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1 Introduction

Let D = {z € C | |z] < 1} be the unit disk in the complex plane C and dA(z) = @ be the
normalized Lebesgue area measure on D. Let £ denote a class (see [2, 13] for more details
about the class). A function p(z) is said to be in L if p(z) is positive on D satisfying the
following conditions:

(a) For any z € D, there is a constant ¢; > 0 such that p(z) < c¢;(1 - |z]).

(b) There is a constant ¢, > 0 such that |p(z) — p(w)| < cz|z — w|, where z, w € D.

Write A < B for two quantities A and B if there is a constant C > 0 such that A < CB.
Furthermore, A < B means that both A < Band B < A are satisfied. A subharmonic func-
tion ¢(z) € C2(D) satisfying (Ap(z)) ™2 < p(z) is called ¢ € L*, where p(z) € £ and A is
the standard Laplace operator.

The Lebesgue space L, (0 < p < 00) consists of all measurable functions f on D such that

1/p
”f”w,p = (/D lf(Z)ei(p(z) |p dA(Z)) < OQ0.

In particular, L7® consists of all measurable functions f on ID such that

f llp,00 = €SSSUP, Py lf(z)e“ﬂ(z>| < 0.

Now let H(D) be the space of analytic functions in the unit disk D. The exponential
weighted Bergman spaces AY = Lf; N H(D). When 1 < p < o0, Aﬁ is a Banach space, and
AP is a Fréchet space if 0 < p < 1.
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Notice that Aé is a reproducing kernel Hilbert space, and hence there is a function K, , €

Aé such that the orthogonal projection P from Lé to A; can be represented as

P(f)(z) = /D SWK, (w)e ™ dA(w), zeD.

See [3, 13]. The function K, ,(-) is called the reproducing kernel of Bergman space Aé
and has the property that K, ,(w) = K, ,,(2) for every z,w € D. It follows from [3, Theo-
rems 4.1 and 4.2] that, for ¢ € £ and 1 < p < oo, the Bergman projection P: Ll — A% is
bounded.

For a positive Borel measure ¢ on D and a measurable function f, the Toeplitz operator

and Hankel operator are defined respectively by
T,(g)(2) = /D gWK,(z,w)e ™™ du(w), geA?
and
Hr(9)(2) = / (f(Dgw) —f(W)gw)) K, (z,w)e ™ dA(w), g e A,
D

The pioneering work on this class of exponential weighted Bergman spaces was done by
Oleinik and Perelman [14]. Throughout this paper, we call these spaces OPS. Later, has
attracted much attention. In [12], Lin and Rochberg characterized the boundedness and
compactness of Hankel operators on exponential weighted Bergman spaces. To further
study these spaces, Lin and Rochberg [13] gave the necessary and sufficient conditions
for Schatten-p class Toeplitz (or Hankel) operators when 1 < p < co. Furthermore, for
0 < p < 1, the sufficient condition for Schatten class membership of the Toeplitz operator
was obtained as well. In [3, 4], Arroussi and Pau studied the dual space and estimates of
the reproducing kernel.

Borichev, Dhuez, and Kellay [5] introduced another exponential weighted Bergman
spaces. The authors, in [2], showed the Schatten class membership of the Toeplitz opera-
tor on spaces introduced by [5]. Hu, Lv, and Schuster [8] characterized a new kind of space,
which contains these exponential weighted Bergman spaces considered in [5], write HLS
for simplicity. Indeed, the spaces HLS differ from the spaces in this paper, see [8]. In [9],
Hu and Pau gave bounded and compact Hankel operators associated with general symbols.
Zhang, Wang and Hu [17] showed the boundedness and compactness of Toeplitz oper-
ators with positive symbols acting between different spaces HLS, and Schatten-p class
membership. Recently, in [16], the authors studied the sufficient and necessary conditions
for Schatten-p class membership of Hankel operators associated with general symbols on
HLS.

For 0 < p < 00, by using averaging functions, we obtain the sufficient and necessary con-
ditions for Schatten-p class membership of Toeplitz operators with positive symbols and
Hankel operators with general symbols on OPS. These results fill the research gap of [13].
Generally speaking, the difficulty in such problems lies in the characterization of 0 < p < 1.
For this goal, we need more tools than [13]. Schatten-/ class membership of operators is

an important generalization of Schatten-p class operators, and it is interesting to study
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Schatten-/ class membership. We refer to [1] and the relevant references therein for a
brief account on Schatten-# class. In this paper, we explore Schatten-% class Toeplitz and
Hankel operators on the spaces. Such properties of Hankel operators are not yet known
in the existing literature.

By [8, Theorem 3.2], the following estimate holds for the reproducing kernel in this

space: there exist constants C,o > 0 such that

e?@+o(w)
Ci
p(z)p(w)

-0 dp(z,w)

’I((z,w)‘g , zwel,

where d,(z, w) is the Bergman metric induced by reproducing kernel. However, the repro-
ducing kernel in OPS does not have the similar estimate, which brings more obstacles to
the research in this paper.

The paper is organized as follows. In Sect. 2, we give some basic notation and lemmas. In
Sect. 3, we show the sufficient and necessary conditions for Schatten-p class membership
of Toeplitz operators with positive symbols, and give the characterization for Schatten-/
class membership of Toeplitz operators induced by continuous increasing convex func-
tions. Finally, in Sect. 4, we investigate membership in Schatten-p class Hankel operators

with general symbols, and also obtain Schatten-/ class properties of Hankel operators.

2 Preliminaries

We begin with giving some basic notation and lemmas. Forz € Dand » > 0,1et D(z,r) = {w:
|w—z| < r} be the Euclidean disk with radius  and center z. Also, we use D"(z) = D(z, rp(z))
to denote the disk with radius rp(z) and center z.

The following lemma is from [3, (2.1)].

