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Abstract
By introducing some concepts such as multiple integral inner product (MIIP) and
multiple integral inner product space (MIIPS), new series of single/multiple integral
inequalities are developed in a systematic way, which produce more accurate bounds
on the cross terms from the direct Lyapunov method than those in the literature.
Some previous integral inequalities including both single and multiple integral
inequalities can be regarded as special cases of the proposed inequalities.
Accordingly, such integral inequalities are less conservative in comparison with the
existing integral inequalities.
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1 Introduction
A time-delay control system whose future evolution depends not only on the current state
but also on the past state of the system is a special class of infinite dimensional system
[1, 2]. A large quantity of practical systems, such as engineering, physics, biology, and
economics, can be modeled as time-delay systems [3, 4]. Compared with delay-free sys-
tems, the time-delay systems have complicated dynamic features and need in-depth re-
search. From the perspective of both theoretical and practical points, the stability prob-
lem of time-delay systems is a fundamental and challenging issue. Time-delays frequently
encounter and usually lead to instability of time-delay systems. Therefore, the stability
problem of time-delay systems has raised concerns in various fields.

As we all know, Lyapunov theory is a potent weapon to discuss the stability or stabiliza-
tion and other related control issues, such as synchronization control, dissipativity and
passivity, convergence, track control, adaptive control and filter design, and so on. Inte-
gral inequality is indispensable and plays a crucial role in addressing the aforementioned
issues of various time-delay systems when applying the direct Lyapunov method. More
attention has been paid to integral inequalities and a large variety of integral inequalities
have been developed during the past several decades. Jensen integral inequality (JII) was
initially established to deal with the stability of time-delay systems [4]. However, the JII en-
tails considerable conservatism. Later, Wirtinger integral inequality (WII) was developed
based on Fourier theory, which includes the JII as a special case and is less conservative
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than the JII [5–7]. Subsequently, we presented an extended Wirtinger integral inequality
(EWII) in Ref. [8], which is less conservative than the WII. Recently, by introducing the
Legendre polynomials, a canonical Bessel–Legendre integral inequality (BLII) [9–12] was
developed to address the stability problem for time-delay systems. It is pointed out in Ref.
[13] that the BLII includes the WII, the AFII, and the EWII as its special cases. Very re-
cently, Yang Z et al. [14] proposed a new Henry–Gronwall integral inequality to analyze
the stability of delayed fractional-order neural networks systems.

Recently, Zamart C and Botmart T [15] proposed a novel integral inequality with an ex-
ponential function, which covers the WII, to investigate the finite-time boundedness for
some delayed generalized neural networks. Nowadays, Halanay inequality (HI) becomes
an efficient tool to discuss stability of systems with time-varying delays. However, the or-
dinary HI has some limitations. In order to handle the stability issue of some fractional
neural networks, a novel fractional non-autonomous HI has been developed in the litera-
ture [16]. Utilizing a vector-valued function to replace the scalar function in the ordinary
HI, Mazenc et al. [17] established two vector-form Halanay inequalities, which extend the
HI and provides relaxed versions of the HI.

Although various classes integral inequalities, such as the above inequalities and others,
have been presented in the literature, on the one hand, these inequalities are scattered and
unsystematic. Such inequalities are still conservative on the other hand. It is essential that
we should establish a theoretical framework for single and multiple integral inequalities
with less conservatism.

Inspired by the discussion above, we initiate the present work. The main contributions of
this paper are summarized as follows. Firstly, a new type of multiple integral inner product
(MIIP) and a new multiple integral inner product space (MIIPS) are creatively introduced.
Secondly, with the help of such concepts, general single/multiple integral inequalities are
to be developed in a systematic way, which generalize and outperform previous integral
inequalities, including single and multiple integral inequalities.

Notations Throughout the paper, Rn denotes the n-dimensional Euclidean space with
Euclidean norm ‖ · ‖, Rm×n is the set of all m × n real matrices. P > 0 (P ≥ 0) means that
P is a symmetric and positive definite matrix (positive semi-definite matrix). The nota-
tions Sn and S

+
n represent the set of symmetric and symmetric positive definite matrices

of Rn×n, respectively. The superscript “T” denotes the transpose of a matrix. The notation
(k

l
)

refers to the binomial coefficients given by k!
(k–l)!l! . N and N

+ denote the sets of nonneg-
ative and positive integers, respectively. Unless explicitly stated, in what follows, matrices
are assumed to have compatible dimensions with context.

