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1 Introduction
Let H be a real Hilbert space. Consider the mixed variational inequality problem: find
x̄ ∈ H such that

f (x) – f (x̄) +
〈
A(x̄), x – x̄

〉 ≥ 0, ∀x ∈ H , (MVI)

where the following assumptions are made throughout the paper:
• f : H → (–∞, +∞] is proper, lower semicontinuous, and convex.
• A : H → H is a nonlinear monotone mapping.
• The set of solutions to problem (MVI), denoted by Sol(MVI), is nonempty.

Mixed variational inequalities are general problems that encompass as special cases sev-
eral problems from continuous optimization and variational analysis, such as minimiza-
tion problems, linear complementary problems, vector optimization problems, and vari-
ational inequalities, having applications in economics, engineering, physics, mechanics,
and electronics (see [6, 7, 12, 13, 19] among others).

We note that if f is the indicator function of a closed convex set C in H , then the mixed
variational inequality problem (MVI) is equivalent to finding x̄ ∈ C such that

〈
A(x̄), x – x̄

〉 ≥ 0, ∀x ∈ C, (1)
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which is called the standard variational inequality problem. On the other hand, if A = 0,
then the mixed variational inequality problem (MVI) reduces to the unconstrained opti-
mization problem of minimizing f over H :

min
x∈H

f (x). (2)

For mixed variational inequalities, one can find various algorithms in the literature, for
instance, in [3, 11, 15, 17, 20]. It is known that problem (MVI) is characterized by the fixed
point equation

x = proxt
f
(
x – tA(x)

)
,

where t > 0 and

proxt
f (x) = argmin

y∈H

{
tf (y) +

1
2
‖x – y‖2

}
.

This equation suggests the possibility of iterating (see [4])

xn+1 = proxtn
f
(
xn – tnA(xn)

)
.

This method is called the forward–backward splitting method. Forward–backward meth-
ods belong to the class of proximal splitting methods. These methods require the compu-
tation of the proximity operator and the approximation of proximal points (see [9]).

Problem (MVI) might have multiple solutions, and in this case it is natural to consider
the minimal like-norm solution problem in which one seeks to find the optimal solution
of (MLN) with a minimal like-norm:

min
x∈Sol(MVI)

ω(x). (MLN)

The function ω(x) : H → R is assumed to satisfy the following:
• ω is a strongly convex function over H with parameter t > 0 (see Definition 2.1).
• ω is continuously differentiable.
If Sol(MVI) is a nonempty closed convex set, then by the strong convexity of ω, prob-

lem (MLN) has a unique solution. For simplicity, problem (MVI) will be called the core
problem, problem (MLN) will be called the outer problem, and correspondingly, ω will be
called the outer objective function.

When A = 0, ω(x) = 1
2‖x‖2, the best known indirect method for solving problem (MNP)

is by the well-known Tikhonov regularization [18], which suggests solving the following
alternative regularized problem for some λ > 0:

min
x∈H=Rn

f (x) +
λ

2
‖x‖2. (Qλ)

In [5], the authors treat the case that f is an indicator function of a closed and convex set
C and show that under some restrictive conditions, including C being a polyhedron, there
exists a small enough λ∗ > 0 such that the optimal solution of problem Qλ∗ is the optimal
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solution of problem (MLN). In [16], Solodov showed that
∑∞

k=1 λk = ∞ and f is again an
indicator function of a closed and convex set, there is no need to find the optimal solution
of problem Qλk , and it is sufficient to approximate its solution by performing a single pro-
jected gradient step on Qλk . In [2], a first order method for solving problem (MLN), called
the minimal norm gradient, was proposed, for which the authors proved an O( 1√

k
) rate

of convergence result in terms of the inner objective function values. The minimal norm
gradient method is based on the cutting plane idea, which means that at each iteration
of the algorithm two specific half-spaces are constructed and then a minimization of the
outer objective function ω over the intersection of these half-spaces is solved.

In [21], for finding the minimum-norm solution to the standard monotone variational
inequality problem (1), Zhou et al. proposed the following iterative method:

xn+1 = PC
(
xn – αnxn – βnA(xn)

)
,

where PC stands for the metric projection from H onto C. They proved that the proposed
iterative sequences converge strongly to the minimum-norm solution of the variational
inequality provided {αn} and {βn} satisfy certain conditions. In [8], when A is pseudo-
monotone and Lipschitz continuous, Linh et al. introduced an inertial projection algo-
rithm for finding the minimum-norm solutions of the variational inequality problem. In
[14], Linh et al. introduced an inertial method for finding minimum-norm solutions of the
split variational inequality problem.

Our interest in this paper is to study regularization forward–backward splitting method
for finding minimum like-norm solution of the mixed variational inequality problem in in-
finite dimensional real Hilbert spaces when operator A is monotone and hemicontinuous.

2 Mathematical toolbox
Let f : H → (–∞, +∞] be an extended real-valued function. The subdifferential of f is the
set-valued operator ∂f : H → 2H , the value of which at x ∈ H is

∂f (x) =
{

x∗ ∈ H :
〈
x∗, y – x

〉 ≤ f (y) – f (x),∀y ∈ H
}

.

Consider the Moreau envelope envα
f (x) and the set-valued proximal mapping proxα

f (x)
defined by

envα
f (x) = inf

y∈H

{
αf (y) +

1
2
‖x – y‖2

}
, (3)

proxα
f (x) = argmin

y∈H

{
αf (y) +

1
2
‖x – y‖2

}
.