. -1 -1
Lemma 2.1 Suppose p € L£,ze€ D and w € D*(z), where 0 <a <m,, = w Then

1
§p(W) <p(z) <2p(w). (2.1)
It is from [3, Lemma A] that we have the following pointwise estimate.

Lemma 2.2 Suppose ¢ € L*,0<p <00, B € R and z € D. Then there exists a constant
M > 1, for f € H(D) and small enough § > 0, such that

ppor) - M P -py(c)
e e < s /D et aa, (22)

As we known, the covering lemma is useful for studying Bergman spaces, so does expo-

nential weighted Bergman spaces. The following lemma comes from [2, Lemma B].

Lemma 2.3 Suppose p € L and 0 <r <m,. Then there exists a sequence {a;};*; C I satis-
Jying

(@) aj & D" (ax), k #J.

(b)y D= U;fl D' (a).

(c) D'(aj) € D¥(a)), where D' (a)) =\, pra) D' (2)-

4
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(d) {D3’(a,-)}j°f1 is a covering of D of finite multiplicity, that is, for any z € D,

oo
1 = Z XD3’(a1-)(Z) = N: (23)
j=1

where N is a positive constant integer.

A sequence {a,»};’fl satisfying the above lemma is called the (p, r)-lattice. Furthermore,
the conditions (a) and (c) indicate there is a s > 0 such that

D" (a) "D (ax) =¥, j#k.

It is important to investigate pointwise and norm estimates of the reproducing kernels
K, on Aé. The following results are from [3, Lemma B, Theorem 3.1 and (3.1)].
If o € £L*,0<r<m,and w € D"(z), then we have

Ky eW)| = 1Ky 2ll g2 1 Kl g2 (2.4)

Lemma 2.4 Suppose ¢ € L* and function p satisfies that, if there exist b>0and 0 <t < 1,
forz,we D and |z —w| > bp(w), such that

p(z) < p(w) +tlz—wl|,
then
1Ky 2125 < €9 p72(2). (2.5)

Definition 2.5 The weight ¢ € £* is called ¢ € £ if the function p satisfies, for any m > 1,
there exist constants b,, >0 and 0 < t,, < 1/m, when |z — w| > b,,p(w), such that

p(2) < p(W) + tulz —w|.

Theorem 2.6 If ¢ € &, then for any M > 1 there is a constant C > 0 such that

1Ky (2)] < Cerestn L _L (mi“{p(z)’p(w)} )M aweD (2.6)
e p(z) p(w) |z —wl © ' '

Proof See [3, Theorem 3.1]. O

With the help of estimates for the reproducing kernels, we get the following atomic de-
composition.

Lemma 2.7 Suppose ¢ € £ and {a; Tisa (0, r)-lattice, where 0 < r < m,. Then, if{)»,-}ffl €
P, we have F(2) = 37, Miky,q,(2) € AL and

o0
2 k| = ClONE s
j=1 ®,2
where ky,,(z) = % is called normalized reproducing kernel.
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Proof By (2.5) and Holder’s inequality, we have
. 2
2 ol -
IF@I,, < f (Z Ihle S f>p(aj>|1<¢,a,.<z>|> 9 dA(z)
D .
j=1

s fD<Z I%-Ize‘ﬂ(“f)|1<w,a,-(z)l>M(z>eW) dA(2), 27)

j=1
where
M(2) =) p(a))’|Kyq (2)|e .
j=1

It follows from (2.2), (2.5), and [3, Lemma 3.3] that
[o¢]
M(z) < Z / Ky (w)]|e?™ dA(w) < / |Ky(w)|e*™ dA(w) S e (2.8)
j=1 D’(aj) D

This together with (2.7), (2.8), and (2.5) implies that

lFal. < [

D

(Z 3124 | Ky, (2)] ) e dA(z)

j=1

Y InlPe @ / |Kya(2) |6 dA(2)
D

~
—

2
127

o0
<SP = 0|

~.

which ends the proof. d

To describe the Schatten-p membership of Hankel operators, we need some auxiliary
conclusions. For z, w € D, we write

|z —w|

W) i@, o)

Lemma 2.8 ([2, Lemma 4.4]) Let p € L and {a;}; be a (p, r)-lattice on D. Then for any
w e D, the set

D,,(w) = {z eD|d,(z,w)< Zmr}

contains at most K points of the lattice, where K depends on the positive integer m, but not
on the point w.

Lemma 2.9 ([2, Lemma 4.5]) Let p € L, r € (0,m,] and k € N*. Any (p, r)-lattice {a,};’fl
on D, can be partitioned into M subsequences such that, if a; and a; are different points in
the same subsequence, then |a; — a;| > 2" r min{p(a;), p(a;)}.

Page 5 of 26
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Given a positive Borel measure 1 on D and r > 0, the averaging function (i, with respect
to measure u is defined by

- Jorm A1
wy(z) = W

Lemma 2.10 If u is a positive Borel measure, 0 < p < 00 and r € (0,m,], then

[ le@e 9 duie) 5 [ let@e | 7,2 daca) (29)
D D

where g € H(D).

Proof See [7, Lemma 2.4]. O

3 Schatten class Toeplitz operators
In this section, for 0 < p < 0o, we investigate the sufficient and necessary conditions for
Schatten-p class membership of Toeplitz operators with positive measure symbols on
OPS. Also, we give the characterization for Schatten-/ class membership of Toeplitz op-
erators where / is a continuous increasing convex function.

Let T': H; — H, be a bounded linear operator, and write s;(T") for the singular values of
T, where

s;(T) = inf{|| T - K|| : K : H; — Ha, rank (K) <j}.

