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Abstract
In this work, we present a novel biparameterized identity that yields a family of one-,
two-, three-, and four-point Newton-type formulas. Subsequently, we establish some
new Newton-type inequalities for functions whose first derivatives are α-convex. The
investigation is concluded with numerical examples accompanied by graphical
representations to substantiate the accuracy of the obtained results.
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1 Introduction
Convexity is a fundamental notion in mathematics with broad-ranging applications in
pure and applied fields. It plays a key role in the development of inequality theory, which
has been an active area of research for many years. Integral inequality theory has found
applications in many scientific fields, including physics, economics, and engineering. For
some works related to Newton-type inequalities via different types of convexity, we refer
the readers to [1–6].

Orlicz [7] introduced the class of α-convex functions as follows.

Definition 1.1 A function h : I ⊂R+ →R is said to be α-convex for some fixed 0 < α ≤ 1
if for all u, v ∈ I and t ∈ [0, 1],

h
(
tu + (1 – t)v

) ≤ tαh(u) +
(
1 – tα

)
h(v).

This notion, also called s-convexity in the first sense, represents a generalization of clas-
sical convexity, which can be recovered for α = 1.

Recently, fractional calculus has emerged as a powerful tool for modeling various phys-
ical and real-world phenomena. The idea of fractional derivatives and integrals has been
around for centuries, but it is only in the last few decades that fractional calculus has re-
ceived significant attention from mathematicians and scientists. The notions of fractional
derivatives and integrals have been used in many areas of mathematics, including differ-
ential equations, complex analysis, and numerical analysis. For a comprehensive overview
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of the applications and recent developments in fractional calculus, we refer the readers to
[8–10].

Many researchers have devoted their efforts to the study of integral inequalities via dif-
ferent fractional operators, and their works have led to significant advances in various
areas of mathematics and beyond. In [11] the authors investigated Hermite–Hadamard-
type inequalities using the Riemann–Liouville fractional integrals. Hamida et al. [12] es-
tablished the fractional Bullen-type inequality. Sarikaya et al. [13] derived the fractional
Simpson-type inequalities based on convexity, whereas Chen et al. [14] extended them to
s-convexity. For further related works, we refer to [15–21] and the references therein.

More recently, Ali et al. [22] explored parameterized inequalities of Simpson 3/8 type
for differentiable convex functions and established numerous classical and fractional in-
equalities of Newton type, trapezoidal type, and others.

In this paper, motivated by the above-mentioned results, we investigate a class of
fractional inequalities, the biparametrized Newton-type inequalities for differentiable α-
convex mappings. Our goal is to explore the general framework of quadrature formulas
with one, two, three, and four points. To achieve this, we introduce a biparameterized
identity involving the Riemann–Liouville fractional integrals, which enabled us to estab-
lish several new results for α-convex derivatives. We also review the existing literature
on this topic and highlight the significance of our contributions. This study provides a
plethora of new results, as well as some well-known ones, which can be applied in various
fields of science and engineering.

Let us consider the following biparameterized four-point quadrature formula:

P(υ, x,�; δ;λ) =
λ(x – υ)δ

ρ – υ
h(υ)

+
2δ(1 – λ)(x – υ)δ + (υ + ρ – 2x)δ

2δ(ρ – υ)
(
h(x) + h(υ + ρ – x)

)

+
λ(x – υ)δ

ρ – υ
h(ρ), (1)

where x ∈ [υ, υ+�

2 ] and λ ∈ [0, 1].

2 Preliminaries
In this section, we review some well-known definitions and essential tools related to frac-
tional calculus.

Definition 2.1 ([23]) The beta function is defined for complex numbers u and v such that
Re(u) > 0 and Re(v) > 0 by

B(u, v) =
∫ 1

0
tu–1(1 – t)v–1 dt.

Definition 2.2 ([23]) The incomplete beta function is defined for complex numbers u and
v such that Re(u) > 0 and Re(v) > 0 and for 0 < c < 1 by

B(c; u, v) =
∫ c

0
tu–1(1 – t)v–1 dt.
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Definition 2.3 ([23]) The hypergeometric function is defined for complex numbers u, v,
w, and z such that Re(w) > Re(v) > 0 and |z| < 1 by

2F1(u, v, w; z) =
1

B(v, w – v)

∫ 1

0
tv–1(1 – t)w–v–1(1 – zt)–u dt,

where B(·, ·) is the beta function.

Definition 2.4 ([23]) Given h ∈ L1[υ,�], the Riemann–Liouville fractional integrals of
order δ > 0 with υ ≥ 0, denoted by Iδ

υ+ h and Iδ
�– h, are defined as follows:

Iδ
υ+ h(x) =

1
�(δ)

∫ x

υ

(x – t)δ–1h(t) dt, x > υ,

Iδ
�– h(x) =

1
�(δ)

∫ �

x
(t – x)δ–1h(t) dt, � > x,

respectively, where �(δ) =
∫ ∞

0 e–ttδ–1 dt is the gamma function, and I0
υ+ f (x) = I0

�– f (x) =
f (x).

The paper is organized as follows. In Sect. 3, we introduce and prove a biparametric
fractional identity, from which we establish a multitude of Newton-type inequalities with
one, two, three, and four points for functions with α-convex derivatives. In Sect. 4, we
provide illustrative examples along with graphical representations to confirm the accuracy
of the obtained results and showcase some applications. The study concludes with a final
section summarizing our findings and providing a comprehensive conclusion.

3 Main results
Our approach begins by introducing the following identity, which plays a central role in
establishing our results.

