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Abstract
In this paper, we study Toeplitz and Hankel operators on exponential weighted
Bergman spaces. For 0 < p < ∞, we obtain sufficient and necessary conditions for
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1 Introduction
Let D = {z ∈ C | |z| < 1} be the unit disk in the complex plane C and dA(z) = dxdy

π
be the

normalized Lebesgue area measure on D. Let L denote a class (see [2, 13] for more details
about the class). A function ρ(z) is said to be in L if ρ(z) is positive on D satisfying the
following conditions:

(a) For any z ∈D, there is a constant c1 > 0 such that ρ(z) ≤ c1(1 – |z|).
(b) There is a constant c2 > 0 such that |ρ(z) – ρ(w)| ≤ c2|z – w|, where z, w ∈D.
Write A � B for two quantities A and B if there is a constant C > 0 such that A ≤ CB.

Furthermore, A � B means that both A � B and B � A are satisfied. A subharmonic func-
tion ϕ(z) ∈ C2(D) satisfying (�ϕ(z))–1/2 � ρ(z) is called ϕ ∈ L∗, where ρ(z) ∈ L and � is
the standard Laplace operator.

The Lebesgue space Lp
ϕ (0 < p < ∞) consists of all measurable functions f on D such that

‖f ‖ϕ,p =
(∫

D

∣∣f (z)e–ϕ(z)∣∣p dA(z)
)1/p

< ∞.

In particular, L∞
ϕ consists of all measurable functions f on D such that

‖f ‖ϕ,∞ = esssupz∈D
∣∣f (z)e–ϕ(z)∣∣ < ∞.

Now let H(D) be the space of analytic functions in the unit disk D. The exponential
weighted Bergman spaces Ap

ϕ = Lp
ϕ ∩ H(D). When 1 ≤ p ≤ ∞, Ap

ϕ is a Banach space, and
Ap

ϕ is a Fréchet space if 0 < p < 1.
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Notice that A2
ϕ is a reproducing kernel Hilbert space, and hence there is a function Kϕ,z ∈

A2
ϕ such that the orthogonal projection P from L2

ϕ to A2
ϕ can be represented as

P(f )(z) =
∫
D

f (w)Kϕ,z(w)e–2ϕ(w) dA(w), z ∈ D.

See [3, 13]. The function Kϕ,z(·) is called the reproducing kernel of Bergman space A2
ϕ

and has the property that Kϕ,z(w) = Kϕ,w(z) for every z, w ∈ D. It follows from [3, Theo-
rems 4.1 and 4.2] that, for ϕ ∈ E and 1 ≤ p ≤ ∞, the Bergman projection P : Lp

ϕ → Ap
ϕ is

bounded.
For a positive Borel measure μ on D and a measurable function f , the Toeplitz operator

and Hankel operator are defined respectively by

Tμ(g)(z) =
∫
D

g(w)Kϕ(z, w)e–2ϕ(w) dμ(w), g ∈ Ap
ϕ

and

Hf (g)(z) =
∫
D

(
f (z)g(w) – f (w)g(w)

)
Kϕ(z, w)e–2ϕ(w) dA(w), g ∈ Ap

ϕ .

The pioneering work on this class of exponential weighted Bergman spaces was done by
Oleinik and Perelman [14]. Throughout this paper, we call these spaces OPS . Later, has
attracted much attention. In [12], Lin and Rochberg characterized the boundedness and
compactness of Hankel operators on exponential weighted Bergman spaces. To further
study these spaces, Lin and Rochberg [13] gave the necessary and sufficient conditions
for Schatten-p class Toeplitz (or Hankel) operators when 1 ≤ p < ∞. Furthermore, for
0 < p < 1, the sufficient condition for Schatten class membership of the Toeplitz operator
was obtained as well. In [3, 4], Arroussi and Pau studied the dual space and estimates of
the reproducing kernel.

Borichev, Dhuez, and Kellay [5] introduced another exponential weighted Bergman
spaces. The authors, in [2], showed the Schatten class membership of the Toeplitz opera-
tor on spaces introduced by [5]. Hu, Lv, and Schuster [8] characterized a new kind of space,
which contains these exponential weighted Bergman spaces considered in [5], write HLS
for simplicity. Indeed, the spaces HLS differ from the spaces in this paper, see [8]. In [9],
Hu and Pau gave bounded and compact Hankel operators associated with general symbols.
Zhang, Wang and Hu [17] showed the boundedness and compactness of Toeplitz oper-
ators with positive symbols acting between different spaces HLS , and Schatten-p class
membership. Recently, in [16], the authors studied the sufficient and necessary conditions
for Schatten-p class membership of Hankel operators associated with general symbols on
HLS .

For 0 < p < ∞, by using averaging functions, we obtain the sufficient and necessary con-
ditions for Schatten-p class membership of Toeplitz operators with positive symbols and
Hankel operators with general symbols on OPS . These results fill the research gap of [13].
Generally speaking, the difficulty in such problems lies in the characterization of 0 < p < 1.
For this goal, we need more tools than [13]. Schatten-h class membership of operators is
an important generalization of Schatten-p class operators, and it is interesting to study
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Schatten-h class membership. We refer to [1] and the relevant references therein for a
brief account on Schatten-h class. In this paper, we explore Schatten-h class Toeplitz and
Hankel operators on the spaces. Such properties of Hankel operators are not yet known
in the existing literature.

By [8, Theorem 3.2], the following estimate holds for the reproducing kernel in this
space: there exist constants C,σ > 0 such that

∣∣K(z, w)
∣∣ ≤ C

eϕ(z)+ϕ(w)

ρ(z)ρ(w)
e–σ dρ (z,w), z, w ∈D,

where dρ(z, w) is the Bergman metric induced by reproducing kernel. However, the repro-
ducing kernel in OPS does not have the similar estimate, which brings more obstacles to
the research in this paper.

The paper is organized as follows. In Sect. 2, we give some basic notation and lemmas. In
Sect. 3, we show the sufficient and necessary conditions for Schatten-p class membership
of Toeplitz operators with positive symbols, and give the characterization for Schatten-h
class membership of Toeplitz operators induced by continuous increasing convex func-
tions. Finally, in Sect. 4, we investigate membership in Schatten-p class Hankel operators
with general symbols, and also obtain Schatten-h class properties of Hankel operators.

2 Preliminaries
We begin with giving some basic notation and lemmas. For z ∈D and r > 0, let D(z, r) = {w :
|w – z| < r} be the Euclidean disk with radius r and center z. Also, we use Dr(z) = D(z, rρ(z))
to denote the disk with radius rρ(z) and center z.

The following lemma is from [3, (2.1)].

Lemma 2.1 Suppose ρ ∈L, z ∈D and w ∈ Dα(z), where 0 < α < mρ = min{1,c–1
1 ,c–1

2 }
4 . Then

1
2
ρ(w) < ρ(z) < 2ρ(w). (2.1)

It is from [3, Lemma A] that we have the following pointwise estimate.

Lemma 2.2 Suppose ϕ ∈ L∗, 0 < p < ∞, β ∈ R and z ∈ D. Then there exists a constant
M ≥ 1, for f ∈H(D) and small enough δ > 0, such that

∣∣f (z)
∣∣pe–βϕ(z) ≤ M

δ2ρ(z)2

∫
Dδ (z)

∣∣f (ζ )
∣∣pe–βϕ(ζ ) dA(ζ ). (2.2)

As we known, the covering lemma is useful for studying Bergman spaces, so does expo-
nential weighted Bergman spaces. The following lemma comes from [2, Lemma B].

Lemma 2.3 Suppose ρ ∈L and 0 < r < mρ . Then there exists a sequence {aj}∞j=1 ⊆D satis-
fying

(a) aj /∈ Dr(ak), k �= j.
(b) D =

⋃∞
j=1 Dr(aj).

(c) D̃r(aj) ⊆ D3r(aj), where D̃r(aj) =
⋃

z∈Dr(aj) Dr(z).
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(d) {D3r(aj)}∞j=1 is a covering of D of finite multiplicity, that is, for any z ∈D,

1 ≤
∞∑
j=1

χD3r (aj)(z) ≤ N , (2.3)

where N is a positive constant integer.

