"Xa> j|
=1 =1 o=1 o=1
% (Zf (2)(é1) ”f(Z)(éz)) +/©(Gk(.,ﬁ))f(3)(19)dl9.
g

Similar steps are followed to get23). O

Corollary 2.1 Suppose f € C3[0,2p] is such that f : I =[0,20] — R, Xy,... X, € (0,y)

and (pa,...p,) € R7suchthat Y7 _; p, =1.Let Xy, > n_1Po (27 .. Xs) a@Nd D) _1 Po Xy € g
Thenfork=1,4

D(f () :/Q(Gk(~,19))f(3)(z?)dz9, 0<8 <8 <2y, (26)
g
andk=2,3
D(f()) = ../@(Gk(~,ﬁ))f(3)(ﬁ)d0, 0<8, <8, <2y, (27)
g

where D(f (-)) and D (G (-, #)) are given in (24) and (25), respectively.

Proof Taking I, =[0,2p], y: = (29 ..Xs), X1,... X, € (0,¥), ps =0, and n = ¢ in Theo-
rem 2.2, after simpli“cations we get 26) and (27). O

To avoid many notions, we have the following class:
9 Let a 3-convex functionf : g = [é1,8,] — R. Assume f1,...p,) € R", (@1,...9,) €
R? to be suchthat) ! p, =1, %10, =1, andX,, Yz, D vo1 PoXos D oeq UcYr € -

Theorem 2.3 Assume R. If

1@ 0 2y n 2
> [Z 0ry? (Z quf) Y PeXEH (Z poxa> }
=1 =1 o=1 o=1
x (21@(@y) ..1D(@;)) > 0 (28)

and

1 Q o 2 n n 2
E[zquf ...(zquf) g (z p) }
=1 =1 o=1 o=1

Page 9 of 19
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x (2f@(8,) ..1@(@y)) > 0, (29)

then we have following equivalent statements:
Forf e Cg[él,éz]

n n 4 4
> pof(xo) --f<Zpaxa) <Y afy) --J‘(quyf)- (30)
o=1 o=1 =1 =1

Foreach 9 € g
U n 4 4
> PoGi(Xs, ) .. Gk (Z pgxg,z?) <> 4:Gk(y-,?) .. Gk (Z q,yf,ﬁ> : (31)
o=1 o=1 =1 =1

where Gy(-, ) are given by (14)—(17) fork =1, ..., 4 respectively.

Proof (30) = (31): Let (30) holds. As the functionG (-, #)(¢ € g) is 3-convex, continuous,
it follows that also for this function (30) holds, i.e., 81) is true.

(31) = (30): Assume a 3-convex functiorfi, thenf”” exists preserving generality. Con-
sider a 3-convex function, if € C3[&1,8,] and (31) holds, thenf can be written in the form
of (18). Now after simple calculations, we have

4 4 n n
D aef(ye) . f (quyf) ) Pt (Xo) +f (Z paxa>
=1 =1 o=1 o=1
1o 0 2 1 2
= E[quyf ---(quyr) D) P (Z paxa> }
=1

=1 o=1 o=1
Q Q
X (Zf (2)(é1) --f(Z)(éZ)) + / (Z quk(yrrs) -G (Z qr(yrus))
g\ r=1 =1

Z Po Gk (Xs,8) + Gk (Z pgxa,ﬂ>)f(3)(z9) dv.

o=1 o=1

Convexity off implies f®() > 0 for all ¥ € g. Hence, if for each? € g (31) is true, then
it is obvious that for each 3-convex functionf de“ne on g with f € C3[&1,8,], (30) is
valid. O

Remark 2.2 If the expression

0 0 2 n 2
Yy (Z qur> Yy P (Z paxg)
=1 =1 o=1 o=1

and any of the (2@(&,) ..f @(&,)), (2 D (&,) ..f D (&,)) have opposite signs inA8) and (29),
respectively, then inequalities30) and (31) are reversed.

The next results are related to generalize Bullen-type inequality (for real weights) pre-
sented in [L7](see also21]).



Rasheed et allournal of Inequalities and Applications (2023) 2023:124 Page 11 of 19

Theorem 2.4 Assume R with
max{X, ... X,} <min{yi,... Y.} (32)

and
1 1 2 0 2
> P (xa paxa) =) G (yz---Zqzyr> : (33)
o=1 o=1 =1 =1

If (28) and (29) hold, then (30) and (31) are equivalent.