Lemma 3.1 Let h : I ⊂ R → R be a differentiable function on I◦, υ,� ∈ I◦ with υ < �, and
h′ ∈ L1[υ,�]. Then we have the following equality for real numbers λ ∈ [0, 1], x ∈ [υ, υ+�

2 ],
and 0 < δ ≤ 1:

P(υ, x,�; δ;λ) – 	(υ, x,�; δ;λ)

=
(x – υ)δ+1

� – υ

∫ 1

0

(
tδ – λ

)
h′((1 – t)υ + tx

)
dt

–
(υ + � – 2x)δ+1

2δ+1(� – υ)

∫ 1

0
(1 – t)δh′

(
(1 – t)x + t

υ + �

2

)
dt

+
(υ + � – 2x)δ+1

2δ+1(� – υ)

∫ 1

0
tδh′

(
(1 – t)

υ + �

2
+ t(υ + � – x)

)
dt

–
(x – υ)δ+1

� – υ

∫ 1

0

(
(1 – t)δ – λ

)
h′((1 – t)(υ + � – x) + t�

)
dt,
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where P(υ, x,�; δ;λ) is given by (1), and

	(υ, x,�; δ) =
�(δ + 1)
� – υ

(
Iδ

x– h(υ) + Iδ
x+ h

(
υ + �

2

)

+ Iδ
(υ+�–x)– h

(
υ + �

2

)
+ Iδ

(υ+�–x)+ h(�)
)

. (2)

Proof Let

I =
(x – υ)δ+1

� – υ
I1 –

(υ + � – 2x)δ+1

2δ+1(� – υ)
I2 +

(υ + � – 2x)δ+1

2δ+1(� – υ)
I3 –

(x – υ)δ+1

� – υ
I4, (3)

where

I1 =
∫ 1

0

(
tδ – λ

)
h′((1 – t)υ + tx

)
dt,

I2 =
∫ 1

0
(1 – t)δh′

(
(1 – t)x + t

υ + �

2

)
dt,

I3 =
∫ 1

0
tδh′

(
(1 – t)

υ + �

2
+ t(υ + � – x)

)
dt,

and

I4 =
∫ 1

0

(
(1 – t)δ – λ

)
h′((1 – t)(υ + � – x) + t�

)
dt.

Integrating I1 by parts, we get

I1 =
∫ 1

0

(
tδ – λ

)
h′((1 – t)υ + tx

)
dt

=
1

x – υ

(
tδ – λ

)
h
(
(1 – t)υ + tx

)
∣∣
∣∣

t=1

t=0
–

δ

x – υ

∫ 1

0
tδ–1h

(
(1 – t)υ + tx

)
dt

=
1 – λ

x – υ
h(x) +

λ

x – υ
h(υ) –

δ

(x – υ)δ+1

∫ x

υ

(u – υ)δ–1h(u) du

=
1 – λ

x – υ
h(x) +

λ

x – υ
h(υ) –

�(δ + 1)
(x – υ)δ+1 Iδ

x– h(υ). (4)

Likewise, we get

I2 =
∫ 1

0
(1 – t)δh′

(
(1 – t)x + t

υ + �

2

)
dt

=
2

υ + � – 2x
(1 – t)δh

(
(1 – t)x + t

υ + �

2

)∣∣
∣∣

t=1

t=0

+
2δ

υ + � – 2x

∫ 1

0
(1 – t)δ–1h

(
(1 – t)x + t

υ + �

2

)
dt

= –
2

υ + � – 2x
h(x) +

2δ+1δ

(υ + � – 2x)δ+1

∫ υ+�
2

x

(
υ + �

2
– u

)δ–1

h(u) du

= –
2

υ + � – 2x
h(x) +

2δ+1�(δ + 1)
(υ + � – 2x)δ+1 Iδ

x+ h
(

υ + �

2

)
, (5)
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I3 =
∫ 1

0
tδh′

(
(1 – t)

υ + �

2
+ t(υ + � – x)

)
dt

=
2

υ + � – 2x
tδh

(
(1 – t)

υ + �

2
+ t(υ + � – x)

)∣∣
∣∣

t=1

t=0

–
2δ

υ + � – 2x

∫ 1

0
tδ–1h

(
(1 – t)

υ + �

2
+ t(υ + � – x)

)
dt

=
2

υ + � – 2x
h(υ + � – x) –

2δ+1δ

(υ + � – 2x)δ+1

∫ υ+�–x

υ+�
2

(
u –

υ + �

2

)δ–1

h(u) du

=
2

υ + � – 2x
h(υ + � – x) –

2δ+1�(δ + 1)
(υ + � – 2x)δ+1 Iδ

(υ+�–x)– h
(

υ + �

2

)
, (6)

and

I4 =
∫ 1

0

(
(1 – t)δ – λ

)
h′((1 – t)(υ + � – x) + t�

)
dt

=
1

x – υ

(
(1 – t)δ – λ

)
h
(
(1 – t)(υ + � – x) + t�

)
∣∣
∣∣

t=1

t=0

+
δ

x – υ

∫ 1

0
(1 – t)δ–1h

(
(1 – t)(υ + � – x) + t�

)
dt

= –
λ

x – υ
h(�) –

1 – λ

x – υ
h(υ + � – x) +

δ

(x – υ)δ+1

∫ �

υ+�–x
(� – u)δ–1h(u) du

= –
λ

x – υ
h(�) –

1 – λ

x – υ
h(υ + � – x) +

�(δ + 1)
(x – υ)δ+1 Iδ

(υ+�–x)+ h(�). (7)

By substituting equations (4)–(7) into equation (3) we obtain the intended outcome. �

Theorem 3.2 Let h : [υ,�] →R be a differentiable function on [υ,�] such that h′ ∈ L1[υ,�]
with 0 ≤ υ < �. If |h′| is α-convex on [υ,�], then we have

∣
∣P(υ, x,�; δ;λ) – 	(υ, x,�; δ)

∣
∣

≤ (x – υ)δ+1

� – υ

[(
C1(λ, δ) – C2(λ, δ,α)

)∣∣h′(υ)
∣
∣ + C2(λ, δ,α)

∣
∣h′(x)

∣
∣

+
(
C1(λ, δ) – C3(λ, δ,α)

)∣∣h′(υ + � – x)
∣
∣ + C3(λ, δ,α)

∣
∣h′(�)

∣
∣]

+
(υ + � – 2x)δ+1

2δ+1(� – υ)

[(
1

δ + 1
– B(δ + 1,α + 1)

)∣
∣h′(x)

∣
∣ +

1
α + δ + 1

∣
∣h′(υ + � – x)

∣
∣

+
(

B(δ + 1,α + 1) +
α

(δ + 1)(α + δ + 1)

)∣
∣∣∣h

′
(

υ + �

2

)∣
∣∣∣

]
,

where B(·, ·) and B(·; ·, ·) are beta and incomplete beta functions, respectively, and Ci (i =
1, 2, 3) are given by

C1(λ, δ) =
2δλ

δ+1
δ – λ(δ + 1) + 1

δ + 1
, (8)