The operator proxα
f is called the proximity operator. For every x ∈ H , the infimum in (3) is

achieved at a unique point proxα
f (x) that is characterized by the inclusion

x – proxα
f (x) ∈ ∂(αf )

(
proxα

f (x)
)
.

The proximity operator possesses several important properties, three of them will be
useful in our analysis and are thus recalled here.
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(i) Variational inequality:

〈
x – proxα

f (x), y – proxα
f (x)

〉 ≤ αf (y) – αf
(
proxα

f (x)
)
, ∀x, y ∈ H .

(ii) Nonexpansive:

‖x – y‖ ≥ ∥∥proxα
f (x) – proxα

f (y)
∥∥, ∀x, y ∈ H .

(iii) Firmly nonexpansive:

〈
x – y, proxα

f (x) – proxα
f (y)

〉 ≥ ∥∥proxα
f (x) – proxα

f (y)
∥∥2, ∀x, y ∈ H .

Definition 2.1 A strictly convex and Gâteaux differentiable function h : H → R is said to
be strongly convex with parameter t > 0 if

h(x) – h(y) –
〈∇h(y), x – y

〉 ≥ t
2
‖x – y‖2, ∀x, y ∈ H .

Definition 2.2 A mapping T : H → H is called monotone if

〈
T(x) – T(y), x – y

〉 ≥ 0, ∀x, y ∈ H .

Definition 2.3 A mapping T : H → H is called strongly monotone if there exists t > 0
such that

〈
T(x) – T(y), x – y

〉 ≥ t‖x – y‖2, ∀x, y ∈ H .

If a strictly convex and Gâteaux differentiable function h : H → R is strongly convex with
parameter t > 0, then ∇h is strongly monotone with parameter t > 0.

Definition 2.4 A mapping T : H → H is called Lipschitz continuous if there exists L > 0
such that

∥∥T(x) – T(y)
∥∥ ≤ L‖x – y‖, ∀x, y ∈ H .

If a mapping T : H → H is strongly monotone with parameter t > 0 and Lipschitz con-
tinuous with constant L, then L ≥ t.

Remark 2.1 As a matter of fact, it is know that:
(i) If ∇ω is strongly monotone with constant t and A is monotone, then A + α∇ω is

strongly monotone with constant tα.
(ii) If ∇ω is Lipschitz continuous with constant Lω and A is Lipschitz continuous with

constant LA, then A + α∇ω is also Lipschitz continuous with constant (LA + αLω).

Definition 2.5 [1] A function f is called lower semicontinuous at the point x0 ∈ domf if
for any sequence xn ∈ domf such that xn → x0 there holds the inequality

f (x0) ≤ lim inf
n→∞ f (xn). (4)
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If inequality (4) occurs with the condition that the convergence of xn to x0 is weak, then
the function f is called weakly lower semicontinuous at x0.

Lemma 2.1 [1] Let f be a convex and lower semicontinuous function. Then it is weakly
lower semicontinuous.

Definition 2.6 [21] A mapping T is said to be hemicontinuous if for any sequence {xn}
converging to x0 ∈ H along a line implies T(xn) ⇀ T(x0), i.e., T(xn) = T(x0 + tnx) ⇀ T(x0)
as tn → 0 for all x ∈ H .

Lemma 2.2 [21] Let {αn} be a sequence of nonnegative real numbers satisfying

αn+1 ≤ (1 – γn)αn + γnβn, n ≥ 0,

where {γn} ⊆ (0, 1) and {βn} satisfy
(i)

∑∞
n=0 γn = ∞;

(ii) either lim supn→∞ βn ≤ 0 or
∑∞

n=0 |γnβn| < ∞.
Then limn→∞ αn = 0.

Lemma 2.3 [10] Let A : H → H be a hemicontinuous monotone operator. Assume that the
following coercivity condition holds: there exists v ∈ dom f such that

lim‖u‖→+∞
f (u) – f (v) + 〈A(u), u – v〉

‖u‖ = +∞.

Then Sol(MVI) is a nonempty set.

3 Main result
Before describing the algorithms, we require the following notation for the optimal solu-
tion of the problem consisting of minimizing ω over a given closed and convex set C:

	(C) ≡ argmin
x∈C

ω(x). (5)

By the optimality condition in problem (5), it follows that

x̄ = 	(C) ⇔ 〈∇ω(x̄), x – x̄
〉 ≥ 0, ∀x ∈ C. (6)

Lemma 3.1 Let A : H → H be a hemicontinuous monotone operator. Then, for a fixed
element x̄ ∈ H , the following mixed variational inequalities are equivalent:

(i) f (x) – f (x̄) + 〈A(x), x – x̄〉 ≥ 0, ∀x ∈ H .
(ii) f (x) – f (x̄) + 〈A(x̄), x – x̄〉 ≥ 0, ∀x ∈ H .

Proof (ii) ⇒ (i) Since A is a monotone operator, then for any x ∈ H , we have

〈
A(x), x – x̄

〉 ≥ 〈
A(x̄), x – x̄

〉
.

Hence,

f (x) – f (x̄) +
〈
A(x), x – x̄

〉 ≥ f (x) – f (x̄) +
〈
A(x̄), x – x̄

〉 ≥ 0.
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(i) ⇒ (ii) Letting xt = x̄ + t(x – x̄), 0 < t < 1. Then we have

f (xt) – f (x̄) +
〈
A(xt), xt – x̄

〉 ≥ 0

and

f (xt) – f (x̄) +
〈
A(xt), xt – x̄

〉

≤ tf (x) + (1 – t)f (x̄) – f (x̄) +
〈
A

(
x̄ + t(x – x̄)

)
, x̄ + t(x – x̄) – x̄

〉

= tf (x) – tf (x̄) +
〈
A

(
x̄ + t(x – x̄)

)
, t(x – x̄)

〉
.

