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Abstract
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1 Introduction
The Nash theorem was created to ensure that Riemannian manifolds are always perceived
as Riemannian submanifolds [23]. Gromov in [16], however, noted that this hope had not
come true. The fundamental cause of this is that the extrinsic aspects of the submanifolds
are not within the control of the known intrinsic facts. The establishment of meaningful
connections between the primary intrinsic and extrinsic invariants of submanifolds is a
fundamental concern in submanifold theory. There is growing interest in stabilizing this
concern by developing several kinds of geometric equalities and inequalities that admit
invariants. The research along this path gained momentum after Chen [7–9], employed
the warped product technique as a method to develop inequalities involving invariants
and deduced some significant information. After that, several differential geometers es-
tablished geometric inequalities to analyze the relationships between extrinsic and intrin-
sic parameters not only for warped products but also for their generalizations, i.e., double
and multiple warped products in different ambient spaces (see [10, 12, 13, 24, 32, 33]). The
sequential warped product (briefly, SWP), whose base remains a warped product mani-
fold, is a new generalization of warped products (in short, WP) [5]. Shenawy revealed
SWP in [31]. Thereafter, De, Shenawy, and Unal did a full investigation of SWP in [14].
With certain examples, Pahan and Pal [25], Karaca and Ozgür [18] extended the study of
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sequential warped space with (quasi-) Einstein’s structure. Sahin [28] discovered the pres-
ence of SWP submanifolds in Kähler manifolds and presented geometric inequalities and
equalities such that the associations between the intrinsic and extrinsic invariants are il-
lustrated. In [19], the author recently generalized the Chen inequality involving invariants
in nearly Kähler manifolds. Recently, Perktas–Blaga [27] continued the study on Sasakian
manifolds and provided some nonexistence results. Motivated by these developments,
in this article, the authors first present a numerical example in support of the existence
of SWP of the form (�T ×f �⊥) ×h �θ on cosymplectic manifolds: an odd-dimensional
counterpart of a Kaehler manifold, and then generalized Chen’s type inequality and equal-
ities involved Dirichlet energy and curvature to analyze the geometric invariants using the
SWP technique for such type of SWP on a cosymplectic manifold. Other types of SWP on
a cosymplectic manifold may be thought of as open problems. A succinct summary of the
article is provided below. We first recall some key concepts and definitions of an almost
contact, cosymplectic, and their submanifolds in Sect. 2 and Sect. 3. Then, in Sect. 4 we
derive and review a few results related to SWP for future use. Finally, in Sect. 5 we establish
some important results that extend inequalities for various warped products, inequalities
involving Dirichlet energy and curvature in cosymplectic manifolds. We also look at the
specific instances and corresponding equality.

2 Preliminaries
Let �̄ be a 2m + 1-dimensional smooth manifold and X(�̄) be the Lie algebra of smooth
vector fields on �̄2m+1. Then, (ϕ, ξ ,η) is said to have an almost contact structure on �̄2m+1

[22], if there exist an endomorphism ϕ of type (1, 1), a smooth global vector field ξ and a
1-form η satisfying

ϕ2 = –I + η ⊗ ξ and ηϕ = 0, (1)

where I is the identity map. If an almost contact structure admits Riemann metric g such
that

g(ϕ·,ϕ·) = g(·, ·) – η(·)η(·), (2)

η(ξ ) = 1, ϕξ = 0, and g(·,ϕ·) + g(ϕ·, ·) = 0, (3)

then it is called an almost contact Riemann structure (ϕ, ξ ,η, g) to �̄2m+1. Furthermore,
�̄2m+1 associated with the structure (ϕ, ξ ,η, g) is called an almost contact metric manifold
�̄(ϕ, ξ ,η, g).

Also, g(·,ϕ·) = �(·, ·) where � is termed the fundamental 2-form of �̄2m+1. If both η and
� are closed then �̄(ϕ, ξ ,η, g) is an almost cosymplectic manifold.

Definition 1 An almost contact Riemannian manifold �̄2m+1 is cosymplectic [22] if � is
parallel, that is, ∇̄� = 0. In this context, ∇̄ stands for the connection Levi–Civita on �̄2m+1

w.r.t. g .

From the above definition and (1), it is easy to obtain that

∇̄Uξ = (∇̄Uη)V = 0, for all U , V ∈X(�̄). (4)
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Let �̄(k) be a cosymplectic space form, then the Riemannian curvature on �̄(k) for arbi-
trary U , V , W , X ∈X(�̄) is given by

R̄(U , V , W , X)

=
k
4
(
g(V , W )g(U , X) – g(U , W )g(V , X) – η(V )η(W )g(U , X)

+ η(U)η(W )g(V , X) + η(V )η(X)g(U , W ) – η(U)η(X)g(V , W )

+ g(ϕV , W )g(ϕU , X) – g(ϕU , W )g(ϕV , X) + 2g(ϕU , V )g(ϕW , X)
)
. (5)

3 Geometry of submanifolds
Now, we review some important formulas and definitions for future usage concerning
submanifolds � of dimension d, immersed isometrically in �̄2m+1. (For details refer to
[6].) The formulas of Gauss–Weingarten are defined by the expressions:

∇̄U V = ∇U V + σ (U , V ), (6)

∇̄U N = ∇⊥
U N – AN U , (7)

∀U , V ∈ X(�): a space tangent to � and N ∈ X(�⊥): a space normal to �. The induced
tangent and normal connections on X(�) and X(�⊥) are denoted by the symbols ∇ and
∇⊥, respectively. Then, the shape operator and the second fundamental form (abbreviated
SFF) are represented by the AN at N and σ , respectively, in such a way that

g(AN U , V ) = g
(
σ (U , V ), N

)
. (8)

If p is any point in � and {x1, . . . , xd, xd+1, . . . , x2m+1} is an orthonormal frame of the tan-
gent space Xp(�̄) = Xp(�) ⊕Xp(�⊥) such that {x1, . . . , xd} ∈ Xp(�) and {xd+1, . . . , x2m+1} ∈
Xp(�⊥), then H(p) = 1

d traceσ , gives the mean curvature vector of � and ‖σ‖2 is computed
by

‖σ‖2 =
d∑

a,b=1

g
(
σ (xa, xb),σ (xa, xb)

)
. (9)

By setting σ c
ab = g(σ (xa, xb), xc), a, b ∈ {x1, . . . , xd}, c ∈ {xd+1, . . . , x2m+1}, (9) can be repre-

sented as

‖σ‖2 =
2m+1∑

c=d+1

d∑

a,b=1

g
(
σ (xa, xb), xc

)
. (10)

If σ (U , V ) equals g(U , V )H (0), then � is umbilical (geodesic). For H = 0, � is minimal.
Moreover, if