C2(λ, δ,α) =
2δλ

α+δ+1
δ

(α + 1)(α + δ + 1)
+

1
α + δ + 1

–
λ

α + 1
, (9)
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and

C3(λ, δ,α) = B(δ + 1,α + 1) – 2B
(
λ1/δ ; δ + 1,α + 1

)
–

2λ(1 – λ1/δ)α+1 – λ

α + 1
. (10)

Proof From Lemma 3.1 we have

∣
∣P(υ, x,�; δ;λ) – 	(υ, x,�; δ)

∣
∣

≤ (x – υ)δ+1

� – υ

(∫ 1

0

∣
∣tδ – λ

∣
∣
∣
∣h′((1 – t)υ + tx

)∣∣dt

+
∫ 1

0

∣∣(1 – t)δ – λ
∣∣∣∣h′((1 – t)(υ + � – x) + t�

)∣∣dt
)

+
(υ + � – 2x)δ+1

2δ+1(� – υ)

(∫ 1

0
(1 – t)δ

∣∣
∣∣h

′
(

(1 – t)x + t
υ + �

2

)∣∣
∣∣dt

+
∫ 1

0
tδ

∣
∣∣
∣h

′
(

(1 – t)
υ + �

2
+ t(υ + � – x)

)∣
∣∣
∣dt

)
.

Using the α-convexity of |h′|, we get

∣∣P(υ, x,�; δ;λ) – 	(υ, x,�; δ)
∣∣

≤ (x – υ)δ+1

� – υ

(∫ 1

0

∣∣tδ – λ
∣∣{(1 – tα

)∣∣h′(υ)
∣∣ + tα

∣∣h′(x)
∣∣}dt

+
∫ 1

0

∣
∣(1 – t)δ – λ

∣
∣{(1 – tα

)∣∣h′(υ + � – x)
∣
∣ + tα

∣
∣h′(�)

∣
∣}dt

)

+
(υ + � – 2x)δ+1

2δ+1(� – υ)

(∫ 1

0
(1 – t)δ

{(
1 – tα

)∣∣h′(x)
∣∣ + tα

∣∣∣
∣h

′
(

υ + �

2

)∣∣∣
∣

}
dt

+
∫ 1

0
tδ

{
(
1 – tα

)
∣
∣∣∣h

′
(

υ + �

2

)∣
∣∣∣ + tα

∣∣h′(υ + � – x)
∣∣
}

dt
)

=
(x – υ)δ+1

� – υ

(∣
∣h′(υ)

∣
∣
∫ 1

0

∣
∣tδ – λ

∣
∣(1 – tα

)
dt +

∣
∣h′(x)

∣
∣
∫ 1

0

∣
∣tδ – λ

∣
∣tα dt

+
∣∣h′(υ + � – x)

∣∣
∫ 1

0

∣∣(1 – t)δ – λ
∣∣(1 – tα

)
dt +

∣∣h′(�)
∣∣
∫ 1

0

∣∣(1 – t)δ – λ
∣∣tα dt

)

+
(υ + � – 2x)δ+1

2δ+1(� – υ)

(∣
∣h′(x)

)∣∣
∫ 1

0
(1 – t)δ

(
1 – tα

)
dt +

∣∣
∣∣h

′
(

υ + �

2

)∣∣
∣∣

∫ 1

0
(1 – t)δtα dt

+
∣
∣∣
∣h

′
(

υ + �

2

)∣
∣∣
∣

∫ 1

0
tδ

(
1 – tα

)
dt +

∣∣h′(υ + � – x)
∣∣
∫ 1

0
tδ+α dt

)

=
(x – υ)δ+1

� – υ

[(
C1(λ, δ) – C2(λ, δ,α)

)∣∣h′(υ)
∣
∣ + C2(λ, δ,α)

∣
∣h′(x)

∣
∣

+
(
C1(λ, δ) – C3(λ, δ,α)

)∣∣h′(υ + � – x)
∣∣ + C3(λ, δ,α)

∣∣h′(�)
∣∣]

+
(υ + � – 2x)δ+1

2δ+1(� – υ)

[(
1

δ + 1
– B(δ + 1,α + 1)

)∣
∣h′(x)

∣
∣ +

1
α + δ + 1

∣
∣h′(υ + � – x)

∣
∣

+
(

B(δ + 1,α + 1) +
α

(δ + 1)(α + δ + 1)

)∣
∣∣
∣h

′
(

υ + �

2

)∣
∣∣
∣

]
.
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This deduction is based on the fact that

∫ 1

0

∣
∣tδ – λ

∣
∣(1 – tα

)
dt = C1(λ, δ) –

∫ 1

0

∣
∣tδ – λ

∣
∣tα dt = C1(λ, δ) – C2(λ, δ,α), (11)

∫ 1

0

∣∣(1 – t)δ – λ
∣∣(1 – tα

)
dt = C1(λ, δ) –

∫ 1

0

∣∣(1 – t)δ – λ
∣∣tα dt

= C1(λ, δ) – C3(λ, δ,α), (12)
∫ 1

0
(1 – t)δ

(
1 – tα

)
dt =

1
δ + 1

–
∫ 1

0
(1 – t)δtα dt =

1
δ + 1

– B(δ + 1,α + 1), (13)

and

∫ 1

0
tδ

(
1 – tα

)
dt =

1
δ + 1

–
∫ 1

0
tδ+α dt =

α

(δ + 1)(α + δ + 1)
(14)

with C1(λ, δ), C2(λ, δ,α), and C3(λ, δ,α) as defined in (8), (9), and (10), respectively.
Hence the proof is complete. �

Theorem 3.2 presents a diverse array of findings regarding one-, two-, three-, and four-
point Newton-type inequalities, encompassing both original discoveries and preexist-
ing results. Notably, by scrutinizing select parameter values of x and λ, a wealth of new
inequalities arises for various categories of convexity, and certain known ones are also
reencountered, some of them even improved. We will enumerate a selection of such re-
sults.

Corollary 3.3 Setting α = 1 in Theorem 3.2, we obtain the following fractional biparame-
terized four-point Newton-type inequality for convex functions:

∣∣P(υ, x,�; δ;λ) – 	(υ, x,�, δ)
∣∣

≤ (x – υ)δ+1

� – υ

((
1

(δ + 1)(δ + 2)
+

2δ

δ + 1
λ

δ+1
δ –

δ

δ + 2
λ

δ+2
δ –

λ

2

)(∣∣h′(υ)
∣
∣ +

∣
∣h′(�)

∣
∣)

+
(

1
δ + 2

+
δ

δ + 2
λ

δ+2
δ –

λ

2

)
(∣∣h′(x)

∣∣ +
∣∣h′(υ + � – x)

∣∣)
)

+
(υ + � – 2x)δ+1

2δ+1(� – υ)(δ + 2)

(∣
∣h′(x)

∣
∣ +

2
δ + 1

∣∣
∣∣h

′
(

υ + �

2

)∣∣
∣∣ +

∣
∣h′(υ + � – x)

∣
∣
)

.