A sequence {aj}∞j=1 satisfying the above lemma is called the (ρ, r)-lattice. Furthermore,
the conditions (a) and (c) indicate there is a s > 0 such that

Dsr(aj) ∩ Dsr(ak) = ∅, j �= k.

It is important to investigate pointwise and norm estimates of the reproducing kernels
Kϕ,z on A2

ϕ . The following results are from [3, Lemma B, Theorem 3.1 and (3.1)].
If ϕ ∈L∗, 0 < r < mρ and w ∈ Dr(z), then we have

∣∣Kϕ,z(w)
∣∣ � ‖Kϕ,z‖ϕ,2‖Kϕ,w‖ϕ,2. (2.4)

Lemma 2.4 Suppose ϕ ∈L∗ and function ρ satisfies that, if there exist b > 0 and 0 < t < 1,
for z, w ∈D and |z – w| > bρ(w), such that

ρ(z) ≤ ρ(w) + t|z – w|,

then

‖Kϕ,z‖2
ϕ,2 � e2ϕ(z)ρ–2(z). (2.5)

Definition 2.5 The weight ϕ ∈L∗ is called ϕ ∈ E if the function ρ satisfies, for any m ≥ 1,
there exist constants bm > 0 and 0 < tm < 1/m, when |z – w| > bmρ(w), such that

ρ(z) ≤ ρ(w) + tm|z – w|.

Theorem 2.6 If ϕ ∈ E , then for any M ≥ 1 there is a constant C > 0 such that

∣∣Kϕ,w(z)
∣∣ ≤ Ceϕ(z)eϕ(w) 1

ρ(z)
1

ρ(w)

(
min{ρ(z),ρ(w)}

|z – w|
)M

, z, w ∈ D. (2.6)

Proof See [3, Theorem 3.1]. �

With the help of estimates for the reproducing kernels, we get the following atomic de-
composition.

Lemma 2.7 Suppose ϕ ∈ E and {aj}∞j=1 is a (ρ , r)-lattice, where 0 < r ≤ mρ . Then, if {λj}∞j=1 ∈
l2, we have F(z) =

∑∞
j=1 λjkϕ,aj (z) ∈ A2

ϕ and

∥∥∥∥∥
∞∑
j=1

λjkϕ,aj

∥∥∥∥∥
ϕ,2

≤ C
∥∥{λj}∞j=1

∥∥
l2 ,

where kϕ,w(z) = Kϕ (z,w)
‖Kϕ,w‖ϕ,2

is called normalized reproducing kernel.
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Proof By (2.5) and Hölder’s inequality, we have

∥∥F(z)
∥∥2

ϕ,2 �
∫
D

( ∞∑
j=1

|λj|e–ϕ(aj)ρ(aj)
∣∣Kϕ,aj (z)

∣∣
)2

e–2ϕ(z) dA(z)

�
∫
D

( ∞∑
j=1

|λj|2e–ϕ(aj)
∣∣Kϕ,aj (z)

∣∣
)

M(z)e–2ϕ(z) dA(z), (2.7)

where

M(z) =
∞∑
j=1

ρ(aj)2∣∣Kϕ,aj (z)
∣∣e–ϕ(aj).

It follows from (2.2), (2.5), and [3, Lemma 3.3] that

M(z) �
∞∑
j=1

∫
Dr(aj)

∣∣Kϕ,z(w)
∣∣e–ϕ(w) dA(w) �

∫
D

∣∣Kϕ,z(w)
∣∣e–ϕ(w) dA(w) � eϕ(z). (2.8)

This together with (2.7), (2.8), and (2.5) implies that

∥∥F(z)
∥∥2

ϕ,2 �
∫
D

( ∞∑
j=1

|λj|2e–ϕ(aj)
∣∣Kϕ,aj (z)

∣∣
)

e–ϕ(z) dA(z)

�
∞∑
j=1

|λj|2e–ϕ(aj)
∫
D

∣∣Kϕ,aj (z)
∣∣e–ϕ(z) dA(z)

�
∞∑
j=1

|λj|2 =
∥∥{λj}∞j=1

∥∥2
l2 ,

which ends the proof. �

To describe the Schatten-p membership of Hankel operators, we need some auxiliary
conclusions. For z, w ∈D, we write

dρ(z, w) =
|z – w|

min(ρ(z),ρ(w))
.

Lemma 2.8 ([2, Lemma 4.4]) Let ρ ∈ L and {aj}j be a (ρ , r)-lattice on D. Then for any
w ∈ D, the set

Dm(w) =
{

z ∈D | dρ(z, w) < 2mr
}

contains at most K points of the lattice, where K depends on the positive integer m, but not
on the point w.

Lemma 2.9 ([2, Lemma 4.5]) Let ρ ∈ L, r ∈ (0, mρ] and k ∈ N
+. Any (ρ, r)-lattice {aj}∞j=1

on D, can be partitioned into M subsequences such that, if ai and aj are different points in
the same subsequence, then |ai – aj| ≥ 2mr min{ρ(ai),ρ(aj)}.
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Given a positive Borel measure μ on D and r > 0, the averaging function μ̂r with respect
to measure μ is defined by

μ̂r(z) =

∫
Dr(z) dμ

|Dr(z)| .

Lemma 2.10 If μ is a positive Borel measure, 0 < p < ∞ and r ∈ (0, mρ], then
∫
D

∣∣g(z)e–ϕ(z)∣∣p dμ(z) �
∫
D

∣∣g(z)e–ϕ(z)∣∣p
μ̂r(z) dA(z), (2.9)

where g ∈H(D).

Proof See [7, Lemma 2.4]. �

3 Schatten class Toeplitz operators
In this section, for 0 < p < ∞, we investigate the sufficient and necessary conditions for
Schatten-p class membership of Toeplitz operators with positive measure symbols on
OPS . Also, we give the characterization for Schatten-h class membership of Toeplitz op-
erators where h is a continuous increasing convex function.

Let T : H1 → H2 be a bounded linear operator, and write sj(T) for the singular values of
T , where

sj(T) = inf
{‖T – K‖ : K : H1 → H2, rank (K) ≤ j

}
.

Here rank(K) means the rank of operator K . Recall that the operator T is compact if and
only if sj(T) → 0 whenever j → ∞. For 0 < p < ∞, it is called T is in Sp if

‖T‖p
Sp =

∞∑
j=1

sj(T)p < ∞,

and we write T ∈ Sp(H1, H2). Futhermore, ‖ · ‖Sp is actually a norm when 1 ≤ p < ∞ and
‖ · ‖Sp is not, if 0 < p < 1.

Using

‖S + T‖Sp ≤ ‖S‖Sp + ‖T‖Sp , 1 ≤ p < ∞, (3.1)

and

‖S + T‖p
Sp ≤ ‖S‖p

Sp + ‖T‖p
Sp , 0 < p < 1, (3.2)

it is easy to see T ∈ Sp if and only if T∗T ∈ S p
2

.
As we known, the Schatten class of Toeplitz operators with positive measure symbols is

an important problem in operator theory, which has been described in many papers (see,
for example, [2, 13, 17]). The following theorem is closely related to the main result [2,
Theorem 1.2]. To Study the Schatten class of Toeplitz operators, we define the measure
dλρ by

dλρ(z) =
dA(z)
ρ(z)2 , z ∈ D.
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Theorem 3.1 Suppose ϕ ∈ E , 0 < p < ∞, and μ is a finite positive Borel measure on D.
Then following statements are equivalent:

(a) Tμ ∈ Sp(A2
ϕ).

(b) μ̂δ ∈ Lp(D, dλρ), where δ ∈ (0,αm].
(c) {μ̂r(wn)}n ∈ lp, where {μ̂r(wn)}n is a (ρ, r)-lattice with r ∈ (0,αm].
(d) μ̃ ∈ Lp(D, dλρ), where μ̃(w) =

∫
D

|kϕ,w(z)|2 dμ(z) is the Berezin transform of μ.

Proof The proof of (b) ⇔ (c) ⇔ (d) is similar to [17, Proposition 2.5], and we omit the
details here. Indeed, this proof indicates the Lp behavior of averaging function μ̂r is inde-
pendent of r. (That is, for small enough r, ‖μ̂δ‖Lp � ‖μ̂r‖Lp with small enough δ.) The rest
part is an analogue of [17, Theorem 5.1], and for the convenience of readers, we give the
proof for implication (a) ⇒ (c) when 0 < p < 1.

