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Abstract
This paper focuses on the Rayleigh–Taylor instability in the two-dimensional system
of equations of nonhomogeneous incompressible viscous fluids with capillarity
effects in a horizontal periodic domain with infinite height. First, we use the modified
variational method to construct (linear) unstable solutions for the linearized capillary
Rayleigh–Taylor problem. Then, motivated by the Grenier’s idea in (Grenier in
Commun. Pure Appl. Math. 53(9):1067–1091, 2000), we further construct approximate
solutions with higher-order growing modes to the capillary Rayleigh–Taylor problem
and derive the error estimates between both the approximate solutions and
nonlinear solutions of the capillary Rayleigh–Taylor problem. Finally, we prove the
existence of escape points based on the bootstrap instability method of Hwang–Guo
in (Hwang and Guo in Arch. Ration. Mech. Anal. 167(3):235–253, 2003), and thus
obtain the nonlinear Rayleigh–Taylor instability result. Our instability result presents
that the Rayleigh–Taylor instability can occur in the fluids with capillarity effects for
any capillary coefficient κ > 0 if the critical capillary coefficient is infinite. In particular,
it improves the previous Zhang’s result in (Zhang in J. Math. Fluid Mech. 24(3):70–23,
2022) with the assumption of smallness of the capillary coefficient.

Keywords: Incompressible viscous fluids with capillarity effects; Rayleigh–Taylor
instability; Incompressible Navier–Stokes–Korteweg equations

1 Introduction
The two-dimensional (2D) motion equations of a nonhomogeneous incompressible vis-
cous fluid with capillarity effects in the presence of a uniform gravitational field in a do-
main D ⊂R

2 are given as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ρt + V · ∇ρ = 0,

ρVt + ρV · ∇V + ∇P – μ�V = –ρge2 – κ∇ρ�ρ,

div V = 0,

(1.1)

where the unknowns ρ := ρ(x, t), V := V (x, t) and P := P(x, t) denote the density, velocity
and the pressure, respectively, μ > 0 stands for the coefficient of shear viscosity, g > 0 is
the gravitational constant. The positive constant κ > 0 represents for the capillary coef-
ficient, e2 := (0, 1)T the vertical unit vector, the superscript T the transposition and –ge2
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the gravitational force. Here and in what follows x ∈ R
2 and t ≥ 0 are the spacial and tem-

poral variables, respectively. In the system (1.1), the equation (1.1)1 describes the law of
conservation of mass and (1.1)2 the law of conservation of momentum. We call (1.1) the in-
homogeneous incompressible Navier–Stokes–Korteweg equations. We mention that the
general capillary tensor K is written as

K =
(
ρ div

(
κ(ρ)∇ρ

)
+

(
κ(ρ) – ρκ ′(ρ)

)|∇ρ|2/2
)
I – κ(ρ)∇ρ ⊗ ∇ρ, (1.2)

where I denotes the identity matrix. However, we assume that the capillarity function κ is
a positive constant for the sake of the simplicity, and thus div K = –κ∇ρ�ρ .

The well-posedness problem of Euler–Korteweg/Navier–Stokes–Korteweg equations
has been widely investigated, see [4–16] and the references cited therein. In this paper,
we are interested in the Rayleigh–Taylor (RT) instability problem in the inhomogeneous
incompressible fluids with capillarity effects.

It is well-known that the equilibrium of a heavier fluid on top of a lighter one, subject
to gravity, is unstable. In this case, the equilibrium state is unstable to sustain small dis-
turbances, and this disturbance grow and leads to the release of potential energy, as the
heavier fluid moves down under the gravitational force, and the lighter one is displaced
upwards. This phenomenon was first studied by Rayleigh [17] and then Taylor [18], and
thus is called the Rayleigh–Taylor (RT) instability. In the last decades, this phenomenon
has been extensively investigated from mathematical, physical, and numerical aspects, see
[19–24] for examples. Moreover, the RT instability also has been investigated under other
physical factors, such as internal surface tension [25–29], the elasticity [22, 30–37], mag-
netic fields [38–44], rotation [45, 46] and so on. Next we further introduce the nonlinear
RT instability results, which are closely related to our results in this paper, on the inho-
mogeneous incompressible fluids.

In 2003, Hwang–Guo [2] proved the existence of classical solutions of (nonlinear) RT
instability in the sense of L2-norm for a 2D inhomogeneous incompressible inviscid pure
fluid. Then Jiang–Jiang further showed the existence of strong solutions of RT instabil-
ity for the nonhomogeneous incompressible viscous pure fluids in the sense of L2-norm
[47]. Similar instability result was also established in the inhomogeneous incompressible
magnetohydrodynamics fluids [48]. Later, Jiang–Wu–Zhong [23] also investigated the RT
instability in the inhomogeneous incompressible viscoelastic fluids and surprisingly found
that the elasticity can inhibit RT instability.

Recently, Zhang proved the RT instability for viscous incompressible fluids with cap-
illarity effects for small enough capillary coefficient [3], in which the fluid domain is
(2πT)2 ×R. Motivated by Zhang’s result, we further investigate the RT instability for the
system (1.1) with any given capillary coefficient by a new method, where the fluid domain
is given as follows:

D := 2πT×R. (1.3)

Obviously, we automatically obtain the RT instability solutions for the three-dimensional
inhomogeneous incompressible Navier–Stokes–Korteweg equations in the presence of a
uniform gravitational field, defined on (2πT)2 ×R, if the ones for the system (1.1) defined
on (2πT)2 ×R are constructed, see (1.12) for the details.
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Now we consider the RT equilibrium state (ρ0, 0, P0) of the system (1.1), where the den-
sity profile ρ0 is independent of x1 and satisfies

ρ ′
0 ∈ C∞

0 (R), inf
x2∈R

{ρ0} > 0, inf
x2∈R

{
ρ ′

0
} ≥ 0, (1.4)

ρ ′
0(x2) = O

(|x2 – x̄02|2+l0
)

as x2 → x̄02 for a point x̄02 ∈R. (1.5)

Here and in what follows ′ := d/dx2, l0 >0 is a fixed constant and x2 denotes the second
component of x ∈ D. Then the corresponding equilibrium pressure can be computed out
by the following relation of hydrostatics:

∇P0 = –ρ0ge2 – κ∇ρ0�ρ0. (1.6)

We remark that the second condition in (1.4) prevents us from treating vacuum, while
the last condition in (1.4) implies that the steady density profile has larger density with
increasing height x2, thus may lead to the classical RT instability, as shown below.

We now consider a perturbation around the RT equilibrium state (ρ0, 0, P0) by

σ = ρ – ρ0, v = V – 0, p = P – P0, (1.7)

then, the triple (σ , v, p) satisfies the following equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σt + ∇(σ + ρ0) · v = 0,

(σ + ρ0)vt + (σ + ρ0)v · ∇v + ∇p – μ�v

= –κ∇σ�σ – κ∇ρ0�σ – κ∇σ�ρ0 – σ ge2,

div v = 0.

(1.8)

To complete the statement of the perturbed problem, we specify the initial and boundary
conditions:

(σ , v)|t=0 = (σ0, v0) in D, (1.9)

lim|x|→∞ v = 0 for any t > 0. (1.10)

From now on, we call the initial-boundary value problem (1.8)–(1.10) the CRT problem
for the sake of simplicity.

In order to study the instability of RT equilibrium state, it seems to be convenient to
start with the linearized (perturbation) equations, because the linearized perturbation
equations not only enable us to understand the physical and mathematical mechanisms
of capillarity, but also provide a beginning for the study of the nonlinear case. Hence, we
omit the nonlinear terms in (1.8) and thus get the linearized CRT equations

⎧
⎪⎪⎨

⎪⎪⎩

σt + ρ ′
0v2 = 0,

ρ0vt + ∇p – μ�v = –κ∇ρ0�σ – κ∇σ�ρ0 – σ ge2,

div v = 0.

(1.11)
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The linearized system (1.11) with the initial-boundary conditions (1.9)–(1.10) constitutes
the linearized CRT problem.

Now we state the main result of this paper.

Theorem 1.1 For any κ > 0, the steady state (ρ0, 0, P0) of system (1.1) is unstable under
the assumption (1.4)–(1.5), that is, there is positive constant ε0 > 0, such that for any small
δ > 0 there exists a family of classical solutions (ρδ(t, x), V δ(t, x), Pδ(t, x)) to (1.1) such that

∥
∥(ρδ(0, ·) – ρ0(·)∥∥H4(D) +

∥
∥V δ(0, ·)∥∥H3(D) ≤ δ,

but for T δ = O(|ln δ|)

sup
0≤t≤Tδ

{∥
∥ρδ(t, ·) – ρ0(·)∥∥L2(D) +

∥
∥V δ(t, ·)∥∥L2(D)

} ≥ ε0.