Corollary 3.4 Setting x = υ in Corollary 3.3, we obtain the following fractional trapezoidal-
type inequality for convex functions:

∣∣
∣∣
h(υ) + h(�)

2
–

2δ–1�(δ + 1)
(� – υ)δ

(
Iδ
υ+ h

(
υ + �

2

)
+ Iδ

�– h
(

υ + �

2

))∣∣
∣∣

≤ � – υ

4(δ + 2)

[∣∣h′(υ)
∣∣ +

2
δ + 1

∣
∣∣
∣h

′
(

υ + �

2

)∣
∣∣
∣ +

∣∣h′(�)
∣∣
]

.
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Moreover, using the convexity of |h′|, we obtain

∣
∣∣
∣
h(υ) + h(�)

2
–

2δ–1�(δ + 1)
(� – υ)δ

(
Iδ
υ+ h

(
υ + �

2

)
+ Iδ

�– h
(

υ + �

2

))∣
∣∣
∣

≤ � – υ

4(δ + 1)
[∣∣h′(υ)

∣
∣ +

∣
∣h′(�)

∣
∣].

This improves the result obtained in Corollary 3.6 of [17].

Corollary 3.5 Setting x = υ+�

2 in Corollary 3.3, we obtain the following fractional param-
eterized three-point Newton–Cotes-type inequality for convex functions:

∣
∣∣
∣
λ

2
h(υ) + (1 – λ)h

(
υ + �

2

)
+

λ

2
h(�) –

2δ–1�(δ + 1)
(� – υ)δ

(
Iδ

( υ+�
2 )– h(υ) + Iδ

( υ+�
2 )+ h(�)

)
∣
∣∣
∣

≤ � – υ

4

((
1

(δ + 1)(δ + 2)
+

2δ

δ + 1
λ

δ+1
δ –

δ

δ + 2
λ

δ+2
δ –

λ

2

)(∣∣h′(υ)
∣∣ +

∣∣h′(�)
∣∣)

+ 2
(

1
δ + 2

+
δ

δ + 2
λ

δ+2
δ –

λ

2

)∣∣
∣∣h

′
(

υ + �

2

)∣∣
∣∣

)
.

Remark 3.6 Consider some particular cases in Corollary 3.5.
• If λ = 0, then we obtain the following fractional midpoint inequality for convex

functions:
∣∣
∣∣h

(
υ + �

2

)
–

2δ–1�(δ + 1)
(� – υ)δ

(
Iδ

( υ+�
2 )– h(υ) + Iδ

( υ+�
2 )+ h(�)

)
∣∣
∣∣

≤ � – υ

4(δ + 2)

(
1

δ + 1
∣
∣h′(υ)

∣
∣ + 2

∣∣
∣∣h

′
(

υ + �

2

)∣∣
∣∣ +

1
δ + 1

∣
∣h′(�)

∣
∣
)

.

This result improves that of Sarikaya et al. [11] (Theorem 5 for q = 1), which can be
derived by using the convexity of |h′| in the preceding inequality.

• If λ = 1, then we obtain another variant of fractional trapezoidal-type inequality for
convex functions,

∣∣
∣∣
h(υ) + h(�)

2
–

2δ–1�(δ + 1)
(� – υ)δ

(
Iδ

( υ+�
2 )– h(υ) + Iδ

( υ+�
2 )+ h(�)

)
∣∣
∣∣

≤ � – υ

4

(
δ2 + 3δ

2(δ + 1)(δ + 2)
(∣∣h′(υ)

∣
∣ +

∣
∣h′(�)

∣
∣) +

δ

δ + 2

∣∣
∣∣h

′
(

υ + �

2

)∣∣
∣∣

)
.

Moreover, using the convexity of |h′|, we can recover the result established in
Corollary 3.4.

• If λ = 1
2 , then we obtain the following fractional Bullen-type inequality for convex

functions:
∣∣
∣∣
1
4

(
h(υ) + 2h

(
υ + �

2

)
+ h(�)

)
–

2δ–1�(δ + 1)
(� – υ)δ

(
Iδ

( υ+�
2 )– h(υ) + Iδ

( υ+�
2 )+ h(�)

)
∣∣
∣∣

≤ � – υ

4

((
1

(δ + 1)(δ + 2)
+

2δ

δ + 1

(
1
2

) δ+1
δ

–
δ

δ + 2

(
1
2

) δ+2
δ

–
1
4

)

× (∣∣h′(υ)
∣∣ +

∣∣h′(�)
∣∣)
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+ 2
(

1
δ + 2

+
δ

δ + 2

(
1
2

) δ+2
δ

–
1
4

)∣
∣∣
∣h

′
(

υ + �

2

)∣
∣∣
∣

)
.

• If λ = 1
3 , then we obtain the following fractional Simpson-type inequality for convex

functions:

∣
∣∣
∣
1
6

(
h(υ) + 4h

(
υ + �

2

)
+ h(�)

)
–

2δ–1�(δ + 1)
(� – υ)δ

(
Iδ

( υ+�
2 )– h(υ) + Iδ

( υ+�
2 )+ h(�)

)
∣
∣∣
∣

≤ � – υ

4

((
1

(δ + 1)(δ + 2)
+

2δ

δ + 1

(
1
3

) δ+1
δ

–
δ

δ + 2

(
1
3

) δ+2
δ

–
1
6

)

× (∣∣h′(υ)
∣
∣ +

∣
∣h′(�)

∣
∣)

+ 2
(

1
δ + 2

+
δ

δ + 2

(
1
3

) δ+2
δ

–
1
6

)∣
∣∣
∣h

′
(

υ + �

2

)∣
∣∣
∣

)
.