Here rank(K) means the rank of operator K. Recall that the operator T is compact if and
only if s;(T) — 0 whenever j — oco. For 0 < p < 00, it is called T is in S, if

o0
1T, = D s(TF < o0,
j=1

and we write T € S,(Hi, H>). Futhermore, || - ||s, is actually a norm when 1 < p < 0o and
[ -Ils, isnot,if0<p<1.
Using
IS+ Tls, < lISlls, + I T'lls,, 1<p<o0, (3.1)
and
p P P
IS+ Tlls, <lISlls, + 1 Tlls,, O<p<1, (3.2)

itiseasytosee T € S, ifand only if T*T e S;ja.

As we known, the Schatten class of Toeplitz operators with positive measure symbols is
an important problem in operator theory, which has been described in many papers (see,
for example, [2, 13, 17]). The following theorem is closely related to the main result [2,
Theorem 1.2]. To Study the Schatten class of Toeplitz operators, we define the measure
dx, by

dA(z)

d)np(Z): m, zeD.
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Theorem 3.1 Suppose ¢ € £, 0 < p < 00, and | is a finite positive Borel measure on D.
Then following statements are equivalent:

(@) T, € Sp(Aé).

(b) its € LP(D, dA,), where § € (0, ;).

(©) {1t (W)}, € P, where {11, (W)}, is a (o, r)-lattice with r € (0, a,,].

(d) 7t € LP(D, dA,), where [i(w) = [, |kyw(2)|? dju(2) is the Berezin transform of .

Proof The proof of (b) < (c) < (d) is similar to [17, Proposition 2.5], and we omit the
details here. Indeed, this proof indicates the L? behavior of averaging function i, is inde-
pendent of r. (That is, for small enough 7, || sz < || {r||» With small enough §.) The rest
part is an analogue of [17, Theorem 5.1], and for the convenience of readers, we give the
proof for implication (a) = (c) when 0 < p < 1.

Assume the Toeplitz operator T}, isin S, (Aé). Let {w,} be a (p, r)-lattice with r € (0, m1,]
sufficiently small. Set a large enough integer 1 > 2, by Lemma 2.9, the lattice {w,,} can be
devided into I" subsequences such that

lw; —wj| > 2’”rmin(p(Wi)’P(Wi))’

where w; and w; are in the same subsequence. Let {a,,} be such a subsequence, and measure
v be defined by

dv = <Xn: Xn> du,

where y, is the characteristic function of D"(a,,). Disks D" (a,) are pairwise disjoints since
m > 2. Note that T, € SP(Aé) and0<v < pu,thus0<7T,<T,,andthen T, € Sp(Aé) and

I TVHSP(A%) < ||TM||SP(A(%)'
Let {e,} be an orthonormal basis for Aé. Consider an operator G on Aé as

Gf =) (frenazkpan fEA. (3.3)

It follows from Lemma 2.7 that G is bounded on A?, then T'= G*T,G is in S,(A?) and

||T||sp(A§)) < ||G||2 : || Tv”sp(Ag,) S ||Tu||3p(A§,)~ (3~4")

By (3.3) and

(Tf,8)a2 = (TVGf, Gg)a2, o8 €A,

we have

Tf = Y (Tokpankoa) a2 (frendaze €A

nj

We now take a decomposition of the operator T as T = T} + T, where T is the diagonal
operator defined by

Tif = ) (Tokpan Koa) a2 (frendszens f AT,
n
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and T, = T — T} is the non-diagonal part. Using Rotfel'd inequality (see [15]), we see

17U, 2y = IT21E ) = 1Tl (3.5)

Sp(Ay)

Notice that 71 is a positive diagonal operator, this together with the definition of v, (2.1),
(2.4), and (2.5) gives

p
1T ) = Tk, < ([ Jme dv(z))
> > D
Z(/D p(z)2 a (Z)> N;“ A (36)

For 0 < p < 1, [18, Proposition 1.29] and Lemma 2.3 show

IT2l oy < D2 D (Teemendy = D (Tokpan Ko oo
n k

k+#n
<Z(/|k‘ﬂ“n(§)||kwuk(g)|€_2¢ dv(é))
k+#n
=S(X ], fonblbatole ™ Oaue) o
k+#n

If n # k, then |a, — ax| > 2”rmin(p(a,), p(ax)). Hence, for & € D'(a;), we get either
—&|>2"?rmin(p(a,), p(€)) or |& —ax| >2"*rmin(p(§), plax)).

Therefore, for any & € D" (a;), we may assume |a,, — &| > 2”2 rmin(o(a,), p(£)).

For any #n,k € N, set
=3 ., oo @K@l ute

This, combined with (3.7), yields

Il 2y = D Tk (3.8)

nk:k#n

Let M be large enough. Here M is from Theorem 2.6. Applying |a, — £| > 2" 2r x
min(p(ay,), p(£)), we have

L (e oV < Ly
la, —&| ~ p)
And hence,

e’

%-)1/2

1/2

g (E)] = K (E)] 2 [ Kiga (8)| > S 2712 | Kpan G| (39)
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It follows from (2.4), (2.5), and (2.6) that

e ©)12

Ky (&, ax) ' 12 172
’kgo,uk(é)’ = W‘kwk(g)’ @) ‘kgoak 5)’ (3.10)
By joining (3.9), (3.10), and Lemma 2.1, we obtain
T S 272" Z K )] g )] 2O ().

p() Jpr(ay

Applying Lemmas 2.1, 2.2, and 2.3 (c), for £ € D"(a;), we conclude

1/2 1 /2 lp
e (8] 7€ <( @l e-w(z)”dA(a) < pla) 2P S,(a)"”,
p(&) Dr(§)

where
$u() = / Ky ()] 2 A2,
D3(x(.)
The analogous reasons indicate
12 —p@®)2 < 2/p lp.
’k¢,uk(§)| p(a ) Sk(a )

So, for M large enough, we have

Tt )<2Mm/22p @) (@S (D' @)

(@)

<2 mzp 1 4/pS l/pSk( )l/p'ur(a])