ϕU = tU + nU , (11)

ϕN = t′N + n′N , (12)
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for all U ∈ X(�), where tU (t′N ) and nU (n′N ) are tangential (normal) parts of ϕU (ϕN ),
then employing (1), (2), and (11), we obtain

g(U , tV ) = –g(tU , V ) for all U , V ∈X(�). (13)

In view of Definition 1 and (6) and (12), we have

(∇U t)V = AnV U + t′σ (U , V ), (14)

(∇U n)V = –σ (U , tV ) + n′σ (U , V ), (15)

where (∇Uϕ)V , (∇U t)V and (∇U n)V are defined by

(∇Uϕ)V = ∇UϕV – ϕ∇U V , (16)

(∇U t)V = ∇U tV – t∇U V , (17)

(∇U n)V = ∇⊥
U nV – n∇U V , (18)

for all U , V ∈X(�). Next, the Gauss–Codazzi equations are defined, respectively, by,

R̄(U , V , W , X) = g
(
σ (U , W ),σ (V , X)

)
– g

(
σ (U , X),σ (V , W )

)

+ R(U , V , W , X), (19)
(
R̄(U , V )W

)⊥) = (∇Uσ )(V , W ) – (∇V σ )(U , W ), (20)

for every U , V , W and X ∈X(�), where R and R̄ denote the Riemann curvature on � and
�̄2m+1. Next, the gradient of the smooth function f on � is given by

g(∇f , U) = Uf and ‖∇f ‖2 =
d∑

a=1

(
Ua(f )

)2, (21)

for any Ua ∈X(�).
Here, we refresh certain key definitions and findings from [26] for further usage.

Definition 2 Let � be a submanifold of �̄2m+1. If at a point p in �, any tangent vector field
W /{0} not proportional to the characteristic vector field ξ ∈ X(�), the angle symbolized
by θ , between ϕ(W ) and Xp(�) does not depend on p nor W , then � is pointwise slant.
Consequently, θ is identified as a function on �, and thus known as the slant function.

Remark 1 For θ constant on �, � is simply called a slant submanifold, specifically, invari-
ant when θ = 0 and antinvariant when θ = π/2.

Next, from the definition and [20, 30], we write the iff condition for a submanifold � of
�̄2m+1 to be pointwise slant, given as follows for any vector field:

t2W = cos2(θ )ϕ2W : W ∈X(�). (22)
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Additionally, we have for W1, W2 ∈X(�) that

g(tW1, tW2) = cos2 g(ϕW1,ϕW2), (23)

g(nW1, nW2) = sin2 g(ϕW1,ϕW2). (24)

Definition 3 A submanifold � is pointwise semislant (resp., pseudoslant), if there are
distributions DT : an invariant and Dθ : a pointwise slant on � (resp., D⊥: an antiinvariant
and Dθ ) with slant function θ and characteristic vector field ξ such that

i. The tangent space X(�) admits the orthogonal direct decomposition
X(�) = DT ⊕Dθ⊕ < ξ > (resp., X(�) = D⊥ ⊕Dθ⊕ < ξ >);

ii. The distribution DT is invariant, i.e., ϕ(DT ) ⊆DT (resp., D⊥ is antiinvariant, i.e.,
ϕ(D⊥) ⊆X(�)⊥).

4 Sequential warped product submanifolds
Shenawy in [31] and De et al. in [14] defined SWP as: consider three Riemannian manifolds
B, F1, and F2. If f : B → R

+ and h : B × F1 → R
+, then the SWP (B ×f F1) ×h F2 of B,

F1 and F2 is the product manifold �̄ = B × F1 × F2 endowed with Riemannian metric
ḡ = (gB ⊕f 2 g1) ⊕h2 g2. �̄ is a Riemannian triple product for f , h constants; �̄ is a WP with a
product base manifold for exactly one of f , h constant. �̄ is SWP, if f , h are nonconstants.

Sahin recently analyzed the possibility of warped products of type (�T ×f �⊥) ×h �θ

for Kaehler manifolds and discovered some significant findings [28]. Motivated by the
work of Sahin, in this section we continue the study for cosymplectic manifolds: an odd-
dimensional counterpart of a Kaehler manifold, and derive several geometric characteri-
zations for such types of submanifolds in cosymplectic manifold.

For a vector field on a factor manifold and its lift to the sequential warped product man-
ifold, we use the same notation. We start by keeping in mind the following statements
about SWP manifolds for future use.

Proposition 1 [14] For Ua, Va, Wa ∈X(�a), a ∈ {1, 2, 3}, we have on � = (�1 ×f �2)×h �3

that
1. ∇Ua U3 = ∇U3 Ua = U3(ln h)Ua = U3(h)

h Ua, a ∈ {1, 2};
2. ∇U1 U2 = ∇U2 U1 = U1(ln f )U2 = U1(f )

f U2;
3. R(Ua, V3)Wb = –1

h Hh(Ua, Wb)V3, a, b ∈ {1, 2}.

Proposition 2 [14] In a SWP � = (�1 ×f �2) ×h �3, �1 and �1 ×f �2 are totally geodesic
submanifolds in �1 ×f �2 and �. Also, �2 and �3 are totally umbilical in �1 ×f �2 and �.

Now, we present a nonexistence result or SWP submanifolds by including ξ in the sec-
ond or the third factor manifolds.

Theorem 1 If � = (�T ×f �⊥)×h �θ is a SWP immersion in cosymplectic manifold �̄2m+1.
This means

1. if ξ ∈X(�⊥), then � is a CR-slant WP submanifold;
2. if ξ ∈X(�θ ), then � is a single WP submanifold.

Proof Consider ξ ∈X(�⊥), then by the use of Proposition 1, we attain

∇Uξ = U(ln f )ξ , ∀U ∈X(�T ).
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In view of (4), (6), and (7), we have U(ln f ) = 0. This shows that f is constant on �T . From
the above discussion, we conclude that � is a CR-slant warped product submanifold. On
the other hand, ξ ∈X(�θ ), then by the use of Proposition 1, we achieve

∇Uξ = U(ln h)ξ and ∇W ξ = W (ln h)ξ , (25)

for every U ∈ X(�T ) and V ∈ X(�⊥). In light of (4), (6), (7), and (25), we observe that
U(ln h) = V (ln h) = 0. This shows that h is constant on both the factors �T and �⊥. This
completes the proof. �

Next, we first present a numerical example that shows the existence of SWP of the form
(�T ×f �⊥)×h �θ and then continue the study by presenting several important results for
such submanifolds.