The proof of Theorem 1.1 is based on the bootstrap instability method, which has its
origin in Guo and Strauss’s articles [49, 50]. Later, various versions of bootstrap instability
approaches were established by many authors, see [51–54] for instance. Recently, Zhang
used the bootstrap instability method with the energy inequality of Gronwall-type in [54]
to prove the RT instability for the inhomogeneous incompressible viscous fluids with cap-
illarity effects for small enough capillary coefficient [3]. However, in this paper we use the
other version of bootstrap instability method established by [2] to prove Theorem 1.1 for
any given capillary coefficient. Such bootstrap instability method was also used to investi-
gate the nonlinear instability of Hele–Shaw flows with smooth viscous profiles by Daripa–
Hwang [55]. In addition, we automatically obtain the RT instability solutions for the three-
dimensional inhomogeneous incompressible Navier–Stokes–Korteweg equations defined
on (2πT)2 ×R. In fact, let

	δ(t, x0, x1, x2) = 	δ , Uδ(t, x0, x1, x2) =
(
0, V δ

)
, Qδ(t, x0, x1, x2) = Pδ , (1.12)

where (ρδ(t, x), Uδ(t, x), Qδ(t, x)) is the instability solution in Theorem 1.1. It is easy to
check that the solution (	δ , Uδ , Qδ) is the RT instability solution for the three-dimensional
inhomogeneous incompressible Navier–Stokes–Korteweg equations in the presence of a
uniform gravitational field, and such instability result presents that the smallness condi-
tion of capillary coefficient in Zhang’s result can be removed.

In view of Hwang–Guo’s bootstrap instability method in [2, 55], the proof of Theo-
rem 1.1 can be divided into three steps. First, we use modified variational method to
construct (linear) unstable solutions for the linearized CRT problem in Sect. 2. Then we
further construct approximate solutions with higher order growing modes to the CRT
problem in Sect. 3.1 as in Grenier’s work [1] (also see [56, 57]); moreover we also derive
the error estimates between both the approximate solutions and nonlinear solutions of the
CRT problem in Sect. 3.2. Finally, we prove the existence of escape points based on the
bootstrap instability approaches, and thus completes the proof of Theorem 1.1 in Sect. 3.3.

We end this section by introducing some abbreviations, which will be repeatedly used
in the rest parts of this paper.

Hk := W k,2(D), H∞ := H∞(D), Lp := Lp(D),
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‖ · ‖Hk := ‖ · ‖Hk (D), ‖ · ‖Lp := ‖ · ‖Lp(D),
∫

:=
∫

D
.

2 Linear instability
This section is devoted to constructing a family of unstable solutions to the linearized
CRT problem (1.9)–(1.11), which have growing Hk-norm for any k. We will construct
such solutions via Fourier synthesis by first constructing a growing mode for any but fixed
spatial frequency.

2.1 Linear growing modes
We make the following ansatz of growing mode solutions to the linearized problem
(1.9)–(1.11).

(
σ (x, t), v(x, t), p(x, t)

)
= eλt(σ̃ (x), ṽ(x), p̃(x)

)
for some λ > 0. (2.1)

Substituting this ansatz into (1.11) and then eliminating σ̃ (x) by using the first equation,
one obtains the following time-independent system:

⎧
⎨

⎩

λ2ρ0ṽ + λ∇p̃ – λμ�ṽ = κ∇ρ0�(ρ ′
0ṽ2) + κ∇(ρ ′

0ṽ2)�ρ0 + ρ ′
0ṽ2ge2,

div ṽ = 0
(2.2)

with boundary-value condition

lim|x|→∞ ṽ(x) = 0. (2.3)

We fix a spatial frequency ξ ∈ (L–1
Z), and define the new unknowns ϕ, ψ and � , which

depend on x2 by the following relations

ṽ1(x) = –iϕ(x2)eix1ξ , ṽ2(x) = ψ(x2)eix1ξ , p̃(x) = � (x2)eix1ξ .

Inserting the above expressions into (2.2) and (2.3), it is easy to check that ϕ, ψ , � , and λ

satisfy the following ODEs:

⎧
⎪⎪⎨

⎪⎪⎩

–λ2ρ0ϕ + λξ� – λμ(ξ 2ϕ – ϕ′′) = κξρ ′
0ρ

′′
0 ψ ,

λ2ρ0ψ + λ� ′ + λμ(ξ 2ψ – ψ ′′) = –κ|ρ ′
0|2ξ 2ψ + κ∂x2 (ρ ′

0∂x2 (ρ ′
0ψ)) + ρ ′

0ψg,

ψ ′ + ξϕ = 0

(2.4)

with boundary-value condition

ϕ(–∞) = ψ(–∞) = ϕ(+∞) = ψ(+∞) = 0. (2.5)

Eliminating � in (2.4)2 by using (2.4)1 and (2.4)3, we have the following ODE for ψ

–λ2(ξ 2ρ0ψ –
(
ρ0ψ

′)′) = λμ
(
ψ (4) – 2ξ 2ψ ′′ + ξ 4ψ

)
+ κ|ρ ′

0|2ξ 4ψ

– κξ 2(|ρ ′
0|2ψ ′)′ – gξ 2ρ ′

0ψ , (2.6)
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with boundary-value condition

ψ(–∞) = ψ ′(–∞) = ψ(+∞) = ψ ′(+∞) = 0. (2.7)

Next, we use the modified variational method to construct a solution of (2.6)–(2.7). (For
more details on this idea, check out Guo and Tice’s paper on compressible viscous strati-
fied flows [26]). We now fix a non-zero vector ξ ∈ (L–1

Z) and s > 0, then we get a family of
the following modified problems from (2.6)–(2.7).

–λ2(ξ 2ρ0ψ –
(
ρ0ψ

′)′) = sμ
(
ψ (4) – 2ξ 2ψ ′′ + ξ 4ψ

)
+ κ|ρ ′

0|2ξ 4ψ

– κξ 2(|ρ ′
0|2ψ ′)′ – gξ 2ρ ′

0ψ . (2.8)

Multiplying (2.8) by ψ ∈ H2(R), integrating by parts and using the boundary-value condi-
tions (2.7), we thus get

–λ2
∫

R

(ρ0
(
ξ 2ψ2 +

∣
∣ψ ′∣∣2)dx2 = ξ 2

∫

R

(
κξ 2∣∣ρ ′

0|2ψ2 + κ
∣
∣ρ ′

0|2
∣
∣ψ ′∣∣2 – gρ ′

0ψ
2)dx2

+ sμ
∫

R

(∣
∣ψ ′′∣∣2 + 2ξ 2∣∣ψ ′∣∣2 + ξ 4ψ2)dx2. (2.9)

Then the standard energy functional for the problem (2.8) is given by

E(ψ) = ξ 2E1(ψ) + sE2(ψ) (2.10)

with an associated admissible set

A =
{

ψ ∈ H2(R)
∣
∣
∣ J(ψ) :=

∫

R

ρ0
(
ξ 2ψ2 +

∣
∣ψ ′∣∣2)dx2 = 1

}

, (2.11)

where

E1(ψ) =
∫

R

(
κξ 2∣∣ρ ′

0
∣
∣2

ψ2 + κ
∣
∣ρ ′

0
∣
∣2∣∣ψ ′∣∣2 – gρ ′

0ψ
2)dx2,

E2(ψ) = μ

∫

R

(∣
∣ψ ′′∣∣2 + 2ξ 2∣∣ψ ′∣∣2 + ξ 4ψ2)dx2.

Thus we can find a –λ2 (depending on ξ ) by minimizing

–λ2(ξ ) = α(ξ ) := inf
ψ∈A

E(ψ). (2.12)

In order to emphasize the dependence on s ∈ (0,∞), we will sometimes write

E(ψ , s) := E(ψ) and α(s) := inf
ψ∈A

E(ψ , s) < +∞.

Before constructing the growth solutions, we shall introduce some preliminary results,
which will be used later. In order to get a positive λ(ξ ) in the variational problem (2.12), let
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the critical capillary coefficient κc and the critical frequency constant |ξc| by the following
variational forms

κc := sup
ψ∈H2(R),ψ �≡0

∫

R
gρ ′

0ψ
2 dx2

∫

R
|ρ ′

0|2|ψ ′|2 dx2
,

and for κ ∈ (0,κc),

|ξc| := sup
ψ∈H2(R),ψ �≡0

√
√
√
√

∫

R
gρ ′

0ψ
2 dx2 – κ

∫

R
|ρ ′

0|2|ψ ′|2 dx2

κ
∫

R
|ρ ′

0|2|ψ |2 dx2
.

More precisely, we have the following conclusions:

Proposition 2.1 If ρ0 satisfies the conditions (1.4)–(1.5), then κc is infinite.

Proof See Remark 1.2 in [58]. �

Proposition 2.2 If ρ0 satisfies the conditions (1.4)–(1.5) and κ ∈ (0, +∞), then |ξc| is infi-
nite.

Proof Since the proof is similar to Proposition 2.1, we omit the details here. �

Next we show that a minimizer of (2.12) exists and that the corresponding Euler–
Lagrange equations are equivalent to (2.7)–(2.8).

Proposition 2.3 For any fixed s > 0 and ξ with ξ �= 0, the following assertions hold.
(1) E(ψ) achieves its minimum on A.
(2) Let ψ0 be a minimizer and –λ2 := E(ψ0), then the pair (ψ0,λ) satisfies the problem

(2.7)–(2.8). In addition, ψ0 ∈ H∞(R) :=
⋂∞

k=0 Hk(R).