And hence, forO<p <1,

Juk(P 27 " p(a)*S,(a)Sc(@) (@)
j

Now (3.8) can be estimated further as

1Tally o) S27 D pla Ry (Z Sn(a/)) (ij S/<(a/)>- (311)

J

On the other hand, by the definition of Si(a;), we see

;sk(a,») . /D )

We claim that

(Z | k(p,ak (2) |p/2> eV dA(z). (3.12)
k

4

> Vo @ < 2 p(2) 72, (3.13)
k

Page 9 of 26
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For this goal, by (2.4), (2.1), and Lemma 2.3 (d), for some ry > 0, we get

Y k@ SO 3T pla) P S e p() P, (3.14)

apeD0(z) ayeD'0(z)

Taking M in Theorem 2.6 such that Mp/2 — 2 > 0, then

2

PI2 < o2 \Mpl2-p/2-2 3 _ pla)”

Y. k@ < e"20() |z — ag |MP/2
aeD'0(z) 4D (2)

_ PPI2 () MpI2pl2- zz Z plar)?
j=0 €R; (2) |Z dk|MP/2
ai

where
Ri(z) = {; eD: Yrpz) <|C -z| < 2/+1r0p(z)}, j=0,1,2....
By Lemma 2.3, for j=0,1,2,..., when a; € D97 (2), we obtain
D(ay) C pore? (2).
So

3 pla)? £ |07 (2)| < 2% p(e),
“kERj(Z)

and hence (3.13) holds by (3.14) and the following estimate

oo
Y k@ S O oy PN N (a2

ap¢D'0(z) j=0 akERj(Z)
[o¢]
< eptp(z)/Zp(Z)fp/Z Z p(z)—p/z'
j=0
Bearing in mind (3.13), (3.12) can be estimated as
> " Sula) < play) " (3.15)
k
Similarly,
D Sula) < pla)* . (3.16)
n

By joining (3.15), (3.16), and (3.11), for integer m > 0 large enough, we get

_ . 1
I Tzl|§p<A%) S22 i) < 3 > @)
j j
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This together with (3.6) and (3.5) yields

o~ ) < p
D@y SITIG o
J

Since the above estimate holds for each of the I" subsequences {w,}, we finally obtain

T P < p < P
D W) SMITIG o) SMITul o <00

n

by (3.4), which finishes this proof. O

We are going to describe the Schatten-% class Toeplitz operators. See [1] and the refer-
ences therein for details about the Schatten-/ class. We give first the following analogous

definition.

Definition 3.2 Let T be a compact operator and /2 : R* — R* be a continuous increasing

convex function. We say that T € S}, if there is a positive constant ¢ such that
oo
Zh(c -5(T)) < o0.
j=1

Similar to [1], we get the following consequence.

Theorem 3.3 Suppose h: R* — R* is a continuous increasing convex function, and i is a
positive Borel measure such that Toeplitz operator T, :A(zﬂ — Aé is compact. Then T, € S,

if and only if there exists a constant ¢ > 0 such that

‘/Dh(cﬁ(z)),o_Z(z) dA(z) < oo.

Proof Assume that T, € Sj. Then there exists ¢ > 0 such that
oo

Zh(csj(T)) < 00.

j=1
Let {ex}32, be an orthonormal basis for Aé, and
oo
Tuf = Zsk(f’ ek>A3Jekr
k=1
where s is the singular value sequence of T),. With the help of

oo

Y Kz =1,

k=1
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the convexity of /, Jensen’s inequality, (2.4), and (2.5), we have
/D H(cfi(@) p2(2) dA(2) = fD (T, K ki) 12) P~V dA(2)
= / h (Z csk| (kp.z ex) 42 |2> p2(2) dA(z)
D \i=1
< / Z h(esi)| (ko2 ex) a2 |2,072(Z) dA(z)
k=1

- [ s, @ o da
k=1

1

< ;h(csk) /D |ex(2)|*e2%? dA(z)
Zh(csk) < 00.
k=1

Conversely, if there exists ¢ > 0 such that th(C[L(Z)),O_Z(Z) dA(z) < 0o, then it follows
from (2.4) and (2.5) that

() = / 2D dpu(w)
D'(z)
= [ e dut) < i),
D’ (z)
Notice that
(Tﬂek,ek)A% =/|ek(z)|2e_2<ﬂ(z) du(z)
D
< [ a@la@le e
D
< / 1@)|en(2)[*e ™ dA(@),
D

then by Jensen’s inequality again we get

[e.¢]

Zh(c(TMek, ek)A%)

k=1
< / h(cii(2)) (Z\ek(zﬂz)ew dA(2)
D k=1
_ /D H(CTE @) 1K, 2 2 5622 dA(2)
- [ neire)o e dae) <,

which gives T, € S;,. This completes the proof.
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4 Schatten class Hankel operators

This section devotes to studying membership in Schatten ideals of Hankel operators with
general symbols. First, when 0 < p < 0o, we get the sufficient and necessary conditions
for Hankel operators are in Schatten-p class. Here we mainly discuss case 0 < p < 1, see
case 1 < p < ooin [13]. Next, for a continuous increasing convex function %, we obtain the
sufficient and necessary conditions for Hankel operators to be in Schatten-# class. This

kind of problem is new for Hankel operators.