Hence,

0 ≤ lim
t→0

f (x) – f (x̄) +
〈
A

(
x̄ + t(x – x̄)

)
, x – x̄

〉
= f (x) – f (x̄) +

〈
A(x̄), x – x̄

〉
.

This completes the proof. �

Lemma 3.2 Let A : H → H be a hemicontinuous monotone operator. Then Sol(MVI) is a
closed convex set.

Proof Let x̄, x̂ ∈ Sol(MVI), let 0 < t < 1. Then, for any x ∈ H , by Lemma 3.1 we have

tf (x) – tf (x̄) +
〈
A(x), tx – tx̄

〉 ≥ 0

and

(1 – t)f (x) – (1 – t)f (x̂) +
〈
A(x), (1 – t)x – (1 – t)x̂

〉 ≥ 0.

Hence,

f (x) – f
(
tx̄ + (1 – t)x̂

)
+

〈
A(x), x –

(
tx̄ + (1 – t)x̂

)〉 ≥ 0, ∀x ∈ H .

Then we have tx̄ + (1 – t)x̂ ∈ Sol(MVI), that is, Sol(MVI) is a convex set.
Let {xn} ⊆ Sol(MVI) and xn → x̄. Then, for any x ∈ H , by Lemma 3.1, we have

f (x) – f (xn) +
〈
A(x), x – xn

〉 ≥ 0.

By the weak semicontinuity of f , we have

f (x̄) ≤ lim inf
n→∞ f (xn).

Then we have

f (x) – f (x̄) +
〈
A(x), x – x̄

〉 ≥ 0, ∀x ∈ H .

Hence, x̄ ∈ Sol(MVI), that is, Sol(MVI) is a closed set. �
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In this section, we use the idea of regularization to attach the general case. For given
γ > 0, we consider the following regularization mixed variational inequality problem: find
x̄ ∈ H such that

f (x) – f (x̄) +
〈
γ∇ω(x̄) + A(x̄), x – x̄

〉 ≥ 0, ∀x ∈ H , (7)

where γ > 0 is the regularization parameter.

Lemma 3.3 Let A : H → H be a hemicontinuous monotone operator. Then the regulariza-
tion mixed variational inequality problem (7) has a unique solution.

Proof For any v ∈ dom f and v∗ ∈ ∂f (v), by Remark 2.1, we have

f (u) – f (v) + 〈γ∇ω(u) + A(u), u – v〉
‖u‖

≥ 〈v∗, u – v〉 + 〈(γ∇ω + A)(u) – (γ∇ω + A)(v), u – v〉 + 〈(γ∇ω + A)(v), u – v〉
‖u‖

≥ 〈v∗, u – v〉 + tγ ‖u – v‖2 + 〈(γ∇ω + A)(v), u – v〉
‖u‖ .

Hence,

lim‖u‖→+∞
f (u) – f (v) + 〈γ∇ω(u) + A(u), u – v〉

‖u‖ = +∞.

Then, by Lemma 2.3, the set of solutions to the regularization mixed variational inequality
problem (7) is nonempty. Next, we show that problem (7) has a unique solution.

Assume that x̄ and x̂ are solutions of the regularization mixed variational inequality
problem (7). Then we have

f (x̂) – f (x̄) +
〈
γ∇ω(x̄) + A(x̄), x̂ – x̄

〉 ≥ 0 (8)

and

f (x̄) – f (x̂) +
〈
γ∇ω(x̂) + A(x̂), x̄ – x̂

〉 ≥ 0. (9)

Combining (8) and (9), we get

〈(
γ∇ω(x̂) + A(x̂)

)
–

(
γ∇ω(x̄) + A(x̄)

)
, x̄ – x̂

〉 ≥ 0.

Hence, by Remark 2.1, we have

tγ ‖x̂ – x̄‖2 ≤ 〈(
γ∇ω(x̂) + A(x̂)

)
–

(
γ∇ω(x̄) + A(x̄)

)
, x̂ – x̄

〉 ≤ 0.

Therefore, x̂ = x̄. This completes the proof. �
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Remark 3.1 For any γ > 0 and β > 0, we have

x̄ is a solution of problem (7)

⇔ f (x) – f (x̄) +
〈
γ∇ω(x̄) + A(x̄), x – x̄

〉 ≥ 0, ∀x ∈ H

⇔ –γ∇ω(x̄) – A(x̄) ∈ ∂f (x̄)

⇔ x̄ – γβ∇ω(x̄) – βA(x̄) – x̄ ∈ ∂(βf )(x̄)

⇔ x̄ = proxβ

f
(
x̄ – γβ∇ω(x̄) – βA(x̄)

)
.

In this section, we will introduce two iterative methods (one implicit and the other ex-
plicit). First, by Remark 3.1, we introduce the implicit one:

yn = proxβn
f

(
yn – αn∇ω(yn) – βnA(yn)

)
, (10)

where {αn} and {βn} are two sequences in (0, 1) that satisfy the following condition:

αn

βn
→ 0, as n → +∞.