• If λ = 1
4 , then we obtain the following fractional Simpson-type inequality for convex

functions:

∣
∣∣
∣
1
8

(
h(υ) + 6h

(
υ + �

2

)
+ h(�)

)
–

2δ–1�(δ + 1)
(� – υ)δ

(
Iδ

( υ+�
2 )– h(υ) + Iδ

( υ+�
2 )+ h(�)

)
∣
∣∣
∣

≤ � – υ

4

((
1

(δ + 1)(δ + 2)
+

2δ

δ + 1

(
1
4

) δ+1
δ

–
δ

δ + 2

(
1
4

) δ+2
δ

–
1
8

)

× (∣∣h′(υ)
∣
∣ +

∣
∣h′(�)

∣
∣)

+ 2
(

1
δ + 2

+
δ

δ + 2

(
1
4

) δ+2
δ

–
1
8

)∣
∣∣
∣h

′
(

υ + �

2

)∣
∣∣
∣

)
.

Corollary 3.7 Setting λ = 0 in Corollary 3.3, we obtain the following fractional symmetri-
cal two-point type inequality for convex functions:

∣∣
∣∣
2δ(x – υ)δ + (υ + � – 2x)δ

2δ(� – υ)
(
h(x) + h(υ + � – x)

)
– 	(υ, x,�; δ)

∣∣
∣∣

≤ (x – υ)δ+1

(� – υ)(δ + 2)

(
1

δ + 1
(∣∣h′(υ)

∣∣ +
∣∣h′(�)

∣∣) +
(∣∣h′(x)

∣∣ +
∣∣h′(υ + � – x)

∣∣)
)

+
(υ + � – 2x)δ+1

2δ+1(� – υ)(δ + 2)

(∣
∣h′(x)

∣
∣ +

2
δ + 1

∣∣
∣∣h

′
(

υ + �

2

)∣∣
∣∣ +

∣
∣h′(υ + � – x)

∣
∣
)

.

Moreover, taking δ = 1, we obtain the following companion Ostrowski-type inequality for
convex functions:

∣
∣∣
∣
h(x) + h(υ + � – x)

2
–

1
� – υ

∫ �

υ

h(z) dz
∣
∣∣
∣

≤ (x – υ)2

3(� – υ)

(
1
2
(∣∣h′(υ)

∣∣ +
∣∣h′(�)

∣∣) +
(∣∣h′(x)

∣∣ +
∣∣h′(υ + � – x)

∣∣)
)

+
(υ + � – 2x)2

12(� – υ)

(∣∣h′(x)
∣∣ +

∣
∣∣
∣h

′
(

υ + �

2

)∣
∣∣
∣ +

∣∣h′(υ + � – x)
∣∣
)

.
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Corollary 3.8 Setting x = 2υ+�

3 and λ = 3
8 in Corollary 3.3, we obtain the following frac-

tional four-point type inequality for convex functions:

∣∣∣
∣
(� – υ)δ–1

8 × 3δ–1 h(υ) +
(5 × 2δ + 8)(� – υ)δ–1

8 × 6δ

(
h
(

2υ + �

3

)
+ h

(
υ + 2�

3

))

+
(� – υ)δ–1

8 × 3δ–1 h(�) – 	

(
υ,

2υ + �

3
,�; δ

)∣∣
∣∣

≤ (� – υ)δ

3δ+1

[(
1

(δ + 1)(δ + 2)
+

2δ

δ + 1

(
3
8

) δ+1
δ

–
δ

δ + 2

(
3
8

) δ+2
δ

–
3

16

)

× (∣∣h′(υ)
∣
∣ +

∣
∣h′(�)

∣
∣)

+
(

1
δ + 2

+
δ

δ + 2

(
3
8

) δ+2
δ

–
3

16
+

1
2δ+1(δ + 2)

)(∣
∣∣∣h

′
(

2υ + �

3

)∣
∣∣∣ +

∣
∣∣∣h

′
(

υ + 2�

3

)∣
∣∣∣

)

+
1

2δ(δ + 1)(δ + 2)

∣
∣∣
∣h

′
(

υ + �

2

)∣
∣∣
∣

]
.

Moreover, taking δ = 1, we obtain the following Simpson-type 3/8 inequality for convex func-
tions:

∣
∣∣
∣
1
8

h(υ) +
3
8

(
h
(

2υ + �

3

)
+ h

(
υ + 2�

3

))
+

1
8

h(�) –
1

� – υ

∫ �

υ

h(z) dz
∣
∣∣
∣

≤ � – υ

9

[
157

1536
(∣∣h′(υ)

∣∣ +
∣∣h′(�)

∣∣) +
379

1536

(∣∣∣
∣h

′
(

2υ + �

3

)∣∣∣
∣ +

∣∣∣
∣h

′
(

υ + 2�

3

)∣∣∣
∣

)

+
1

12

∣∣
∣∣h

′
(

υ + �

2

)∣∣
∣∣

]
.

Remark 3.9 Using the convexity of |h′|, i.e., |h′( υ+�

2 )| ≤ 1
2 (|h′( 3υ+�

4 )|+ |h′( υ+3�

4 )|), the second
inequality of Corollary 3.8 recaptures Corollary 3.8 from [24].

Corollary 3.10 In Theorem 3.2, taking δ = 1, we obtain the following biparameterized
Newton-type inequality via α-convexity:

∣
∣∣
∣
λ(x – υ)
� – υ

h(υ) +
2(1 – λ)(x – υ) + υ + � – 2x

2(� – υ)
(
h(x) + h(υ + � – x)

)

+
λ(x – υ)
� – υ

h(�) –
1

� – υ

∫ �

υ

h(z) dz
∣∣∣
∣

≤ (x – υ)2

� – υ

((
2λ2 – 2λ + 1

2
+

λ(α + 2) – (α + 1) – 2λα+2

(α + 1)(α + 2)

)∣∣h′(υ)
∣∣

+
(

2λα+2

(α + 1)(α + 2)
+

1
α + 2

–
λ

α + 1

)∣
∣h′(x)

∣
∣

+
(

2λ2 – 2λ + 1
2

–
2(1 – λ)α+2 + λ(α + 2) – 1

(α + 1)(α + 2)

)∣
∣h′(υ + � – x)

∣
∣

+
2(1 – λ)α+2 + λ(α + 2) – 1

(α + 1)(α + 2)
∣
∣h′(�)

∣
∣
)
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+
(υ + � – 2x)2

4(� – υ)

(
α2 + 3α

2(α + 1)(α + 2)
∣
∣h′(x)

∣
∣ +

1
α + 2

∣∣
∣∣h

′
(

υ + �

2

)∣∣
∣∣

+
α2 + α + 2

2(α + 1)(α + 2)
∣
∣h′(υ + � – x)

∣
∣
)

.