Lemma 4.1 If A and B are bounded linear operators, p € (0,1), then

IABII5, < [1BIlIAll5, and ||AB|[5, <IIAl1”||BI,. (4.1)
Proof See [6]. (I
Let L} (D) denote the space consists of locally square integrable Lebesgue measurable

functions on . If f € L2 (D) and z € D, G,(f)(z) is defined by

loc

' 1 172 )
G, (f)(z) = mf{ (m - If - h|2dA) the ’H(D (Z)) },

where H (D’ (z)) is the analytic functions space on D'(z). For z € D, f € L*(D'(z),dA) and
r >0, the averaging function of |f| on D'(z) is defined by

1 Zd 1/2
M@= (5 [ 1 A)

Indeed, M, (f)(2) = ([f2,)"2
Lemma 4.2 ForzeD,f € L*(D'(z),dA), and r > 0, there exists an h € H(D'(z)) such that
M(f - 1)@ = G (f)(2). (4.2)
Proof The proof is similar to [11, Lemma 3.3]. O
ForzeDandr>0,let
A*(D'(2),dA) = L*(D' (2),dA) N H(D'(2))
denote the Bergman space on D’ (z). Let B,, denote Bergman projection induced by the
reproducing kernel of A%(D"(z),dA). As we known, B,, is bounded and B,/ = h, where

h € A%(D'(z),dA). The following consequence is similar to [11, Lemma 3.4] with g = 2.

Lemma 4.3 ForzeDandr >0, if f € LX(D'(2),dA), then we have

M(f =B, ()@ = G )(). 43)
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Proof Taking & from Lemma 4.2, we have & € A%2(D'(z),dA) since f € L2 (D). Then B, s =

loc
h. By trigonometric inequality and Lemma 4.2,

Mr(f - Bz,r(f))(z) E Mr(f - h)(Z) + Mr(h - Bz.r(f))(z)
= M,(f — h)(2) + M, (B (h - f))(2)
5 Mr(f - h)(Z) = Gr(f)(z)

It is obvious that G,(f)(z) < M,(f — B,,(f))(z), and hence this proof is complete. O
Given r > 0, let {g; 1‘?:01 be a (p, r/3)-lattice, J, = {j : z € D’(a;)}, and |/,| be the number of

elements of J,. By (2.3), 1 <|J,| < N. Let {1//,»};;01 denote the unit decomposition induced
by {D'3(a)) 2, that is,

o0
Y€ C*(D), suppy; € D'"3(ay), 1051 < Cola) ™, Z vi=1, ¥;=0.
j=1

By (2.1), it is easy to see
,o(z)féw,-(z)| <C, forany;j=1,2,... andzeD.

Givenf € L2 (D), forj=1,2,..., taking h; € H(D"(a;)) in Lemma 4.2 such that

loc
M, (f — hj) = G,(f)(a)).

Definition 4.4 By the decomposition above, we define

fi=) my; and fi=f-fi. (4.4)

j=1

Note that f; () is actually a finite summation for any z € D, and by supp y; € D"3(a;) C
D’ (aj), then f; is well-defined.

Lemma 4.5 Letf € L} (D) and r > 0. By (4.4), f admits a decomposition f = fi + f>. Then
f1 € CY(D) and

|0(2)0f1(2)] + Myjo(p0f1)(2) + Myo(£2)(2) < CGor(f)(2), (4.5)
where z € D and C > 0 is independent of f .
Proof Since hj € H(D'(a;)) and y; € C*°(D), f; € C*(D). For z € D, without loss of gen-

erality, we may assume z € D"/3(a;). It is easy to check that D'°(z) C D’ (a;) whenever
z € D"(a)). By > d¥;(2) = 0 and the subharmonic property of |/ — 11| on D"°(z) €
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Dr(aj)y
|p(2)0fi(2)| = Z (h(2) - 1(2)) p(2) ()

< |hi@) - )] p2)Y;(2)|
j=1

<C Z My9(hj — h1)(2)

{j:zeD'/3 (@)}

<C Y [Muyolf - (@) + Mys(f - h)(@)]

{j:zeD'/3 (@)}

S ) G

{j:zeD""3(a))}
If z € D"(a)), then we have D’ (aj) € D% (2), and
G(f)(@)) < CGo,(f)(2).
Hence,
|p(2)31(2)] < CGo,(f)(2). (4.6)

If w e D"°(z2), then D¥ (w) € D*(z). Thus, similar to (4.6),
Moslpif)eP = Co@ 2 [ Gl datw
D (z)
< CGo(f)(2)%, (4.7)

since G3,(f)(w) < CGo,(f)(z) for w € D'°(z).
Using Cauchy—Schwarz inequality,

6@ < > @) - @) v

j=1
Therefore,
o0
Muyo(h) 2 <y —— — hi)*y;dA
ol ; DP@] Jyng | Y
1
<C If = h;|* dA
iz E;;( |Dr(a])| D" (aj) !
=C Y G
U:zeD”(a/)}

< CGor(f)(2)*.

This finishes the proof. d
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Lemma 4.6 Let 0<p < oo andf € L. (D). Then following statements are equivalent:

(a) For some (or any) r < m,, M,(f)(z) € LP(D, p~2 dA).

(b) For some (or any) r < m,, {a;}7°

) is a (p,8)-lattice with § < r, then the sequence
{M5(f) )} € P, and

o0
|7, () ”1}1(11]),,3—2 da) =~ {75 (f)(ﬂf)}j:1 ”L’" (4-8)
Proof The proof is an analogue of [17, Proposition 2.4]. O
Forz € Dand r > 0, we denote L2(D'(z),e~2 dA) = L;(D’(z)) and Ai(D’(z)) = Lé (D'(z))N
H(D'(z)). Let P, :L;(D’(z)) — Ai(D’(z)) be the projection. Given f € Lé (D' (2)), we may
assume P, ,(f)(w) = 0, when w € D\ D’(2), it follows that P, (f) is a natural extension on D.