Example 1 Consider a 13-dimensional Euclidean space E
13 with coordinates (x1, . . . , x6,

y1, . . . , y6, t) and Euclidean metric g . The almost contact structure (ϕ, ξ ,η) on E
13 is de-

scribed as

ϕ

(
∂

∂xa

)
= –

∂

∂ya
, ϕ

(
∂

∂ya

)
=

∂

∂xa
, ϕ

(
∂

∂t

)
= 0, (26)

ξ =
∂

∂t
, η = dt, g = dt2 +

12∑

a=1

dx2
a. (27)

One can easily verify that the Euclidean space E
13 with almost contact structure is a

cosymplectic manifold. Consider a subset � ⊂ E
13 immersed as a submanifold by the fol-

lowing immersion

x1 = u cosα, x2 = v cosβ , x3 = v sinα, x4 = u sinβ , x5 = α sinβ ,

x6 = w, y1 = v cosα, y2 = u cosβ , y3 = u sinα, y4 = v sinβ ,

y5 = α cosβ , y6 = β , t = t.

The tangent subspace of � at each point is spanned by the basis

Zα = –u sinα
∂

∂x1
+ v cosβ

∂

∂x3
+ sinβ

∂

∂x5
– v sinα

∂

∂y1
+ u cosα

∂

∂y3
+ cosβ

∂

∂y5
,

Zβ = –v sinβ
∂

∂x2
+ u cosβ

∂

∂x4
+ α cosβ

∂

∂x5
– u sinβ

∂

∂y2

+ v cosβ
∂

∂y4
– α sinβ

∂

∂y5
+

∂

∂y6
,

Zu = cosα
∂

∂x1
+ sinβ

∂

∂x4
+ cosβ

∂

∂y2
+ sinα

∂

∂y3
, Zw =

∂

∂x6
,

Zv = cosβ
∂

∂x2
+ sinα

∂

∂x3
+ cosα

∂

∂y1
+ sinβ

∂

∂y4
, Zt = ξ .

By straightforward computation, we observed that the distribution DT = span{Zu, Zv, Zt}
is invariant, the distribution D⊥ = span{Zα} is antiinvariant and distribution Dθ =
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span{Zβ , Zw} is pointwise slant with slant angle

θ = cos–1
(

1√
1 + u2 + v2 + α2

)
.

The induced metric on � is given by

g� = du2 + dv2 + dt2 + f 2 dα2 + h2(dβ2 + dw2).

This shows that � is a SWP manifold of E13 with warping functions f =
√

u2 + v2 + 1 and
h =

√
u2 + v2 + α2 + 1.

Remark 2 From here onwards, we consider and study the SWP submanifolds of the type
(�T ×f �⊥) ×h �θ when the characteristic vector field ξ is tangent to �T .

Proposition 3 Let (�T ×f �⊥) ×h �θ be a SWP submanifold of cosymplectic manifold
�̄2m+1. Then, ξ (ln f ) = ξ (ln h) = 0.

Proof Consider U ∈ X(�T ) and V ∈ X(�⊥), then by consequence of the first part of
Proposition 1, we have ∇U V = ∇V U = U(ln f )V = U(f )/f .V . Since ξ ∈ U(�T ), then the
previous equation becomes ∇V ξ = ξ (ln f )V . Hence, applying (4) and (6) in the above ex-
pression, we obtain the first part. By the use of the second part of Proposition 1, we derive
∇U W = U(f )/f ∗W , W ∈X(�θ ). With the help of (4) and (6) in the last relation, we obtain
the second part. �

Here, we present some crucial findings for later use.

Lemma 1 Assume � = �T ×f �⊥ ×h �θ is a SWP submanifold of cosymplectic manifold
�̄2m+1. Then, for all U1, U2 ∈X(�T ) and V1, V2 ∈X(�⊥) we have

i. g(σ (U1, U2),ϕV1) = 0;
ii. g(σ (U1, V1),ϕV2) = –ϕU1(f )/f .g(V1, V2).

Proof By the utilization of (3), (6), (16), and Definition 1, we concede that

g
(
σ (U1, U2),ϕV1

)
= –g(∇̄U1ϕV , V1). (28)

Inserting the covariant derivative’s characteristic into (28), we arrive at

g
(
σ (U1, U2),ϕV1

)
= g(ϕV , ∇̄U1 V1) – Ug(ϕV , V1). (29)

By the use of the first part of Proposition 1 in (29), we obtain the first part. For the second
part, we utilize (3), (6), and (11) to obtain g(σ (U1, V1),ϕV2) = –g(ϕ∇̄V1 U1, V2). With the
help of the first part of Proposition 1, we obtain the second part. �

Lemma 2 If � = �T ×f �⊥ ×h �θ is a SWP of cosymplectic manifold �̄2m+1, then we attain
for all U1, U2 ∈ X(�T ) and W1, W2 ∈ X(�θ ) that

i. g(σ (U1, U2), nW1) = 0;
ii. g(σ (U1, W1), nW2) = –ϕU1(h)/h.g(W1, W2) + U1(h)/h.g(tW1, W2).
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Proof By the result of (6) and (11), we obtain g(σ (U1, U2), nW1) = g(∇̄U1 U2,ϕW1 –
g(∇̄U1 U2, tW1). The previous expression simplifies to the following form when (3) is used:

g
(
σ (U1, U2), nW1

)
= –g(∇̄U1ϕU2, W1) – g(∇̄U1 U2, tW1).

Applying Definition 1 and the second part of Proposition 1 into the above expression, we
obtain the first part. By reusing (6) and (11), we have g(σ (U1, W1), nW2) = g(∇̄W1 U1,ϕW2 –
g(∇̄W1 U2, tW2). Next, employing (3) and Proposition 1(ii), we obtain the second part. �

Moreover, employing (1) in Lemma 2, we obtain that

g
(
σ (ϕU1, U2), nW1

)
= 0, (30)

g
(
σ (ϕU1, W1), nW2

)
= U1(h)/h.g(W1, W2) + ϕU1(h)/h.g(tW1, W2). (31)

Replacing W1 by tW1 in Lemma 2, then utilizing (22), we obtain

g
(
h(U1, tW1), nW2

)
= –U1(h)/h.g(tW1, W2) – cos2 θϕU1(h)/h.g(W1, W2). (32)

Replacing W1 by tW1 in (28) and (29), and then employing (22) in the obtained expression,
we arrive at

g
(
h(ϕU1, tW1), nW2

)
= U1(h)/h.g(tW1, W2) – cos2 θϕU1(h)/h.g(W1, W2). (33)

Replacing W2 by tW2 in (29), (32), and (33) and using (23), yields

g
(
h(ϕU1, W1), ntW2

)
= U1(h)/h.g(W1, tW2) + cos2 θϕU1(h)/h.g(W1, W2). (34)

Replacing U1 by ϕU1 in (34), we achieve that

g
(
h(U1, W1), ntW2

)
= –ϕU1(h)/h.g(W1, tW2) – cos2 θU1(h)/h.g(W1, W2). (35)

Lemma 3 If � = �T ×f �⊥ ×h �θ is a SWP of cosymplectic manifold �̄2m+1, then we derive
for all U ∈ X(�T ), V ∈X(�⊥) and W ∈X(�θ ) that

i. g(σ (U , V ), nU) vanishes;
ii. g(σ (U , W ),ϕV ) vanishes;

iii. σ (V , W ) = σ (W , W ).

