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Abstract

By introducing some concepts such as multiple integral inner product (MIIP) and
multiple integral inner product space (MIIPS), new series of single/multiple integral
inequalities are developed in a systematic way, which produce more accurate bounds
on the cross terms from the direct Lyapunov method than those in the literature.
Some previous integral inequalities including both single and multiple integral
inequalities can be regarded as special cases of the proposed inequalities.
Accordingly, such integral inequalities are less conservative in comparison with the
existing integral inequalities.
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1 Introduction
A time-delay control system whose future evolution depends not only on the current state

but also on the past state of the system is a special class of in“nite dimensional system

[1, 2]. A large quantity of practical systems, such as engineering, physics, biology, and

economics, can be modeled as time-delay systems [3, 4]. Compared with delay-free sys-

tems, the time-delay systems have complicated dynamic features and need in-depth re-

search. From the perspective of both theoretical and practical points, the stability prob-

lem of time-delay systems is a fundamental and challenging issue. Time-delays frequently

encounter and usually lead to instability of time-delay systems. Therefore, the stability

problem of time-delay systems has raised concerns in various “elds.

As we all know, Lyapunov theory is a potent weapon to discuss the stability or stabiliza-

tion and other related control issues, such as synchronization control, dissipativity and

passivity, convergence, track control, adaptive control and “lter design, and so on. Inte-

gral inequality is indispensable and plays a crucial role in addressing the aforementioned

issues of various time-delay systems when applying the direct Lyapunov method. More

attention has been paid to integral inequalities and a large variety of integral inequalities

have been developed during the past several decades. Jensen integral inequality (JII) was

initially established to deal with the stability of time-delay systems [4]. However, the JII en-

tails considerable conservatism. Later, Wirtinger integral inequality (WII) was developed

based on Fourier theory, which includes the JII as a special case and is less conservative

© The Author(s) 2023.Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article•s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article•s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visithttp://creativecommons.org/licenses/by/4.0/.



Zhang and MengJournal of Inequalities and Applications       (2023) 2023:115 Page 2 of 13

than the JII [5…7]. Subsequently, we presented an extended Wirtinger integral inequality
(EWII) in Ref. [8], which is less conservative than the WII. Recently, by introducing the
Legendre polynomials, a canonical Bessel…Legendre integral inequality (BLII) [9…12] was
developed to address the stability problem for time-delay systems. It is pointed out in Ref.
[13] that the BLII includes the WII, the AFII, and the EWII as its special cases. Very re-
cently, Yang Z et al. [14] proposed a new Henry…Gronwall integral inequality to analyze
the stability of delayed fractional-order neural networks systems.

Recently, Zamart C and Botmart T [15] proposed a novel integral inequality with an ex-
ponential function, which covers the WII, to investigate the “nite-time boundedness for
some delayed generalized neural networks. Nowadays, Halanay inequality (HI) becomes
an e�cient tool to discuss stability of systems with time-varying delays. However, the or-
dinary HI has some limitations. In order to handle the stability issue of some fractional
neural networks, a novel fractional non-autonomous HI has been developed in the litera-
ture [16]. Utilizing a vector-valued function to replace the scalar function in the ordinary
HI, Mazenc et al. [17] established two vector-form Halanay inequalities, which extend the
HI and provides relaxed versions of the HI.

Although various classes integral inequalities, such as the above inequalities and others,
have been presented in the literature, on the one hand, these inequalities are scattered and
unsystematic. Such inequalities are still conservative on the other hand. It is essential that
we should establish a theoretical framework for single and multiple integral inequalities
with less conservatism.

Inspired by the discussion above, we initiate the present work. The main contributions of
this paper are summarized as follows. Firstly, a new type of multiple integral inner product
(MIIP) and a new multiple integral inner product space (MIIPS) are creatively introduced.
Secondly, with the help of such concepts, general single/multiple integral inequalities are
to be developed in a systematic way, which generalize and outperform previous integral
inequalities, including single and multiple integral inequalities.