Proof (1) Noting that for any ψ ∈A

E(ψ) ≥ –ξ 2g
∫

R

ρ ′
0ψ

2 dx2 ≥ –g
∥
∥
∥
∥
ρ ′

0
ρ0

∥
∥
∥
∥

L∞

∫

R

ρ0ξ
2ψ2 dx2 ≥ – g

∥
∥
∥
∥
ρ ′

0
ρ0

∥
∥
∥
∥

L∞
, (2.13)

we see that E(ψ) is bounded from below on A by virtue of (1.4), then infψ∈AE(ψ) is well
defined and finite. We choose a minimizing sequence {ψn}∞n=1 ⊂ A. It is easy to check
that E(ψn) is bounded. This fact, together with (2.10) and (2.13), implies that {ψn}∞n=1 is
bounded in H2. Therefore, there exists a weak limit ψ0 ∈ H2(R) and a subsequence (still
denoted by ψn for simplicity) such that

ψn → ψ0 weakly in H2(R)

and

ψn → ψ0 strongly in H1
loc(R).
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Next, we show that ψ0 is a minimizer and satisfies the constraint (2.11). By the lower semi-
continuity and the properties of minimizing sequence, one has

E(ψ0) ≤ lim inf
n→+∞ E(ψn) = inf

ψ∈A
E(ψ) < 0 and 0 < J(ψ0) ≤ 1. (2.14)

Suppose by contradiction that J(ψ0) < 1, we could find an α > 1 such that J(αψ0) = 1 by the
homogeneity of J(ψ), i.e., αψ0 ∈A, which implies that

E(αψ0) ≤ α2 lim inf
n→+∞ E(ψn) = α2infψ∈AE(ψ) < inf

ψ∈A
E(ψ) < 0, (2.15)

leading to a contradiction. Thus ψ0 is a minimizer satisfying the constraint (2.11). (2) By
the same order homogeneity of E(ψ) and J(ψ), we can find that (2.12) is equivalent to

–λ2 = inf
ψ∈H2(R),ψ �≡0

E(ψ)
J(ψ)

. (2.16)

For any τ ∈ R and ψ ∈ H2(R), we define that ψ̃(τ ) := ψ0 + τψ . Then, by (2.16) we have

E
(
ψ̃(τ )

)
+ λ2J

(
ψ̃(τ )

) ≥ 0. (2.17)

If we set I(τ ) = E(ψ̃(τ )) + λ2J(ψ̃(τ )), then we have I(τ ) ≥ 0 for all τ ∈ R and I(0) = 0. This
implies I ′(0) = 0. Recalling the definitions of E(ψ̃(τ )) and J(ψ̃(τ )), a direct computation
leads to

–λ2
∫

R

ρ0
(
ξ 2ψ0ψ + ψ ′

0ψ
′)dx2

= κ

∫

R

(
ξ 4∣∣ρ ′

0
∣
∣2

ψ0ψ + ξ 2∣∣ρ ′
0
∣
∣2

ψ ′
0ψ

′)dx2 – ξ 2
∫

R

gρ ′
0ψ0ψ dx2

+ sμ
∫

R

(
ξ 4ψ0ψ + 2ξ 2ψ ′

0ψ
′ + ψ ′′

0 ψ ′′)dx2, (2.18)

which, together with the arbitrariness of ψ , shows that ψ0 satisfies the equation (2.8) in
the weak sense on R for the horizontal case. In order to improve the regularity of ψ0, we
rewrite (2.18) as

∫

R

ψ ′′
0 ψ ′′ dx2

=
1

sμ

∫

R

(
ξ 2gρ ′

0ψ0ψ – κ
(
ξ 4∣∣ρ ′

0
∣
∣2

ψ0ψ + ξ 2∣∣ρ ′
0
∣
∣2

ψ ′
0ψ

′))dx2

–
∫

R

λ2ρ0
(
ξ 2ψ0ψ + ψ ′

0ψ
′)(ξ 4ψ0ψ + 2ξ 2ψ ′

0ψ
′)dx2 :=

∫

R

f ψ dx2. (2.19)

For any n ≥ 1, let ψ1,n,ψ2 ∈ C∞
0 (R) satisfying ψ1,n(x2) ≡ 1 for |x2| ≤ n. If we take ψ =

ψ1,n
∫ x2

–∞ ψ2 dy in (2.19), then we get

∫

R

(
ψ1,nψ

′′
0
)
ψ ′

2 dx2 =
∫

R

(∫ +∞

x2

(
f ψ1,n – ψ ′′

1,nψ
′′
0
)

dy – 2ψ ′
1,nψ

′′
0

)

ψ2 dx2,
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which together with ψ0 ∈ H2(R) yields ψ ′′
0 ∈ H1

loc(R) and

ψ ′′′
0 =

(
ψ1,nψ

′′
0
)′ =

∫ +∞

x2

(
f ψ1,n – ψ ′′

1,nψ
′′
0
)

dy for any |x2| ≤ n.

Integrating by parts, we can rewrite (2.19) as follows

–
∫

R

ψ ′′′
0 ψ ′ dx2

=
1

sμ

∫

R

(
ξ 2gρ ′

0ψ0ψ – κξ 4∣∣ρ ′
0
∣
∣2

ψ0ψ – ξ 2(∣∣ρ ′
0
∣
∣2

ψ ′
0
)′
ψ

)
dx2

–
∫

R

λ2(ξ 2ρ0ψ0 –
(
ρ0ψ

′
0
)′)

ψ +
(
ξ 4ψ0 – 2ξ 2ψ ′′

0
)
ψ dx2,

which, keeping in mind that ψ0 ∈ H2(R), yields ψ
(4)
0 ∈ L2(R). Hence, ψ0 ∈ H4

loc(R) ∩
C3,1/2

loc (R), and ψ ′
0(∞) = ψ ′′

0 (∞) = ψ ′′′
0 (∞) = 0. Using these facts, Hölder’s inequality, and

integration by parts, we conclude that

∥
∥ψ ′′′

0
∥
∥2

L2(R) = –
∫

R

ψ ′′
0 ψ ′′′′

0 dx2 ≤ ∥
∥ψ ′′

0
∥
∥2

L2(R)

∥
∥ψ ′′′′

0
∥
∥2

L2(R). (2.20)

Consequently, ψ0 ∈ H4(R) solves (2.7) and (2.8). This immediately gives that ψ0 ∈ H∞(R)
by applying the bootstrap method and the classical elliptic regularity theory to the formula
(2.9). �

Next, we show that there exist a fixed point s = λ such that
√

–α(λ) = λ. For this purpose,
we give some properties of α(s).

Proposition 2.4 The function α(s) defined on (0, +∞) enjoys the following properties:
(1) α(s) ∈ C0,1

loc(0, +∞) is nondecreasing;
(2) For any ξ ∈ (L–1

Z) with ξ �= 0 and κ > 0, there are two positive constants c1 and c2

which depend on g , ρ0, κ , μ and ξ such that

α(s) ≤ –c1 + c2s. (2.21)

Proof (1) Let {vn
si
}+∞

n=1 ⊂ A be a minimizing sequence of infψ∈AE(ψ , si) = α(si) for i = 1
and 2. Then for any 0 < s1 < s2 < +∞

α(s1) ≤ lim inf
n→+∞ E

(
ψn

s2 , s1
) ≤ lim inf

n→+∞ E
(
ψn

s2 , s2
)

= α(s2).

Hence, α(s) is nondecreasing on (0, +∞). Next, we verify that α(s) is a local Lipschitz con-
tinuous function. Let I := [a, b] ⊂ (0, +∞) be a bounded interval. In view of (2.13) and the
monotonicity of α(s), we have

∣
∣α(s)

∣
∣ ≤ max

{∣
∣α(a)

∣
∣, g

∥
∥ρ ′

0/ρ0
∥
∥

L∞(R)

}
< ∞. (2.22)

On the other hand, for any s ∈ I , there exists a minimizing sequence {ψn
s }∞n=1 ⊂ A of

infψ∈AE(ψ , s) such that

∣
∣α(s) – E

(
ψn

s , s
)∣
∣ < 1. (2.23)
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Making use of (2.22) and (2.23), we infer that

0 ≤ E2
(
ψn

s
)

=
E(ψn

s , s)
s

+
ξ 2

s

∫

R

gρ0
(
ψn

s
)2 dx2

– κ

∫

R

(
ξ 2∣∣ρ ′

0ψ
n
s
∣
∣2 +

∣
∣ρ ′

0
(
ψn

s
)′∣∣2)

dx2

≤ 1 + max{|α(a)|, g‖ρ ′
0/ρ0‖L∞(R)}

a
+

g
a

∥
∥
∥
∥
ρ ′

0

ρ0

∥
∥
∥
∥

L∞(R)
=: M. (2.24)

For si ∈ I (i = 1, 2), we further find that

α(s1) ≤ lim inf
n→+∞ E

(
ψn

s2 , s1
) ≤ lim inf

n→+∞ E
(
ψn

s2 , s2
)

+ |s1 – s2|lim infn→+∞E2
(
ψn

s2 , s2
)

≤ α(s2) + M|s1 – s2|, (2.25)

which yields

α(s1) – α(s2) ≤ M|s1 – s2|.