Corollary 3.11 In Corollary 3.10, taking α = 1, we obtain the following biparameterized
Newton-type inequality for convex functions:

∣
∣∣
∣
λ(x – υ)
� – υ

h(υ) +
2(1 – λ)(x – υ) + υ + � – 2x

2(� – υ)
(
h(x) + h(υ + � – x)

)

+
λ(x – υ)
� – υ

h(�) –
1

� – υ

∫ �

υ

h(z) dz
∣
∣∣
∣

≤ (x – υ)2

� – υ

(
1 – 3λ + 6λ2 – 2λ3

6
∣∣h′(υ)

∣∣ +
2 – 3λ + 2λ3

6
∣∣h′(x)

∣∣

+
2 – 3λ + 2λ3

6
∣∣h′(υ + � – x)

∣∣ +
1 – 3λ + 6λ2 – 2λ3

6
∣∣h′(�)

∣∣
)

+
(υ + � – 2x)2

12(� – υ)

(∣∣h′(x)
∣∣ +

∣∣∣
∣h

′
(

υ + �

2

)∣∣∣
∣ +

∣∣h′(υ + � – x)
∣∣
)

.

Remark 3.12 In Corollary 3.11:
• If we take x = υ , then we obtain Corollary 2 from [4]. Moreover, if we use the

convexity of |h′|, then we obtain Theorem 2.2 from [3].
• If we take x = υ+�

2 and λ = 0, then we obtain Corollary 2 (for q = 1) from [6]. Moreover,
if we use the convexity of |h′|, then we obtain Theorem 2.2 from [5].

• If we take x = υ+�

2 and λ = 1
3 , then using the convexity of |h′|, we obtain Theorem 5

from [13].
• If we take x = υ+�

2 and λ = 1
2 , then using the convexity of |h′|, we obtain Corollary 3.2

from [12].
• If we take λ = 0, then using the convexity of |h′|, we obtain Theorem 5 from [2].

In the following theorems, we will not provide specific cases, as these are left to the
reader’s curiosity.

Theorem 3.13 Let h : [υ,�] → R be a differentiable function on [υ,�] such that h′ ∈
L1[υ,�] with 0 ≤ υ < �. If |h′|q is α-convex for q > 1 and p > 1 with 1

q + 1
p = 1, then we

have

∣∣P(υ, x,�; δ;λ) – 	(υ, x,�; δ)
∣∣

≤ (x – υ)δ+1

� – υ



1
p

{(
α

α + 1
∣∣h′(υ)

∣∣q +
1

α + 1
∣∣h′(x)

∣∣q
) 1

q

+
(

α

α + 1
∣
∣h′(υ + � – x)

∣
∣q +

1
α + 1

∣
∣h′(�)

∣
∣q

) 1
q
}

+
(υ + � – 2x)δ+1

2δ+1(� – υ)(pδ + 1)1/p

{(
α

α + 1
∣∣h′(x)

∣∣q +
1

α + 1

∣
∣∣
∣h

′
(

υ + �

2

)∣
∣∣
∣

q) 1
q

+
(

α

α + 1

∣∣
∣∣h

′
(

υ + �

2

)∣∣
∣∣

q

+
1

α + 1
∣
∣h′(υ + � – x)

∣
∣q

) 1
q
}

,
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where P and 	 are defined by (1) and (2), respectively, and


 =
λp+ 1

δ

δ
B
(

1
δ

, p + 1
)

+
(1 – λ)p+1

δ(p + 1) 2F1

(
1 –

1
δ

, 1, p + 2; 1 – λ

)
, (15)

with B(·, ·, ·) and 2F1(·, ·, ·; ·) are the beta and hypergeometric functions, respectively.

Proof From modulus applied to Lemma 3.1, using the Hölder inequality, we have

∣∣P(υ, x,�; δ;λ) – 	(υ, x,�; δ)
∣∣

≤ (x – υ)δ+1

� – υ

((∫ 1

0

∣∣tδ – λ
∣∣p dt

) 1
p
(∫ 1

0

∣∣h′((1 – t)υ + tx
)∣∣q dt

) 1
q

+
(∫ 1

0

∣
∣(1 – t)δ – λ

∣
∣p dt

) 1
p
(∫ 1

0

∣
∣h′((1 – t)(υ + � – x) + t�

)∣∣q dt
) 1

q
)

+
(υ + � – 2x)δ+1

2δ+1(� – υ)

((∫ 1

0
(1 – t)δp dt

) 1
p
(∫ 1

0

∣
∣∣
∣h

′
(

(1 – t)x + t
υ + �

2

)∣
∣∣
∣

q

dt
) 1

q

+
(∫ 1

0
tδp dt

) 1
p
(∫ 1

0

∣∣
∣∣h

′
(

(1 – t)
υ + �

2
+ t(υ + � – x)

)∣∣
∣∣

q

dt
) 1

q
)

.

Using the α-convexity of |h′|q, we get

∣∣P(υ, x,�; δ;λ) – 	(υ, x,�; δ)
∣∣

≤ (x – υ)δ+1

� – υ



1
p

((∫ 1

0

[(
1 – tα

)∣∣h′(υ)
∣∣q + tα

∣∣h′(x)
∣∣q]dt

) 1
q

+
(∫ 1

0

[(
1 – tα

)∣∣h′(υ + � – x)
∣
∣q + tα

∣
∣h′(�)

∣
∣q]dt

) 1
q
)

+
(υ + � – 2x)δ+1

2δ+1(� – υ)(pδ + 1)1/p

((∫ 1

0

[
(
1 – tα

)∣∣h′(x)
)∣∣q + tα

∣∣∣
∣h

′
(

υ + �

2

)∣∣∣
∣

q]
dt

) 1
q

+
(∫ 1

0

[(
1 – tα

)
∣∣
∣∣h

′
(

υ + �

2

)∣∣
∣∣

q

+ tα
∣
∣h′(υ + � – x)

∣
∣q

]
dt

) 1
q

)

=
(x – υ)δ+1

� – υ



1
p

{(
α

α + 1
∣∣h′(υ)

∣∣q +
1

α + 1
∣∣h′(x)

∣∣q
) 1

q

+
(

α

α + 1
∣
∣h′(υ + � – x)