Assume the Toeplitz operator Tμ is in Sp(A2
ϕ). Let {wn} be a (ρ, r)-lattice with r ∈ (0, mρ]

sufficiently small. Set a large enough integer m ≥ 2, by Lemma 2.9, the lattice {wn} can be
devided into  subsequences such that

|wi – wj| ≥ 2mr min
(
ρ(wi),ρ(wj)

)
,

where wi and wj are in the same subsequence. Let {an} be such a subsequence, and measure
ν be defined by

dν =
(∑

n
χn

)
dμ,

where χn is the characteristic function of Dr(an). Disks Dr(an) are pairwise disjoints since
m ≥ 2. Note that Tμ ∈ Sp(A2

ϕ) and 0 ≤ ν ≤ μ, thus 0 ≤ Tν ≤ Tμ, and then Tν ∈ Sp(A2
ϕ) and

‖Tν‖Sp(A2
ϕ ) ≤ ‖Tμ‖Sp(A2

ϕ ).
Let {en} be an orthonormal basis for A2

ϕ . Consider an operator G on A2
ϕ as

Gf =
∑

n
〈f , en〉A2

ϕ
kϕ,an , f ∈ A2

ϕ . (3.3)

It follows from Lemma 2.7 that G is bounded on A2
ϕ , then T = G∗TνG is in Sp(A2

ϕ) and

‖T‖Sp(A2
ϕ ) ≤ ‖G‖2 · ‖Tν‖Sp(A2

ϕ ) � ‖Tμ‖Sp(A2
ϕ ). (3.4)

By (3.3) and

〈Tf , g〉A2
ϕ

= 〈TνGf , Gg〉A2
ϕ

, f , g ∈ A2
ϕ ,

we have

Tf =
∑

n,j

〈Tνkϕ,an , kϕ,aj〉A2
ϕ
〈f , en〉A2

ϕ
ej, f ∈ A2

ϕ .

We now take a decomposition of the operator T as T = T1 + T2, where T1 is the diagonal
operator defined by

T1f =
∑

n
〈Tνkϕ,an , kϕ,an〉A2

ϕ
〈f , en〉A2

ϕ
en, f ∈ A2

ϕ ,
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and T2 = T – T1 is the non-diagonal part. Using Rotfel’d inequality (see [15]), we see

‖T‖p
Sp(A2

ϕ ) ≥ ‖T1‖p
Sp(A2

ϕ ) – ‖T2‖p
Sp(A2

ϕ ). (3.5)

Notice that T1 is a positive diagonal operator, this together with the definition of ν , (2.1),
(2.4), and (2.5) gives

‖T1‖p
Sp(A2

ϕ ) =
∑

n
〈Tνkϕ,an , kϕ,an〉p

A2
ϕ

=
∑

n

(∫
D

∣∣kϕ,an (z)
∣∣2e–2ϕ(z) dν(z)

)p

�
∑

n

(∫
Dr (an)

1
ρ(z)2 dμ(z)

)p

�
∑

n
μ̂r(an)p. (3.6)

For 0 < p < 1, [18, Proposition 1.29] and Lemma 2.3 show

‖T2‖p
Sp(A2

ϕ ) ≤
∑

n

∑
k

〈T2en, ek〉p
A2

ϕ
=

∑
k �=n

〈Tνkϕ,an , kϕ,ak 〉p
A2

ϕ

≤
∑
k �=n

(∫
D

∣∣kϕ,an (ξ )
∣∣∣∣kϕ,ak (ξ )

∣∣e–2ϕ(ξ ) dν(ξ )
)p

≤
∑
k �=n

(∑
j

∫
Dr (aj)

∣∣kϕ,an (ξ )
∣∣∣∣kϕ,ak (ξ )

∣∣e–2ϕ(ξ ) dμ(ξ )
)p

. (3.7)

If n �= k, then |an – ak| ≥ 2mr min(ρ(an),ρ(ak)). Hence, for ξ ∈ Dr(aj), we get either

|an – ξ | ≥ 2m–2r min
(
ρ(an),ρ(ξ )

)
or |ξ – ak| ≥ 2m–2r min

(
ρ(ξ ),ρ(ak)

)
.

Therefore, for any ξ ∈ Dr(aj), we may assume |an – ξ | ≥ 2m–2r min(ρ(an),ρ(ξ )).
For any n, k ∈N

+, set

Jnk(μ) =
∑

j

∫
Dr(aj)

∣∣kϕ,an (ξ )
∣∣∣∣kϕ,ak (ξ )

∣∣e–2ϕ(ξ ) dμ(ξ ).

This, combined with (3.7), yields

‖T2‖p
Sp(A2

ϕ ) ≤
∑

n,k:k �=n

Jnk(μ)p. (3.8)

Let M be large enough. Here M is from Theorem 2.6. Applying |an – ξ | ≥ 2m–2r ×
min(ρ(an),ρ(ξ )), we have

∣∣kan (ξ )
∣∣e–ϕ(ξ ) � 1

ρ(ξ )

(
min(ρ(an),ρ(ξ ))

|an – ξ |
)M

� 1
ρ(ξ )

2–Mm.

And hence,

∣∣kϕ,an (ξ )
∣∣ =

∣∣kϕ,an (ξ )
∣∣1/2∣∣kϕ,an (ξ )

∣∣1/2 � 2–Mm/2 eϕ(ξ )/2

ρ(ξ )1/2

∣∣kϕ,an (ξ )
∣∣1/2. (3.9)
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It follows from (2.4), (2.5), and (2.6) that

∣∣kϕ,ak (ξ )
∣∣ =

|Kϕ(ξ , ak)|1/2

‖Kϕ,ak ‖1/2
A2

ϕ

∣∣kϕ,ak (ξ )
∣∣1/2 � eϕ(ξ )/2

ρ(ξ )1/2

∣∣kϕ,ak (ξ )
∣∣1/2. (3.10)

By joining (3.9), (3.10), and Lemma 2.1, we obtain

Jnk(μ) � 2
–Mm

2
∑

j

1
ρ(aj)

∫
Dr(aj)

∣∣kϕ,an (ξ )
∣∣1/2∣∣kϕ,ak (ξ )

∣∣1/2e–ϕ(ξ ) dμ(ξ ).

Applying Lemmas 2.1, 2.2, and 2.3 (c), for ξ ∈ Dr(aj), we conclude

∣∣kϕ,an (ξ )
∣∣1/2e–ϕ(ξ )/2 �

(
1

ρ(ξ )2

∫
Dr(ξ )

∣∣kϕ,an (z)
∣∣p/2e–pϕ(z)/2 dA(z)

)1/p

� ρ(aj)–2/pSn(aj)1/p,

where

Sn(·) =
∫

D3α (·)

∣∣kϕ,an (z)
∣∣p/2e–pϕ(z)/2 dA(z).

The analogous reasons indicate

∣∣kϕ,ak (ξ )
∣∣1/2e–ϕ(ξ )/2 � ρ(aj)–2/pSk(aj)1/p.

So, for M large enough, we have

Jnk(μ) � 2–Mm/2
∑

j

ρ(aj)–4/p

ρ(aj)
Sn(aj)1/pSk(aj)1/pμ

(
Dr(aj)

)

≤ 2–m
∑

j

ρ(aj)1–4/pSn(aj)1/pSk(aj)1/pμ̂r(aj).

And hence, for 0 < p < 1,

Jnk(μ)p � 2–mp
∑

j

ρ(aj)p–4Sn(aj)Sk(aj)μ̂r(aj)p.