Reversing the role of the indices 1 and 2 in the derivation of the inequality (2.25), one has

∣
∣α(s1) – α(s2)

∣
∣ ≤ M|s1 – s2|,

which yields α(s) ∈ C0,1
loc(0 + ∞).

(2) Recalling the virtue of Propositions 2.1 and 2.2, for any ξ and κ , there exists a function
ψ0 ∈ H2(R)

E1(ψ0) =
∫

R

(
κ
(
ξ 2∣∣ρ ′

0ψ0
∣
∣2 +

∣
∣ρ ′

0ψ
′
0
∣
∣2) – gρ ′

0ψ
2
0
)

dx2 < 0. (2.26)

On the other hand, H2(R) is dense in H1(R), thus there is a function sequence {ψn}∞n=1 ⊂
H2(R), so that

ψn → ψ0 stronly in H1(R).

Furthermore, there exists a function ψn0 ∈ {ψn}∞n=1 such that ψn0 �≡ 0 and

E1(ψn0 ) =
∫

R

(
κ
(
ξ 2∣∣ρ ′

0ψn0

∣
∣2 +

∣
∣ρ ′

0ψ
′
n0

∣
∣2) – gρ ′

0ψ
2
n0

)
dx2. (2.27)

Thus, we have

α(s) = inf
ψ∈H2(R),ψ �≡0

E(ψ)
J(ψ)

≤ E(ψn0 )
J(ψn0 )

= ξ 2 E1(ψn0 )
J(ψn0 )

+ s
E2(ψn0 )
J(ψn0 )

:= –c1 + sc2, (2.28)

where the two positive constants c1 and c2 depend on g , κ , μ, ρ0, and ξ . �
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Given ξ ∈ (L–1
Z) with ξ �= 0, by virtue of (2.21), there exists a constant s0 > 0 depending

on g , κ , μ, ρ0 and ξ , such that α(s) < 0 for any s ∈ (0, s0]. Hence, if we define

Cξ := sup
{

s | α(τ ) < 0 for any τ ∈ (0, s)
}

, (2.29)

then Cξ > 0. This allows us to define λ(s) =
√

–α(s) > 0 for any s ∈ (0,Cξ ). Therefore, as a
result of Proposition 2.3, we have the following existence result for the modified problem
(2.7) and (2.8).

Proposition 2.5 For any ξ ∈ (L–1
Z) with ξ �= 0 and s ∈ (0,Cξ ), there is a solution ψ(ξ , x2) �≡

0 with λ = λ(ξ , s) > 0 to the problem (2.7)–(2.8). Moreover, ψ ∈ Hk(R) for any positive inte-
ger k.

Proof Thanks to Proposition 2.4, (2.13) and (2.29), it is easy to check that λ(s) ∈ C0,1
loc(0,Cξ )

is nonincreasing, λ(s) ≤ ‖√gρ ′
0/ρ0‖L∞ and lims→Cξ

λ(s) = 0 if Cξ < ∞. Hence, we can em-
ploy a fixed point argument to find s ∈ (0,Cξ ) such that s = λ(ξ , s), and thus obtain a solu-
tion to the original problem (2.6)–(2.7). �

Proposition 2.6 For each ξ ∈ (L–1
Z) with ξ �= 0, then there exists a unique s ∈ (0,Cξ ), such

that λ(ξ , s) =
√

–α(s) > 0 and s = λ(ξ , s).

Proof Please refer to Theorem 3.8 in [26] (or Lemma 3.7 in [59]) �

Therefore, in view of the Propositions 2.5 and 2.6, one immediately gets the following
conclusion.

Theorem 2.1 For each ξ ∈ (L–1
Z) with ξ �= 0, there exist ψ = ψ(ξ , x2) �≡ 0 and λ(ξ ) > 0

satisfying (2.6)–(2.7). Moreover, ψ ∈ Hk(R) for any positive integer k.

We end this subsection by giving some properties for λ(ξ ), which shows that λ is a
bounded continuous function of ξ .

Proposition 2.7 The function λ(ξ ) is continuous and satisfies

� := sup
ξ∈(L–1Z),ξ �≡0

λ(ξ ) ≤
√

g
∥
∥ρ ′

0/ρ0
∥
∥

L∞(R). (2.30)

Proof The boundedness of λ(ξ ) in (2.30) follows from (2.13). Now, we pay attention to the
proof of the continuity of λ(ξ ). Since λ(ξ ) =

√
–α(ξ ), it suffices to prove the continuity of

α(ξ ). For any but fixed ξ0 �= 0, there exists an interval (a, b) ⊂ (0,∞) such that |ξ0| ∈ (a, b).
Assume |ξ | → |ξ0| with |ξ | ∈ (a, b), and denote γ = |ξ |2 – |ξ0|2, then |ξ | → |ξ0| as γ → 0.
By Theorem 2.1, there exists ψ|ξ | ∈A satisfying (2.6)–(2.7) and

α(ξ ) = κ

∫

R

(
ξ 4∣∣ρ ′

0
∣
∣2

ψ2
|ξ | + ξ 2∣∣ρ ′

0
∣
∣2∣∣ψ ′

|ξ |
∣
∣2)dx2 – ξ 2

∫

R

gρ ′
0ψ

2
|ξ | dx2

+ s(ξ )μ
∫

R

(
ξ 4ψ2

|ξ | + 2ξ 2∣∣ψ ′
|ξ |

∣
∣2 +

∣
∣ψ ′′

|ξ |
∣
∣2)dx2 < 0, (2.31)
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where s(ξ ) =
√

–α(ξ ). In order to make use of (2.31), we must show that s(ξ ) is bounded
from below for any |ξ | ∈ (a, b). By Proposition 2.4, there exists two positive constants c1

and c2, which depend on a, b, g , ρ0, κ , and μ, such that α(ξ ) ≤ –c1 + c2s(ξ ), and –α(ξ ) =
s2(ξ ), so

0 ≤ s2(ξ ) + c2s(ξ ) – c1. (2.32)

Thus, for any |ξ | ∈ (a, b), s(ξ ) is uniformly bounded below by a positive constant. Then it
follows from (2.31) and the fact that ψξ ∈A that ψξ is uniformly bounded in H2(R), i.e.

‖ψξ‖H2(R) ≤ c3 (2.33)

for any |ξ | ∈ (a, b), where c3 depends on g , μ, ρ0, a, b and κ . Inserting |ξ |2 = |ξ0|2 + γ into
(2.31) results in

α
(|ξ |) ≥ α

(|ξ0|
)

+ γ f (γ ,ψ|ξ |), (2.34)

where

f (γ ,ψ|ξ |) = κ

∫

R

((
2|ξ0|2 + γ

)∣
∣ρ ′

0
∣
∣2

ψ2
|ξ | +

∣
∣ρ ′

0ψ
′
|ξ |

∣
∣2)dx2 –

∫

R

gρ ′
0ψ

2
|ξ | dx2

+ s
(|ξ |)μ

∫

R

(
2
∣
∣ψ ′

|ξ |
∣
∣2 +

(
2|ξ0|2 + γ

)
ψ2

|ξ |
)

dx2.

By (2.33), we obtain that for any |ξ | ∈ (a, b)

∣
∣f (γ ,ψ|ξ |)

∣
∣ ≤ c4, (2.35)

where c4 depends on g , μ, ρ0, a, b, and κ . Similar to (2.34), we also have

α
(|ξ0|

) ≥ α
(|ξ |) – γ f (–γ ,ψ|ξ |),

which together with (2.34) yields

γ f (γ ,ψ|ξ |) ≤ α
(|ξ |) – α

(|ξ0|
) ≤ γ f (–γ ,ψ|ξ0|). (2.36)

Furthermore, combining (2.35) and (2.36) and letting γ → 0, we obtain

lim|ξ |→|ξ0|α
(|ξ |) = α

(|ξ0|
)
. (2.37)

Therefore, λ(|ξ |) is continuous. This completes the proof of this proposition. �

2.2 Construction of a solution to the ODEs system
Next, we will find a family of unstable solutions that satisfy (2.4)–(2.5), and provide an
estimate for the Hk norm of the constructed solutions.

Theorem 2.2 For any ξ ∈ (L–1
Z) with ξ �= 0, there exists a family of solutions (ϕ,ψ ,� ) :=

(ϕ,ψ ,� )(ξ , x2) with λ = λ(ξ ) > 0 to (2.4)–(2.5).



Zhang et al. Journal of Inequalities and Applications        (2023) 2023:119 Page 13 of 30

Proof First of all, multiplying (2.4)1 by ξ and then utilizing (2.4)3, we find that ϕ and �

can be expressed by ψ and λ, i.e.,

ϕ = –
ψ ′

ξ
, (2.38)

� =
–λ2ρ0ψ

′ – λμ(ξ 2ψ ′ – ψ ′′′)
λξ 2 +

κρ ′
0ρ

′′
0 ψ

λ
. (2.39)

Thus, thanks to Theorem 2.1, one finds that the solution (ϕ,ψ ,� ) constructed above sat-
isfies (2.4)–(2.5). �

Next, we would provide an uniform estimate for the Hk norm of the solutions (ϕ,ψ ,� )
constructed in Theorem 2.2, which would be used in the next subsection.