∣
∣q +

1
α + 1

∣
∣h′(�)

∣
∣q

) 1
q
}

+
(υ + � – 2x)δ+1

2δ+1(� – υ)(pδ + 1)1/p

{(
α

α + 1
∣∣h′(x)

∣∣q +
1

α + 1

∣∣∣
∣h

′
(

υ + �

2

)∣∣∣
∣

q) 1
q

+
(

α

α + 1

∣
∣∣∣h

′
(

υ + �

2

)∣
∣∣∣

q

+
1

α + 1
∣∣h′(υ + � – x)

∣∣q
) 1

q
}

,

where


 =
∫ 1

0

∣
∣(1 – t)δ – λ

∣
∣p dt =

∫ 1

0

∣
∣tδ – λ

∣
∣p dt
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=
∫ λ

1
δ

0

(
λ – tδ

)p dt +
∫ 1

λ
1
δ

(
tδ – λ

)p dt

=
1
δ

(∫ λ

0
(λ – u)pu

1
δ

–1 du +
∫ 1

λ

(u – λ)pu
1
δ

–1 du
)

=
λp+ 1

δ

δ

∫ 1

0
(1 – v)pv

1
δ

–1 dv +
(1 – λ)p+1

δ

∫ 1

0
(1 – v)p(1 – (1 – λ)v

) 1
δ

–1 dv

=
λp+ 1

δ

δ
B
(

1
δ

, p + 1
)

+
(1 – λ)p+1

δ
B(1, p + 1)2F1

(
1 –

1
δ

, 1, p + 2; 1 – λ

)

=
λp+ 1

δ

δ
B
(

1
δ

, p + 1
)

+
(1 – λ)p+1

δ(p + 1) 2F1

(
1 –

1
δ

, 1, p + 2; 1 – λ

)
.

The proof is complete. �

Theorem 3.14 Let h : [υ,�] → R be a differentiable function on [υ,�] such that h′ ∈
L1[υ,�] with 0 ≤ υ < �. If |h′|q is α-convex for q > 1, then we have

∣
∣P(υ, x,�; δ;λ) – 	(υ, x,�; δ)

∣
∣

≤ (x – υ)δ+1

� – υ
C

1– 1
q

1 (λ, δ)
[((

C1(λ, δ) – C2(λ, δ,α)
)∣∣h′(υ)

∣
∣q + C2(λ, δ,α)

∣
∣h′(x)

∣
∣q) 1

q

+
((
C1(λ, δ) – C3(λ, δ,α)

)∣∣h′(υ + � – x)
∣
∣q + C3(λ, δ,α)

∣
∣h′(�)

∣
∣q) 1

q
]

+
(υ + � – 2x)δ+1

2δ+1(� – υ)(δ + 1)1– 1
q

×
[((

1
δ + 1

– B(δ + 1,α + 1)
)∣∣h′(x)

∣∣q + B(δ + 1,α + 1)
∣∣∣
∣h

′
(

υ + �

2

)∣∣∣
∣

q) 1
q

+
(

α

(δ + 1)(α + δ + 1)

∣∣
∣∣h

′
(

υ + �

2

)∣∣
∣∣

q

+
1

α + δ + 1
∣
∣h′(υ + � – x)

∣
∣q

) 1
q
]

,

where B(·, ·) and B(·; ·, ·) are the beta and incomplete beta functions, respectively, and Ci

(i = 1, 2, 3) as defined in (8), (9), and (10).

Proof From modulus applied to Lemma 3.1, the power mean inequality, and the α-
convexity of |h′|q we have

∣
∣P(υ, x,�; δ;λ) – 	(υ, x,�; δ)

∣
∣

≤ (x – υ)δ+1

� – υ

((∫ 1

0

∣
∣tδ – λ

∣
∣dt

)1– 1
q
(∫ 1

0

∣
∣tδ – λ

∣
∣
∣
∣h′((1 – t)υ + tx

)∣∣q dt
) 1

q

+
(∫ 1

0

∣∣(1 – t)δ – λ
∣∣dt

)1– 1
q
(∫ 1

0

∣∣(1 – t)δ – λ
∣∣∣∣h′((1 – t)(υ + � – x) + t�

)∣∣q dt
) 1

q
)

+
(υ + � – 2x)δ+1

2δ+1(� – υ)

×
((∫ 1

0
(1 – t)δ dt

)1– 1
q
(∫ 1

0
(1 – t)δ

∣∣
∣∣h

′
(

(1 – t)x + t
υ + �

2

)∣∣
∣∣

q

dt
) 1

q
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+
(∫ 1

0
tδ dt

)1– 1
q
(∫ 1

0
tδ

∣
∣∣∣h

′
(

(1 – t)
υ + �

2
+ t(υ + � – x)

)∣
∣∣∣dt

) 1
q
)

≤ (x – υ)δ+1

� – υ
C

1– 1
q

1 (λ, δ)
[((

C1(λ, δ) – C2(λ, δ,α)
)∣∣h′(υ)

∣∣q + C2(λ, δ,α)
∣∣h′(x)

∣∣q) 1
q

+
((
C1(λ, δ) – C3(λ, δ,α)

)∣∣h′(υ + � – x)
∣
∣q + C3(λ, δ,α)

∣
∣h′(�)

∣
∣q) 1

q
]

+
(υ + � – 2x)δ+1

2δ+1(� – υ)(δ + 1)1– 1
q

×
[((

1
δ + 1

– B(δ + 1,α + 1)
)∣∣h′(x)

∣∣q + B(δ + 1,α + 1)
∣
∣∣
∣h

′
(

υ + �

2

)∣
∣∣
∣

q) 1
q

+
(

α

(δ + 1)(α + δ + 1)

∣∣
∣∣h

′
(

υ + �

2

)∣∣
∣∣

q

+
1

α + δ + 1
∣
∣h′(υ + � – x)

∣
∣q

) 1
q
]

.

Here we have used (11)–(14) and the fact that

∫ 1

0

∣
∣tδ – λ

∣
∣dt =

∫ 1

0

∣
∣(1 – t)δ – λ

∣
∣dt = C1(λ, δ)

and

∫ 1

0
(1 – t)δ dt =

∫ 1

0
tδ dt =

1
δ + 1

.

The proof is complete. �

4 Examples and applications
4.1 Illustrative examples
In this section, we presnt several two- and three-dimensional graphical representations to
corroborate the accuracy of the results obtained in our study.