Now (3.8) can be estimated further as

‖T2‖p
Sp(A2

ϕ ) � 2–mp
∑

j

ρ(aj)p–4μ̂r(aj)p
(∑

n
Sn(aj)

)(∑
k

Sk(aj)
)

. (3.11)

On the other hand, by the definition of Sk(aj), we see

∑
k

Sk(aj) =
∫

D3α (aj)

(∑
k

∣∣kϕ,ak (z)
∣∣p/2

)
e–pϕ(z)/2 dA(z). (3.12)

We claim that

∑
k

∣∣kϕ,ak (z)
∣∣p/2 � epϕ(z)/2ρ(z)–p/2. (3.13)
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For this goal, by (2.4), (2.1), and Lemma 2.3 (d), for some r0 > 0, we get

∑
ak∈Dr0 (z)

∣∣kϕ,ak (z)
∣∣p/2 � epϕ(z)/2

∑
ak∈Dr0 (z)

ρ(ak)–p/2 � epϕ(z)/2ρ(z)–p/2. (3.14)

Taking M in Theorem 2.6 such that Mp/2 – 2 > 0, then

∑
ak /∈Dr0 (z)

∣∣kϕ,ak (z)
∣∣p/2 � epϕ(z)/2ρ(z)Mp/2–p/2–2

∑
ak /∈Dr0 (z)

ρ(ak)2

|z – ak|Mp/2

= epϕ(z)/2ρ(z)Mp/2–p/2–2
∞∑
j=0

∑
ak∈Rj(z)

ρ(ak)2

|z – ak|Mp/2 ,

where

Rj(z) =
{
ζ ∈D : 2jr0ρ(z) ≤ |ζ – z| < 2j+1r0ρ(z)

}
, j = 0, 1, 2 . . . .

By Lemma 2.3, for j = 0, 1, 2, . . . , when ak ∈ Dr02j+1 (z), we obtain

Dr0 (ak) ⊂ D20r02j
(z).

So

∑
ak∈Rj(z)

ρ(ak)2 �
∣∣D20r02j (z)

∣∣� 22jρ(z)2,

and hence (3.13) holds by (3.14) and the following estimate

∑
ak /∈Dr0 (z)

∣∣kϕ,ak (z)
∣∣p/2 � epϕ(z)/2ρ(z)–p/2–2

∞∑
j=0

2–Mpj/2
∑

ak∈Rj(z)

ρ(ak)2

� epϕ(z)/2ρ(z)–p/2
∞∑
j=0

2
(4–Mp)

2 j � epϕ(z)/2ρ(z)–p/2.

Bearing in mind (3.13), (3.12) can be estimated as

∑
k

Sk(aj) � ρ(aj)2–p/2. (3.15)

Similarly,

∑
n

Sn(aj) � ρ(aj)2–p/2. (3.16)

By joining (3.15), (3.16), and (3.11), for integer m > 0 large enough, we get

‖T2‖p
Sp(A2

ϕ ) � 2–mp
∑

j

μ̂r(aj)p ≤ 1
2

∑
j

μ̂r(aj)p.
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This together with (3.6) and (3.5) yields

∑
j

μ̂r(aj)p � ‖T‖p
Sp(A2

ϕ ).

Since the above estimate holds for each of the  subsequences {wn}, we finally obtain

∑
n

μ̂r(wn)p � M‖T‖p
Sp(A2

ϕ ) � M‖Tμ‖p
Sp(A2

ϕ ) < ∞

by (3.4), which finishes this proof. �

We are going to describe the Schatten-h class Toeplitz operators. See [1] and the refer-
ences therein for details about the Schatten-h class. We give first the following analogous
definition.

Definition 3.2 Let T be a compact operator and h : R+ →R
+ be a continuous increasing

convex function. We say that T ∈ Sh if there is a positive constant c such that

∞∑
j=1

h
(
c · sj(T)

)
< ∞.

Similar to [1], we get the following consequence.

Theorem 3.3 Suppose h : R+ →R
+ is a continuous increasing convex function, and μ is a

positive Borel measure such that Toeplitz operator Tμ : A2
ϕ → A2

ϕ is compact. Then Tμ ∈ Sh

if and only if there exists a constant c > 0 such that

∫
D

h
(
cμ̃(z)

)
ρ–2(z) dA(z) < ∞.

Proof Assume that Tμ ∈ Sh. Then there exists c > 0 such that

∞∑
j=1

h
(
csj(T)

)
< ∞.

Let {ek}∞k=1 be an orthonormal basis for A2
ϕ , and

Tμf =
∞∑

k=1

sk〈f , ek〉A2
ϕ

ek ,

where sk is the singular value sequence of Tμ. With the help of

∞∑
k=1

∣∣〈Kϕ,z, ek〉A2
ϕ

∣∣2 = 1,
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the convexity of h, Jensen’s inequality, (2.4), and (2.5), we have

∫
D

h
(
cμ̃(z)

)
ρ–2(z) dA(z) =

∫
D

h
(
c〈Tμkϕ,z, kϕ,z〉A2

ϕ

)
ρ–2(z) dA(z)

=
∫
D

h

( ∞∑
k=1

csk
∣∣〈kϕ,z, ek〉A2

ϕ

∣∣2
)

ρ–2(z) dA(z)

≤
∫
D

∞∑
k=1

h(csk)
∣∣〈kϕ,z, ek〉A2

ϕ

∣∣2
ρ–2(z) dA(z)

=
∫
D

∞∑
k=1

h(csk)‖Kϕ,z‖–2
ϕ,2

∣∣ek(z)
∣∣2

ρ–2(z) dA(z)

�
∞∑

k=1

h(csk)
∫
D

∣∣ek(z)
∣∣2e–2ϕ(z) dA(z)

=
∞∑

k=1

h(csk) < ∞.

Conversely, if there exists c > 0 such that
∫
D

h(cμ̃(z))ρ–2(z) dA(z) < ∞, then it follows
from (2.4) and (2.5) that

μ̂r(z) =
∫

Dr(z)
ρ–2(z) dμ(w)

�
∫

Dr(z)

∣∣kϕ,z(w)
∣∣2e–2ϕ(w) dμ(w) ≤ μ̃(z).

Notice that

〈Tμek , ek〉A2
ϕ

=
∫
D

∣∣ek(z)
∣∣2e–2ϕ(z) dμ(z)

�
∫
D

μ̂r(z)
∣∣ek(z)

∣∣2e–2ϕ(z) dA(z)

�
∫
D

μ̃(z)
∣∣ek(z)

∣∣2e–2ϕ(z) dA(z),

then by Jensen’s inequality again we get

∞∑
k=1

h
(
c〈Tμek , ek〉A2

ϕ

)

≤
∫
D

h
(
cμ̃(z)

)( ∞∑
k=1

∣∣ek(z)
∣∣2

)
e–2ϕ(z) dA(z)

=
∫
D

h
(
cμ̃(z)

)‖Kϕ,z‖2
ϕ,2e–2ϕ(z) dA(z)

=
∫
D

h
(
cμ̃(z)

)
ρ–2(z) dA(z) < ∞,

which gives Tμ ∈ Sh. This completes the proof. �
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4 Schatten class Hankel operators
This section devotes to studying membership in Schatten ideals of Hankel operators with
general symbols. First, when 0 < p < ∞, we get the sufficient and necessary conditions
for Hankel operators are in Schatten-p class. Here we mainly discuss case 0 < p < 1, see
case 1 ≤ p < ∞ in [13]. Next, for a continuous increasing convex function h, we obtain the
sufficient and necessary conditions for Hankel operators to be in Schatten-h class. This
kind of problem is new for Hankel operators.

Lemma 4.1 If A and B are bounded linear operators, p ∈ (0, 1), then

‖AB‖p
Sp ≤ ||B||p||A||pSp and ||AB||pSp ≤ ||A||p||B||pSp . (4.1)

Proof See [6]. �

Let L2
loc(D) denote the space consists of locally square integrable Lebesgue measurable

functions on D. If f ∈ L2
loc(D) and z ∈D, Gr(f )(z) is defined by

Gr(f )(z) = inf

{(
1

|Dr(z)|
∫

Dr (z)
|f – h|2 dA

)1/2

: h ∈H
(
Dr(z)

)}
,

where H(Dr(z)) is the analytic functions space on Dr(z). For z ∈ D, f ∈ L2(Dr(z), dA) and
r > 0, the averaging function of |f | on Dr(z) is defined by

Mr(f )(z) =
(

1
|Dr(z)|

∫
Dr (z)

|f |2 dA
)1/2

.

Indeed, Mr(f )(z) = (|̂f |2r)1/2.