Proof As a result of (6) and (11), we obtain g(σ (U , V ), nW ) = g(∇̄V U ,ϕW ) – g(∇V U , tW ).
Now, employing the first part of Lemma 2 into the last expression, we achieve the first
part. Likewise, we can prove the second part. By the consequence of (3), (6), and (11), we
obtain

g
(
σ (V , tW ), nW

)
= –g(ϕ∇̄V tW , W ) – g(∇V tW , tW ).

With the help of Definition 1 and the third part of Proposition 2, we have

g
(
σ (V , tW ), nW

)
= –g(∇̄V ϕtW , W ) – V (h)/h.g(tW , tW ).

Applying (11), (22), and (23), we achieve the third part. �
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Lemma 4 If � = �T ×f �⊥ ×h �θ is a SWP of cosymplectic manifold �̄2m+1, then we deduce
for all V ∈X(�⊥) and W ∈X(�θ ) that

g
(
σ (W , V ), ntW

)
= cos2 θV (h)/h.g(W , W ) + g

(
σ (W , tW ),ϕV

)
. (36)

Proof By use of (3) and (6), we obtain g(σ (W , tW ),ϕV ) = –g(ϕ∇̄W tW , V ). Now, utilizing
(11) and Definition 1 in the last expression, we observe that

g
(
σ (W , tW ),ϕV

)
= –g

(∇̄W t2W , V
)

– g(∇̄W ntW , V ).

By virtue of (8) and (22), we concede that

g
(
σ (W , tW ),ϕV

)
= – cos2 θg(∇̄W W , V ) + g

(
σ (W , V ), ntW

)
.

Using the second part of Proposition 1 and the property of the covariant derivative, we
achieve (36). �

Lemma 5 If � = �T ×f �⊥ ×h �θ is a SWP of cosymplectic manifold �̄2m+1, then we have
for all U ∈ X(�T ), V ∈X(�⊥) and W ∈X(�θ ) that

∥∥σν(U , V )
∥∥2 = g

(
σ (ϕU , V ),ϕσ (U , V )

)
, (37)

∥∥σν(U , W )
∥∥2 = 2 cos2 θU(h)2/h.g(W , W ) + g

(
σ (ϕU , W ),ϕσ (U , W )

)
. (38)

Proof By the use of (16) and (6), we have ϕ∇V U –∇V ϕU = σ (ϕU , V ) –ϕσ (U , V ). Employ-
ing the fact that �T is an invariant submanifold, then by the application of Proposition 1(i)
the above expression reduces to the following form:

U(h)/h.ϕV – ϕU(h)/h.V = σ (ϕU , V ) – ϕσ (U , V ). (39)

Now, by taking an inner product with ϕσ (U , V ) into (39), we achieve the first part. Reusing
(16) and (6), we have ϕ∇W U – ∇W ϕU = σ (ϕU , W ) – ϕσ (W , V ). By the application of
Proposition 1(i) in the above expression, we obtain

U(h)/h.ϕW – ϕU(h)/h.W = σ (ϕU , W ) – ϕσ (U , W ). (40)

Now, by taking the inner product with ϕσ (U , W ) into (39), we have

U(h)/h.g
(
ϕσ (U , W ), nW

)
= g

(
σ (ϕU , W ),ϕσ (U , W )

)
–

∥∥σν(U , W )
∥∥2. (41)

In view of (35) and (41), we obtain the second part. �

5 Main results
In this section, we show several significant findings and their geometric applications. Let
� be a SWP submanifold of cosymplectic manifold �̄2m+1.

Then, we can express X(�̄) = X(�) ⊕X(�)⊥ with X(�) = DT ⊕D⊥ ⊕Dθ and X(�)⊥ =
nD⊥ ⊕ nDθ ⊕ ν .
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Take orthonormal frames as follows. For tangent distributions DT , D⊥, and Dθ :

{x1, . . . , xp, xp+1 = ϕx1, . . . , x2p = ϕxp, ξ},
{

x2p+1 = x∗
1, x2p+2 = x∗

2, . . . , x2p+q = x∗
q
}

and

{x2p+q+1 = x̂1, . . . , x2p+q+r = x̂r , x2p+q+r+1 = sec θ tx̂1, . . . , x2p+q+2r = sec θ tx̂r}

and for normal distributions nD⊥, nDθ , and ν :

{
x̃1 = ϕx∗

1, x̃2 = ϕx∗
2, . . . , x̃q = ϕx∗

q
}

,

{x̃q+1 = csc θnx̂1, . . . , x̃q+r = csc θ x̂r , x̃q+r+1 = csc θ sec θntx̂1, . . . , x̃q+2r = csc θ sec θntx̂r}

and

{x̃q+2r = x1, . . . , x̃q+2r+s = xs, x̃q+2r+s+1 = xs+1, . . . , x̃q+2r+2s = x2s}.

Then, we deduce dim(DT ) = 2p+1, dim(D⊥) = q, dim(Dθ ) = 2r, dim(nD⊥) = q, dim(nDθ ) =
2r and dim(ν) = 2s. Hence, � is d = 2p + q + 2r + 1-dimensional and �⊥ is 2m – d + 1 =
2s + q + 2r-dimensional.

Here, we present our first main result that represents a relationship between the warping
function and the second fundamental form and acts as a generalization for earlier existing
literature in this regard.

Theorem 2 Assume � = �T ×f �⊥ ×h �θ is a d-dimensional SWP submanifold of cosym-
plectic manifold �̄2m+1, then

‖σ‖2 ≥ 2q
∥
∥∥
∥
∇T (f )

f

∥
∥∥
∥

2

+ 4r
(
1 + 2 cot2 θ

)
∥
∥∥
∥
∇T (h)

h

∥
∥∥
∥

2

+ 2r cot2 θ

∥
∥∥
∥
∇⊥(h)

h

∥
∥∥
∥

2

(42)

holds, where σ symbolizes the SFF, ∇T (f ): gradient(f ) on �T , ∇T (h) and ∇⊥(h): gradients(h)
on �T and �⊥.