2 Preliminaries
In this section, we will introduce some definitions and preliminaries necessary to derive
main results.

Definition 1 A type of multiple integrals defined by

〈pk , pl〉m �
∫ b

a
ds1

∫ b

s1

ds2 · · ·
∫ b

sm–1

pk(sm)pl(sm) dsm,

[pk , pl]m �
∫ b

a
ds1

∫ s1

a
ds2 · · ·

∫ sm–1

a
pk(sm)pl(sm) dsm,
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between polynomial functions pk(u), pl(u), k, l ∈ N is said to be a multiple integral inner
product (MIIP). Correspondingly, the set consisting of the polynomial functions defined
such inner product is said to be a multiple integral inner product space (MIIPS). In par-
ticular, when m = 1, the MIIP and MIIPS become ordinary integral inner product and
ordinary integral inner product space, respectively.

Definition 2 Two polynomial functions pk(u), pl(u), k, l ∈ N are said to be orthogonal if
they satisfy

〈pk , pl〉m =

⎧
⎨

⎩
0, k �= l,

rk , k = l,

or

[pk , pl]m =

⎧
⎨

⎩
0, k �= l,

r̃k , k = l,

where rk , r̃k are nonzero numbers. In reality, rk , r̃k can be expressed as two types of norms,
i.e., rk = ‖pk(·)‖2

1, r̃k = ‖pk(·)‖2
2, where ‖ · ‖1, ‖ · ‖2 represent norms derived by the afore-

mentioned inner products 〈·, ·〉m, [·, ·]m, respectively.

Definition 3 The Legendre polynomial function for k ∈ N over an interval [a, b] is defined
by

Lk(u) = (–1)k
k∑

i=0

(–1)i
(

k
i

)(
k + 1

i

)(
u – a
b – a

)i

,

or

L̃k(u) = (–1)k
k∑

i=0

(–1)i
(

k
i

)(
k + 1

i

)(
b – u
b – a

)i

.

The set of the Legendre polynomials {Lk(·) or L̃k(·), k ∈ N} forms an orthogonal sequence
with respect to the inner product described in Definition 1 when m = 1.

Thus, the Legendre polynomials {Lk(·) or L̃k(·), k ∈N} have the following properties:
1) Orthogonality:

∀k, l ∈N,
∫ b

a
Lk(u)Ll(u) du =

⎧
⎨

⎩
0, k �= l,
b–a
2k+1 , k = l,

∀k, l ∈N,
∫ b

a
L̃k(u)̃Ll(u) du =

⎧
⎨

⎩
0, k �= l,
b–a
2k+1 , k = l.

2) Boundary conditions:

Lk(a) = (–1)k , Lk(b) = 1, k ∈N,
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L̃k(b) = (–1)k , L̃k(a) = 1, k ∈N.

3) Differentiation:

d
du

Lk(u) =

⎧
⎨

⎩
0, k = 0,
∑k–1

i=0
2i+1
b–a [1 – (–1)k+i]Li(u), k ≥ 1,

d
du

L̃k(u) =

⎧
⎨

⎩
0, k = 0,
∑k–1

i=0
2i+1
b–a [–1 + (–1)k+i ]̃Li(u), k ≥ 1.

Proof Proof of these properties can be found in Ref. [18]. �

3 Main results
In this section, we will develop new series of single/multiple integral inequalities and their
corollaries.

Theorem 1 For a constant matrix M ∈ S
+
n , two scalars a, b satisfying a < b, a vector-valued

function ω(·) : [a, b] →R
n and m ∈N

+, there exists a polynomial function pk(s) with degree
of k, k = 0, 1, 2, . . . , N satisfying orthogonality, i.e., there existing a polynomial function pl(s)
with degree of l, l = 0, 1, 2, . . . , N such that

〈pk , pl〉m =

⎧
⎨

⎩
0, k �= l,

rk , k = l,

or

[pk , pl]m =

⎧
⎨

⎩
0, k �= l,

r̃k , k = l,

where rk , r̃k are nonzero real numbers. Then the following inequalities hold

∫ b

a
ds1

∫ b

s1

ds2 · · ·
∫ b

sm–1

ωT (sm)Mω(sm) dsm ≥
N∑

k=0

H–1
m (k, k)ΩT

m,kMΩm,k , (1)