Lemma 2.1 Suppose 0 < a < b < ∞ such that |ξ | ∈ [a, b]. Let (ϕ,ψ ,� ) be the solution con-
structed in Theorem 2.2. Then, for any nonnegative integer k, there exist positive constants
Ak , Bk , and Ck depending on the parameters a, b, ρ0, g , κ , and k, such that

∥
∥ψ(ξ , x2)

∥
∥

L2(R) > 0, (2.40)
∥
∥ψ(ξ , x2)

∥
∥

Hk (R) ≤ Ak , (2.41)
∥
∥ϕ(ξ , x2)

∥
∥

Hk (R) ≤ Bk , (2.42)
∥
∥� (ξ , x2)

∥
∥

Hk (R) ≤ Ck . (2.43)

Proof Throughout this proof, we denote by c̃ a generic positive constant which may vary
from line to line, and may depend on a, b, ρ0, g , κ and k. Recalling the fact ψ(ξ , x2) ∈ A,
we have (2.40), and there exists a positive constant c̃ such that

∥
∥ψ(ξ )

∥
∥

H1(R) ≤ c̃. (2.44)

Next, we further derive the estimate (2.41), by virtue of the arguments in Proposition 2.7,
we have

λ(ξ ) ≥ c̃ for any |ξ | ∈ [a, b]. (2.45)

In addition, we rewrite (2.6) as,

ψ ′′′′(ξ ) =
(
–λ2(ξ 2ρ0ψ –

(
ρ0ψ

′)′) – κ
∣
∣ρ ′

0
∣
∣2

ξ 4ψ + κξ 2(∣∣ρ ′
0
∣
∣2

ψ ′)′ – gξ 2ρ ′
0ψ

)
/λμ

+ 2ξ 2ψ ′′ – ξ 4ψ . (2.46)

Multiplying (2.46) by ψ(ξ ) in L2(R), one has

∥
∥ψ ′′(ξ )

∥
∥

L2(R) = (λμ)–1
∫

R

(
–λ2(ξ 2ρ0ψ

2 + ρ0
∣
∣ψ ′∣∣2) – κ

∣
∣ρ ′

0
∣
∣2

ξ 4ψ2)dx2

–
∫

R

+κξ 2∣∣ρ ′
0
∣
∣2∣∣ψ ′∣∣2 – gξ 2ρ ′

0ψ
2 +

(
2ξ 2∣∣ψ ′∣∣2 + ξ 4ψ2)dx2, (2.47)
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which together with (2.44) and (2.45) yields

∥
∥ψ ′′(ξ )

∥
∥

L2(R) ≤ c̃. (2.48)

Thus, using Cauchy–Schwarz’s inequality, (2.47), we deduce from (2.46) that

∥
∥ψ ′′′(ξ )

∥
∥

L2(R) ≤ c̃. (2.49)

Utilizing Gagliardo–Nirenberg interpolation inequality, we obtain

∥
∥ψ ′′′′(ξ )

∥
∥

L2 ≤ ∥
∥ψ ′′(ξ )

∥
∥

1
2
L2

∥
∥ψ ′′′(ξ )

∥
∥

1
2
L2 ≤ c̃, (2.50)

which, together with (2.44), (2.48), and (2.49), yields

∥
∥ψ(ξ )

∥
∥

H4(R) ≤ c̃. (2.51)

Now we proceed by induction on k. Suppose that the boundedness holds some k ≥ 1,
i.e.,

∥
∥ψ(ξ )

∥
∥

Hk (R) ≤ Ak . (2.52)

Then by differentiating the equation (2.46) and using (2.51), we easily derive that there
exists a constant c̃ depending on the various parameters so that

∥
∥ψ(ξ )

∥
∥

Hk+1(R) ≤ c̃
∥
∥ψ(ξ )

∥
∥

Hk (R) ≤ c̃Ak = Ak+1. (2.53)

It is easy to check that the bound holds for k + 1, we thus find that (2.41) holds for any
nonnegative integer k. Employing the expressions (2.38) and (2.39), we can also deduce
that (2.42)–(2.43) holds. �

2.3 Instability of the linearized CRT problem
In this section, we will construct growing solutions to (1.9)–(1.11) by using the solutions
to (2.4)–(2.5) constructed in Theorem 2.2.

Theorem 2.3 Let f ∈ C∞
c (0,∞) be a real-valued function. For any ξ ∈ (L–1

Z) with ξ �= 0,
we define

ŵ(ξ , x2) = –iϕ(ξ , x2)e1 + ψ(ξ , x2)e2, (2.54)

where ϕ, ψ , � are the solutions provided by Theorem 2.2. Let

σ (x, t) = –
1

4π2

∫

(L–1Z)
ρ ′

0(x2)f (ξ )ŵ2(ξ , x2)eλ(ξ )teix1ξ dξ , (2.55)

v(x, t) =
1

4π2

∫

(L–1Z)
λ(ξ )f (ξ )ŵ(ξ , x2)eλ(ξ )teix1ξ dξ , (2.56)

q(x, t) =
1

4π2

∫

(L–1Z)
λ(ξ )f (ξ )� (ξ , x2)eλ(ξ )teix1ξ dξ . (2.57)
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Then, (σ , v, q) is a real-valued solution to the linearized equations (1.9)–(1.11). For every
k ∈N we have the estimate

∥
∥σ (0)

∥
∥

Hk +
∥
∥v(0)

∥
∥

Hk +
∥
∥q(0)

∥
∥

Hk ≤ Bk

(∫

(L–1Z)

(
1 + |ξ |2)k∣∣f (ξ )

∣
∣2

)

dξ )1/2

< ∞ (2.58)

for the constant Bk > 0 depending on the parameters ρ0, g , k, κ . Moreover, for any t > 0 we
have (σ (t), v(t), q(t)) ∈ Hk and satisfies

etλf
∥
∥σ (0)

∥
∥

Hk ≤ ∥
∥σ (t)

∥
∥

Hk ≤ et�∥
∥σ (0)

∥
∥

Hk ,

etλf
∥
∥v(0)

∥
∥

Hk ≤ ∥
∥v(t)

∥
∥

Hk ≤ et�∥
∥v(0)

∥
∥

Hk ,

etλf
∥
∥p(0)

∥
∥

Hk ≤ ∥
∥p(t)

∥
∥

Hk ≤ et�∥
∥p(0)

∥
∥

Hk ,

(2.59)

where

λf := inf
ξ∈supp(f )

λ
(|ξ |) > 0, (2.60)

and � is given by (2.30).

Proof We can easily establish the above conclusion by following the argument of Theo-
rem 2.4 in [26], and thus the proof is omitted. �

3 Nonlinear RT instability
This section is devoted to the proof of the nonlinear RT instability. We first construct
approximate solutions to the CRT problem (1.8)–(1.10) in Sect. 3.1. Then we formally
derive error estimates between both the exact and approximate solutions Sect. 3.2. Finally,
making use of approximate solutions and the error estimates, we prove the existence of
escape points, and thus complete the proof of Theorem 1.1 in Sect. 3.3.

3.1 Construction of higher-order approximate solutions
In this section, we construct approximate solutions by using a similar method to [2] and
make further energy estimates. Now we construct approximate solutions to (1.8), we
choose and fix a ξ with λ = λ(ξ ), such that

0 < λ < �. (3.1)

We define Tδ by

Tδ =
1
λ

ln
θ

δ
, (3.2)

where δ is an arbitrary small and positive parameter, θ is a small but fixed positive constant
(independent of δ).
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Lemma 3.1 Let ρ0(x2) be a smooth profile satisfying (1.4)–(1.5). Then, there is an approx-
imate solution to (1.8):

σ a(t, x) =
N∑

j=1

δjφj(t, x),

va(t, x) =
N∑

j=1

δjwj(t, x),

pa(t, x) =
N∑

j=1

δjqj(t, x),

(3.3)

where

σ a
t + ∇ρ0 · va = –∇σ a · va + Ra

N ,

ρ0va
t + ∇pa + σ age2 + κ∇ρ0�σ a + κ∇σ a�ρ0 + μ�va

= –σ ava
t –

(
σ a + ρ0

)
va · ∇va – κ∇σ a�σ a + Sa

N ,

div wj = 0 (1 ≤ j ≤ N). (3.4)

Moreover, for any positive integer s, there is small θ > 0 such that if 0 ≤ t ≤ T δ with Tδ

defined by (3.2), then the j-th order coefficients φj(t, x), wj(t, x), qj(t, x) for 1 ≤ j ≤ N satisfy

∥
∥φj(t)

∥
∥

Hs ≤ C exp(jλt), (3.5)
∥
∥∂tφj(t)

∥
∥

Hs ≤ C exp(jλt), (3.6)
∥
∥∇φj(t)

∥
∥

Hs ≤ C exp(jλt), (3.7)
∥
∥wj(t)

∥
∥

Hs ≤ C exp(jλt), (3.8)
∥
∥∂twj(t)

∥
∥

Hs ≤ C exp(jλt), (3.9)
∥
∥∇qj(t)

∥
∥

Hs ≤ C exp(jλt), (3.10)

where the (N + 1)-th order remainders Ra
N (t, x) and Sa

N (t, x) satisfy

∥
∥Ra

N (t) + Sa
N (t)

∥
∥

Hs ≤ CδN+1 exp(N + 1)λt. (3.11)

Proof The construction of φj, wj, qj, Ra
j , and Sa

j will be made by introduction on j.
When j = 1, choose the the following growing mode solutions as in (2.1):

φ1 = σ̃ (x) exp(λt),

w1 = ṽ(x) exp(λt),

q1 = p̃(x) exp(λt).