Lemma 4.2 For z ∈D, f ∈ L2(Dr(z), dA), and r > 0, there exists an h ∈H(Dr(z)) such that

Mr(f – h)(z) = Gr(f )(z). (4.2)

Proof The proof is similar to [11, Lemma 3.3]. �

For z ∈ D and r > 0, let

A2(Dr(z), dA
)

= L2(Dr(z), dA
) ∩H

(
Dr(z)

)

denote the Bergman space on Dr(z). Let Bz,r denote Bergman projection induced by the
reproducing kernel of A2(Dr(z), dA). As we known, Bz,r is bounded and Bz,rh = h, where
h ∈ A2(Dr(z), dA). The following consequence is similar to [11, Lemma 3.4] with q = 2.

Lemma 4.3 For z ∈D and r > 0, if f ∈ L2(Dr(z), dA), then we have

Mr
(
f – Bz,r(f )

)
(z) � Gr(f )(z). (4.3)
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Proof Taking h from Lemma 4.2, we have h ∈ A2(Dr(z), dA) since f ∈ L2
loc(D). Then Bz,rh =

h. By trigonometric inequality and Lemma 4.2,

Mr
(
f – Bz,r(f )

)
(z) ≤ Mr(f – h)(z) + Mr

(
h – Bz,r(f )

)
(z)

= Mr(f – h)(z) + Mr
(
Bz,r(h – f )

)
(z)

� Mr(f – h)(z) = Gr(f )(z).

It is obvious that Gr(f )(z) ≤ Mr(f – Bz,r(f ))(z), and hence this proof is complete. �

Given r > 0, let {aj}∞j=1 be a (ρ, r/3)-lattice, Jz = {j : z ∈ Dr(aj)}, and |Jz| be the number of
elements of Jz . By (2.3), 1 ≤ |Jz| ≤ N . Let {ψj}∞j=1 denote the unit decomposition induced
by {Dr/3(aj)}∞j=1, that is,

ψj ∈ C∞(D), suppψj ⊆ Dr/3(aj), |∂̄ψj| ≤ Cρ(aj)–1,
∞∑
j=1

ψj = 1, ψj ≥ 0.

By (2.1), it is easy to see

ρ(z)
∣∣∂̄ψj(z)

∣∣ ≤ C, for any j = 1, 2, . . . and z ∈D.

Given f ∈ L2
loc(D), for j = 1, 2, . . . , taking hj ∈H(Dr(aj)) in Lemma 4.2 such that

Mr(f – hj) = Gr(f )(aj).

Definition 4.4 By the decomposition above, we define

f1 =
∞∑
j=1

hjψj and f2 = f – f1. (4.4)

Note that f1(z) is actually a finite summation for any z ∈ D, and by suppψj ⊆ Dr/3(aj) ⊆
Dr(aj), then f1 is well-defined.

Lemma 4.5 Let f ∈ L2
loc(D) and r > 0. By (4.4), f admits a decomposition f = f1 + f2. Then

f1 ∈ C1(D) and

∣∣ρ(z)∂̄f1(z)
∣∣ + Mr/9(ρ∂̄f1)(z) + Mr/9(f2)(z) ≤ CG9r(f )(z), (4.5)

where z ∈ D and C > 0 is independent of f .

Proof Since hj ∈ H(Dr(aj)) and ψj ∈ C∞(D), f1 ∈ C1(D). For z ∈ D, without loss of gen-
erality, we may assume z ∈ Dr/3(a1). It is easy to check that Dr/9(z) ⊆ Dr(aj) whenever
z ∈ Dr/3(aj). By

∑∞
j=1 ∂̄ψj(z) = 0 and the subharmonic property of |hj – h1| on Dr/9(z) ⊆
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Dr(aj),

∣∣ρ(z)∂̄f1(z)
∣∣ =

∣∣∣∣∣
∞∑
j=1

(
hj(z) – h1(z)

)
ρ(z)∂̄ψj(z)

∣∣∣∣∣

≤
∞∑
j=1

∣∣hj(z) – h1(z)
∣∣∣∣ρ(z)∂̄ψj(z)

∣∣

≤ C
∑

{j:z∈Dr/3(aj)}
Mr/9(hj – h1)(z)

≤ C
∑

{j:z∈Dr/3(aj)}

[
Mr/9(f – hj)(z) + Mr/9(f – h1)(z)

]

�
∑

{j:z∈Dr/3(aj)}
Gr(f )(aj).

If z ∈ Dr/3(aj), then we have Dr(aj) ⊆ D9r(z), and

Gr(f )(aj) ≤ CG9r(f )(z).

Hence,

∣∣ρ(z)∂̄f1(z)
∣∣ ≤ CG9r(f )(z). (4.6)

If w ∈ Dr/9(z), then D3r(w) ⊆ D9r(z). Thus, similar to (4.6),

Mr/9(ρ∂̄f1)(z)2 ≤ Cρ(z)–2
∫

Dr/9(z)
G3r(f )(w)2 dA(w)

≤ CG9r(f )(z)2, (4.7)

since G3r(f )(w) ≤ CG9r(f )(z) for w ∈ Dr/9(z).
Using Cauchy–Schwarz inequality,

∣∣f2(z)
∣∣2 ≤

∞∑
j=1

∣∣f (z) – hj(z)
∣∣2

ψj(z).

Therefore,

Mr/9(f2)(z)2 ≤
∞∑
j=1

1
|Dr/9(z)|

∫
Dr/9(z)

|f – hj|2ψj dA

≤ C
∑

{j:z∈Dr/3(aj)}

1
|Dr(aj)|

∫
Dr (aj)

|f – hj|2 dA

= C
∑

{j:z∈Dr (aj)}
Gr(f )(aj)2

≤ CG9r(f )(z)2.

This finishes the proof. �
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Lemma 4.6 Let 0 < p < ∞ and f ∈ L2
loc(D). Then following statements are equivalent:

(a) For some (or any) r ≤ mρ , Mr(f )(z) ∈ Lp(D,ρ–2 dA).
(b) For some (or any) r ≤ mρ , {aj}∞j=1 is a (ρ, δ)-lattice with δ ≤ r, then the sequence

{Mδ(f )(aj)}∞j=1 ∈ lp, and

∥∥Mr(f )
∥∥

Lp(D,ρ–2 dA) � ∥∥{
Mδ(f )(aj)

}∞
j=1

∥∥
lp . (4.8)

Proof The proof is an analogue of [17, Proposition 2.4]. �

For z ∈D and r > 0, we denote L2(Dr(z), e–2ϕ dA) = L2
ϕ(Dr(z)) and A2

ϕ(Dr(z)) = L2
ϕ(Dr(z))∩

H(Dr(z)). Let Pz,r : L2
ϕ(Dr(z)) → A2

ϕ(Dr(z)) be the projection. Given f ∈ L2
ϕ(Dr(z)), we may

assume Pz,r(f )(w) = 0, when w ∈D\Dr(z), it follows that Pz,r(f ) is a natural extension on D.
If f , g ∈ L2

ϕ , then it is easy to see f , g ∈ L2
ϕ(Dr(z)). Then, for f , g ∈ L2

ϕ , we have P2
z,r(f ) = Pz,r(f )

and 〈f , Pz,r(g)〉 = 〈Pz,r(f ), g〉. Also, if h ∈ A2
ϕ , then Pz,r(h) = χDr(z)h, and hence

〈h,χDr (z)g〉 = 〈χDr(z)h, g〉 =
〈
Pz,r(h), g

〉
=

〈
h, Pz,r(g)

〉
, g ∈ L2

ϕ .

Equivalently,

〈
h,χDr (z)g – Pz,r(g)

〉
= 0. (4.9)

Lemma 4.7 If f , g ∈ L2
ϕ , then

〈
f – P(f ),χDr(z)g – Pz,r(g)

〉
=

〈
χDr(z)f – Pz,r(f ),χDr(z)g – Pz,r(g)

〉
.

Proof See [10, Lemma 5.1]. �

By [13], Hf : A2
ϕ → L2

ϕ is bounded if and only if Gr(f ) ∈ L∞. In fact, Gr(f ) ∈ L∞ is inde-
pendent of r. Further, ‖Gr(f )‖L∞ � ‖Gδ(f )‖L∞ . Suppose Gr(f ) ∈ L∞, it is from Lemma 4.5
that

||Mr(f2)||L∞ � ||Gr(f )||L∞ . (4.10)

Hence, the condition Gr(f ) ∈ L∞ is natural in the study of Schatten class membership of
Hankel operators.