Notations Throughout the paper,Rn denotes then-dimensional Euclidean space with
Euclidean norm‖ · ‖, Rm×n is the set of allm × n real matrices.P > 0 (P ≥ 0) means that
P is a symmetric and positive de“nite matrix (positive semi-de“nite matrix). The nota-
tions Sn andS

+
n represent the set of symmetric and symmetric positive de“nite matrices

of Rn×n, respectively. The superscript •TŽ denotes the transpose of a matrix. The notation
(k

l
)

refers to the binomial coe�cients given by k!
(k…l)!l! .N andN+ denote the sets of nonneg-

ative and positive integers, respectively. Unless explicitly stated, in what follows, matrices
are assumed to have compatible dimensions with context.

2 Preliminaries
In this section, we will introduce some de“nitions and preliminaries necessary to derive
main results.

Definition 1 A type of multiple integrals de“ned by

〈pk ,pl〉m �
∫ b

a
ds1

∫ b

s1

ds2 · · ·
∫ b

sm…1

pk(sm)pl(sm) dsm,

[pk,pl]m �
∫ b

a
ds1

∫ s1

a
ds2 · · ·

∫ sm…1

a
pk(sm)pl(sm) dsm,
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between polynomial functionspk(u), pl(u), k, l ∈ N is said to be a multiple integral inner
product (MIIP). Correspondingly, the set consisting of the polynomial functions de“ned
such inner product is said to be a multiple integral inner product space (MIIPS). In par-
ticular, when m = 1, the MIIP and MIIPS become ordinary integral inner product and
ordinary integral inner product space, respectively.

Definition 2 Two polynomial functionspk(u), pl(u), k, l ∈ N are said to be orthogonal if
they satisfy

〈pk ,pl〉m =

⎧
⎨

⎩
0, k �= l,

rk , k = l,

or

[pk,pl]m =

⎧
⎨

⎩
0, k �= l,

r̃k, k = l,

whererk , r̃k are nonzero numbers. In reality,rk , r̃k can be expressed as two types of norms,
i.e.,rk = ‖pk(·)‖2

1, r̃k = ‖pk(·)‖2
2, where‖ · ‖1, ‖ · ‖2 represent norms derived by the afore-

mentioned inner products〈·, ·〉m, [·, ·]m, respectively.

Definition 3 The Legendre polynomial function fork ∈ N over an interval [a,b] is de“ned
by

Lk(u) = (…1)k
k∑

i=0

(…1)i
(

k
i

)(
k + 1

i

)(
u …a
b …a

)i

,

or

L̃k(u) = (…1)k
k∑

i=0

(…1)i
(

k
i

)(
k + 1

i

)(
b …u
b …a

)i

.

The set of the Legendre polynomials{Lk(·) or L̃k(·),k ∈ N} forms an orthogonal sequence
with respect to the inner product described in De“nition1 whenm = 1.

Thus, the Legendre polynomials{Lk(·) or L̃k(·),k ∈N} have the following properties:
1) Orthogonality:

∀k, l ∈N,
∫ b

a
Lk(u)Ll(u) du =

⎧
⎨

⎩
0, k �= l,
b…a
2k+1, k = l,

∀k, l ∈N,
∫ b

a
L̃k(u)̃Ll(u) du =

⎧
⎨

⎩
0, k �= l,
b…a
2k+1, k = l.

2) Boundary conditions:

Lk(a) = (…1)k, Lk(b) = 1, k ∈N,
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L̃k(b) = (…1)k , L̃k(a) = 1, k ∈N.

3) Differentiation:

d
du

Lk(u) =

⎧
⎨

⎩
0, k = 0,
∑k…1

i=0
2i+1
b…a [1 … (…1)k+i]Li(u), k ≥ 1,

d
du

L̃k(u) =

⎧
⎨

⎩
0, k = 0,
∑k…1

i=0
2i+1
b…a […1 + (…1)k+i ]̃Li(u), k ≥ 1.

Proof Proof of these properties can be found in Ref. [18]. �

3 Main results
In this section, we will develop new series of single/multiple integral inequalities and their

corollaries.