Theorem 3.1 Let A be a hemicontinuous monotone operator. Then the sequence {yn} gen-
erated by implicit method (10) converges to x̄ = 	(Sol(MVI)), which is the minimum like-
norm solution of (MVI).

Proof Put zn = yn – αn∇ω(yn) – βnA(yn). For any p ∈ Sol(MVI), we have

‖yn – p‖2 = 〈yn – zn, yn – p〉 + 〈zn – p, yn – p〉. (11)

By using (10) and (11), we get

〈yn – zn, yn – p〉 =
〈
proxβn

f (zn) – zn, proxβn
f (zn) – p

〉
.

It follows from the property of proxβn
f that

〈
zn – proxβn

f (zn), p – proxβn
f (zn)

〉 ≤ βnf (p) – βnf
(
proxβn

f (zn)
)
. (12)

By (11) and (12), we have

‖yn – p‖2

= 〈yn – zn, yn – p〉 + 〈zn – p, yn – p〉
≤ βnf (p) – βnf

(
proxβn

f (zn)
)

+ 〈zn – p, yn – p〉
= βnf (p) – βnf

(
proxβn

f (zn)
)

+
〈
yn – αn∇ω(yn) – βnA(yn) – p, yn – p

〉

≤ βnf (p) – βnf
(
proxβn

f (zn)
)

+ ‖yn – p‖2 –
〈
αn∇ω(yn) + βnA(yn), yn – p

〉
,

which simplifies to

βnf (p) – βnf
(
proxβn

f (zn)
) ≥ 〈

αn∇ω(yn) + βnA(yn), yn – p
〉
,
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and then

f (p) – f
(
proxβn

f (zn)
) ≥

〈
αn

βn
∇ω(yn) + A(yn), yn – p

〉
.

Setting γn = αn
βn

, we have

f (p) – f
(
proxβn

f (zn)
)

≥ 〈
γn∇ω(yn) + A(yn), yn – p

〉

=
〈
γn∇ω(yn), yn – p

〉
+

〈
A(yn) – A(p), yn – p

〉
+

〈
A(p), yn – p

〉
.

Since A is a monotone operator and p ∈ Sol(MVI), we know

〈
A(yn) – A(p), yn – p

〉 ≥ 0

and

f
(
proxβn

f (zn)
)

– f (p) +
〈
A(p), yn – p

〉
= f (yn) – f (p) +

〈
A(p), yn – p

〉 ≥ 0.

Combining the above three relations yields

〈∇ω(yn), yn – p
〉 ≤ 0. (13)

Then we have

〈∇ω(yn) – ∇ω(p) + ∇ω(p), yn – p
〉

=
〈∇ω(yn), yn – p

〉 ≤ 0,

from which it turns out that

〈∇ω(yn) – ∇ω(p), yn – p
〉 ≤ 〈

–∇ω(p), yn – p
〉
.

Hence, by the strong monotonicity of ∇ω and the Cauchy–Schwarz inequality, we have

t‖yn – p‖2 ≤ 〈∇ω(yn) – ∇ω(p), yn – p
〉 ≤ 〈

–∇ω(p), yn – p
〉 ≤ ∥∥∇ω(p)

∥∥‖yn – p‖. (14)

Therefore, {yn} is bounded. Then we know that {yn} has a subsequence {yn,k} such that
yn,k ⇀ x̄ as k → ∞. Furthermore, without loss of generality, we may assume that {yn}
converges weakly to a point x̄ ∈ H . We show that x̄ is a solution to (MVI). For any x ∈ H ,
by Remark 2.1, we have

〈
γn∇ω(x) + A(x), x – yn

〉
–

〈
γn∇ω(yn) + A(yn), x – yn

〉

=
〈
(γn∇ω + A)(x) – (γn∇ω + A)(yn), x – yn

〉

≥ tγn‖x – yn‖2

≥ 0. (15)
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Combining (15) and (10), we get

f (x) – f (yn) +
〈
γn∇ω(x) + A(x), x – yn

〉

≥ f (x) – f (yn) +
〈
γn∇ω(yn) + A(yn), x – yn

〉

≥ 0. (16)

Taking the limit as n → ∞ in (16) yields

f (x) – f (x̄) +
〈
A(x), x – x̄

〉 ≥ 0, ∀x ∈ H .

By Lemma 3.1, we get

f (x) – f (x̄) +
〈
A(x̄), x – x̄

〉 ≥ 0, ∀x ∈ H ,

that is, x̄ ∈ Sol(MVI). Therefore, we can substitute p by x̄ in (14) to obtain

t‖yn – x̄‖2 ≤ 〈
–∇ω(x̄), yn – x̄

〉
. (17)

Since yn ⇀ x̄ as n → ∞, by (17) we get yn → x̄ as n → ∞. Moreover, from (13) we get

〈∇ω(x̄), x̄ – p
〉 ≤ 0, ∀p ∈ Sol(MVI),

from which we know that x̄ is the minimum like-norm solution of (MVI). This completes
the proof. �

Now, we introduce an explicit method (regularization forward–backward splitting) and
establish its strong convergence analysis. From the implicit method, it is natural to con-
sider the following iteration method that generates a sequence {xn} according to the re-
cursion.

Algorithm 3.1 Given x0 ∈ H , for every n ∈ N, set

xn+1 = (1 – sn)xn + sn proxβn
f

(
xn – αn∇ω(xn) – βnA(xn)

)
, (18)

where {sn}, {αn}, and {βn} are three sequences in (0, 1) that satisfy the following conditions:
(i) αntsn ≤ 1, 0 < s̄ < sn;

(ii) αn
βn

→ 0, β2
n

αn
→ 0 as n → ∞;

(iii) αn → 0 as n → ∞,
∑n=∞

n=1 αn = ∞;
(iv) |αn–αn–1|+|βn–βn–1|

α2
n

→ 0 as n → ∞.