Lemma 4.8 Suppose ϕ ∈ E , r ∈ (0, mρ], Hf is densely defined satisfying Gr(f ) ∈ L∞ and the
decomposition f = f1 + f2 by Lemma 4.5. Then both Hf1 and Hf2 are bounded, and

||Hf1 (g)||L2
ϕ
� ||gρ∂̄f1||L2

ϕ
and ||Hf2 (g)||L2

ϕ
� ||f2g||L2

ϕ
.

Proof See [13, Theorem 3.1]. �

Now we are ready for the characterization of Schatten class Hankel operators.

Theorem 4.9 Suppose ϕ ∈ E , 0 < p < ∞, 0 < r ≤ mρ and Hf is densely defined satisfying
Gr(f ) ∈ L∞. Then following statements are equivalent:
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(a) The Hankel operator Hf is in Sp.
(b) For some (or any) (ρ , r)-lattice {aj}∞j=1, {Gr(f )(aj)}∞j=1 ∈ lp.
(c) For some (or any) r, Gr(f ) ∈ Lp(D,ρ–2 dA).
(d) For some (or any) r, f admits a decomposition f = f1 + f2 such that f1 ∈ C1(D),

Mr(ρ∂̄f1) ∈ Lp(D,ρ–2 dA) and Mr(f2) ∈ Lp(D,ρ–2 dA).
(e) For some (or any) (ρ , r)-lattice {aj}∞j=1, f admits a decomposition f = f1 + f2 such that

f1 ∈ C1(D), {Mr(ρ∂̄f1)(aj)}∞j=1 ∈ lp and {Mr(f2)(aj)}∞j=1 ∈ lp.

Proof (a) ⇒ (b). We give only the case 0 < p < 1. Let {aj}∞j=1 be a (ρ , r)-lattice. By Lemma
2.9, {aj}∞j=1 can be devided into N subsequences, if ai and aj are in the same subsequence,
then

|ai – aj| ≥ 2kr min
(
ρ(ai),ρ(aj)

)
. (4.11)

In fact, just consider one of subsequences here. Without loss of generality, it is assumed
that {aj}∞j=1. For any finite subset J ⊆N

+, let {ej}∞j=1 be an orthonormal basis for A2
ϕ , and

A(g) =
∑
j∈J

〈g, ej〉kϕ,aj , g ∈ A2
ϕ .

Then, by Parseval’s equality,

∑
j∈J

∣∣〈g, ej〉
∣∣2 ≤

∞∑
j=1

∣∣〈g, ej〉
∣∣2 = ‖g‖2

ϕ .

It follows from Lemma 2.7 that A is bounded on A2
ϕ .

If ‖χDr(aj)gkϕ,aj – Paj ,r(gkϕ,aj )‖L2
ϕ

�= 0, we let

hj =
χDr(aj)fkϕ,aj – Paj ,r(fkϕ,aj )

‖χDr (aj)fkϕ,aj – Paj ,r(fkϕ,aj )‖L2
ϕ

,

and hj = 0 otherwise. It is easy to see ‖hj‖2
ϕ ≤ 1. Assume Dr(ai)∩Dr(aj) �= ∅, then |ai – aj| ≤

3r min{ρ(ai),ρ(aj)}. For k large enough, we have Dr(ai) ∩ Dr(aj) = ∅ whenever i �= j. Hence,
〈hi, hj〉 = 0 if i �= j.

Let {cj}j∈J denote nonnegative sequence, we define the operator B by

B(g) =
∑
j∈J

cj〈g, hj〉ej.

It is easy to check that B is bounded on A2
ϕ , and ‖B‖ ≤ supj∈J{cj}. It follows that

BHf A(g) =
∑
j∈J

cj
〈
Hf A(g), hj

〉
ej

=
∑
j∈J

∑
i∈J

cj〈Hf kϕ,ai , hj〉〈g, ei〉ej.
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The application of Lemma 4.1 gives

‖BHf A‖p
Sp ≤ ||B||p||Hf ||pSp ||A||p ≤ C sup

j∈J
cp

j .

Taking a decomposition of the operator BHf A as the diagonal part

Y (g) =
∑
j∈J

cj〈Hf kϕ,aj , hj〉〈g, ej〉ej

and the non-diagonal part

Z(g) =
∑

j,i∈J :i�=j

cj〈Hf kϕ,ai , hj〉〈g, ei〉ej,

we have, by (3.2),

||Y ||pSp � ||BHf A||pSp + ||Z||pSp .

By Lemma 2.4, there exists a constant C > 0 such that for z ∈ Dr(aj)

∣∣kϕ,aj (z)
∣∣ ≥ Ceϕ(z)ρ(aj)–1 > 0,

and hence k–1
ϕ,aj

∈H(Dr(aj)). According to Lemma 4.7 and (2.5),

‖Y‖p
Sp =

∑
j∈J

cp
j
∣∣〈Hf kϕ,aj , hj〉

∣∣p =
∑
j∈J

cp
j
∣∣〈fkϕ,aj – P(fkϕ,aj ), hj

〉∣∣p

=
∑
j∈J

cp
j
∣∣〈χDr(aj)fkϕ,aj – Paj ,r(fkϕ,aj ), hj

〉∣∣p

=
∑
j∈J

cp
j
∥∥χDr (aj)fkϕ,aj – Paj ,r(fkϕ,aj )

∥∥p
L2
ϕ

=
∑
j∈J

cp
j

{∫
Dr(aj)

∣∣fkϕ,aj – Paj ,r(fkϕ,aj )
∣∣2e–2ϕ dA

}p/2

=
∑
j∈J

cp
j

{∫
Dr(aj)

|kϕ,aj |2e–2ϕ
∣∣f – k–1

ϕ,aj
Paj ,r(fkϕ,aj )

∣∣2 dA
}p/2

�
∑
j∈J

cp
j

{
1

|Dr(aj)|
∫

Dr (aj)

∣∣f – k–1
ϕ,aj

Paj ,r(fkϕ,aj )
∣∣2 dA

}p/2

≥
∑
j∈J

cp
j Gr(f )(aj)p.
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This together with [18, Proposition 1.29], Lemma 4.7, and Cauchy–Schwarz inequality
yields

‖Z‖p
Sp ≤

∞∑
n=1

∞∑
m=1

∣∣〈Zen, em〉∣∣p =
∑

j,i∈J :i�=j

cp
j
∣∣〈Hf kϕ,ai , hj〉

∣∣p

=
∑

j,i∈J :i�=j

cp
j
∣∣〈χDr(aj)fkϕ,ai – Paj ,rfkϕ,ai , hj〉

∣∣p

≤
∑

j,i∈J :i�=j

cp
j ‖χDr (aj)fkϕ,ai – Paj ,rfkϕ,ai‖p

ϕ,2

=
∑

j,i∈J :i�=j

cp
j

{∫
Dr (aj)

∣∣fkϕ,ai – Paj ,r(fkϕ,ai )
∣∣2e–2ϕ dA

}p/2

≤
∑

j,i∈J :i�=j

cp
j

{∫
Dr (aj)

∣∣fkϕ,ai – kϕ,ai Baj ,r(f )
∣∣2e–2ϕ dA

}p/2

,

where Bz,r is the projection from L2(Dr(z)) to A2(Dr(z)). Hence, by Lemma 4.3,

‖Z‖p
Sp ≤

∑
j∈J

cp
j

{∫
Dr (aj)

∑
i∈J :i�=j

(|kϕ,ai |2e–2ϕ
)∣∣f – Baj ,r(f )

∣∣2 dA
}p/2

�
∑
j∈J

cp
j sup

z∈Dr(aj)

( ∑
i∈J :i�=j

∣∣kϕ,ai (z)
∣∣2e–2ϕ(z)

)p/2

ρ(aj)p

·
{

1
|Dr(aj)|

∫
Dr(aj)

∣∣f – Baj ,r(f )
∣∣2 dA

}p/2

�
∑
j∈J

cp
j Gr(f )(aj)pρ(aj)p sup

z∈Dr(aj)

( ∑
i∈J :i�=j

∣∣kϕ,ai (z)
∣∣2e–2ϕ(z)

)p/2

. (4.12)

Let i, j ∈ J and i �= j. Then there exists wj,i ∈ Dr(aj) such that

|wj,i – ai| = inf
z∈Dr(aj)

|z – ai|.