∫ b

a
ds1

∫ s1

a
ds2 · · ·

∫ sm–1

a
ωt(sm)Mω(sm) dsm ≥

N∑

k=0

H̃–1
m (k, k)Ω̃T

m,kMΩ̃m,k , (2)

where

Hm(k, k) =
∫ b

a
ds1

∫ b

s1

ds2 · · ·
∫ b

sm–1

pk(sm)pk(sm) dsm,

H̃m(k, k) =
∫ b

a
ds1

∫ s1

a
ds2 · · ·

∫ sm–1

a
pk(sm)pk(sm) dsm,

Ωm,k =
∫ b

a
ds1

∫ b

s1

ds2 · · ·
∫ b

sm–1

pk(sm)ω(sm) dsm,
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Ω̃m,k =
∫ b

a
ds1

∫ s1

a
ds2 · · ·

∫ sm–1

a
pk(sm)ω(sm) dsm,

a ≤ si ≤ b, i = 1, 2, . . . , m.

Proof We first prove Ineq. (1).
Since M ∈ S

+
n , there exists a real orthogonal matrix Q such that

M = Q

⎡

⎢
⎢⎢
⎢
⎣

λ1

λ2
. . .

λn

⎤

⎥
⎥⎥
⎥
⎦

QT ,

where λi > 0, i = 1, 2, . . . , n are eigenvalues of M.
Define

M̄ = Q

⎡

⎢
⎢⎢
⎢
⎣

√
λ1 √

λ2
. . . √

λn

⎤

⎥
⎥⎥
⎥
⎦

QT .

Apparently, one has M̄T = M̄ and M̄2 = M.
Setting

W (s) =
[
M̄ω(s) p0(s)M̄ p1(s)M̄ · · · pN (s)M̄

]
,

then one has W T (s)W (s) ≥ 0. Namely,

⎡

⎢⎢⎢
⎢⎢
⎢⎢
⎣

ωT (s)Mω(s) p0(s)ωT (s)M p1(s)ωT (s)M · · · pN (s)ωT (s)M
∗ p2

0(s)M p0(s)p1(s)M · · · p0(s)pN (s)M
∗ ∗ p2

1(s)M · · · p1(s)pN (s)M

∗ ∗ ...
. . .

...
∗ ∗ ∗ · · · p2

N (s)M

⎤

⎥⎥⎥
⎥⎥
⎥⎥
⎦

≥ 0.

Integrating both sides of the above inequality with respect to s for m times and observing
that the definitions of Hm(k, k), Ωm,k , we reach

⎡

⎢⎢⎢
⎢⎢
⎢⎢
⎣

(1, 1) ΩT
m,0M ΩT

m,1M · · · Ω∗
m,N M

∗ Hm(0, 0)M 0 · · · 0
∗ ∗ Hm(1, 1)M · · · 0

∗ ∗ ...
. . .

...
∗ ∗ ∗ · · · Hm(N , N)M

⎤

⎥⎥⎥
⎥⎥
⎥⎥
⎦

≥ 0,

where (1, 1) =
∫ b

a ds1
∫ b

s1
ds2 · · · ∫ b

sm–1
ωT (sm)Mω(sm) dsm.
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Utilizing Schur complement for the above matrix inequality, we arrive at

∫ b

a
ds1

∫ b

s1

ds2 · · ·
∫ b

sm–1

ωT (sm)Mω(sm) dsm –
N∑

k=0

H–1
m (k, k)ΩT

m,kMΩm,k ≥ 0.

Ineq. (1) thus holds.
By analogy, Ineq. (2) can also be proved. This completes the proof of Theorem 1. �

Remark 1 It is easy to see that the proposed multiple integral Inequalities (1) and (2) can
produce more and more accurate bounds of the derivative of the chosen Lyapunov func-
tional as N increases. Theoretically, when N → +∞, the conservatism of Ineq. (1), Ineq.
(2) will asymptotically vanish, for more detail, see [13].

Retrieving Ineq. (1) and Ineq. (2) with ω(u) = ẋ(t) in Theorem 1, we immediately obtain
the following corollary.