Theorem 1 For a constant matrix M ∈ S
+
n , two scalars a,b satisfying a < b,a vector-valued

function ω(·) : [a,b] →R
n and m ∈N

+, there exists a polynomial function pk(s) with degree
of k, k = 0, 1, 2, . . . ,N satisfying orthogonality, i.e., there existing a polynomial function pl(s)
with degree of l, l = 0, 1, 2, . . . ,N such that

〈pk ,pl〉m =

⎧
⎨

⎩
0, k �= l,

rk , k = l,

or

[pk,pl]m =

⎧
⎨

⎩
0, k �= l,

r̃k, k = l,

where rk , r̃k are nonzero real numbers. Then the following inequalities hold

∫ b

a
ds1

∫ b

s1

ds2 · · ·
∫ b

sm…1

ωT (sm)Mω(sm) dsm ≥
N∑

k=0

H…1
m (k,k)ΩT

m,kMΩm,k, (1)

∫ b

a
ds1

∫ s1

a
ds2 · · ·

∫ sm…1

a
ωt(sm)Mω(sm) dsm ≥

N∑

k=0

H̃…1
m (k,k)Ω̃T

m,kMΩ̃m,k, (2)

where

Hm(k,k) =
∫ b

a
ds1

∫ b

s1

ds2 · · ·
∫ b

sm…1

pk(sm)pk(sm) dsm,

H̃m(k,k) =
∫ b

a
ds1

∫ s1

a
ds2 · · ·

∫ sm…1

a
pk(sm)pk(sm) dsm,

Ωm,k =
∫ b

a
ds1

∫ b

s1

ds2 · · ·
∫ b

sm…1

pk(sm)ω(sm) dsm,
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Ω̃m,k =
∫ b

a
ds1

∫ s1

a
ds2 · · ·

∫ sm…1

a
pk(sm)ω(sm) dsm,

a ≤ si ≤ b, i = 1, 2, . . . ,m.

Proof We “rst prove Ineq. (1).

SinceM ∈ S
+
n , there exists a real orthogonal matrixQ such that

M = Q

⎡

⎢
⎢⎢
⎢
⎣

λ1

λ2

...

λn

⎤

⎥
⎥⎥
⎥
⎦

QT ,

whereλi > 0, i = 1, 2, . . . ,n are eigenvalues ofM.

De“ne

M̄ = Q

⎡

⎢
⎢⎢
⎢
⎣

√
λ1 √

λ2

... √
λn

⎤

⎥
⎥⎥
⎥
⎦

QT .

Apparently, one hasM̄T = M̄ andM̄2 = M.

Setting

W (s) =
[
M̄ω(s) p0(s)M̄ p1(s)M̄ · · · pN (s)M̄

]
,

then one hasW T (s)W (s) ≥ 0. Namely,

⎡

⎢⎢⎢
⎢⎢
⎢⎢
⎣

ωT (s)Mω(s) p0(s)ωT (s)M p1(s)ωT (s)M · · · pN (s)ωT (s)M
∗ p2

0(s)M p0(s)p1(s)M · · · p0(s)pN (s)M
∗ ∗ p2

1(s)M · · · p1(s)pN (s)M

∗ ∗ ...
...

...

∗ ∗ ∗ · · · p2
N (s)M

⎤

⎥⎥⎥
⎥⎥
⎥⎥
⎦

≥ 0.

Integrating both sides of the above inequality with respect tos for m times and observing

that the de“nitions of Hm(k,k), Ωm,k , we reach

⎡

⎢⎢⎢
⎢⎢
⎢⎢
⎣

(1, 1) ΩT
m,0M ΩT

m,1M · · · Ω∗
m,N M

∗ Hm(0, 0)M 0 · · · 0

∗ ∗ Hm(1, 1)M · · · 0

∗ ∗ ...
...

...

∗ ∗ ∗ · · · Hm(N ,N)M

⎤

⎥⎥⎥
⎥⎥
⎥⎥
⎦

≥ 0,

where (1,1) =
∫ b

a ds1
∫ b

s1
ds2 · · · ∫ b

sm…1
ωT (sm)Mω(sm) dsm.
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Utilizing Schur complement for the above matrix inequality, we arrive at

∫ b

a
ds1

∫ b

s1

ds2 · · ·
∫ b

sm…1

ωT (sm)Mω(sm) dsm …
N∑

k=0

H…1
m (k,k)ΩT

m,kMΩm,k ≥ 0.