Proof By the use of (10), we have

‖σ‖2 =
d∑

a,b=1

2m+1–d∑

c=1

g
(
σ (xa, xb), x̃c

)2.

Since X(�⊥) = X(nD⊥) ⊕X(nDθ ) ⊕ ν , then the preceding expression is simplified into its
subsequent form as

‖σ‖2 =
d∑

a,b=1

q∑

c=1

g
(
σ (xa, xb), x̃c

)2 +
d∑

a,b=1

2r∑

c=1

g
(
σ (xa, xb), x̃q+c

)2

+
2s∑

c=1

d∑

a,b=1

g
(
σ (xa, xb), x̄c

)2. (43)
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The nD⊥ and nDθ components are found in the first and second terms, while ν-
components are found in the final term in the above expression. Further, we only use the
frame fields described above to calculate the components in the first and second terms as
follows:

‖σ‖2 ≥
d∑

a,b=1

q∑

c=1

g
(
σ (xa, xb), x̃c

)2 +
d∑

a,b=1

2r∑

c=1

g
(
σ (xa, xb), x̃q+c

)2. (44)

By using the above-mentioned frame field, we concede that

‖σ‖2 ≥
2p∑

a,b=1

q∑

c=1

g
(
σ (xa, xb), x̃c

)2 +
q∑

c=1

g
(
σ (ξ , ξ ), x̃c

)2 +
2p∑

a,b=1

2r∑

c=1

g
(
σ (xa, xb), x̃q+c

)2

+
q∑

a,b,c=1

g
(
σ
(
x∗

a, x∗
b
)
, x̃c

)2 +
2r∑

c=1

g
(
σ (ξ , ξ ), x̃q+c

)2 +
q∑

a,b=1

2r∑

c=1

g
(
σ
(
x∗

a, x∗
b
)
, x̃q+c

)2

+
2r∑

a,b,c=1

g
(
σ (x̂a, x̂b), x̃q+c

)2 +
2r∑

a,b=1

q∑

c=1

g
(
σ (x̂a, x̂b), x̃c

)2

+ 2
q∑

a,c=1

2r∑

b=1

g
(
σ
(
x∗

a, x̂b
)
, x̃c

)2 + 2
q∑

a=1

2r∑

b,c=1

g
(
σ
(
x∗

a, x̂b
)
, x̃q+c

)2

+ 2
2p∑

a=1

2r∑

b=1

q∑

c=1

g
(
σ (xa, x̂b), x̃c

)2 + 2
2p∑

a=1

q∑

b=1

2r∑

c=1

g
(
σ
(
xa, x∗

b
)
, x̃q+c

)2

+ 2
2p∑

a=1

2r∑

b,c=1

g
(
σ (xa, x̂b), x̃q+c

)2 + 2
2p∑

a=1

q∑

b,c=1

g
(
σ
(
xa, x∗

b
)
, x̃c

)2. (45)

Now, employing the first and second parts of Lemma 1 and the first and second parts of
Lemma 3 in the above expression

‖σ‖2 ≥
q∑

c=1

g
(
σ (ξ , ξ ), x̃c

)2 +
q∑

a,b,c=1

g
(
σ
(
x∗

a, x∗
b
)
, x̃c

)2 +
2r∑

c=1

g
(
σ (ξ , ξ ), x̃q+c

)2

+
q∑

a,b=1

2r∑

c=1

g
(
σ
(
x∗

a, x∗
b
)
, x̃q+c

)2 +
2r∑

a,b,c=1

g
(
σ (x̂a, x̂b), x̃q+c

)2

+ 2
q∑

a=1

2r∑

b,c=1

g
(
σ
(
x∗

a, x̂b
)
, x̃q+c

)2

+
2r∑

a,b=1

q∑

c=1

g
(
σ (x̂a, x̂b), x̃c

)2 + 2
q∑

a,c=1

2r∑

b=1

g
(
σ
(
x∗

a, x̂b
)
, x̃c

)2

+ 2
2p∑

a=1

2r∑

b,c=1

g
(
σ (xa, x̂b), x̃q+c

)2 + 2
2p∑

a=1

q∑

b,c=1

g
(
σ
(
xa, x∗

b
)
, x̃c

)2. (46)

With the help of (4) and (6), we have σ (ξ , ξ ) = 0. In order to reduce the complexity of
the computation, we extract the final three terms from the equation above, and by using
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the orthonormal frame previously defined, we reach

‖σ‖2 ≥ 2
p∑

a=1

q∑

b,c=1

g
(
σ
(
xa, x∗

b
)
, ne∗

c
)2 + 2

p∑

a=1

q∑

b,c=1

g
(
σ
(
ϕxa, x∗

b
)
, ne∗

c
)2

+ 2 csc2 θ

( p∑

a=1

2r∑

b,c=1

g
(
σ (xa, x̂b), nx̂c

)2 + g
(
σ (ϕxa, x̂b), nx̂c

)2
)

+ 2 sec2 θ csc2 θ

( p∑

a=1

2r∑

b,c=1

g
(
σ (xa, x̂b), ntx̂c

)2 + g
(
σ (ϕxa, x̂b), ntx̂c

)2
)

+ 2 sec2 θ csc2 θ

( p∑

a=1

2r∑

b,c=1

g
(
σ (xa, tx̂b), nx̂c

)2 + g
(
σ (ϕxa, tx̂b), nx̂c

)2
)

+ 2 sec4 θ csc2 θ

( p∑

a=1

2r∑

b,c=1

g
(
σ (xa, tx̂b), ntx̂c

)2 + g
(
σ (ϕxa, tx̂b), ntx̂c

)2
)

+ 2 sec2 θ csc2 θ

( 2r∑

b,c=1

q∑

a=1

g
(
σ
(
x∗

a, x̂b
)
, ntx̂c

)2

+
2r∑

b,b=1

q∑

a=1

g
(
σ
(
x∗

a, tx̂b
)
, nx̂c

)2
)

. (47)

Next, utilizing (31)–(35) and the second parts of Lemmas 1 and 2, we have

‖σ‖2 ≥ 2
p∑

a=1

q∑

b,c=1

((
ϕ

xa(f )
f

)2

+
(

xa(f )
f

)2)
g
(
x∗

b, x∗
c
)2

+ 4 csc2 θ

p∑

a=1

r∑

b,c=1

((
ϕ

xa(h)
h

)2

+
(

xa(h)
h

)2)
g(x̂b, x̂c)2

+ 4 cot2 θ

p∑

a=1

r∑

b,c=1

((
ϕ

xa(h)
h

)2

+
(

xa(h)
h

)2)
g(x̂b, x̂c)2

+ 2 cot2 θ

r∑

b,c=1

q∑

a=1

x∗
a(h)
h

g(x̂b, x̂b)2

+ 2 sec2 θ csc2 θ

r∑

b,c=1

q∑

a=1

g
(
σ
(
x∗

a, tx̂b
)
, nx̂c

)2. (48)