Corollary 1 For a constant matrix M ∈ S
+
n , a vector-valued function x(·) : [a, b] → R

n,
orthogonal polynomials pk(s) and m ∈ N

+ such that the following integrations are well-
defined, then

∫ b

a
ds1

∫ b

m1

ds2 · · ·
∫ b

sm–1

ẋT (sm)Mẋ(sm) dsm ≥
N∑

k=0

H–1
m (k, k)ΘT

m,kMΘm,k , (3)

∫ b

a
ds1

∫ ss

a
ds2 · · ·

∫ sm–1

a
ẋT (sm)Mẋ(sm) dsm ≥

N∑

k=0

H̃–1
m (k, k)Θ̃ t

m,kMΘ̃m,k , (4)

where

Θm,k =
∫ b

a
ds1

∫ b

s1

ds2 · · ·
∫ b

sm–1

pk(sm)ẋ(sm) dsm,

Θ̃m,k =
∫ b

a
ds1

∫ s1

a
ds2 · · ·

∫ sm–1

a
pk(sm)ẋ(sm) dsm,

a ≤ si ≤ b, i = 1, 2, . . . , m.

In Theorem 1 and Corollary 1, when m = 1, Ineq. (1)–(4) are called single-integral in-
equalities and when m ≥ 2 Ineq. (1)–(4) are called multiple-integral inequalities.

Remark 2 Although Ineqs. (1)–(4) have been developed, they cannot be successfully ap-
plied to discuss relevant practical problems that are still unknown but have a polynomial
function of degree and orthogonality. In other words, Theorem 1 and Corollary 1 are only
results of existence. These inequalities cannot be applied to specific problems until the
polynomial function pk(·) is determined.

Next, we will determine pk(·).
In what follows, we consider the following two cases:
a) In the case of m = 1.
For brevity in form, we firstly give result for the case when m = 1 in Ineq. (1) and Ineq.

(2), that is
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Corollary 2 For a constant matrix M ∈ S
+
n , and a vector-valued function ω(·) : [a, b] →

R
n, there exists a polynomial function pk(u) with degree of k on the interval [a, b], k ∈ N

and satisfying

∫ b

a
pk(u)pl(u) du =

⎧
⎨

⎩
0, k �= l,

rk �= 0, k = l.

Then the following inequality holds:

∫ b

a
ωT (u)Mω(u) du ≥

N∑

k=0

1
rk

ΩT
k MΩk ,

where N ∈N, Ωk =
∫ b

a pk(u)ω(u) du.

The subsequent effort is to determine the pk(·). Observe that the aforementioned Leg-
endre polynomial Lk(·), L̃k(·) satisfies orthogonality and other properties, numerous ref-
erences, for example [9–12], all chose pk(·) = Lk(·) or pk(·) = L̃k(·) and obtained the BLI. In
addition, other polynomials can be chosen to act as Lk(·) or L̃k(·), such as those polynomi-
als proposed in Ref. [19], which were constructed by the odd and even properties at the
central point of the integral range [a, b]. That is

p0(u) = 1, p1(u) = u –
a + b

2
, p2(u) =

(
u –

a + b
2

)2

–
(b – a)2

12
,

p3(u) =
(

u –
a + b

2

)3

–
3(b – a)2

20

(
u –

a + b
2

)
, . . . .

Then, based on Theorem 1, we derive the following inequality when m = 1, N = 3:

Theorem 2 For a constant matrix M ∈ S
+
n , two scalars a, b satisfying a < b and a vector-

valued function ω(·) : [a, b] → R
n such that the integrations below are well-defined, then

the following inequality holds:

(b – a)
∫ b

a
ωT (u)Mω(u) du ≥ ΩT

0 MΩ0 + 3ΩT
1 MΩ1 + 5ΩT

2 MΩ2 + 7ΩT
3 MΩ3, (5)

where

Ω0 =
∫ b

a
ω(s) ds,

Ω1 =
∫ b

a
ω(s) ds –

2
b – a

∫ b

a
ds

∫ s

a
ω(r) dr,

Ω2 =
∫ b

a
ω(s) ds –

6
b – a

∫ b

a
ds

∫ s

a
ω(r) dr +

12
(b – a)2

∫ b

a
ds

∫ s

a
du

∫ u

a
ω(r) dr,

Ω3 =
∫ b

a
ω(s) ds –

12
b – a

∫ b

a
ds

∫ s

a
ω(r) dr +

60
(b – a)2

∫ b

a
ds

∫ s

a
du

∫ u

a
ω(r) dr

–
120

(b – a)3

∫ b

a
ds1

∫ s1

a
ds2

∫ s2

a
ds3

∫ s3

a
ω(s4) ds4.
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Remark 3 Obviously, the aforementioned JII, WII, EWII can be regarded as special cases
of Inq. (5) when N = 0, 1, 2, respectively. Hence Inq. (5) generalizes them and has is con-
servative than them.