Proof By takingx, andy, such that 32) and (33) hold in Theorem 2.3, we get desired
result. O

Remark 2.3 If x,, y; satisfy @2) and (33) and p, = g, are positive, then inequality §0)
reduces to Bullen inequality21, p. 32, Theorem 2] foro = n.

Theorem 2.5 Assume R. Also, assume Xy, ... X, and yi, ...y, to be so that x, +y, = 2¢
(0=1...7), % +%,. 041 < 26, and PXePrasli.ort — & £ (28) and (29) hold, then (30) and

Po+Py..0+1
(32) are equivalent.

Proof Applying Theorem2.3 with given conditions of the statement, we get the desired
result. d

Remark 2.4 If we puto =7, p, = g, are positive,X, +y; = 28, X5 + X, o+1 < 2¢, and

W < 2¢, in Theorem 2.3 then (30) becomes extended form of Bullen in-
o THn..o+

equality presented in21, p. 32, Theorem 4].
Next, we have Mercer condition%), if o =t ando = 1.

Theorem 2.6 Suppose f : g =[81,8,] — R and f € C3[81,8,], p,, g, are positive such that
S _Ps=1and Y"_ g, = 1.Letx,,Y, satisfy (32) for n = and

1 1 2y 0 2
> b (xg 5 paxg) =Y o (ya ---anyo> : (34)
o=1 o=1 o=1 o=1
If (28) and (29) hold, then (30) and (31) are the same.

Proof For positive weights, statements3Q) and (31) are equivalent if we used34) and
(32 in Theorem 2.3 0

The following “ndings depends on generalized form of Levinson-type inequality given
in [15] (see also21)).

Theorem 2.7 Consider a 3-convex function, f : I, = [0,2p] — R and f € C3[0,27],
X1,... X, € (0,y), (P1,...py) € R7and Y_7_; p, = 1. Also, assume Xo, > n_y Po (27 .. Xo),
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Zzzl psXs € Io. Then the following are equivalent:

> pof (%) .. (Z paxa) < pof(2P %) . (Z Ps (29 ..xa)) (35)
o=1 o=1

o=1 o=1

and

Z paGk(XUrﬁ) Gk (Z poxarﬂ)

o=1 o=1

n
= ZpaGk(ZJ; --Xavl?)

o=1

.. Gy (Z‘ Po (27 ..xa),é‘), v €y, (36)

o=1
where Gy (-, %) (k=1,...,4)are given in (14)—(17).

Proof Letl, =[0,2y], (X1,...X,) € (0,¥),Ps =0r, 0 =nandy, =(2y ..x,) in Theorem2.3
with 0 < &; <&, < 2y, we have required result. O

Remark 2.5 Ifp, are positive in Theorem2.7, then inequality 35) becomes Levinson in-
equality given in R1, p. 32, Theorem 1].

3 Applications to information theory

Levinson-type inequalities play an essential role in generalizing inequalities for divergence
between probability distributions. In , 11, 13], Adeel et al. applied their “ndings to infor-
mation theory by using two 3-convex Green functions. In this section, the key “ndings of
Sect.1 are linked to information theory viaf -divergence, Rényi entropy and divergence,
Shannon entropy and Zipf...Mandelbrot law using newly de“ned 3-convex Green func-
tions (14)...17).

3.1 Csiszar divergence
Csiszér P2, 23], presented following de“nition.

Definition 3.1 If f : R, — R, be a convex function. Choosg,1 € R such that}""_, v, =
land> ’_;l, = 1. Then Csiszaf -divergence is de“nes as follows:

% Vo
It (v,1) .-;I,,f <E) (37)
In [24], HorVath et al. gave generalization 08(¢) as follows:

Definition 3.2 If f : I — R be such thatl C R. Choosev = (vy,...Vv,) € R" and 1=
(I1,...1;) € (0,00)" such that
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Then
@D =3 1f <\|’—") (38)
o=1 o

Throughout the paper, we assume that:
E: Supposer = (v, ... Vy), I=(ly,... l1,) bein (0,00)" ands = (1, ... Sp), W= (Ug,... U,)

are in (0,00)°.
And
2
I 6P (v s
H(s,u,v,l) :=
Zleur; Uz ) DI

T I, o=1,...7,
and

Z—’r I t=1,...0
If

H(s,u,v,1)(2f @(@y) ..fD(&y)) > 0, (39)
and

H(s,u,v,1)(2f @(@,) ..f (@) > 0, (40)

then the following are equivalent.
(i) For each 3-convex and continuous function f : T — R,