Leaving the last term and by adding and subtracting the same quantity in (48), and by the
application of Proposition 3, we have

‖σ‖2 ≥ 2
2p+1∑

a=1

q∑

b,c=1

(
ϕ

xa(f )
f

)2

g
(
x∗

b, x∗
c
)2

+ 4 csc2 θ

2p+1∑

a=1

r∑

b,c=1

(
xa(h)

h

)2

g(x̂b, x̂c)2



Sharma et al. Journal of Inequalities and Applications        (2023) 2023:125 Page 13 of 20

+ 4 cot2 θ

2p+1∑

a=1

r∑

b,c=1

(
xa(h)

h

)2

g(x̂b, x̂c)2

+ 2 cot2 θ

r∑

b,c=1

q∑

a=1

(
x∗

a(f )
f

)2

g(x̂b, x̂b)2. (49)

Using (21) in the above expression, we derive (42). Hence, the theorem is proved. �

5.1 Particular cases
If in ineq. (42) of Theorem 2:

i. r = 0 and the norm of ∇T (h)
h and ∇⊥(h)

h vanishes, then SWP becomes a CR-warped
product [34], and

‖σ‖2 ≥ 2q
∥∥∥
∥
∇T (f )

f

∥∥∥
∥

2

.

ii. q = 0 and the norm of ∇T (f )
f vanishes then SWP becomes WP �T ×h �θ with

‖σ‖2 ≥ 4r
(
1 + 2 cot2 θ

)
∥∥
∥∥
∇T (h)

h

∥∥
∥∥

2

.

It is to be noted that the same result was obtained at [26] for Sasakian manifolds, but
now for cosymplectic ones.

iii. p = 0 and the norm of ∇T (f )
f and ∇⊥(h)

h vanishes, then SWP becomes pointwise
pseudoslant WP �⊥ ×h �θ [2, Th. 4.1] and

‖σ‖2 ≥ 2r cot2 θ

∥∥
∥∥
∇⊥(h)

h

∥∥
∥∥

2

.

iv. ∇⊥(h)
h vanishes, then SWP becomes a biwarped product �T ×f �⊥ ×h �θ [11] such

that

‖σ‖2 ≥ 2q
∥
∥∥∥
∇T (f )

f

∥
∥∥∥

2

+ 4r
(
1 + 2 cot2 θ

)
∥
∥∥∥
∇T (h)

h

∥
∥∥∥

2

.

v. ∇T (f )
f vanishes, then SWP becomes CR-slant WP (�T × �⊥) ×h �θ [1] satisfying

‖σ‖2 ≥ 4r
(

(
csc2 θ + cot2 θ

)
∥
∥∥
∥
∇T (h)

h

∥
∥∥
∥

2

+ cot2 θ

∥
∥∥
∥
∇⊥(h)

h

∥
∥∥
∥

2)
.

Theorem 3 Consider a d-dimensional SWP submanifold � = �T ×f �⊥ ×h �θ of cosym-
plectic manifold �̄2m+1. If the SFF σ satisfies

‖σ‖2 = 2q
∥
∥∥
∥
∇T (f )

f

∥
∥∥
∥

2

+ 4r
(
1 + 2 cot2 θ

)
∥
∥∥
∥
∇T (h)

h

∥
∥∥
∥

2

+ 2r cot2 θ

∥
∥∥
∥
∇⊥(h)

h

∥
∥∥
∥

2

, (50)

then, the claims that follow hold:
(i) � is totally geodesic in �̄2m+1;
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(ii) � is �T –�⊥ (�T –�θ ) mixed totally geodesic;
(iii) �⊥ ×h �θ (resp. �⊥) is totally mixed geodesic (resp., umbilical) in �̄2m+1;
(iv) The H = –∇f for �⊥;
(v) �θ is totally umbilical in cosymplectic manifold �̄2m+1;

(vi) The H = –∇f for �θ .

The present theorem can be proved using the same steps as Theorem 4.2 of [19].

Proof Suppose that σ satisfies (50), then by (44), we have

g
(
σ (T�, T�),ν

)
= 0. (51)

Hence, straightforwardly from (51), Lemma 1, Lemma 2, and Proposition 2, we obtain (1).
Also from (46), we obtain that

g
(
σ (D⊥,D⊥), nDθ

)
= 0, g

(
σ (D⊥,D⊥), nD⊥

)
= 0. (52)

By the use of (46), we have

g
(
σ (D⊥,Dθ ), nDθ

)
= 0, g

(
σ (D⊥,Dθ ), nD⊥

)
= 0. (53)

From (51) and (53), we have

σ (D⊥,Dθ ) = 0. (54)

By the consequence (54), we accomplished the proof of the second part. By virtue of (51)
and (52), we have

∥∥σ (D⊥,D⊥)
∥∥ = 0. (55)

Since �⊥ is a totally umbilical submanifold in �T ×f �⊥ using this fact in (55), we con-
clude that �⊥ is totally umbilical in M. Similarly, we prove the fourth part. Let σ⊥ be
the second fundamental form on �⊥, then by the utilization of Proposition 1, we have
g(σ⊥(Z1, Z2), X) = –g(∇XZ1, Z2) = –X(ln f )g(Z1, Z2). Now, assume σ and σ θ are the second
fundamental tensors of M and �θ , respectively, then we have σ (W1, W2) = σ (W1, W2) +
σ θ (W1, W2). By the consequence of (49) and Proposition 2, we obtain σ (W1, W2) =
σ θ (W1, W2) = g(W1, W2)Hθ , where Hθ is the mean curvature of �θ . Using (1), we obtain
g(σ θ (W1, W2), X) = g(∇W1 W2, X) = –X(ln h)g(W1, W2). Now, by the definition of gradient,
we achieve the last part. This completes the proof. �

Our next result presents one of the ways to analyze Dirichlet problems. Several authors
in different senses have analyzed the existence of solutions for Dirichlet problems [3, 11].
Here, we investigate the relation involving Dirichlet energy of functions and the second
fundamental form for SWP. Jackson et al. in [17] stated this as: The Dirichlet energy of
smooth function ψ and compact submanifold � over its volume element dV is defined by

E(ψ) =
1
2

∫

�

‖∇ψ‖2 dV . (56)
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As a result, inspired by the publications mentioned above, we derive an important find-
ing:

Theorem 4 Let � = �T ×f �⊥ ×h �θ be a d-dimensional connected, compact SWP sub-
manifold of cosymplectic manifold �̄2m+1. Then, the Dirichlet energy of f and h satisfies

4qE(ln f ) + 4r cot2 θE(ln h) + 4r
(
2 + 3 cot2 θ

)
E�T (ln h)

≤
∫

�

‖σ‖2 dV – 16r
∫

�

cos θ csc3 θ
dθ

dV
(
E�T (ln h)

)
dV

– 4r
∫

�

cos θ csc3 θ
dθ

dV
(
E�⊥ (ln h)

)
dV , (57)

where E�T (ln h), E�⊥ (ln h) and E(ln f ), E(ln h) are the Dirichlet energy of ln h on �T , �⊥,
and ln f and ln h on �, respectively.