This combined with (2.6) and (2.1), for z ∈ Dr(aj), implies

∣∣kϕ,ai (z)
∣∣2e–2ϕ(z) ≤ C

1
ρ(z)

(
min(ρ(z),ρ(ai))

|z – ai|
)N ∣∣kϕ,ai (z)

∣∣e–ϕ(z)

� 1
ρ(aj)

(
min(2ρ(wj,i),ρ(ai))

|wj,i – ai|
)N ∣∣kϕ,ai (z)

∣∣e–ϕ(z)

� 1
ρ(aj)

(
min(ρ(wj,i),ρ(ai))

|wj,i – ai|
)N ∣∣kϕ,ai (z)

∣∣e–ϕ(z).

We claim that |wj,i – ai| ≥ 2k–2r min(ρ(wj,i),ρ(ai)). If not, we assume |wj,i – ai| ≤ 2k–2r ×
min(ρ(wj,i),ρ(ai)). By (2.1) and the trigonometric inequality,

|aj – ai| ≤ |aj – wj,i| + |wj,i – ai| ≤ rρ(aj) + 2k–2rρ(wj,i) < 2krρ(aj),
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and

|aj – ai| ≤ |aj – wj,i| + |wj,i – ai|
≤ rρ(aj) + 2k–2rρ(wj,i)

≤ 2rρ(wj,i) + 2k–2rρ(wj,i)

≤ 4rρ(ai) + 2k–1rρ(ai) < 2krρ(ai).

So |aj – ai| < 2kr min(ρ(aj),ρ(ai)), which causes a contradiction with (4.11). Thus, for z ∈
Dr(aj),

∣∣kϕ,ai (z)
∣∣2e–2ϕ(z) � 1

ρ(aj)

(
1

2k–2r

)N ∣∣kϕ,ai (z)
∣∣e–ϕ(z)

� 1
ρ(aj)

(
1
2

)Nk∣∣kϕ,ai (z)
∣∣e–ϕ(z). (4.13)

By joining (4.12) and (4.13), we obtain

‖Z‖p
Sp �

(
1
2

) Npk
2 ∑

j∈J

cp
j Gr(f )(aj)pρ(aj)

p
2 sup

z∈Dr(aj)

( ∑
i∈J :i�=j

∣∣kϕ,ai (z)
∣∣e–ϕ(z)

)p/2

. (4.14)

Set r0 = 3r. Fix j ∈ J , then, for any z ∈ Dr(aj), we have

∑
i∈J :i�=j

∣∣kϕ,ai (z)
∣∣e–ϕ(z) ≤

∞∑
i=1:i�=j

∣∣kϕ,ai (z)
∣∣e–ϕ(z)

=
∑

{ai :|aj–ai|≤r0ρ(aj)}

∣∣kϕ,ai (z)
∣∣e–ϕ(z)

+
∞∑

n=1

∑
{ai :2nr0ρ(aj)<|aj–ai|≤2n+1r0ρ(aj)}

∣∣kϕ,ai (z)
∣∣e–ϕ(z)

= I + II.

It is from (2.1) that, for any z ∈ Dr(aj),

I =
∑

{ai :|aj–ai|≤r0ρ(aj)}

∣∣kϕ,ai (z)
∣∣e–ϕ(z) �

∑
{ai :|aj–ai|≤r0ρ(aj)}

1
ρ(ai)

� 1
ρ(aj)

. (4.15)

When 2nr0ρ(aj) < |aj – ai| ≤ 2n+1r0ρ(aj), we get

|wj,i – ai| ≥ |aj – ai| – |ai – wj,i|
> 2nr0ρ(aj) – rρ(aj)

=
(

2n –
1
3

)
r0ρ(aj) ≥ 1

2
· 2nr0ρ(aj).
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For any z ∈ Dr(aj),

II =
∞∑

n=1

∑
{ai :2nr0ρ(aj)<|aj–ai|≤2n+1r0ρ(aj)}

∣∣kϕ,ai (z)
∣∣e–ϕ(z)

�
∞∑

n=1

∑
{ai :2nr0ρ(aj)<|aj–ai|≤2n+1r0ρ(aj)}

1
ρ(z)

(
min(ρ(ai),ρ(z))

|wj,i – ai|
)N

�
∞∑

n=1

(
1
2

)nN

ρ(aj)–1–N+(N–2)
∑

{ai :2nr0ρ(aj)<|aj–ai|≤2n+1r0ρ(aj)}
ρ(ai)2.

It is clear that for n = 1, 2, . . . , if ai ∈ Dr02n+1 (aj), we have

Dr0 (ai) ⊆ DCr02n
(aj).

Hence
∑

{ai :2nr0ρ(aj)<|aj–ai|≤2n+1r0ρ(aj)}
ρ(ai)2 �

∣∣DCr02n
(aj)

∣∣ � 22nρ(aj)2.

Choose N – 2 > 1 such that
∞∑

n=1

(
1
2

)n(N–2)

≤ C.

So, for z ∈ Dr(aj),

∞∑
n=1

∑
{ai :2nr0ρ(aj)<|aj–ai|≤2n+1r0ρ(aj)}

∣∣kϕ,ai (z)
∣∣e–ϕ(z) � 1

ρ(aj)
. (4.16)

For any z ∈ Dr(aj), by (4.15) and (4.16), we see

sup
z∈Dr(aj)

( ∑
i∈J :i�=j

∣∣kϕ,ai (z)
∣∣e–ϕ(z)

)p/2

�
(

1
ρ(aj)

) p
2

.

Joining (4.14) and the above estimates, we get

‖Z‖p
Sp �

(
1
2

) Npk
2 ∑

j∈J

cp
j Gr(f )(aj)p. (4.17)

Choose k large enough such that

(
1
2

) Npk
2 → 0 as k → ∞.

Hence, for any J ,
∑
j∈J

cp
j Gr(f )(aj)p � sup

j∈J
cp

j .

Therefore (a) ⇒ (b) since l∞ is the dual space of l1.
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(b) ⇒ (c). Notice that {aj}∞j=1 is a (ρ , 3r)-lattice if {aj}∞j=1 is a (ρ , r)-lattice. Assume∑∞
j=1 G3r(f )(aj)p < ∞. Since z ∈ Dr(aj), Dr(z) ⊆ D3r(aj), and hence

∫
D

Gr(f )(z)pρ(z)–2 dA(z) ≤
∞∑
j=1

∫
Dr(aj)

Gr(f )(z)pρ(z)–2 dA(z)

�
∞∑
j=1

sup
z∈Dr(aj)

Gr(f )(z)p

�
∞∑
j=1

G3r(f )(aj)p < ∞.

(c) ⇒ (d). Suppose Gr(f )(z) ∈ Lp(D,ρ–2 dA) and the decomposition f = f1 + f2 is from
Lemma 4.5, then f1 ∈ C1(D) and

∣∣ρ(z)∂̄f1(z)
∣∣ + Mr/81(ρ∂̄f1)(z) + Mr/81(f2)(z) ≤ CGr(f )(z).

By Lemma 4.6,

∥∥Mr(ρ∂̄f1)
∥∥

Lp(D,ρ–2 dA) � ∥∥Mr/28(ρ∂̄f1)
∥∥

Lp(D,ρ–2 dA) ≤ C
∥∥Gr(f )

∥∥
Lp(D,ρ–2 dA) < ∞

and

∥∥Mr(f2)
∥∥

Lp(D,ρ–2 dA) � ∥∥Mr/28(f2)
∥∥

Lp(D,ρ–2 dA) ≤ C
∥∥Gr(f )

∥∥
Lp(D,ρ–2 dA) < ∞.