Ineq. (1) thus holds.
By analogy, Ineq. (2) can also be proved. This completes the proof of Theorem1. �

Remark 1 It is easy to see that the proposed multiple integral Inequalities (1) and (2) can
produce more and more accurate bounds of the derivative of the chosen Lyapunov func-
tional asN increases. Theoretically, whenN → +∞, the conservatism of Ineq. (1), Ineq.
(2) will asymptotically vanish, for more detail, see [13].

Retrieving Ineq. (1) and Ineq. (2) with ω(u) = ẋ(t) in Theorem1, we immediately obtain
the following corollary.

Corollary 1 For a constant matrix M ∈ S
+
n , a vector-valued function x(·) : [a,b] → R

n,
orthogonal polynomials pk(s) and m ∈ N

+ such that the following integrations are well-
defined, then

∫ b

a
ds1

∫ b

m1

ds2 · · ·
∫ b

sm…1

ẋT (sm)Mẋ(sm) dsm ≥
N∑

k=0

H…1
m (k,k)ΘT

m,kMΘm,k , (3)

∫ b

a
ds1

∫ ss

a
ds2 · · ·

∫ sm…1

a
ẋT (sm)Mẋ(sm) dsm ≥

N∑

k=0

H̃…1
m (k,k)Θ̃ t

m,kMΘ̃m,k , (4)

where

Θm,k =
∫ b

a
ds1

∫ b

s1

ds2 · · ·
∫ b

sm…1

pk(sm)ẋ(sm) dsm,

Θ̃m,k =
∫ b

a
ds1

∫ s1

a
ds2 · · ·

∫ sm…1

a
pk(sm)ẋ(sm) dsm,

a ≤ si ≤ b, i = 1, 2, . . . ,m.

In Theorem 1 and Corollary1, whenm = 1, Ineq. (1)…(4) are called single-integral in-
equalities and whenm ≥ 2 Ineq. (1)…(4) are called multiple-integral inequalities.

Remark 2 Although Ineqs. (1)…(4) have been developed, they cannot be successfully ap-
plied to discuss relevant practical problems that are still unknown but have a polynomial
function of degree and orthogonality. In other words, Theorem1 and Corollary1 are only
results of existence. These inequalities cannot be applied to speci“c problems until the
polynomial function pk(·) is determined.

Next, we will determinepk(·).
In what follows, we consider the following two cases:
a) In the case ofm = 1.
For brevity in form, we “rstly give result for the case whenm = 1 in Ineq. (1) and Ineq.

(2), that is
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Corollary 2 For a constant matrix M ∈ S
+
n , and a vector-valued function ω(·) : [a,b] →

R
n, there exists a polynomial function pk(u) with degree of k on the interval [a,b], k ∈ N

and satisfying

∫ b

a
pk(u)pl(u) du =

⎧
⎨

⎩
0, k �= l,

rk �= 0, k = l.

Then the following inequality holds:

∫ b

a
ωT (u)Mω(u) du ≥

N∑

k=0

1
rk

ΩT
k MΩk,

where N ∈N, Ωk =
∫ b

a pk(u)ω(u) du.

The subsequent e�ort is to determine thepk(·). Observe that the aforementioned Leg-
endre polynomialLk(·), L̃k(·) satis“es orthogonality and other properties, numerous ref-
erences, for example [9…12], all chosepk(·) = Lk(·) or pk(·) = L̃k(·) and obtained the BLI. In
addition, other polynomials can be chosen to act asLk(·) or L̃k(·), such as those polynomi-
als proposed in Ref. [19], which were constructed by the odd and even properties at the
central point of the integral range [a,b]. That is

p0(u) = 1, p1(u) = u …
a + b

2
, p2(u) =

(
u …

a + b
2

)2

…
(b …a)2

12
,

p3(u) =
(

u …
a + b

2

)3

…
3(b …a)2

20

(
u …

a + b
2

)
, . . . .