Proof Integrating the relation (42) over �, we have

∫

�

‖σ‖2 dV ≥ 2q
∫

�

∥
∥∥∥
∇T (h)

h

∥
∥∥∥

2

dV + 4r
∫

�

(
1 + 2 cot2 θ

)
∥
∥∥∥
∇T (h)

h

∥
∥∥∥

2

dV

+ 2r
∫

�

cot2 θ

∥∥
∥∥
∇⊥(h)

h

∥∥
∥∥

2

dV . (58)

By using the property of integration in (58), we obtain

∫

�

‖σ‖2 dV ≥ 2q
∫

�

∥∥
∥∥
∇T (f )

f

∥∥
∥∥

2

dV + 4r
(
1 + 2 cot2 θ

)∫

�

∥∥
∥∥
∇T (h)

h

∥∥
∥∥

2

dV

+ 2r cot2 θ

∫

�

∥∥
∥∥
∇⊥(h)

h

∥∥
∥∥

2

dV

– 16r
∫

�

cos θ csc3 θ
dθ

dV

(∫

�

∥
∥∥
∥
∇T (h)

h

∥
∥∥
∥

2)
dV

– 4r
∫

�

cos θ csc3 θ
dθ

dV

(∫

�

∥
∥∥
∥
∇⊥(h)

h

∥
∥∥
∥

2)
dV . (59)

By utilization of ∇ = ∇T + ∇⊥ + ∇θ and (56) in the above equation, we obtain (57). �

5.2 Particular cases
In inequality (57) of Theorem 4 if:

i. r = 0 and the norm of ∇T (h)
h , ∇⊥(h)

h vanishes, then SWP is a CR-warped product with

4qE(ln f ) ≤
∫

�

‖σ‖2 dV .

ii. q = 0 and the norm of ∇T (f )
f vanishes, then SWP is WP �T ×h �θ [4] with

E(ln h) ≤ 1
4r((1 + 2 cot2 θ )

(∫

�

‖σ‖2 dV – 16r
∫

�

cos θ csc3 θ
dθ

dV
(
E(ln h)

)
dV

)
.
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iii. p = 0 and the norm of ∇T (f )
f , ∇T (h)

h vanishes, then SWP is pointwise pseudoslant WP
�⊥ ×h �θ and

4r cot2 θE(ln h) ≤
∫

�

‖σ‖2 dV – 4r
∫

�

cos θ csc3 θ
dθ

dV
(
E(ln h)

)
dV .

iv. the norm of ∇⊥(h)
h vanishes, then SWP is a biwarped product �T ×f �⊥ ×h �θ

satisfying

4qE(ln f ) + 4r
(
1 + 2 cot2 θ

)
E(ln h)

≤
∫

�

‖σ‖2 dV – 16r
∫

�

cos θ csc3 θ
dθ

dV
(
E(ln h)

)
dV .

v. the norm of ∇T (f )
f vanishes, then SWP is CR-slant WP (�T × �⊥) ×h �θ such that

4r cot2 θE(ln h) + 4r
(
2 + 3 cot2 θ

)
E�T (ln h)

≤
∫

�

‖σ‖2 dV – 16r
∫

�

cos θ csc3 θ
dθ

dV
(
E�T (ln h)

)
dV

– 4r
∫

�

cos θ csc3 θ
dθ

dV
(
E�⊥ (ln h)

)
dV .

Remark 3 The Dirichlet energy in the special cases (1), (2), and (4) can be easily reduced
to Corollary 6.1, Corollary 6.2, and Theorem 6.1 of [11] after certain computations.

Motivated by Sahin [28, 29], we give the Lawson–Simons-type inequality [21] (possesses
important applications in the theory of integral currents [15] for SWP in a cosymplectic
manifold with constant holomorphic sectional curvature k (briefly: Cosymplectic space
form denoted by (�̄2m+1, k)). We also extract exceptional cases for the same.

Theorem 5 Let � = �T ×f �⊥ ×h �θ be a d-dimensional SWP of cosymplectic space form
(�̄2m+1, k), then

2p∑

b=1

2r∑

a=1

∥∥σ (xa, x̂b)
∥∥2 +

2p∑

a=1

q∑

b=1

∥∥σ
(
xa, x∗

b
)∥∥2 +

q∑

a=1

2r∑

b=1

∥∥σ
(
x∗

a, x̂b
)∥∥2

–
q∑

a=1

2r∑

b=1

g
(
σ
(
x∗

a, x∗
a
)
,σ (x̂b, x̂b)

) ≥ 2r
(

�⊥(h)
h

–
kq
4

)
, (60)

where �⊥(h) denotes the Laplacian of h on �⊥. Moreover, if the equality holds then � =
�T ×f �⊥ ×h �θ is single WP of (�̄2m+1, k) satisfying σ (DT ,D⊥) ⊥ ν and σ (DT ,Dθ ) ⊥ ν .

Proof Substituting U = V = x∗
a and V = W = x̂b into (5), we have

R̄
(
x∗

a, x̂b, x∗
a, x̂b

)
= –

kqr
2

. (61)
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By virtue of (19) and (61), we have

q∑

a=1

2r∑

b=1

g
(
R
(
x∗

a, x̂b
)
x̂b, x∗

a
)

–
q∑

a=1

2r∑

b=1

g
(
σ
(
x∗

a, x∗
a
)
,σ (x̂b, x̂b)

)

+
q∑

a=1

2r∑

b=1

‖σ (x∗
a, x̂b‖2 = –

kqr
2

. (62)

Further, utilizing Proposition 1 in the above expression, we compute

q∑

a=1

2r∑

b=1

‖σ (x∗
a, x̂b‖2 –

q∑

a=1

2r∑

b=1

g
(
σ
(
x∗

a, x∗
a
)
,σ (x̂b, x̂b)

)
= 2r

q∑

a=1

Hλ(x∗
a, x∗

a)
h

–
kqr
2

. (63)