Proposition 3.1 Let A be a hemicontinuous monotone operator. Let {xn} be defined by
Algorithm 3.1. Assume that {βnA(xn)} is bounded. Then the iterative sequence {xn} is
bounded.
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Proof For any p ∈ Sol(MVI), from the property of proxβn
f , we know

‖xn+1 – p‖2

=
∥∥(1 – sn)xn + sn proxβn

f
(
xn – αn∇ω(xn) – βnA(xn)

)

– (1 – sn)p – sn proxβn
f

(
p – βnA(p)

)∥∥2

=
∥∥(1 – sn)(xn – p) + sn

(
proxβn

f
(
xn – αn∇ω(xn) – βnA(xn)

)

– proxβn
f

(
p – βnA(p)

))∥∥2

≤ (1 – sn)‖xn – p‖2 + sn
∥∥proxβn

f
(
xn – αn∇ω(xn) – βnA(xn)

)
– proxβn

f
(
p – βnA(p)

)∥∥2

≤ (1 – sn)‖xn – p‖2 + sn
∥∥(

xn – αn∇ω(xn) – βnA(xn)
)

–
(
p – βnA(p)

)∥∥2

= (1 – sn)‖xn – p‖2

+ sn
∥∥(xn – p) – αn

(∇ω(xn) – ∇ω(p)
)

– αn∇ω(p) – βn
(
A(xn) – A(p)

)∥∥2

= ‖xn – p‖2 + α2
nsn

∥∥∇ω(xn) – ∇ω(p)
∥∥2 + sn

∥∥αn∇ω(p) + βn
(
A(xn) – A(p)

)∥∥2

– 2αnsn
〈∇ω(xn) – ∇ω(p), xn – p

〉
– 2sn

〈
αn∇ω(p) + βn

(
A(xn) – A(p)

)
, xn – p

〉

+ 2αnsn
〈
αn∇ω(p) + βn

(
A(xn) – A(p)

)
,∇ω(xn) – ∇ω(p)

〉
.

Then, by the monotonicity of A, strong monotonicity and Lipschitz continuity of ∇ω, we
have

‖xn+1 – p‖2

≤ ‖xn – p‖2 + α2
nL2

ωsn‖xn – p‖2 + sn
∥∥αn∇ω(p) + βn

(
A(xn) – A(p)

)∥∥2

– 2αntsn‖xn – p‖2 – 2sn
〈
αn∇ω(p), xn – p

〉

+ 2αnsn
〈
αn∇ω(p) + βn

(
A(xn) – A(p)

)
,∇ω(xn) – ∇ω(p)

〉

≤ (
1 + α2

nL2
ωsn – 2αntsn

)‖xn – p‖2 + sn
∥∥αn∇ω(p) + βn

(
A(xn) – A(p)

)∥∥2

+ 2αnsn
∥∥∇ω(p)

∥∥‖xn – p‖ + 2α2
nLωsn

∥∥∇ω(p)
∥∥‖xn – p‖

+ 2αnLωβnsn
∥∥A(xn) – A(p)

∥∥‖xn – p‖. (19)

Suppose that {xn} is unbounded, then there exists {x(n,k)+1} ⊆ {xn} such that

‖x(n,k)+1 – p‖ ≥ max
{‖x1 – p‖,‖x2 – p‖, . . . ,‖xn,k – p‖}.

Hence,

‖x(n,k)+1 – p‖ → +∞.

Then, by (19) and {βnA(xn)} is bounded, we have

‖xn,k – p‖ → +∞.
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Using inequality (19) again, we get

‖xn,k – p‖2

≤ (
1 + α2

n,kL2
ωsn,k – 2αn,ktsn,k

)‖xn,k – p‖2 + sn,k
∥∥αn,k∇ω(p) + βn,k

(
A(xn,k) – A(p)

)∥∥2

+ 2αn,ksn,k
∥∥∇ω(p)

∥∥‖xn,k – p‖ + 2α2
n,kLωsn,k

∥∥∇ω(p)
∥∥‖xn,k – p‖

+ 2αn,kLωβn,ksn,k
∥∥A(xn,k) – A(p)

∥∥‖xn,k – p‖.

Then we have

(
2t – αn,kL2

ω

)‖xn,k – p‖2

≤ αn,k

∥∥∥∥∇ω(p) +
βn,k

αn,k

(
A(xn,k) – A(p)

)
∥∥∥∥

2

+ 2Lωβn,k
∥∥A(xn,k) – A(p)

∥∥‖xn,k – p‖

+ 2
∥∥∇ω(p)

∥∥‖xn,k – p‖ + 2αn,kLω

∥∥∇ω(p)
∥∥‖xn,k – p‖. (20)

Since αn → 0 and {βnA(xn)} is bounded, then by (20) {xn,k} is also bounded. This contra-
dicts ‖xn,k – p‖ → +∞. Hence, the iterative sequence {xn} is bounded. �

Theorem 3.2 Let A be a hemicontinuous monotone operator. Let {xn} be defined by Al-
gorithm 3.1. Assume that both {βnA(xn)} and {A(yn)} are bounded. Then the iterative se-
quence {xn} converges to x̄, which is the minimum like-norm solution of (MVI).