Replacing ω(·) by ẋ(·) in Theorem 2, one immediately obtains the following corollary.

Corollary 3 For a given M ∈ S
+
n , the following inequality holds for all continuously differ-

entiable functions ẋ(·) in [a, b] →R
n:

(b – a)
∫ b

a
ẋT (s)Mẋ(s) ds ≥ ΘT

0 MΘ0 + 3ΘT
1 MΘ1 + 5ΘT

2 MΘ2 + 7ΘT
3 MΘ3, (6)

where

Θ0 = x(b) – x(a),

Θ1 = x(b) + x(a) –
2

b – a

∫ b

a
x(s) ds,

Θ2 = x(b) – x(a) –
6

b – a

∫ b

a
x(b) ds +

12
(b – a)2

∫ b

a
ds

∫ s

a
x(r) dr,

Θ3 = x(b) + x(a) –
12

b – a

∫ b

a
x(s) ds +

60
(b – a)2

∫ b

a
ds

∫ s

a
x(r) dr

–
120

(b – a)3

∫ b

a
ds

∫ s

a
du

∫ u

a
x(r) dr.

Next, we choose pk(·) = Lk(·) or pk(·) = L̃k(·) � p̃k(·) in Corollary 2 and derive a type of
single integral inequalities on the basis of Corollary 2. It should be pointed out that the
approach we take is different from those in the literature, although we also choose pk(·) =
Lk(·), like in Refs. [9–12]. Correspondingly, we formulate the single integral inequalities
distinct in form from those in the literature mentioned above, and the proposed single
integral inequalities are more practical to use. For more details, see Theorem 3.

Theorem 3 Suppose a constant matrix M ∈ S
+
n , two scalars a, b satisfying a < b and a

vector-valued function ω(·) : [a, b] →R
n, then the following inequality holds for any N ∈N:

(b – a)
∫ b

a
ωT (u)Mω(u) du ≥

N∑

k=0

(2k + 1)ΞT
k MΞk , (7)

(b – a)
∫ b

a
ωT (u)Mω(u) du ≥

N∑

k=0

(2k + 1)Ξ̃T
k MΞ̃k , (8)

where

Ξk = pk(a)Ω0 +
1

b – a
{[

1 – (–1)k]Π0,0 + 3
[
1 – (–1)k+1]Π1,0 + · · · + 2(2k – 1)Πk–1,0

}
,

Ξ̃b = p̃b(b)Ω̃0

–
1

b – a
{[

–1 + (–1)k]Π̃0,0 + 3
[
–1 + (–1)k+1]Π̃1,0 + · · · – 2(2k – 1)Π̃k–1,0

}
,
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with

Ξk(α) �
∫ b

α

pk(s)ω(s) ds, Ξk � Ξk(a) =
∫ b

a
pk(s)ω(s) ds,

Ω0(s) �
∫ b

s
ω(u) du, Ω0 � Ω0(a) =

∫ b

a
ω(u) du,

Π0,0 =
∫ b

a
p0(s)Ω0(s) ds =

∫ b

a
ds

∫ b

s
ω(u) du,

Π1,0 =
∫ b

a
p1(s)Ω0(s) ds =

∫ b

a
p1(s)

∫ b

s
ω(u) du ds, . . . ,

Πk–1,0 =
∫ b

a
pk–1(s)Ω0(s) ds =

∫ b

a
pk–1(s)

∫ b

s
ω(u) du ds;

Ω̃0(s) =
∫ s

a
ω(u) du, Ω̃0 � Ω̃0(b) =

∫ b

a
ω(u) du,

Ξ̃k(β) �
∫ β

a
p̃k(s)ω(s) ds, Ξ̃k � Ξ̃k(b) =

∫ b

a
p̃k(s)ω(s) ds,

Π̃0,0 =
∫ b

a
p̃0(s)Ω̃0(s) ds =

∫ b

a
ds

∫ s

a
ω(u) du,

Π̃1,0 =
∫ b

a
p̃1(s)Ω̃0(s) ds =

∫ b

a
p̃1(s)