Then, based on Theorem1, we derive the following inequality whenm = 1, N = 3:

Theorem 2 For a constant matrix M ∈ S
+
n , two scalars a, b satisfying a < b and a vector-

valued function ω(·) : [a,b] → R
n such that the integrations below are well-defined, then

the following inequality holds:

(b …a)
∫ b

a
ωT (u)Mω(u) du ≥ ΩT

0 MΩ0 + 3ΩT
1 MΩ1 + 5ΩT

2 MΩ2 + 7ΩT
3 MΩ3, (5)

where

Ω0 =
∫ b

a
ω(s) ds,

Ω1 =
∫ b

a
ω(s) ds …

2
b …a

∫ b

a
ds

∫ s

a
ω(r) dr,

Ω2 =
∫ b

a
ω(s) ds …

6
b …a

∫ b

a
ds

∫ s

a
ω(r) dr +

12
(b …a)2

∫ b

a
ds

∫ s

a
du

∫ u

a
ω(r) dr,

Ω3 =
∫ b

a
ω(s) ds …

12
b …a

∫ b

a
ds

∫ s

a
ω(r) dr +

60
(b …a)2

∫ b

a
ds

∫ s

a
du

∫ u

a
ω(r) dr

…
120

(b …a)3

∫ b

a
ds1

∫ s1

a
ds2

∫ s2

a
ds3

∫ s3

a
ω(s4) ds4.
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Remark 3 Obviously, the aforementioned JII, WII, EWII can be regarded as special cases

of Inq. (5) when N = 0,1,2, respectively. Hence Inq. (5) generalizes them and has is con-

servative than them.

Replacingω(·) by ẋ(·) in Theorem 2, one immediately obtains the following corollary.

Corollary 3 For a given M ∈ S
+
n , the following inequality holds for all continuously differ-

entiable functions ẋ(·) in [a,b] →R
n:

(b …a)
∫ b

a
ẋT (s)Mẋ(s) ds ≥ ΘT

0 MΘ0 + 3ΘT
1 MΘ1 + 5ΘT

2 MΘ2 + 7ΘT
3 MΘ3, (6)

where

Θ0 = x(b) …x(a),

Θ1 = x(b) + x(a) …
2

b …a

∫ b

a
x(s) ds,

Θ2 = x(b) …x(a) …
6

b …a

∫ b

a
x(b) ds +

12
(b …a)2

∫ b

a
ds

∫ s

a
x(r) dr,

Θ3 = x(b) + x(a) …
12

b …a

∫ b

a
x(s) ds +

60
(b …a)2

∫ b

a
ds

∫ s

a
x(r) dr

…
120

(b …a)3

∫ b

a
ds

∫ s

a
du

∫ u

a
x(r) dr.

Next, we choosepk(·) = Lk(·) or pk(·) = L̃k(·) � p̃k(·) in Corollary 2 and derive a type of

single integral inequalities on the basis of Corollary2. It should be pointed out that the

approach we take is di�erent from those in the literature, although we also choosepk(·) =

Lk(·), like in Refs. [9…12]. Correspondingly, we formulate the single integral inequalities

distinct in form from those in the literature mentioned above, and the proposed single

integral inequalities are more practical to use. For more details, see Theorem3.

Theorem 3 Suppose a constant matrix M ∈ S
+
n , two scalars a, b satisfying a < b and a

vector-valued function ω(·) : [a,b] →R
n, then the following inequality holds for any N ∈N:

(b …a)
∫ b

a
ωT (u)Mω(u) du ≥

N∑

k=0

(2k + 1)ΞT
k MΞk , (7)

(b …a)
∫ b

a
ωT (u)Mω(u) du ≥

N∑

k=0

(2k + 1)Ξ̃T
k MΞ̃k , (8)

where

Ξk = pk(a)Ω0 +
1

b …a
{[

1 … (…1)k]Π0,0 + 3
[
1 … (…1)k+1]Π1,0 + · · · + 2(2k … 1)Πk…1,0

}
,

Ξ̃b = p̃b(b)Ω̃0

…
1

b …a
{[

…1 + (…1)k]Π̃0,0 + 3
[
…1 + (…1)k+1]Π̃1,0 + · · · … 2(2k … 1)̃Πk…1,0

}
,
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with

Ξk(α) �
∫ b

α

pk(s)ω(s) ds, Ξk � Ξk(a) =
∫ b

a
pk(s)ω(s) ds,

Ω0(s) �
∫ b

s
ω(u) du, Ω0 � Ω0(a) =

∫ b

a
ω(u) du,

Π0,0 =
∫ b

a
p0(s)Ω0(s) ds =

∫ b

a
ds

∫ b

s
ω(u) du,

Π1,0 =
∫ b

a
p1(s)Ω0(s) ds =

∫ b

a
p1(s)