Di(v,s W)= 0, (41)
(ii)
D (v,s,1,u) = 0, (42)
where
PR ﬁf(g,ﬁ)...f<i;—’>
Y. S TS

1 . - v,
...Zﬂilﬂf(v,l)+f<2 5 |>' (43)

o=1"0 o=1 o=1"0
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R — ly — v
Proof Using p, = Zg—l’ Xo = 7%, 0r = ZQ 1U
required results.

Page 14 of 19

andy, = j’r in Theorem 2.3 we get the

O

Remark 3.1 (i) In Remark2.1, put &, = &; and constant of integration equals to zero in
“rst part of piecewise functionGy, then the results of Theoren8.1coincide with [6, p. 12,

Theorem 6].

(i) Similarly, in Remark2.1, take constant of integration equals to zero in second part of
piecewise functionG,, also replacé, with é; and¢ with © then the results of Theoren8.1

coincide with [6, p. 12, Theorem 6].

3.2 Shannon entropy

Definition 3.3 (See P5]) For positive probability distribution= (I, ... 1

entropy is given by

=..) o log(l,).
o=1

Corollary 3.1 Let the hypothesis E holds. If

H(s,u,v,l) >0,
and
Dg, (v,s,1,u) <0,
then
Ds(v,s,1,u) <0,
where
Ds(v,s,1,u)
g [S+;s’ IOg(UI)} [Z -

1 U
ST [S ; Vo log(l(,):| [Z

and S is defined in (44) and

§=.3

=1

s; log(s;).

) the Shannon
(44)
(45)
(46)

(47)

szt
log(z 7 (,ﬂ (48)

If log has base less than 1, thed ) and (46) are reversed.

Proof If log has base greaterthan 1, then the functidifx) — ..x1log(x) is 3-convex. Hence,
substituting f (x) := . xlog(x) in (39) and (41), we have required results by Remagk?2 [
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Remark 3.2 (i) In Remark2.1, put & = &; and constant of integration equals to zero in
“rst part of piecewise function G; then the results of Corollary3.1 meet with [6, p. 13,
Corollary 6].

(i) Take constant of integration equals to zero in second part of piecewise functiGa,
also replacet, with é; and ¢ with ¢ in Remark2.1, then the results of Corollary3.1 meet
with [6, p. 13, Corollary 6].

3.3 Rényi divergence and entropy
In [26], Rényi divergence and entropy are de“ned as:

Definition 3.4 Supposev,q € R} issothat} Jv, =1and) g, =1,alsoletA > 0,A #1.
A-order, Rényi divergence is

DAwE) = 110g<2 w () ) (49)
o1 o

and A-order Rényi entropy is given by

S\ — 1 . A
Ka®) =1 log(;v(,). (50)
For non-negative probability distributions, these de“nitions are also valid.

Theorem 3.2 Let the hypothesis E holds and

U

ngzl, ilg
1

1

Q Q
1, Zsrzl and Zu,zl.
1 1

If either 1 <A and base of log is greater than 1 or A € [0, 1) and base of log is less than 1

or if
D) (Se()) S
' (X; '(H)z =0 (51)
and
ngGk<<\II:U>A l,ﬁ)...Gk<62:vg<\l%>A lﬁ\)
e 5, \ AL o s \Al
Z;S’Gk«u_f) 'ﬁ> "'Gk<;SZ<u_f> ”’)’ (52)
then

Zn:vf 1og<‘|’—f> ZDa@D =Y s 1og<3—’> DA ). (53)

=1 T
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If either base of log is less than 1 and 1 <A or A € [0, 1) and log has base greater than 1,
then (52) and (53) are reversed.

Proof We prove for A € [0, 1) and base ofog is greater than 1 and the other cases can be
proved in a similar manner.