∫ s

a
ω(u) du ds, . . . ,

Π̃k–1,0 =
∫ b

a
p̃k–1(s)Ω̃0(s) ds =

∫ b

a
p̃k–1(s)

∫ s

a
ω(u) du ds.

b) In the case of m ≥ 2.
In the case when m ≥ 2, one cannot directly choose pk(·) = Lk(·) or pk(·) = L̃k(·) like a)

due to the fact that Lk(·) or L̃k(·), k ∈N is not orthogonal sequence with respect to the inner
product described in Definition 1 when m ≥ 2. It is thus crucial to find some orthogonal
polynomial sequence {pk(·), k ∈ N} in the MIIPS when m ≥ 2.

A simple approach to seek such {pk(·), k ∈ N} is systematically computed by Schmidt
orthogonal algorithm with a basis of polynomial functions of degree k, k = 0, 1, 2, . . . , N
with respect to s in the MIIPS when m ≥ 2 such as p0(s) = 1, p1(s) = s – a, p2(s) = (s –
a)2, . . . , pN (s) = (s – a)N .

For simplicity, the following notations are introduced and defined as:

Π02 � Π0,0 =
∫ b

a
p0(s)Ω0(s) ds =

∫ b

a
ds

∫ b

s
ω(u) du,

Π0k+1 (α) � Π0,0k (α) =
∫ b

α

p0(s)Π0k (s) ds,

Π0k+1 � Π0k+1 (a) =
∫ b

a
p0(s)Π0k (s) ds,

Π̃02 � Π̃0,0 =
∫ b

a
p0(s)Ω̃0(s) ds =

∫ b

a
ds

∫ s

a
ω(u) du,

Π̃0k+1 (β) � Π̃0,0k (β) =
∫ β

a
p0(s)Π̃0k (s) ds,
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Π̃0k+1 � Π̃0k+1 (b) =
∫ b

a
p0(s)Π̃0k (s) ds.

Theorem 4 For a constant matrix M ∈ S
+
n , a vector-valued function ω(·) : [a, b] →R

n such
that the integrations below are well-defined, the following double-integral inequalities hold

(b – a)2

2

∫ b

a
ds

∫ b

s
ωT (u)Mω(u) du

≥ ΩT
2,0MΩ2,0 + 8ΩT

2,1MΩ2,1 + 27ΩT
2,2MΩ2,2 + 64ΩT

2,3MΩ2,3 + · · · ,
(9)

(b – a)2

2

∫ b

a
ds

∫ s

a
ωT (u)Mω(u) du

≥ Ω̃T
2,0MΩ̃2,0 + 8Ω̃T

2,1MΩ̃2,1 + 27Ω̃T
2,2MΩ̃2,2 + 64Ω̃T

2,3MΩ̃2,3 + · · · ,
(10)

where

Ω2,0 = Π02 , Ω2,1 = –Π02 +
3

b – a
Π03 ,

Ω2,2 = Π02 –
8

b – a
Π03 +

20
(b – a)2 Π04 ,

Ω2,3 = –Π02 +
15

b – a
Π03 –

90
(b – a)2 Π04 +

210
(b – a)3 Π05 ,

Ω̃2,0 = Π̃02 , Ω̃2,1 = Π̃02 –
3

b – a
Π̃03 ,

Ω̃2,2 = Π̃02 –
8

b – a
Π̃03 +

20
(b – a)2 Π̃04 ,

Ω̃2,3 = Π̃02 –
15

b – a
Π̃03 +

90
(b – a)2 Π̃04 –

210
(b – a)3 Π̃05 .

Proof We first prove Ineq. (9).
Choosing p2,0(s) = p0(s) = 1, according to the Schmidt orthogonal algorithm in the MI-

IPS with m = 2, one has

p2,k(s) = pk(s) –
k∑

i=0

〈pk(s), p2,i(s)〉2

〈p2,i(s), p2,i(s)〉2
p2,i(s), k = 1, 2, . . . , N .

Computing directly yields

p2,1(s) =
2
3

(b – a)
(

–1 +
3
2

s – a
b – a

)
,

p2,2(s) =
3

10
(b – a)2

[
1 – 4

s – a
b – a

+
10
3

(s – a)2

(b – a)2

]
,

p2,3(s) =
4

35
(b – a)3

[
–1 +

15
2

s – a
b – a

– 15
(s – a)2

(b – a)2 +
35
4

(s – a)3

(b – a)3

]
.