∫ b

s
ω(u) du ds, . . . ,

Πk…1,0=
∫ b

a
pk…1(s)Ω0(s) ds =

∫ b

a
pk…1(s)

∫ b

s
ω(u) du ds;

Ω̃0(s) =
∫ s

a
ω(u) du, Ω̃0 � Ω̃0(b) =

∫ b

a
ω(u) du,

Ξ̃k(β) �
∫ β

a
p̃k(s)ω(s) ds, Ξ̃k � Ξ̃k(b) =

∫ b

a
p̃k(s)ω(s) ds,

Π̃0,0 =
∫ b

a
p̃0(s)Ω̃0(s) ds =

∫ b

a
ds

∫ s

a
ω(u) du,

Π̃1,0 =
∫ b

a
p̃1(s)Ω̃0(s) ds =

∫ b

a
p̃1(s)

∫ s

a
ω(u) du ds, . . . ,

Π̃k…1,0=
∫ b

a
p̃k…1(s)Ω̃0(s) ds =

∫ b

a
p̃k…1(s)

∫ s

a
ω(u) du ds.

b) In the case ofm ≥ 2.

In the case whenm ≥ 2, one cannot directly choosepk(·) = Lk(·) or pk(·) = L̃k(·) like a)

due to the fact thatLk(·) or L̃k(·),k ∈N is not orthogonal sequence with respect to the inner

product described in De“nition 1 when m ≥ 2. It is thus crucial to “nd some orthogonal

polynomial sequence{pk(·),k ∈ N} in the MIIPS whenm ≥ 2.

A simple approach to seek such{pk(·),k ∈ N} is systematically computed by Schmidt

orthogonal algorithm with a basis of polynomial functions of degreek, k = 0, 1, 2, . . . ,N
with respect to s in the MIIPS when m ≥ 2 such asp0(s) = 1,p1(s) = s …a,p2(s) = (s …

a)2, . . . ,pN (s) = (s …a)N .

For simplicity, the following notations are introduced and de“ned as:

Π02 � Π0,0 =
∫ b

a
p0(s)Ω0(s) ds =

∫ b

a
ds

∫ b

s
ω(u) du,

Π0k+1(α) � Π0,0k (α) =
∫ b

α

p0(s)Π0k (s) ds,

Π0k+1 � Π0k+1(a) =
∫ b

a
p0(s)Π0k (s) ds,

Π̃02 � Π̃0,0 =
∫ b

a
p0(s)Ω̃0(s) ds =

∫ b

a
ds

∫ s

a
ω(u) du,

Π̃0k+1(β) � Π̃0,0k (β) =
∫ β

a
p0(s)Π̃0k (s) ds,
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Π̃0k+1 � Π̃0k+1(b) =
∫ b

a
p0(s)Π̃0k (s) ds.

Theorem 4 For a constant matrix M ∈ S
+
n ,a vector-valued function ω(·) : [a,b] →R

n such
that the integrations below are well-defined, the following double-integral inequalities hold

(b …a)2

2

∫ b

a
ds

∫ b

s
ωT (u)Mω(u) du

≥ ΩT
2,0MΩ2,0 + 8ΩT

2,1MΩ2,1 + 27ΩT
2,2MΩ2,2 + 64ΩT

2,3MΩ2,3 + · · · ,

(9)