Proof By using Theorem 3.1, we know that {yn} converges strongly to x̄. Therefore, it is
sufficient to show that xn+1 – yn → 0 as n → ∞. By using (10) and Algorithm 3.1, we get

‖xn+1 – yn‖2

=
∥∥(1 – sn)xn + sn proxβn

f
(
xn – αn∇ω(xn) – βnA(xn)

)

– (1 – sn)yn – sn proxβn
f

(
yn – αn∇ω(yn) – βnA(yn)

)∥∥2

=
∥∥(1 – sn)(xn – yn) + sn

(
proxβn

f
(
xn – αn∇ω(xn) – βnA(xn)

)

– proxβn
f

(
yn – αn∇ω(yn) – βnA(yn)

))∥∥2

≤ (1 – sn)‖xn – yn‖2 + sn
∥∥proxβn

f
(
xn – αn∇ω(xn) – βnA(xn)

)

– proxβn
f

(
yn – αn∇ω(yn) – βnA(yn)

)∥∥2

≤ (1 – sn)‖xn – yn‖2 + sn
∥∥(

xn – αn∇ω(xn) – βnA(xn)
)

–
(
yn – αn∇ω(yn) – βnA(yn)

)∥∥2

= (1 – sn)
∥∥(xn – yn)

∥∥2

+ sn
∥∥(xn – yn) – αn

(∇ω(xn) – ∇ω(yn)
)

– βn
(
A(xn) – A(yn)

)∥∥2

= ‖xn – yn‖2 + α2
nsn

∥∥∇ω(xn) – ∇ω(yn)
∥∥2 + β2

nsn
∥∥A(xn) – A(yn)

∥∥2

– 2αnsn
〈∇ω(xn) – ∇ω(yn), xn – yn

〉
– 2βnsn

〈
A(xn) – A(yn), xn – yn

〉

+ 2αnβnsn
〈
A(xn) – A(yn),∇ω(xn) – ∇ω(yn)

〉
.
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Hence, by the monotonicity of A, we have

‖xn+1 – yn‖2

≤ ‖xn – yn‖2 + α2
nsn

∥∥∇ω(xn) – ∇ω(yn)
∥∥2 – 2αnsn

〈∇ω(xn) – ∇ω(yn), xn – yn
〉

+ β2
nsn

∥∥A(xn) – A(yn)
∥∥2 + 2αnβnsn

〈
A(xn) – A(yn),∇ω(xn) – ∇ω(yn)

〉
,

and then, by the strong monotonicity and Lipschitz continuity of ∇ω, we have

‖xn+1 – yn‖2

≤ ‖xn – yn‖2 + α2
nL2

ωsn‖xn – yn‖2 – 2αntsn‖xn – yn‖2

+ β2
nsn

∥∥A(xn) – A(yn)
∥∥2 + 2αnβnsn

〈
A(xn) – A(yn),∇ω(xn) – ∇ω(yn)

〉

= ‖xn – yn‖2 + α2
nt2s2

n‖xn – yn‖2 – 2αntsn‖xn – yn‖2 + α2
n
(
L2

ωsn – t2s2
n
)‖xn – yn‖2

+ β2
nsn

∥∥A(xn) – A(yn)
∥∥2 + 2αnβnsn

〈
A(xn) – A(yn),∇ω(xn) – ∇ω(yn)

〉

= (1 – αntsn)2‖xn – yn‖2 + α2
n
(
L2

ωsn – t2s2
n
)‖xn – yn‖2

+ β2
nsn

∥∥A(xn) – A(yn)
∥∥2 + 2αnβnsn

〈
A(xn) – A(yn),∇ω(xn) – ∇ω(yn)

〉

≤ (1 – αntsn)2(‖xn – yn–1‖2 + 2‖xn – yn–1‖‖yn – yn–1‖ + ‖yn – yn–1‖2)

+ α2
n
(
L2

ωsn – t2s2
n
)‖xn – yn‖2 + β2

nsn
∥∥A(xn) – A(yn)

∥∥2

+ 2αnβnsn
〈
A(xn) – A(yn),∇ω(xn) – ∇ω(yn)

〉

≤ (1 – αntsn)‖xn – yn–1‖2 + 2‖xn – yn–1‖‖yn – yn–1‖ + ‖yn – yn–1‖2

+ α2
n
(
L2

ωsn – t2s2
n
)‖xn – yn‖2 + β2

nsn
∥∥A(xn) – A(yn)

∥∥2

+ 2αnβnsn
∥∥A(xn) – A(yn)

∥∥∥∥∇ω(xn) – ∇ω(yn)
∥∥. (21)

Since proxβn
f is a firmly nonexpansive mapping, we have

‖yn – yn–1‖2

≤ 〈
yn – yn–1,

(
yn – αn∇ω(yn) – βnA(yn)

)
–

(
yn–1 – αn–1∇ω(yn–1) – βn–1A(yn–1)

)〉
.