In addition, after easy computing, we get

H2(0, 0) =
(b – a)2

2
, H2(1, 1) =

(b – a)4

36
,
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H2(2, 2) =
(b – a)6

600
, H2(3, 3) =

(b – a)8

9800
.

In the light of Theorem 1, Ineq. (9) can be obtained. Following the same procedure as
that derived Ineq. (9), one can prove Ineq. (10). This completes the proof of Theorem 4. �

Remark 4 In our previous literature [20], by extreme value conditions of multiple variables
function, some double integral inequalities were established, see [20, Remark 1] for details.
These inequalities can be regarded as special cases of Lemma 4. If setting Ω2,2 = Ω2,3 = 0 or
Ω̃2,2 = Ω̃2,3 = 0 in Theorem 4, one finds that Ineq. (9) and (10) reduce to those in Ref. [20].
Comparing with those in [20], one can find that Ineq. (9) and (10) can deliver more tight
lower bounds of the terms

∫ b
a ds

∫ b
s ωT (u)Mω(u) du and

∫ b
a ds

∫ u
a ωT (u)Mω(u) du. The re-

sulting double integral inequalities have thus improved and Ineq. (9), (10) are less con-
servative. In addition, based on the statements in [20, Remark 2 and Remark 3], one finds
that Ineq. (9), (10) remarkably generalize and enhance those double integral inequalities
in Refs. [21, 22].

Substituting ẋ(·) for ω(·) in Theorem 4, we readily obtain the following corollary.

Corollary 4 For a given M ∈ S
+
n , the following inequality holds for all continuously differ-

entiable function ẋ(·) in [a, b] →R
n:

(b – a)2

2

∫ b

a
ds

∫ b

s
ẋT (u)Mẋ(u) du

≥ ΘT
2,0MΘ2,0 + 8ΘT

2,1MΘ2,1 + 27ΘT
2,2MΘ2,2 + · · · ,

(b – a)2

2

∫ b

a
ds

∫ s

a
ẋT (u)Mẋ(u) du

≥ Θ̃T
2,0MΘ̃2,0 + 8Θ̃T

2,1MΘ̃2,1 + 27Θ̃T
2,2MΘ̃2,2 + · · · ,

where

Θ2,0 = (b – a)x(b) –
∫ b

a
x(s) ds,

Θ2,1 =
b – a

2
x(b) +

∫ b

a
x(s) ds –

3
b – a

∫ b

a
ds

∫ b

s
x(u) du,

Θ2,2 =
1
3

(b – a)x(b) –
∫ b

a
x(s) ds +

8
b – a

∫ b

a
ds

∫ b

s
x(u) du

–
20

(b – a)2

∫ b

a
ds

∫ b

s
du

∫ b

u
x(r) dr,

Θ̃2,0 = –(b – a)x(a) +
∫ b

a
x(s) ds,

Θ̃2,1 =
b – a

2
x(a) +

∫ b

a
x(s) ds –

3
b – a

∫ b

a
ds

∫ s

a
x(u) du,

Θ̃2,2 = –
1
3

(b – a)x(a) +
∫ b

a
x(s) ds –

8
b – a

∫ b

a
ds

∫ u

a
x(u) du

+
20

(b – a)2

∫ b

a
ds

∫ s

a
du

∫ u

a
x(r) dr.
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Remark 5 It should be pointed out that one can choose polynomial sequence else, for
example, Legendre polynomials {Lk(·), k ∈ N} or {̃Lk(·), k ∈ N}, to replace p0(s) = 1, p1(s) =
s – a, p2(s) = (s – a)2, . . . , pN (s) = (s – a)N , which are used to derive other double-integral
inequalities similar to Theorem 4. Nevertheless, such other double-integral inequalities
are more complex in form than those in Theorem 4.

Remark 6 By following the same procedure as that m = 2, some related multiple integral
inequalities with m ≥ 3 can be available without difficulty. Considering that they are rather
complicated in form and they are seldom applied to analyze practical problems, we do not
particularize here.

4 Conclusions
In this paper, we develop a class of single/multiple integral inequalities in a systemic way.
Some integral inequalities in the literature are regarded as special cases of the proposed
inequalities. In contrast, the proposed integral inequalities are less conservative. Extend-
ing the proposed single/multiple integral inequalities to the corresponding summation
visions is our future research direction.
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