(3.12)
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Utilizing Hölder’s inequality and Sobolev embedding for φ1, w1, q1, we see that the above
expressions satisfy (3.5)–(3.10). Plugging (φ1, w1, q1) into (3.4), we have

Ra
1 = ∇(δφ1) · (δw1),

Sa
1 = (δφ1)(δw1t) + (δφ1 + ρ0)δw1 · ∇(δw1) + κ∇(δφ1)�(δφ1).

Recalling Theorem 2.3, we have (φ1, w1, q1) ∈ Hk for any k > 0, then it is easy to check that
Ra

1 and Sa
1 satisfy (3.11).

Assume that we have constructed φj, wj, qj, Ra
j , and Sa

j , which satisfy (3.5)–(3.11) for
j < N , we now construct φj+1, wj+1, qj+1, Ra

j+1, and Sa
j+1.

Let

σj =
j∑

k=1

δkφk , vj =
j∑

k=1

δkwk , pj =
j∑

j=1

δkqk .

We further define the nonlinear part of the system (3.4) substituted by (σj, vj, pj) by

Fj+1(δ) = ∇σj · vj, (3.13)

Gj+1(δ) = σjvjt + σjvj · ∇vj + ρ0vj · ∇vj + κ∇σj�σj. (3.14)

Now, we expand Fj+1(δ) and Gj+1(δ) in terms of δ around δ = 0, thus we have

F (j+1)
j+1 (0)

(j + 1)!
=

∑

j1+j2=j+1

Aj1,j2∇φj1 · wj2 , (3.15)

G(j+1)
j+1 (0)

(j + 1)!
=

∑

j1+j2=j+1

Bj1,j2φj1∂twj2

+
∑

j1+j2+j3=j+1

Cj1,j2,j3φj1 wj2 · ∇wj3

+ ρ0
∑

j1+j2=j+1

Dj1,j2 wj1 · ∇wj2

+ κ
∑

j1+j2=j+1

Ej1,j2∇φj1�φj2 , (3.16)

where 1 ≤ jk ≤ j, and Aj1,j2 , Bj1,j2 , Cj1,j2,j3 , Dj1,j2 , Ej1,j2 depend on ρ0(x2) and g .
By the introduction hypothesis (3.5)–(3.10) for φk , ∂tφk , ∇φk , wk , ∂twk , and qk , 1 ≤ k ≤ j,

we have, for all s,

∥
∥
∥
∥

F (j+1)
j+1 (0)

(j + 1)!

∥
∥
∥
∥

Hs
≤ Ce(j1+j2)λt ≤ Ce(j+1)λt , (3.17)

∥
∥
∥
∥

G(j+1)
j+1 (0)

(j + 1)!

∥
∥
∥
∥

Hs
≤ C

(
e(j1+j2)λt + e(j1+j2+j3)λt)

≤ Ce(j+1)λt . (3.18)
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We now define the (j + 1)-th order coefficients φj+1, wj+1, and qj+1 as solutions of the fol-
lowing inhomogeneous linear system:

∂tφj+1 + ∇ρ0 · wj+1 = –
F (j+1)

j+1 (0)
(j + 1)!

, (3.19)

ρ0∂twj+1 + ∇qj+1 + φj+1ge2 + κ∇ρ0�φj+1

+ κ∇φj+1�ρ0 – μ�wj+1 = –
G(j+1)

j+1 (0)
(j + 1)!

, (3.20)

div wj+1 = 0 (3.21)

with initial data φj+1(0, x) = 0, wj+1(0, x) = (0, 0).
For s = 0, multiplying the equations (3.19) and (3.20) by φj+1, wj+1, respectively, and in-

tegrating over domain D, we arrive at

1
2

d
dt

∫

|φj+1|2 dx = –
∫

∇ρ0 · wj+1φj+1 dx –
∫ F (j+1)

j+1 (0)
(j + 1)!

φj+1 dx, (3.22)

1
2

d
dt

∫

|√ρ0wj+1|2 dx = –
∫

(∇qj+1 + φj+1ge2 + κ∇ρ0�φj+1) · wj+1 dx

–
∫

κ∇φj+1�ρ0 · wj+1 dx + μ

∫

�wj+1·wj+1 dx

–
∫ G(j+1)

j+1 (0)
(j + 1)!

· wj+1 dx. (3.23)

As for the terms involving κ , using (3.19) and integrating by parts, we obtain

–
∫

κ∇ρ0�φj+1 · wj+1 dx = +
∫

κ∇(∇ρ0 · wj+1) · ∇φj+1 dx

= –
1
2

d
dt

∫

κ|∇φj+1|2 dx

+
∫

κ∇
(

–
F (j+1)

j+1 (0)
(j + 1)!

)

· ∇φj+1 dx, (3.24)

–κ

∫

∇φj+1�ρ0 · wj+1 dx = κ

∫

∇ρ ′′
0 · wj+1φj+1 dx. (3.25)

Putting (3.24) and (3.25) into (3.23) yields

1
2

d
dt

∫

|√ρ0wj+1|2 dx +
1
2

d
dt

∫

κ|∇φj+1|2 dx + μ

∫

∇wj+1 · ∇wj+1 dx

= –
∫

(∇qj+1 + φj+1ge2) · wj+1 dx

–
∫

κ∇
(

–
F (j+1)

j+1 (0)
(j + 1)!

)

· ∇φj+1 dx
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+
∫

κ∇ρ ′′
0 · wj+1φj+1 dx

–
∫ G(j+1)

j+1 (0)
(j + 1)!

· wj+1 dx. (3.26)

Adding (3.26) and (3.22) together, then applying Hölder inequality and Cauchy–
Schwarz’s inequality to the resulting equation, coupled with the virtue of (3.17)–(3.18),
we obtain

d
dt

(‖φj+1‖2
L2 + ‖wj+1‖2

L2 + ‖∇φj+1‖2
L2

) ≤ C
(‖φj+1‖2

L2 + ‖wj+1‖2
L2

)

+ C
(‖∇φj+1‖2

L2 + e2(j+1)λt). (3.27)

Applying Gronwall’s inequality, one finds that

‖φj+1‖L2 + ‖∇φj+1‖L2 + ‖wj+1‖L2 ≤ Ce(j+1)λt . (3.28)

Clearly, ∂tφj+1, ∂twj+1 and ∇qj+1 also satisfy (3.6), (3.9) and (3.10) for s = 0, we thus verify
our lemma for s = 0. A similar argument works for s > 0.

Now, assume that we have constructed all φj, wj, qj for all 1 ≤ j ≤ N , we define

σ a =
N∑

j=1

δjφj, va =
N∑

j=1

δjwj, pa =
N∑

j=1

δjqj.

Clearly

σ a
t + ∇ρ0 · va = –

N∑

j=1

δj+1F (j+1)
j+1 (0)

(j + 1)!
,

ρ0va
t + ∇pa + σ age2 + κ∇ρ0�σ a + κ∇σ a�ρ0 – μ�va = –

N∑

j=1

δj+1G(j+1)
j+1 (0)

(j + 1)!
,

(3.29)

where

F(δ) = ∇σ a · va, (3.30)

G(δ) = σ a∂tva + σ ava · ∇va + ρ0va · ∇va + κ∇σ a�σ a. (3.31)

Compared to (3.4), we find that

Ra
N = –

N∑

j=1

δj+1F (j+1)
j+1 (0)

(j + 1)!
+ F(δ), (3.32)

Sa
N = –

N∑

j=1

δj+1G(j+1)
j+1 (0)

(j + 1)!
+ G(δ). (3.33)

Noticing that Ra
N and Sa

N are the sum of all higher terms than N in the nonlinear part of
the δ-expansion, which clearly satisfy (3.11). Thus the proof is complete. �
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3.2 Error estimates
This section is devoted to establish the error estimates between the exact solution (σ , v)
to (1.8) and the approximate solution given by Lemma 3.1. To begin with, we shall recall
the local existence of the CRT problem (1.8)–(1.10).

Proposition 3.1 (Local existence) Assume that ρ0 satisfies (1.4)–(1.5). For any given initial
data (σ0, v0) ∈ H4 × H3 and

inf
x∈D

ρ(0) = inf
x∈D

{
ρ0(x2) + σ0(x)

}
> 0,

then there exists a T > 0 and a unique solution (σ , v) ∈ C([0, T]; H4 × H3) to (1.8)–(1.10)
satisfying

inf
D×(0,T)

{σ + ρ0} > 0,

where T denotes the maximal time of existence of the solution (σ , v).