Iff,g € L}, theniitis easy to see f, g € L2(D’(z)). Then, for f,g € L2, we have P2 (f) = P, (f)
and {f, P,,(g)) = (P,,(f),g). Also, if h € Ai, then P,,(h) = xpr»h, and hence

(h, xpr»8) = (Xprh &) = (Pz,r(h)rg> = <h»Pz,r(g)>’ g€ L;

Equivalently,

(h¢ XDr ()8 — Pz,r(g)> =0. (4'9)

Lemma 4.7 Iff,g € L2, then

(f - P(f)r XDr2)8 — Pz,r(g)) = (XD’(z)f - Pz,r(f), XDr(8 — Pz,r(g)>'
Proof See [10, Lemma 5.1]. O
By [13], Hy : A2 — L is bounded if and only if G,(f) € L*. In fact, G,(f) € L™ is inde-

pendent of r. Further, ||G,(f) ||z < [|G5(f)lr. Suppose G,(f) € L™, it is from Lemma 4.5
that

M ()l S NNGH() oo (4.10)

Hence, the condition G,(f) € L™ is natural in the study of Schatten class membership of
Hankel operators.

Lemma 4.8 Suppose ¢ € &€, r € (0,m,], Hy is densely defined satisfying G,(f) € L™ and the
decomposition f = fi + fo by Lemma 4.5. Then both Hy, and Hy, are bounded, and

IH; @12 S llgpdfillz and  [1H5(@)llz2 S I1fsglls2-
Proof See [13, Theorem 3.1]. O
Now we are ready for the characterization of Schatten class Hankel operators.

Theorem 4.9 Suppose ¢ € £,0< p <00, 0<r < m, and Hy is densely defined satisfying
G,(f) € L*°. Then following statements are equivalent:
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(a) The Hankel operator Hy is in S,.

(b) For some (or any) (p, r)-lattice {aj}ffl, {Gr(f)(aj)}ff1 elr.

(c) For some (or any) r, G.(f) € LP(D, p~2 dA).

(d) For some (or any) r, f admits a decomposition f = fi + fo such that f; € C'(D),
M, (pdfy) € LZ(D, p~2 dA) and M,(f;) € LP(D, p~2 dA).

(e) For some (or any) (p, r)-lattice {a;}7%), f admits a decomposition f = fi + fo such that
fi € CHD), AM,(p3f) (@)}, € I and {M,(f2) (@))%, € PP.

Proof (a) = (b). We give only the case 0 < p < 1. Let {g; ]‘?fl be a (p, r)-lattice. By Lemma

2.9, {a,»};fl can be devided into N subsequences, if 4; and a; are in the same subsequence,
then

la; — aj| > 2krmin(p(ai), ,o(u,')). (4.11)

In fact, just consider one of subsequences here. Without loss of generality, it is assumed

at\d;y. ;. FOr an nite subse - y et €y € an orthonormal basis 1or , Al
that {a;}7;. F y finite subset ] C N*, let {e;}°, b th I basis for A?, and

A@Q) =) (g e)kyay gEAL

jeJ
Then, by Parseval’s equality,
Ylee = liwe = lgl?.
jel j=1

It follows from Lemma 2.7 that A is bounded on Ai.
If ”XD’(aj)gk(p,ai - Paj,r(gk(p,a/-)”L% #0; we let

XD’(aj)ﬂ((p,a/ - Pa/,r(ﬂ((p,a/)
1‘ =
”XD'(a/lﬂ(w,aj - Pui,r(fkw,aj) ”L% ’

and /; = 0 otherwise. It is easy to see ||hj||i < 1. Assume D"(a;) ND"(a;) # ¥, then |a; —a;| <
3rmin{p(a;), p(a;)}. For k large enough, we have D"(a;) N D"(a;) = ¥ whenever i # j. Hence,
(hiyly) = 0if i # .

Let {c;};e; denote nonnegative sequence, we define the operator B by

B(g) = ch(g,hj)ej.

jel

It is easy to check that B is bounded on A2, and ||B|| < supje;{c;}. It follows that
BH;A(Q) = Y _ i{HrA(Q), ey
jeJ

=3 GlHrkyap 1) (g €.

jel i€]
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The application of Lemma 4.1 gives

IBHFAI, < |IBI1P||Hylls, IAIP < CS{H})C,"’.
je

Taking a decomposition of the operator BHA as the diagonal part

Y(g) = Z Cj(ka(p,a/v h]) (g” ej)e/

jel

and the non-diagonal part

Z(g) = Z Cj kaq)a, ><g’ei>ej,

Jii€l:ij

we have, by (3.2),
Y115, < IBHFAIE +11ZII5,.

By Lemma 2.4, there exists a constant C > 0 such that for z € D"(a;)
’kwj(z)’ > Ce“(z)p(aj)_1 >0,

and hence k;il], € H(D'(a))). According to Lemma 4.7 and (2.5),

Y15, = > [ Hrkoap b = 3 &gy = Pfkga) 1)

jel P
= Z ‘}p |<XDf(ﬂ/')f7((p,aj — P“j’r(fk(p,ai); h],>|p
jel
) Z C;’ ” X0 @)fKoa; = Payr(fRp.a) ”i%
jel
2 pl2
Dl o rintenol
jeJ (aj)
9 pl2
_Zcp{/ |k(pa|2 —290[}( (pa] i”(ﬂ(w,ﬂ/)‘ dA}
jel (aj)
2 pl2
- ;cp{ |Dr(6l])| Dria lf l(ﬂﬂl uj,r(fk%aj)’ dA}
= ZC/!‘JGF(f)(ﬂj)p.

jeJ
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This together with [18, Proposition 1.29], Lemma 4.7, and Cauchy—Schwarz inequality
yields