Then we have that

‖yn – yn–1‖2

≤ 〈
yn – yn–1, yn – yn–1 – αn∇ω(yn) + αn∇ω(yn–1) – αn∇ω(yn–1) + αn–1∇ω(yn–1)

– βnA(yn) + βnA(yn–1) – βnA(yn–1) + βn–1A(yn–1)
〉

= ‖yn – yn–1‖2

– αn
〈
yn – yn–1,∇ω(yn) – ∇ω(yn–1)

〉
– (αn – αn–1)

〈
yn – yn–1,∇ω(yn–1)

〉

– βn
〈
yn – yn–1, A(yn) – A(yn–1)

〉
– (βn – βn–1)

〈
yn – yn–1, A(yn–1)

〉

≤ ‖yn – yn–1‖2 + |βn – βn–1|‖yn – yn–1‖
∥∥A(yn–1)

∥∥

– αnt‖yn – yn–1‖2 + |αn – αn–1|‖yn – yn–1‖
∥∥∇ω(yn–1)

∥∥,
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and so that

αnt‖yn – yn–1‖2

≤ |βn – βn–1|‖yn – yn–1‖
∥∥A(yn–1)

∥∥ + |αn – αn–1|‖yn – yn–1‖
∥∥∇ω(yn–1)

∥∥.

Hence, we get

t‖yn – yn–1‖ ≤
∣∣∣∣
βn – βn–1

αn

∣∣∣∣
∥∥A(yn–1)

∥∥ +
∣∣∣∣
αn – αn–1

αn

∣∣∣∣
∥∥∇ω(yn–1)

∥∥.

Since {yn} and {A(yn)} are two bounded sequences, there exists M1 > 0 such that
sup{‖∇ω(yn–1)‖,‖A(yn–1)‖} ≤ M1 for any n ≥ 1. Then we have

t‖yn – yn–1‖ ≤
(∣∣∣∣

βn – βn–1

αn

∣∣∣∣ +
∣∣∣∣
αn – αn–1

αn

∣∣∣∣

)
M1. (22)

From conditions (ii) and (iv) we know that |αn–αn–1|+|βn–βn–1|
αn

= o(αn) and β2
n = o(αn). Then

(21) turns out to be

‖xn+1 – yn‖2

≤ (1 – αntsn)‖xn – yn–1‖2 + 2‖xn – yn–1‖‖yn – yn–1‖ + ‖yn – yn–1‖2

+ α2
n
(
L2

ωsn – t2s2
n
)‖xn – yn‖2 + β2

nsn
∥∥A(xn) – A(yn)

∥∥2

+ 2αnβnsn
∥∥A(xn) – A(yn)

∥∥∥∥∇ω(xn) – ∇ω(yn)
∥∥

≤ (1 – αntsn)‖xn – yn–1‖2

+ αntsn

(
αn(L2

ω – t2sn)
t

‖xn – yn‖2 +
β2

n
αnt

∥∥A(xn) – A(yn)
∥∥2

+
(
2‖xn – yn–1‖ + ‖yn – yn–1‖

) |βn – βn–1| + |αn – αn–1|
α2

n

M1

snt2

+
2βn

t
∥∥A(xn) – A(yn)

∥∥∥∥∇ω(xn) – ∇ω(yn)
∥∥
)

= (1 – αntsn)‖xn – yn–1‖2 + o(αntsn).

By Lemma 2.2 and condition (iii), we have ‖xn+1 – yn‖ → 0, as n → ∞. It follows that {xn}
converges strongly to x̄ = argminx∈Sol(MVI) ω(x). This completes the proof. �

If A : H → H is an LA-Lipschitz continuous and monotone operator, then we have the
following convergence result.

Theorem 3.3 Let A be an LA-Lipschitz continuous and monotone operator. Let {xn} be
defined by Algorithm 3.1. Then the iterative sequence {xn} converges to x̄, which is the min-
imum like-norm solution of (MVI).

Proof From Theorem 3.1, we know that yn → x̄ = argminx∈Sol(MVI) ω(x). Therefore, it is suf-
ficient to show that xn+1 – yn → 0 as n → ∞. In view of conditions {αn} and {βn}, without
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loss of generality, we may assume that

0 < λn = 2αntsn – L2
ωα2

nsn – β2
nL2

Asn – 2αnβnLωLAsn < 1. (23)

By using (10) and Algorithm 3.1, we get

‖xn+1 – yn‖2

=
∥∥(1 – sn)xn + sn proxβn

f
(
xn – αn∇ω(xn) – βnA(xn)

)

– (1 – sn)yn – sn proxβn
f

(
yn – αn∇ω(yn) – βnA(yn)

)∥∥2

=
∥∥(1 – sn)(xn – yn) + sn

(
proxβn

f
(
xn – αn∇ω(xn) – βnA(xn)

)

– proxβn
f

(
yn – αn∇ω(yn) – βnA(yn)

))∥∥2

≤ (1 – sn)‖xn – yn‖2 + sn
∥∥proxβn

f
(
xn – αn∇ω(xn) – βnA(xn)

)

– proxβn
f

(
yn – αn∇ω(yn) – βnA(yn)

)∥∥2

≤ (1 – sn)‖xn – yn‖2

+ sn
∥∥(

xn – αn∇ω(xn) – βnA(xn)
)

–
(
yn – αn∇ω(yn) – βnA(yn)

)∥∥2

= (1 – sn)‖xn – yn‖2

+ sn
∥∥(xn – yn) – αn

(∇ω(xn) – ∇ω(yn)
)

– βn
(
A(xn) – A(yn)

)∥∥2

≤ ‖xn – yn‖2 + α2
nsn

∥∥∇ω(xn) – ∇ω(yn)
∥∥2 + β2

nsn
∥∥A(xn) – A(yn)

∥∥2

– 2αnsn
〈∇ω(xn) – ∇ω(yn), xn – yn

〉
– 2βnsn

〈
A(xn) – A(yn), xn – yn

〉

+ 2αnβnsn
〈
A(xn) – A(yn),∇ω(xn) – ∇ω(yn)

〉
.