Proof We mention that the local existence of the strong solution to the incompress-
ible Navier–Stokes–Korteweg equations has been established, see [60–63] for examples.
In particular, by a slight modification of the arguments in [63] and using the expand-
ing domain technique in [64], we can prove that there exists a unique strong solution
(σ , v) ∈ C([0, T]; H4 × H3) to the CRT problem (1.8)–(1.10), and thus obtain Proposi-
tion 3.1. �

In what follows, the notation a � b means that a ≤ Cb for a universal constant C > 0,
which may depend on some known physical parameters. C(ε0) means that the positive
constant C further depends on ε0. We define

E(t) := E
(
σ d, vd)(t) :=

√∥
∥σ d

∥
∥2

H4 +
∥
∥vd

∥
∥2

H3 ≤ w/2 < 1, (3.34)

‖u‖ =
(∫

(σ + ρ0)u2 dx
)1/2

, ‖u‖2
s =

∑

|α|≤s

‖∂αu‖2, (3.35)

where α = (α1,α2) denotes a multi-index of order |α| = α1 + α2.
In addition, we list some classical Sobolev embedding results, which will be repeated

used in later.

‖u‖L4 � ‖u‖ 1
4
L2‖u‖ 3

4
H1 � ‖u‖H1 , (3.36)

‖u‖L∞ � ‖u‖ 1
4
L2‖u‖ 3

4
H2 � ‖u‖H2 , (3.37)

‖u‖L6 � ‖u‖W 1,2 = ‖u‖H1 . (3.38)

Let (σ (t, x), v(t, x)) ∈ C([0, T]; H4 × H3) be a local solution as constructed in Proposi-
tion 3.1 and (σ a(t, x), va(t, x)) the approximate solution provided by Lemma 3.1. Next, we
shall establish the error estimate for (σ d, vd), which is defined as follows

σ d = σ – σ a, vd = v – va. (3.39)
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Noticing that (σ d, vd) satisfies the following equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tσ
d + vd · ∇ρ + va · ∇σ d = –Ra

N ,

ρvd
t + σ dva

t + ρvd · ∇(va + vd) + σ dva · ∇(va + vd),

+ (σ a + ρ0)va · ∇vd + ∇pd – μ�vd + κ∇ρ�σ d,

+ κ∇σ d�(σ a + ρ0) + κ∇ρ0�σ d + κ∇σ d�ρ0 + σ dge2

= –Sa
N ,

div vd = 0,

(3.40)

where Ra
N and Sa

N are defined in (3.4). Next, we make standard estimates for the error terms
of density and velocity.

Lemma 3.2 Let (σ a(t, x), va(t, x), pa(t, x)), ((Ra
N (t, x), Sa

N (t, x)) ∈ L∞
loc(Hs) as in Lemma 3.1.

Assume that ‖σ‖H4 ≤ 1
2 infx2∈R{ρ0}, and ‖σ a‖H4 ≤ 1

2 infx2∈R{ρ0}. Then, there exists a posi-
tive constant C depending on g , ρ0, κ , μ such that

d
dt

(∥
∥vd∥∥2

3 +
∥
∥σ d∥∥2

H4
)

≤ C
(∥
∥σ a

t
∥
∥2

H2 +
∥
∥σ a∥∥2

H5 +
∥
∥σ a∥∥2

H4

∥
∥va∥∥2

H4 +
∥
∥σ d∥∥2

H4 +
∥
∥va∥∥2

H4 +
∥
∥va∥∥4

H4

+
∥
∥va

t
∥
∥2

H4 + 1
)(∥

∥vd∥∥2
3 +

∥
∥σ d∥∥2

H4
)

+ C
∥
∥Ra

N
∥
∥2

H4 +
∥
∥Sa

N
∥
∥2

H4 . (3.41)

Proof We first establish some estimates of the difference σ d of perturbation density. Ap-
plying ∂α with |α| = 4 to (3.40)1, and multiplying the resulting identity by ∂ασ d in L2, we
arrive at

1
2

d
dt

∑

0≤|α|≤4

∫
∣
∣∂ασ d∣∣2 dx

= –
∑

0≤|α|≤4

∫

∂a
(
va · ∇σ d) · ∂ασ d dx –

∑

0≤|α|≤4

∫

∂α

(
vd · ∇ρ

) · ∂ασ d dx

–
∑

0≤|α|≤4

∫

∂aRa
N · ∂ασ d dx =: G1 + G2 + G3. (3.42)

Using (3.36), (3.37), Hölder’s and Young’s inequalities, G1 can be bounded as follows:

G1 �
∥
∥∇va∥∥

L4

∥
∥∇σ d∥∥

L4

∥
∥∇σ d∥∥

L2 +
(∥
∥∇2va∥∥

L4

∥
∥∇σ d∥∥

L4

+
∥
∥∇va∥∥

L∞
∥
∥∇2σ d∥∥

L2
)∥
∥∇2σ d∥∥

L2 +
(∥
∥∇3va∥∥

L4

∥
∥∇σ d∥∥

L∞

+
∥
∥∇2va∥∥

L4

∥
∥∇2σ d∥∥

L4 +
∥
∥∇va∥∥

L∞
∥
∥∇3σ d∥∥

L2
)∥
∥∇3σ d∥∥

L2

+
(∥
∥∇4va∥∥

L2

∥
∥∇σ d∥∥

L∞ +
∥
∥∇3va∥∥

L4

∥
∥∇2σ d∥∥

L4

+
∥
∥∇2va∥∥

L4

∥
∥∇3σ d∥∥

L4 +
∥
∥∇va∥∥

L∞
∥
∥∇4σ d∥∥

L2
)∥
∥∇4σ d∥∥

L2

�
(∥
∥va∥∥2

H4 + 1
)
E2. (3.43)
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To bound G2 and G3, arguing in a way similar to that used for (3.43), thus, we can deduce
from (3.42) that

1
2

d
dt

∥
∥σ d∥∥2

H4 � C(ε0)
(∥
∥va∥∥2

H4 +
∥
∥σ a∥∥2

H5 + 1
)
E2 + ε0

∥
∥vd∥∥2

H4 +
∥
∥Ra

N
∥
∥2

H4 . (3.44)

We proceed to derive higher-order estimates of the difference of velocity. Applying ∂β

with |β| = 3 to (3.40)2, and multiplying the resulting identity by ∂βvd in L2, we have

1
2

d
dt

∥
∥√

ρ∂βvd∥∥2
L2 + μ

∥
∥∂β∇vd∥∥2

L2

=
1
2

∫

ρt
∣
∣∂βvd∣∣2 dx –

∫ ( ∑

μ+ν=β
|μ|≥1

(
μ

ν

)

∂μρ∂νvd
t

)

· ∂βvd dx

–
∫

∂β

(
σ dva

t
) · ∂βvd dx –

∫

∂β

(
ρvd · ∇(

va + vd)) · ∂βvd dx

–
∫

∂β

(
σ dva · ∇(

va + vd)) · ∂βvd dx –
∫

∂β

((
σ a + ρ0

)
va · ∇vd) · ∂βvd dx

–
∫

∂β

(
Sa

N
) · ∂βvd dx – κ

∫

∂β

(∇σ d�
(
σ a + ρ0

)) · ∂βvd dx

– κ

∫

∂β

(∇σ d�ρ0
) · ∂βvd dx –

∫

∂β

(
σ dge2

) · ∂βvd dx dx

– κ

∫

∂β

(∇ρ0�σ d) · ∂βvd dx – κ

∫

∂β

(∇ρ�σ d) · ∂βvd dx :=
12∑

j=1

Ij. (3.45)

To bound I1, we need to estimate the time-derivative of the difference σ d of the density. Us-
ing (3.36), Hölder’s and Cauchy–Schwarz’s inequalities, we can easily deduce from (3.40)1

that

∥
∥σ d

t
∥
∥2

L2 �
∥
∥vd∥∥2

H1
(∥
∥σ a∥∥2

H2 +
∥
∥σ d∥∥2

H2 + 1
)

+
∥
∥va∥∥2

H1

∥
∥σ d∥∥2

H2 +
∥
∥Ra

N
∥
∥2

L2 , (3.46)
∥
∥∇σ d

t
∥
∥2

L2 �
∥
∥vd∥∥2

H2
(∥
∥σ a∥∥2

H3 +
∥
∥σ d∥∥2

H3 + 1
)

+
∥
∥va∥∥2

H2

∥
∥σ d∥∥2

H3 +
∥
∥Ra

N
∥
∥2

H1 , (3.47)
∥
∥�σ d

t
∥
∥2

L2 �
∥
∥vd∥∥2

H3
(∥
∥σ a∥∥2

H4 +
∥
∥σ d∥∥2

H4 + 1
)

+
∥
∥va∥∥2

H3

∥
∥σ d∥∥2

H4 +
∥
∥Ra

N
∥
∥2

H2 . (3.48)

Using (3.37), Hölder’s and Cauchy’s inequalities, I1 can be bounded as follows:

I1 =
1
2

∫

ρt
∣
∣∂αvd∣∣2 dx ≤ 1

2
∥
∥
(
σ a

t + σ d
t
)∥
∥

L∞
∥
∥∂αvd∥∥

L2

∥
∥∂αvd∥∥

L2

�
∥
∥σ a

t
∥
∥2

H2

∥
∥vd∥∥2

H3 +
∥
∥vd∥∥2

H3 +
∥
∥σ d

t
∥
∥2

H2 +
∥
∥vd∥∥4

H3 . (3.49)