Taking,I = (0,00) andf (x) = log(x), then 0 <f ®)(x), sof is 3-convex. Thus, putting (x) =
log(x) and following substitutions

ALl
. — - — VG -—
Ps :=Vo, Xo _(I_) , U—l,...J’],
o

and

S, A1
G =S, Yer=(—) , t=1,...0

in the reverse of 80) (by Remark2.2), we obtain
A 1)i:v lo Vo .. 1o ZI V—U
R e\ 1 g n
4 s o s A
ALl clog =) ..1 A= . 54
i) o D)) <>

T

Dividing (54) with (A ... 1) and using

1
DA(VII) = A

1 ° 5.\ 4
s )

to get 63). O

Remark 3.3 Using all the conditions of Remar.1(i), (ii), the inequality (63) coincides
with results given in B, p. 14, inequality (48)].

Corollary 3.2 Let the hypothesis E holds such that "7 v, =1and }_{s, = 1. Also, let

o

>

2
=1 e ST

2
(05:)** .. (Z (gsf)) Z (nva)2A+<Z (nm) >0 (55)

al o=1
and

XU:VUGK((UVU)A-"],‘ﬁ) .. Gy <i VJ(YIVU)A"'];ﬂ)

o=1 o=1

> 3 5:Gu((os)* 1) .. G (Zsf(gsr)ﬁ---%ﬁ). (56)
=1

=1
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If A and base of log are greater than 1, then

U Q
D Vo log(Ve) + Ka(¥) = Y 5. log(s:) + Ka(8)- (57)

o=1 =1

If log has base less than 1, then (56) and (57) are reversed.

Proof Supposd = (%, . ,%) anda=(z,... ,g). Then from (49), we have

. 1 U n 1
Da@D= fog(ZnA“%)ﬂog(Zvﬁ) oz,
R P 2% JA

and
1 2 2 1
Da,0) = — fog(geA"'jﬁTA) ﬂog(;f) " log(e).
Itimplies
- 21
DUEOENCES (58)
and
- 21
Ka(s) =log(e) ..Da (s, 5) (59)

From Theorem3.2, it follows 1= % a= % (58) and (59), we have

U 4
> Vo log(nVy) .. log(n) + Ka(¥) = > s; log(es:) ..log(e) + K (8)- (60)
o=1 =1
After simple calculations, we obtaing7). O

Remark 3.4 If all the assumptions of part (i) and (ii) of Remar8.1are applied to Corol-
lary 3.2 then the results of Corollary3.2meet with [6, p. 16, Corollary 7].

3.4 Zipf...Mandelbrot law
The Zipf law is given as follows (se&f]).

Definition 3.5 A discrete probability distribution with three parametersg < [0,00), M €
{1,2,...},andw >0, is called Zipf...Mandelbrot law and is given by

. o— 1 —
f(ﬁ,M,(f),W) .—m, 19—1,...,/\/1,

where

X1
Kmow=) ——.
M= D gy
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For each value ofM, if the entire mass of the law is considered, then density function of
Zipf...Mandelbrot take the following form

1

N o e

for0 < ¢, 1<w, ¥ € M, where

=1
Kow=) ——.
o ;(aw)w
The Zipf...Mandelbrot law changes to the Zipf law, df = 0.

Theorem 3.3 Assume that s and v be the Zipf—Mandelbrot laws. If (55) and (56) are true
— 1 — 1
forv, = RIS thens, = G
If log has base greater than 1, then

i 1 | 1 L1 1 2": 1
e AR VTN O VTR A Nl Vo WP~ T 1

Mo g=1

1
!
- =1 (T+9)" Kmse 0g<(f + S)T’CM,S,T)

1 1 < 1
+ 1 . 61
1.A °g</c§4w;(r+s)m> (1)

If log has base less than 1, then (56) and (61) are hold in opposite direction.

Proof Similar to Corollary 3.2, the proof uses De“nition3.5and the hypothesis given in
statement to obtain the desired result. O

Remark 3.5 By following the same conditions and methodology as in parts (i) and (ii) of
Remark3.1, the Inequality 61) becomes§, p. 17, inequality (56)].

4 Conclusion

Four newly de“ned 3-convex Green functions are utilized to generate generalized
Levinson-type inequalities for the class of 3-convex functions. We are able to “nd applica-
tions to information theory and also the bounds for obtained entropies and divergences.
The newly established new Green functions are generalizations of Green functions given
in [20] as these are 3-convex. Other interpolations, e.g., Lidstone interpolation, Hermite
interpolating polynomial, and Montgomery identity, are also useful to explore the related
results.
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