By the definition of a Laplacian, the above expression reduces to the given form

q∑

a=1

2r∑

b=1

‖σ (x∗
a, x̂b‖2 –

q∑

a=1

2r∑

b=1

g
(
σ
(
x∗

a, x∗
a
)
,σ (x̂b, x̂b)

)
= 2r

(
�⊥(h)

h
–

kqr
2

)
. (64)

Now, we compute the norm of σ (DT ,D⊥) and σ (DT ,Dθ ). First, consider

2p∑

a=1

q∑

b=1

g
(
σ
(
xa, x∗

b
)
,σ

(
xa, x∗

b
))

=
2p∑

a=1

q∑

b=1

2s∑

c=1

g
(
σ
(
xa, x∗

b
)
, x̃c

)2 +
2p∑

a=1

q∑

b,c=1

g
(
σ
(
xa, x∗

b
)
, x̃c

)2

+
2p∑

a=1

q∑

b=1

2s∑

c=1

g
(
σ
(
xa, x∗

b
)
, x̃c

)2. (65)

In light of Lemmas 1 and 3, we have

2p∑

a=1

q∑

b=1

g
(
σ
(
xa, x∗

b
)
,σ

(
xa, x∗

b
))

=
p∑

a=1

q∑

b,c=1

((
ϕ

xa(f )
f

)2

+
(

xa(f )
f

)2)
g
(
x∗

b, x∗
c
)2 +

2p∑

a=1

q∑

b=1

2s∑

c=1

g
(
σ
(
xa, x∗

b
)
, x̃c

)2.

This implies the following relation

2p∑

a=1

q∑

b=1

g
(
σ
(
xa, x∗

b
)
,σ

(
xa, x∗

b
))

= q
∥∥
∥∥
∇T (f )

f

∥∥
∥∥

2

+
2p∑

a=1

q∑

b=1

2s∑

c=1

g
(
σ
(
xa, x∗

b
)
, x̃c

)2. (66)

Next, consider g(σ (xa, x̂b),σ (xa, x̂b)) and using the adopt frame, we obtain

2p∑

a=1

2s∑

b=1

g
(
σ (xa, x̂b),σ (xa, x̂b)

)

= csc2 θ

( p∑

a=1

2r∑

b,c=1

g
(
σ (xa, x̂b), nx̂c

)2 + g
(
σ (ϕxa, x̂b), nx̂c

)2
)
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+ sec2 θ csc2 θ

( p∑

a=1

2r∑

b,c=1

g
(
σ (xa, x̂b), ntx̂c

)2 + g
(
σ (ϕxa, x̂b), ntx̂c

)2
)

+ sec2 θ csc2 θ

( p∑

a=1

2r∑

b,c=1

g
(
σ (xa, tx̂b), nx̂c

)2 + g
(
σ (ϕxa, tx̂b), nx̂c

)2
)

+ sec4 θ csc2 θ

( p∑

a=1

2r∑

b,c=1

g
(
σ (xa, tx̂b), ntx̂c

)2 + g
(
σ (ϕxa, tx̂b), ntx̂c

)2
)

+
2p∑

a=1

2r∑

b=1

2s∑

c=1

g
(
σ (xa, x̂b), x̃c

)2 +
2p∑

a=1

2r∑

b=1

q∑

c=1

g
(
σ (xa, x̂b), nx̃c

)2. (67)

Utilizing Lemmas 1 and 2 in (67) and also utilizing (30)–(35) in (67), we receive that

2p∑

a=1

2r∑

b=1

g
(
σ (xa, x̂b),σ (xa, x̂b)

)

= 2 csc2 θ

p∑

a=1

r∑

b,c=1

((
ϕ

xa(h)
h

)2

+
(

xa(h)
h

)2)
g(x̂b, x̂c)2

+ 2 cot2 θ

p∑

a=1

r∑

b,c=1

((
ϕ

xa(h)
h

)2

+
(

xa(h)
h

)2)
g(x̂b, x̂c)2

+
2p∑

a=1

2r∑

b=1

2s∑

c=1

g
(
σ (xa, x̂b), x̃c

)2. (68)

By the definition of gradient, we concede that

2p∑

b=1

2r∑

a=1

g
(
σ (xa, x̂b),σ (xa, x̂b)

)

= 4r
(
1 + 2 cot2)θ

∥
∥∥
∥
∇T (h)

h

∥
∥∥
∥

2

+
2p∑

a=1

2r∑

b=1

2s∑

c=1

g
(
σ (xa, x̂b), x̃c

)2. (69)

From (64), (66), and (69), we have (60). If equality holds then we have

4r
(
1 + 2 cot2 θ

)
∥
∥∥∥
∇T (h)

h

∥
∥∥∥

2

+ q
∥
∥∥∥
∇T (f )

f

∥
∥∥∥

2

= 0.

The above equation shows that the functions f and h are constant on �T . Therefore, �

reduces to �T × �⊥×h, �θ is a single warped product. By the direct consequence of (66)
and (69), we conclude that σ (DT ,D⊥) ⊥ ν and σ (DT ,Dθ ) ⊥ ν . This completes the proof.�

5.3 Particular cases
In ineq. (42) of Theorem 5 if:

i. r = 0 and the norm of ∇T (h)
h , ∇⊥(h)

h vanishes then SWP is a CR-warped product with

2p∑

a=1

q∑

b=1

∥
∥σ

(
xa, x∗

b
)∥∥2 ≥ 0.
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ii. q = 0 and ∇T (f )
f vanishes, then SWP is WP �T ×h �θ satisfying

2p∑

b=1

2r∑

a=1

∥∥σ (xa, x̂b)
∥∥2 ≥ 0.

iii. p = 0 and the norm of ∇T (f )
f , ∇T (h)

h vanishes, then SWP is pointwise pseudoslant WP
�⊥ ×h �θ with

q∑

a=1

2r∑

b=1

∥∥σ
(
x∗

a, x̂b
)∥∥2 –

q∑

a=1

2r∑

b=1

g
(
σ
(
x∗

a, x∗
a
)
,σ (x̂b, x̂b)

) ≥ 2s
�⊥(h)

h
.

iv. the norm of ∇⊥(h)
h vanishes, then SWP is a biwarped product �T ×f �⊥ ×h �θ with

2p∑

b=1

2r∑

a=1

∥
∥σ (xa, x̂b)

∥
∥2 +

2p∑

a=1

q∑

b=1

∥
∥σ

(
xa, x∗

b
)∥∥2 +

q∑

a=1

2r∑

b=1

‖σ (x∗
a, x̂b‖2

–
q∑

a=1

2r∑

b=1

g
(
σ
(
x∗

a, x∗
a
)
,σ (x̂b, x̂b)

) ≥ –
cqr
2

. (70)
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