Recalling the virtue of E ≤ w/2 < 1 and putting (3.46)–(3.48) into (3.49), we get

I1 �
(∥
∥σ a

t
∥
∥2

H2 +
∥
∥σ a∥∥2

H4 +
∥
∥σ d∥∥2

H4 + 1
)∥
∥vd∥∥2

H3

+
∥
∥va∥∥2

H3

∥
∥σ d∥∥2

H4 +
∥
∥Ra

N
∥
∥2

H2 +
∥
∥vd∥∥4

H3

�
(∥
∥σ a

t
∥
∥2

H2 +
∥
∥σ a∥∥2

H4 +
∥
∥σ d∥∥2

H4 +
∥
∥va∥∥2

H3 + 1
)
E2 +

∥
∥Ra

N
∥
∥2

H2 . (3.50)
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Next we continue to derive more higher-order derivatives estimates of the difference vd of
perturbation velocity. Multiplying (3.40)2 by vd

t in L2 and recalling the virtue of div vd
t = 0,

one gets

∥
∥vd

t
∥
∥2

L2 �
∥
∥√

ρvd
t
∥
∥2

L2

�
∥
∥va

t
∥
∥2

H1E2 +
∥
∥σ a∥∥2

H1E4 +
∥
∥σ a∥∥2

H1

∥
∥va∥∥2

H2E4

+
∥
∥va∥∥2

H2E4 +
∥
∥va∥∥4

H2E2 +
∥
∥va∥∥2

H2E2

+
∥
∥σ a∥∥2

H3E2 + E2 + E4 + E6 +
∥
∥Sa

N
∥
∥2

L2

�
(∥
∥va

t
∥
∥2

H1 +
∥
∥σ a∥∥2

H3 +
∥
∥σ a∥∥2

H1

∥
∥va∥∥2

H2

+
∥
∥va∥∥2

H2 +
∥
∥va∥∥4

H2 + 1
)
E2 +

∥
∥Sa

N
∥
∥2

L2 . (3.51)

Applying ∂i to (3.40)2, multiplying the resulting equation by ∂ivd
t in L2, and using

(3.36)–(3.38) and (3.51), we have

∥
∥∂ivd

t
∥
∥2

L2 �
∥
∥√

ρ∂ivd
t
∥
∥2

L2

�
(∥
∥va

t
∥
∥2

H2 +
∥
∥σ a∥∥2

H4 +
∥
∥σ a∥∥2

H2

∥
∥va∥∥2

H3

+
∥
∥va∥∥2

H3 +
∥
∥va∥∥4

H3 + 1
)
E2 +

∥
∥Sa

N
∥
∥2

H1 +
∥
∥vd

t
∥
∥2

L2

�
(∥
∥va

t
∥
∥2

H2 +
∥
∥σ a∥∥2

H4 +
∥
∥σ a∥∥2

H2

∥
∥va∥∥2

H3

+
∥
∥va∥∥2

H3 +
∥
∥va∥∥4

H3 + 1
)
E2 +

∥
∥Sa

N
∥
∥2

H1 . (3.52)

Furthermore, applying ∂i∂j to (3.40)2 yields

ρ∂i∂jvd
t = –∂2

i ρvd
t – ∂iρ∂jvd

t – ∂i∂j
(
σ dva

t
)

– ∂i∂j
(
ρvd · ∇(

va + vd))

– ∂i∂j
(
σ dva · ∇(

va + vd)) – ∂i∂j
((

σ a + ρ0
)
va · ∇vd) – ∂i∂j∇pd

– μ∂i∂j�vd – κ∂i∂j
(∇ρ�σ d) – κ∂i∂j

(∇σ d�
(
σ a + ρ0

))

– κ∂i∂j
(∇ρ0�σ d) – κ∂i∂j

(∇σ d�ρ0
)

– ∂i∂jσ
dge2 – ∂i∂jSa

N . (3.53)

Multiplying the (3.53) by ∂i∂jvd
t , integrating over D, and utilizing (3.51), (3.52), and

(3.36)–(3.38), we have

∥
∥∂i∂jvd

t
∥
∥2

L2 �
∥
∥√

ρ∂i∂jvd
t
∥
∥2

L2

�
(∥
∥va

t
∥
∥2

H3 +
∥
∥σ a∥∥2

H5 +
∥
∥σ a∥∥2

H3

∥
∥va∥∥2

H4

+
∥
∥va∥∥2

H4 +
∥
∥va∥∥4

H4 + 1
)
E2 +

∥
∥vd∥∥2

H4 +
∥
∥Sa

N
∥
∥2

H2 +
∥
∥vd

t
∥
∥2

H1

�
(∥
∥va

t
∥
∥2

H3 +
∥
∥σ a∥∥2

H5 +
∥
∥σ a∥∥2

H3

∥
∥va∥∥2

H4 +
∥
∥va∥∥2

H4

+
∥
∥va∥∥4

H4 + 1
)
E2 +

∥
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In particular, summing up the above three estimates, we conclude that
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N
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H2 . (3.55)

Therefore, the second term on the right-hand side of (3.45) can be bounded as follows.
Using the embedding theorem, Hölder’s, Cauchy–Schwarz’s inequalities, and (3.55), we
have
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Arguing in a way similar to that used above, it is easy to verify that
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To estimate the term I12 in (3.45), we shall further rewrite I12 as follows by using the
divergence-free condition and integration by parts.

–κ

∫

∂β

(∇ρ�σ d) · ∂βvd dx

= –κ

∫

∂β∇σ d · ∇(∇ρ · ∂βvd)dx

– κ

∫ ( ∑
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|μ|≥1

(
μ

ν

)

∂μ∇ρ · ∂ν�σ d
)

· ∂βvd dx. (3.58)

Therefore, using (3.36), (3.37), and Hölder’s and Cauchy–Schwarz’s inequalities, we de-
rive from (3.58) that
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Inserting all the above estimates into (3.45), we conclude that
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H4 . (3.60)

Recalling Proposition 3.2 and the definition of ρ0, we known the two norms ‖ · ‖s and
‖ · ‖Hs are equivalent. By applying a similar argument to the case 0 ≤ |β| < 3, and then
using (3.44), we arrive at, for sufficiently small ε0.
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This completes the proof. �

3.3 Existence of escape points
In this section, we are going to prove the Theorem 1.1. Let (σ a(t, x), va(t, x)) be an approx-
imate solution as in Lemma 3.1 with N to be determined later. For any δ > 0, by Proposi-
tion 3.1, we known that exists a local-in time solution (σ δ(t, x), vδ(t, x)) with the initial data
(σ a(0), va(0)) to the full system (1.8). Obviously,

(
σ d(0), vd(0)

)
=

(
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)
= 0.

By (3.11) and Lemma 3.2, we have
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. (3.62)

Let

T = sup

{

t
∣
∣
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∥
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, (3.63)
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where w is a small positive number that assures the local existence. If T < ∞, we have
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or

∥
∥σ d(T)

∥
∥
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∥vd(T)

∥
∥

H3 =
w
2

. (3.65)

Since (σ d(0), vd(0)) = (0, 0), and ‖σ a(0)‖H5 = ‖va(0)‖H5 = O(δ) by Lemma 3.1, T is well
defined for δ small enough.

Next we will prove that for θ small enough, T δ ≤ T by contradiction, where θ = δeλTδ is
defined by (3.2).

Let

θ = min

{
w

2CN ,1
,

w
2C2

,
C3

2CN ,2
,

C3

4C2
, 1

}

> 0. (3.66)

Suppose that Tδ > T , then for t ≤ T . By the construction of approximate solutions in (3.3),
we can deduce that
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When t = T , we obtain
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Now we appeal to the definition of T as in (3.63) and (3.62) to get, for t ≤ T ,
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Then we choose N > 0 such that
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Using Gronwall’s inequality leads to
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Hence
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When t = T , we have
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, (3.71)

which, together with (3.68), leads to a contradiction to (3.64)–(3.65), thus Tδ ≤ T .
Finally, utilizing (2.1) and Lemma 3.1, we obtain
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Thus, when t = Tδ , using (3.70), we deduce that,
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This completes the proof of Theorem 1.1 by defining ε0 = C3θ/4.

4 Conclusion
This paper focuses on the Rayleigh–Taylor instability in the two-dimensional system of
equations of inhomogeneous incompressible viscous fluids with capillarity effects in a hor-
izontal periodic domain with infinite height. First, we use the modified variational method
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to construct (linear) unstable solutions for the linearized capillary Rayleigh–Taylor prob-
lem. Then, motivated by the Grenier’s idea in [1], we further construct approximate so-
lutions with higher-order growing modes to the capillary Rayleigh–Taylor problem and
derive the error estimates between both the approximate solutions and nonlinear solu-
tions of the capillary Rayleigh–Taylor problem. Finally, we prove the existence of escape
points based on the bootstrap instability method of Hwang–Guo in [2], and thus obtain
the nonlinear Rayleigh–Taylor instability result. Our instability result presents that the
Rayleigh–Taylor instability can occur in the fluids with capillarity effects for any capillary
coefficient κ > 0 if the critical capillary coefficient is infinite. In particular, it improves the
previous Zhang’s result in [3] with the smallness assumption of capillary coefficient.
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