1215, <> [ Zemen)|” = Y & [(Hrkpa )|

n=1 m=1 Ji€liij
3
= Z C]p| <XD’(aj)ﬂ(<p,a,' - Paj,r:fkw,ai; h1>|
jicTis
p
= Z c;”XD'(a/)_ﬂQp,ai - Pa/-,nﬂ((p,a,' ”(p,z
J€] i
) pl2
—2
= Z Cf{ lﬂﬂﬂaz Py r(fkpa;)|"e “’dA}
Jicliz Dr(ap)

pl2
=Y e[ ntapfean]”
jicliz D (ap)
where B,, is the projection from L2(D"(z)) to A%2(D'(z)). Hence, by Lemma 4.3,

pl2
1ZI5, < Zc"{ f > |k¢,ai|2eZw)V—Ba,,,WdA}

jeJ @) jey.iz
pl2
< Zcp sup (Z V(w,(z)‘ Z)> ola)’
jel zeD"(a)) i)
pl2

1 2
N -B,., dA
{ |D"(a;)l D’(aj)lf ot }

pl2
= ZCPG (f)(d] p(a/)p SUP (Z|k<pa(z)| ~2ete )

(4.12)
jeI zeD icl:ij

Let i,j € J and i #j. Then there exists w;; € D"(a;) such that

wi;—a;| = inf |z-—al.
wii—ail = _inf 1z-ai

This combined with (2.6) and (2.1), for z € D (a;), implies

. N
2 o 1 (min(p(2), p(a:)) _
@ e < C o\ emar ) fom @l

1 in(2 i) i N
< (mln( p(w;i), pla ))) Ky ()]
p(a;) [wj,i — ail

1 min(P(Wj,i),p(ai)) N o
SP("Z})( ;i — ail ) |Kp.ai(2) e

We claim that |wj; — a;| > 252rmin(p(w},), p(a;)). If not, we assume |w;; — a;| < 28-2r
min(p(w;;), p(a;)). By (2.1) and the trigonometric inequality,

=)
|aj — a;| < |a; —wyi| + Iy — il < rplay) + 22 rp(w;) < 25rp(ay),
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and

la; — ai| < la;—wi| +|wji —ail

<rp(a) +22rp(w;)
<2rp(w;) + 25 2rp(w;;)

<drp(a;) + 2 rp(a;) < 25rp(ay).

So |aj —a;| < 2k min(p(a;), p(a;)), which causes a contradiction with (4.11). Thus, for z €

Dr(aj)y
N
k@22 < (=L ,(2)] e
(2 ~ p(&l]) 2k_2r (2
1 1 Nk
gp(w)<§) |kpai (2)] €. (4.13)
]

By joining (4.12) and (4.13), we obtain
1 N%J( , pl2
I1ZII§, < (5) > dG()a) p(a;)? sup ( > |k¢,a,.(z)<e‘p<2’> : (4.14)
jel zeD" (aj) icliij
Set ro = 3r. Fix j € J, then, for any z € D" (a;), we have
o0

3 k@] < 3 [k ()] e

iefuis i=Liz

IA

Z |kw.af (2) ’e—w(@

{ai:|laj-ai|<rop(a))}

+ Z Z |kp.a (z)}e"p(“

=1 {a;:2"rq plaj)<laj-a;| <2"*1ro p(a))}

=1+1I.

It is from (2.1) that, for any z € D" (g;),

I= kpa(2)]e?? < ! 1 . (4.15)
Z ‘ (2 ‘ ~ N\~

a a;
(aila-ai|=rop(a) (asle-mizroptap) P @)~ P(@)
When 2"rop(a;) < laj — a;| < 2"*1;"0,0(6{,-), we get
(Wi —ail > |aj — a;| - |a; — wj,l
>2"rop(a) — rp(ay)

1 1
= <2” - g)rop(aj) =5 -2"rop(a)).

Page 20 of 26



Wang et al. Journal of Inequalities and Applications (2023) 2023:129

For any z € D'(a)),

[o¢]
I = Z Z ‘k‘ﬂ:“i (Z)|e—<p(z)
=1 {a;:2"r plag)<|aj-a;| <2"*1ro p(aj)}
. N

< i 3 1 (min(p(a;), p(2))
~ p(2) [wji — al

n=1{a;:2"ro p(aj)<laj-a;| <2"*1rop(a;)} M !

oo 1 nN
=53 <§) play) 1 NHN-2) > pla)’.

I
—_

” {ai:2"rop(aj)<|aj—a;| <2"*1ro p(a))}

Itis clear that forn=1,2,...,ifa; € pro2™t (a;), we have
D"(a;) € D% (a).
Hence

> pla)’ S |D (a)] = 2% p(a;)”.

{ai:2"rop(aj)<|aj-ai| <2"+1ro p(a))}
Choose N — 2 > 1 such that
[oe] 1 n(N-2)
() s
2
n=1

So, for z € D'(a)),

> > |kpa,(2) €79 < ﬁ. (4.16)
]

=1 {a;:2"ro p(aj)<laj-a;| <2"*1rop(a))}

For any z € D'(a;), by (4.15) and (4.16), we see

pl2 1 4
-¢(2)
i (i) < ()

2€D"(@)) \je.iz

Joining (4.14) and the above estimates, we get

Npk

nzn‘;ps(%) Y LG @y (4.17)

jel
Choose k large enough such that

Npk

1\ 2
<§> —- 0 ask— oo.

Hence, for any /,

2 GG N@) S supg.

jel /

Therefore (a) = (b) since [ is the dual space of /'.