Hence, by the monotonicity of A and the strong monotonicity of ∇ω, we have

‖xn+1 – yn‖2 ≤ ‖xn – yn‖2 + α2
nL2

ωsn‖xn – yn‖2 + β2
nL2

Asn‖xn – yn‖2

– 2αntsn‖xn – yn‖2 + 2αnβnLωLAsn‖xn – yn‖2. (24)

Then, by (24) and (23), we have

‖xn+1 – yn‖2 ≤ 1 –
(
2αntsn – α2

nL2
ωsn – β2

nL2
Asn – 2αnβnLωLAsn

)‖xn – yn‖2

= (1 – λn)‖xn – yn‖2. (25)

From (25), (22) and condition (iv), we obtain

‖xn+1 – yn‖ ≤
(

1 –
1
2
λn

)
‖xn – yn‖

≤
(

1 –
1
2
λn

)(‖xn – yn–1‖ + ‖yn – yn–1‖
)

≤
(

1 –
1
2
λn

)
‖xn – yn–1‖ + o(λn).
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By condition (iii) and Lemma 2.2, we deduce that xn+1 – yn → 0 as n → ∞. This completes
the proof. �

Corollary 3.1 Let A be a hemicontinuous monotone operator. Let ω(x) = 1
2‖x‖2. Let {xn} be

defined by Algorithm 3.1. Assume that both {βnA(xn)} and {A(yn)} are bounded. Then the
iterative sequence {xn} converges to x̄ = Px∈Sol(MVI)(0), which is the minimum norm solution
of (MVI).

Corollary 3.2 Let A be an LA-Lipschitz continuous and monotone operator. Let ω(x) =
1
2‖x‖2. Let {xn} be defined by Algorithm 3.1. Then the iterative sequence {xn} converges to
x̄ = Px∈Sol(MVI)(0), which is the minimum norm solution of (MVI).

4 Application
Let f : H → (–∞, +∞] be a proper, lower semicontinuous, and convex function, let
g : H → (–∞, +∞) be a convex and Gâteaux differentiable function. Consider the opti-
mization

min
x∈H

f (x) + g(x). (P)

We denote by Sol(P) the solution set of problem (P). Notice that

x̄ ∈ Sol(P) ⇔ 0 ∈ ∂f (x̄) + ∇g(x̄)

⇔ –∇g(x̄) ∈ ∂f (x̄)

⇔ f (y) – f (x̄) +
〈∇g(x̄), y – x̄

〉 ≥ 0, ∀y ∈ H .

Note that if g is convex and Gâteaux differentiable, then ∇g is norm-to-weak continuous
and monotone. Hence, ∇g is a hemicontinuous monotone operator. On the other hand,
when A = ∇g , the minimization problem corresponding to regularization mixed varia-
tional inequality problem (7) becomes

min
x∈H

f (x) + g(x) + γnω(x). (26)

Since ω(x) is a strongly convex function, the minimization problem (26) has a unique so-
lution. Therefore, as an application of Theorem 3.2, we have the following result.

Algorithm 4.1 Given x0 ∈ H , for every n ∈ N, set

xn+1 = (1 – sn)xn + sn proxβn
f

(
xn – αn∇ω(xn) – βn∇g(xn)

)
,

where {sn}, {αn}, and {βn} are three sequences in (0, 1) that satisfy the following conditions:
(i) αntsn ≤ 1, 0 < s̄ < sn;

(ii) αn
βn

→ 0, β2
n

αn
→ 0 as n → ∞;

(iii) αn → 0 as n → ∞,
∑n=∞

n=1 αn = ∞;
(iv) |αn–αn–1|+|βn–βn–1|

α2
n

→ 0 as n → ∞.
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Figure 1 Numerical results of Algorithm 4.1

Theorem 4.1 Let the sequence {xn} be generated by Algorithm 4.1. Assume that both
{βn∇g(xn)} and {∇g(yn)} are bounded. Assume that Sol(P) is nonempty. Then the iterative
sequence {xn} converges to x̄ = argminx∈Sol(P) ω(x), which is the minimum like-norm solution
of (P).

5 Numerical experiment
Example 5.1 Let H = R. Let

f (x) =

⎧
⎨

⎩
x, x ≥ 0,

0, x < 0,
g(x) =

⎧
⎨

⎩

2
3 x 3

2 , x ≥ 0,

0, x < 0,
A(x) = ∇g(x) =

⎧
⎨

⎩
x 1

2 , x ≥ 0,

0, x < 0,

and let ω(x) = 1
2 x2. It is clear that A = ∇g is a hemicontinuous monotone operator and ω(·)

is a strongly convex function with parameter 1. Choose the sequences {αn}, {βn}, and {sn}
such that

αn = n– 2
3 , βn = n– 1

2 , sn =
1
2

.

Then it is clear that conditions (i)–(iv) of Algorithm 3.1 and Algorithm 4.1 are satisfied.

In Fig. 1, we present the numerical results by Algorithm 4.1. If x0 = 10, then the optimal
solution can be obtained through 8 steps of iteration. If x0 = 50, then the optimal solution
can be obtained through 19 steps of iteration.

6 Concluding remarks
In this paper, we considered a class of regularization forward–backward splitting meth-
ods for finding the minimum like-norm solution of the mixed variational inequalities and
convex minimization problem in a Hilbert space. Strong convergence results have been
obtained for the forward–backward splitting method under the hemicontinuous assump-
tion.
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