(d) ⇔ (e). See Lemma 4.6.
(d) ⇒ (a). To finish this, we let Mf2 and Mρ∂̄f1 denote multiplication operators. Let φ be

f2 or ρ∂̄f1. By Gr(f )(z) ∈ L∞ and Lemma 4.6, Mr(φ)(z) ∈ L∞. We next show the operator
Mφ is bounded from A2

ϕ to L2
ϕ . Indeed, by Lemma 2.10 with p = 2, then for g ∈ A2

ϕ we have

‖Mφg‖2
ϕ,2 =

∫
D

|g|2e–2ϕ |φ|2 dA

�
∫
D

∣∣g(z)
∣∣2e–2ϕ(z) |̂φ|2r(z) dA(z)

=
∫
D

∣∣g(z)
∣∣2e–2ϕ(z)Mr(φ)(z)2 dA(z)

≤ ||Mr(φ)||2L∞||g||2L2
ϕ

.

For any g, h ∈ A2
ϕ ,

〈
M∗

φMφg, h
〉

= 〈Mφg, Mφh〉 = 〈T|φ|2 g, h〉.

This gives M∗
φMφ = T|φ|2 on A2

ϕ . Using [18, Theorem 1.26], we get Mφ ∈ Sp if and only if
M∗

φMφ = T|φ|2 ∈ Sp/2. By Theorem 3.1, T|φ|2 ∈ Sp/2 if and only if |̂φ|2r(z) ∈ Lp/2(D,ρ–2 dA)
if and only if Mr(φ)(z) ∈ Lp(D,ρ–2 dA), and so Mφ ∈ Sp. Since ‖Hf1 (g)‖ϕ,2 � ‖gρ∂̄f1‖ϕ,2

and ‖Hf2 (g)‖ϕ,2 � ‖f2g‖ϕ,2, both Hf1 and Hf2 are in Sp, therefore Hf ∈ Sp. This finishes the
proof. �
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Theorem 4.10 Let ϕ ∈ E and h(
√

(·)) : R+ → R
+ be a continuous increasing convex func-

tion. Suppose Hf is densely defined satisfying Gr(f ) ∈ L∞. Then following statements are
equivalent:

(a) The Hankel operator Hf is in Sh.
(b) For some (or any) 0 < r < mρ , there exists a constant c > 0 such that

∫
D

h
(
cGr(f )(z)

)
ρ–2(z) dA(z) < ∞.

Proof (a) ⇒ (b). Let {ej}∞j=1 be an orthonormal basis for A2
ϕ , define

Tej =
χDr (aj)Hf (kϕ,aj )

(
∫

Dr(aj)
|Hf (kϕ,aj )|2e–2ϕ dA) 1

2
= tjχDr(aj)Hf (kϕ,aj )

where {aj} is a (ρ, r
3 )-lattice. It is clear that ‖Tg‖2

2,ϕ � ‖g‖2
2,ϕ , and hence T is bounded. By

convexity of h(
√

(·)), h(·) is a convex function. Let

A(g) =
∞∑
j=1

〈g, ej〉kϕ,aj ,

we have

∫
D

h
(
cG r

3
(f )(z)

)
ρ–2(z) dA(z)

≤
∞∑
j=1

∫
Dr (aj)

h
(
cG r

3
(f )(z)

)
ρ–2(z) dA(z)

≤
∞∑
j=1

sup
z∈D

r
3 (aj)

h
(
cGr(f )(z)

)
�

∞∑
j=1

h
(
c1Gr(f )(aj)

)

�
∞∑
j=1

h
((

c2

|Dr(aj)|
∫

Dr(aj)

∣∣∣∣f –
1

kϕ,aj

P(fkϕ,a,j)
∣∣∣∣
2

dA(z)
) 1

2
)

�
∞∑
j=1

h
((

c3

∫
Dr (aj)

∣∣∣∣f –
1

kϕ,aj

P(fkϕ,aj )
∣∣∣∣
2

|kϕ,aj |2e–2ϕ(z) dA(z)
) 1

2
)

=
∞∑
j=1

h
((

c3

∫
Dr (aj)

∣∣Hf (kϕ,aj )
∣∣2e–2ϕ(z) dA(z)

) 1
2
)

=
∞∑
j=1

h
(
c3

∣∣tj〈Hf kϕ,aj ,χDr(aj)Hf kϕ,aj〉
∣∣) ≤

∞∑
j=1

h
(
c3

∣∣〈T∗Hf Aej, ej
〉∣∣)

≤
∞∑
j=1

h
(
c4sj

(
T∗Hf A

))
�

∞∑
j=1

h
(
c5sj(Hf )

)
< ∞.
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(b) ⇒ (a). Suppose
∫
D

h(cGr(f )(z))ρ–2(z) dA(z) < ∞, f admits a decomposition f = f1 + f2,
where

f1 =
∞∑
j=1

hjψj and f2 = f – f1.

Here {ψj}∞j=1 is the unit decomposition induced by {D r
3 (aj)}∞j=1. Choose hj ∈H(Dr(aj)) and

f ∈ Lp
loc(D), j = 1, 2, . . . , such that

Mr(f – hj) = Gr(f )(aj),

then f1 ∈ C1(D) and

∣∣ρ(z)∂̄f1(z)
∣∣ + M r

27
(ρ∂̄f1)(z) + M r

27
(f2)(z) ≤ cGr(f )(z).

Hence

∫
D

h
(
Mr(ρ∂̄f1)

)
ρ(z)–2 dA(z) <

∫
D

h
(
cM r

27
(ρ∂̄f1)

)
ρ(z)–2 dA(z)

≤
∫
D

h
(
cGr(f )(z)

)
ρ(z)–2 dA(z) < ∞

and

∫
D

h(Mr(f2)ρ(z)–2 dA(z) <
∫
D

h(cM r
27

(f2)ρ(z)–2 dA(z)

≤
∫
D

h
(
cGr(f )(z)

)
ρ(z)–2 dA(z) < ∞.

Let θ be f2 or ρ∂̄f1, and Mθ be multiplication operator. By Gr(f )(z) ∈ L∞, Mr(θ )(z) ∈ L∞,
and so the operator Mθ is bounded from A2

ϕ to L2
ϕ . Note that, for g, h ∈ A2

ϕ ,

〈
M∗

θ Mθ g, h
〉

= 〈Mθ g, Mθ h〉 = 〈T|θ |2 g, h〉.

Hence M∗
θ Mθ = T|θ |2 . Since Mθ ∈ Sh if and only if M∗

θ Mθ = T|θ |2 ∈ Sh(
√

(·)). According to
Theorem 3.3 and the convexity of h(

√
(·)), T|θ |2 ∈ Sh(

√
(·)) if and only if

∫
D

h
(
c
(|̃θ |2(z)

) 1
2
)
ρ(z)–2 dA(z) < ∞.

It is easy to check that μ̂r(z) ≤ μ̃(z), and we claim that

∫
D

h
(
μ̃(z)

)
dA(z) ≤ c

∫
D

h
(
cμ̂r(w)

)
dA(w).
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By Jensen’s inequality, the convexity of h and μ̃(z) ≤ ˜̂μr(z),

∫
D

h
(
μ̃(z)

)
dA(z) ≤

∫
D

h
(
c ˜̂μr(z)

)
dA(z)

≤
∫
D

h
(

c
∫
D

∣∣kϕ,ze–ϕ(w)∣∣2
μ̂r(w) dA(w)

)

≤
∫
D

(∫
D

h
(
cμ̂r(w)

)∣∣kϕ,ze–ϕ(w)∣∣2 dA(w)
)

dA(z)

≤
∫
D

h
(
cμ̂r(w)

)
dA(w)

∫
D

∣∣kϕ,ze–ϕ(w)∣∣2 dA(z)

≤ c
∫
D

h
(
cμ̂r(w)

)
dA(w).

Recall that

∫
D

h
(
cMr(θ )(z)

)
ρ(z)–2 dA(z) < ∞,

thus

∫
D

h
(
c
(|̂θ |2r(z)

) 1
2
)
ρ(z)–2 dA(z) < ∞,

and hence

∫
D

h
(
c
(|̃θ |2(z)

) 1
2
)
ρ(z)–2 dA(z) < ∞.

So Mθ ∈ Sh. Since ‖Hf1 (g)‖L2
ϕ
� ‖gρ∂̄f1‖L2

ϕ
and ‖Hf2 (g)‖L2

ϕ
� ‖f2g‖L2

ϕ
, we have that both Hf1

and Hf2 are in Sh, and therefore Hf ∈ Sh. This completes the proof. �
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