Page 21 of 26
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(b) = (c). Notice that {aj}ffl is a (p, 3r)-lattice if {g; ;’:"1 is a (p, r)-lattice. Assume
Zjo:ol Gsr(f)(a;)? < 0¢. Since z € D' (a;), D (z) € D* (a;), and hence

G, dA(z) < G, dA
| 6peroeaa > .., Gr0ier e ante

[o.¢]
<Y G @) < oo
(c) = (d). Suppose G,(f)(z) € L?(D, p~2dA) and the decomposition f = f; + f5 is from
Lemma 4.5, then f; € C'(D) and
|p(2)0f1(2)| + Myys1(03f1)(2) + Mys1(f)(2) < CG,(f)(2).
By Lemma 4.6,
”Mr(paﬁ)”mm,ﬂ day = ”1\/Ir/28('08f1)HLP(]D,;r2 da) = C” G(f) Hl}’(D,p*Z da) <
and
”Mr(fZ)”Lﬂ(D,p-MA) = ||Mr/28(ﬁ)||w(m,p-2 dA) = C” G,(f) ”LI’(D,p‘Z dA) < 0.
(d) < (e). See Lemma 4.6.
(d) = (a). To finish this, we let My, and M 035, denote multiplication operators. Let ¢ be

f> or pdfi. By G,(f)(z) € L* and Lemma 4.6, M,(¢)(z) € L. We next show the operator
My is bounded from A? to L?. Indeed, by Lemma 2.10 with p = 2, then for ¢ € A2 we have

IMgllZ , = /D g1%e|g|* dA
S [ le@l'e P, @ daca
- [ls@ e 0)e daca
= [IM(@®)I[<l1gll-
For any g, € A3,
(MG Mg, h) = (Myg, Myh) = (Tigy2¢, h).
This gives MyMy = T)y2 on Aé. Using [18, Theorem 1.26], we ge/t\Md, € S, if and only if
MMy = Ty € Sy By Theorem 3.1, Tjyp € Spps if and only if [¢|2,(2) € LP/*(D, p~2 dA)
if and only if M,(¢)(z) € L (D, p~2dA), and so My € S,. Since |Hp (@)llp2 S ||gp5f1||¢2

and ||Hp, (@)lly2 S Iogllg2, both Hy and Hy, are in S, therefore Hy € S,. This finishes the

proof. d
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Theorem 4.10 Let ¢ € £ and h(y/())) : R* — R* be a continuous increasing convex func-
tion. Suppose Hy is densely defined satisfying G,(f) € L*°. Then following statements are
equivalent:

(a) The Hankel operator Hy is in Sy,.

(b) For some (or any) O < r < m,, there exists a constant ¢ > 0 such that

/ h(cG,(f)(z))p‘z(z) dA(z) < 0.
D
Proof (a) = (b). Let {e] , be an orthonormal basis for A2 define

T - XD’(a/)Hf(kw,ai)
e 1
" Uiy Hr (k) Pe 2 dA)?

= thD’(ui)Hf(kw,aj)

where {a;} is a (p, 5)-lattice. It is clear that || Tg||%'(/7 < ||g||%,w, and hence T is bounded. By
convexity of i(+/(-)), A(-) is a convex function. Let

A@Q) =) (g ekpa

j=1

we have

/h(ch(f)(Z))p'Z(Z)dA(Z)

<Z‘ / H(cG: (@) p~2(2) dA(2)

.
Da/

<> sup h(cG (@) <D h(c1G(f)(a))
j=1

j=1 zeD3 (a))
N
dA(z)) )

J
S ([ T
~ - |Dr(aj)| D’(aj) k(p,ai ol
|k¢a,| e-z‘f’Z)dA(z)) )

j=1

h a;
; ((C3 /D’(a ‘f k(pa P(ﬂ((ﬂ /
Sh((o ] [tk e0ane))
: D aj

=1

~

o0 o0
Z C3|t] ka(pa17XD7 “/)ka‘/’a) Zh C3| T HfAe/’eJH)
j=1

=

h(c4s, T HfA Zh C5s,(Hf)
j=1

~
I
—

NI
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(b) = (a). Suppose [ h(cG,(f)(z))p~>(z) dA(z) < o0, f admits a decomposition f = fi + f5,

where

fi=) hiy; and fr=f-Afi.

j=1

Here {1//,}1‘?:"1 is the unit decomposition induced by {Dg (aj)}l‘?fl. Choose i1j € H(D'(a;)) and
fe L‘InOC(]D)),j =1,2,..., such that

M, (f — k) = G/(f)(a)),
then f; € C1(D) and
p(2)3fi(2)] + M 1 (03f1)(2) + M 1 (5)(2) < cG,(f)(2).

27

Hence

| Hn i) ot dae) < [ nlemtz (oif)oe) * da

< / h(cG,(f)(z)),o(z)_2 dA(z) < 00
D
and

/ MM, () p(2) > dA(2) < f h(eM g (F)p(@) ™ dA(2)
D D

=< / h(cG,(f)(z))/o(z)’2 dA(z) < oo.
D

Let 6 be f, or pdfi, and M, be multiplication operator. By G,(f)(z) € L, M,(9)(z) € L,
and so the operator My is bounded from A; to Lé. Note that, for g,/ € Aé,

(M;Mgg,h> = (Mog, Moh) = (T g28, h).

Hence MMy = Tg2. Since My € Sy, if and only if MiMy = Tjpp € S0 According to
Theorem 3.3 and the convexity of 4(/(-)), Tjg2 € Sy if and only if

/D h(c(lfe\|/2(z))%),o(z)‘2 dA(z) < co.

It is easy to check that I, (z) < ji(z), and we claim that

/ h(ﬁ(z)) dA(z) < c/ h(cﬁ,(w)) dA(w).
D D
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By Jensen’s inequality, the convexity of / and fi(z) < 1,(2),

[ mE@)dae < [ nieiie) dae
D

D

= h(c [ Ve ) dA(w))
< /D ( /D h(cﬁ,(w))\kw,ze-WfdA(w)) dA(z)
< /D h(cﬁr(w)) dA(w) /]I; ’/<¢,Ze_‘”(w)|2dA(z)
§c/ h(ciz (w)) dA(w).
D
Recall that
| M @)@)o e <o,
D
thus
/D H(c(I(2) ) p(2) 2 dA(2) < oo,
and hence
/D h(c(FP2(2))?) p(0) 2 dA(2) < .

So My € Sy. Since | Hp, (g)||L5’ < |lgpdfi ||Lfé and ||H, (g)||L% < |[f2g||L%, we have that both Hy,
and Hy, are in Sy, and therefore Hy € Sj,. This completes the proof. d
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