Note that the graphical representations in this section were created using Matlab soft-
ware, and in all the figures, the red color is used to depict the left-hand side (LHS), whereas
blue is used for the right-hand side (RHS), consistently across all results.

Example 4.1 In this particular example, we initiate the analysis by establishing the param-
eter values of x = υ+�

2 = 1
2 and α = 1, and subsequently exhibit the outcomes as functions

of the remaining parameters λ and δ. The function h defined over the interval [0, 1] as
h(u) = u2 is considered for this purpose. Accordingly, |h′(u)| = 2u is a convex function
over [0, 1], and hence Corollary 3.5 gives

∣∣
∣∣
λ

2
h(0) + (1 – λ)h

(
1
2

)
+

λ

2
h(1) – 	

(
0,

1
2

, 1; δ
)∣∣

∣∣

=
∣
∣∣
∣
1 – λ

4
+

λ

2
–

δ(δ + 1) + (δ + 2)(δ + 3) + 2
23(δ + 1)(δ + 2)

∣
∣∣
∣

≤ 1
4

(
2
(

1
(δ + 1)(δ + 2)

+
2δ

δ + 1
λ

δ+1
δ –

δ

δ + 2
λ

δ+2
δ –

λ

2

)

+
1
2

(
1

δ + 2
+

δ

δ + 2
λ1+ 2

δ –
λ

2

))
.
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Figure 1 The comparative analysis between the left and right sides of Corollary 3.5

Figure 2 Particular cases

The surface plot of this result is depicted in Fig. 1.
Some particular cases:
• By fixing λ = 0 we obtain the curve related to the fractional midpoint rule with respect

to δ, as shown in Fig. 2 (Case 1).
• By fixing λ = 1 we obtain the curve related to the fractional trapezoidal rule with

respect to δ, as shown in Fig. 2 (Case 2).
• By fixing λ = 1

3 we obtain the curve related to the fractional Simpson rule with respect
to δ, as shown in Fig. 2 (Case 3).

Example 4.2 In this example, we focus on the classical four-point Newton-type inequal-
ities. Specifically, we fix x = 2υ+�

3 = 1
3 and δ = 1, and represent the resultant output with

respect to λ and α. To accomplish this, we consider the function h defined over the inter-
val [0, 1] as h(u) = uα+1

α+1 with 0 < α ≤ 1, whose derivative |h′(u)| = uα is α-convex. Thus by
Corollary 3.10 we obtain

∣∣∣
∣
λ

3
h(0) +

3 – 2λ

6

(
h
(

1
3

)
+ h

(
2
3

))
+

λ

3
h(1) –

∫ 1

0
h(z) dz

∣∣∣
∣

=
∣∣
∣∣

3 – 2λ

6(α + 1)

(
1 + 2α+1

3α+1

)
+

λ

3(α + 1)
–

1
(α + 1)(α + 2)

∣∣
∣∣

≤ 1
9

(
1

3α

(
2λα+2

(α + 1)(α + 2)
+

1
α + 2

–
λ

α + 1

)

+
2α

3α

(
2λ2 – 2λ + 1

2
–

2(1 – λ)α+2 + λ(α + 2) – 1
(α + 1)(α + 2)

)
+

2(1 – λ)α+2 + λ(α + 2) – 1
(α + 1)(α + 2)

)
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Figure 3 The comparative analysis between the left and right sides of Corollary 3.10

Figure 4 Particular case

+
1

36

(
1

3α

(
α2 + 3α

2(α + 1)(α + 2)

)
+

1
2α(α + 2)

+
2α

3α

(
α2 + α + 2

2(α + 1)(α + 2)

))
.

The surface plot of this result is depicted in Fig. 3.
Particular case:
• By fixing λ = 3

8 we obtain the curve related to the Simpson-type 3/8 inequality via
α-convexity, as shown in Fig. 4.

The graphical representation of the results of these examples demonstrates the accuracy
of the findings obtained in this study.

4.2 Applications
For arbitrary real numbers a1, a2, . . . , an, we have:

The arithmetic mean A(a1, a2, . . . , an) = a1+a2+···+an
n .

The harmonic mean H(a1, a2, . . . , an) = n
1

a1
+ 1

a2
+···+ 1

an
, a1, a2, . . . , an > 0.

The geometric mean G(a1, a2, . . . , an) = n√a1a2 . . . an

The logarithmic mean L(a1, a2) = a2–a1
ln a2–ln a1

, a1, a2 > 0, a1 �= a2.

The p-logarithmic mean Lp(a1, a2) = ( ap+1
2 –ap+1

1
(p+1)(a2–a1) )

1
p , a1 �= a2, p ∈R\{–1, 0}.

Proposition 4.3 Let a, b ∈R with 0 < a < b. Then we have

∣∣H(a, a, a, b) + H(a, b, b, b) – G2(a, b)L–1(a, b)
∣∣

≤ b – a
48ab

(
a2 + b2

2
+ 2

((
4ab

3a + b

)2

+
(

4ab
a + 3b

)2)
+

(
2ab

a + b

)2)
.
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Proof The claim is a consequence of the second inequality in Corollary 3.7 applied to the
function h(z) = 1

z on the interval [ 1
b , 1

a ] with x = 3a+b
4ab . �

Proposition 4.4 Let a, b ∈R with 0 < a < b. Then we have

∣
∣A

(
a2, b2) – L2

2(a, b)
∣
∣ ≤ (b – a) 3√10

10

((
a3 +

(
a + b

2

)3) 1
3

+
((

a + b
2

)3

+ b3
) 1

3
)

.

Proof The statement can be derived from Theorem 3.13 by setting α = δ = 1 and applying
it to the function h(z) = 1

2 z2 on the interval [a, b] with q = 3 and x = a. �

5 Conclusions
We have investigated a class of fractional biparameterized four-point Newton-type in-
equalities via α-convexity. By introducing a general identity involving Riemann–Liouville
integral operators we have derived several new results that complement and extend the
existing literature on this topic. Our contributions provide a broad range of tools that can
be used in diverse fields of science and engineering. Furthermore, our findings can poten-
tially have practical implications in numerical integration, optimization, and other related
areas.

Note that from a purely practical standpoint, this result is used to choose the value of λ

and possibly that of x to achieve the minimum of the right-hand side, which are obviously
specific to the function h.

Finally, we hope that this work will inspire further research in this direction and lead to
new applications and developments.
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