(b …a)2

2

∫ b

a
ds

∫ s

a
ωT (u)Mω(u) du

≥ Ω̃T
2,0MΩ̃2,0 + 8Ω̃T

2,1MΩ̃2,1 + 27Ω̃T
2,2MΩ̃2,2 + 64Ω̃T

2,3MΩ̃2,3 + · · · ,

(10)

where

Ω2,0 = Π02, Ω2,1 = …Π02 +
3

b …a
Π03,

Ω2,2 = Π02 …
8

b …a
Π03 +

20
(b …a)2

Π04,

Ω2,3 = …Π02 +
15

b …a
Π03 …

90
(b …a)2

Π04 +
210

(b …a)3
Π05,

Ω̃2,0 = Π̃02, Ω̃2,1 = Π̃02 …
3

b …a
Π̃03,

Ω̃2,2 = Π̃02 …
8

b …a
Π̃03 +

20
(b …a)2

Π̃04,

Ω̃2,3 = Π̃02 …
15

b …a
Π̃03 +

90
(b …a)2

Π̃04 …
210

(b …a)3
Π̃05.

Proof We “rst prove Ineq. (9).

Choosingp2,0(s) = p0(s) = 1, according to the Schmidt orthogonal algorithm in the MI-

IPS with m = 2, one has

p2,k(s) = pk(s) …
k∑

i=0

〈pk(s),p2,i(s)〉2

〈p2,i(s),p2,i(s)〉2
p2,i(s), k = 1, 2, . . . ,N .

Computing directly yields

p2,1(s) =
2
3

(b …a)
(

…1 +
3
2

s …a
b …a

)
,

p2,2(s) =
3
10

(b …a)2
[
1 … 4

s …a
b …a

+
10
3

(s …a)2

(b …a)2

]
,

p2,3(s) =
4
35

(b …a)3
[
…1 +

15
2

s …a
b …a

… 15
(s …a)2

(b …a)2
+

35
4

(s …a)3

(b …a)3

]
.

In addition, after easy computing, we get

H2(0, 0) =
(b …a)2

2
, H2(1, 1) =

(b …a)4

36
,
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H2(2, 2) =
(b …a)6

600
, H2(3, 3) =

(b …a)8

9800
.

In the light of Theorem 1, Ineq. (9) can be obtained. Following the same procedure as
that derived Ineq. (9), one can prove Ineq. (10). This completes the proof of Theorem4. �

Remark 4 In our previous literature [20], by extreme value conditions of multiple variables
function, some double integral inequalities were established, see [20, Remark 1] for details.
These inequalities can be regarded as special cases of Lemma 4. If settingΩ2,2 = Ω2,3 = 0 or
Ω̃2,2 = Ω̃2,3 = 0 in Theorem4, one “nds that Ineq. (9) and (10) reduce to those in Ref. [20].
Comparing with those in [20], one can “nd that Ineq. (9) and (10) can deliver more tight
lower bounds of the terms

∫ b
a ds

∫ b
s ωT (u)Mω(u) du and

∫ b
a ds

∫ u
a ωT (u)Mω(u) du. The re-

sulting double integral inequalities have thus improved and Ineq. (9), (10) are less con-
servative. In addition, based on the statements in [20, Remark 2 and Remark 3], one “nds
that Ineq. (9), (10) remarkably generalize and enhance those double integral inequalities
in Refs. [21, 22].

Substituting ẋ(·) for ω(·) in Theorem 4, we readily obtain the following corollary.

Corollary 4 For a given M ∈ S
+
n , the following inequality holds for all continuously differ-

entiable function ẋ(·) in [a,b] →R
n:

(b …a)2

2

∫ b

a
ds

∫ b

s
ẋT (u)Mẋ(u) du

≥ ΘT
2,0MΘ2,0 + 8ΘT

2,1MΘ2,1 + 27ΘT
2,2MΘ2,2 + · · · ,

(b …a)2

2

∫ b

a
ds

∫ s

a
ẋT (u)Mẋ(u) du

≥ Θ̃T
2,0MΘ̃2,0 + 8Θ̃T

2,1MΘ̃2,1 + 27Θ̃T
2,2MΘ̃2,2 + · · · ,

where

Θ2,0 = (b …a)x(b) …
∫ b

a
x(s) ds,

Θ2,1 =
b …a

2
x(b) +

∫ b

a
x(s) ds …

3
b …a

∫ b

a
ds

∫ b

s
x(u) du,

Θ2,2 =
1
3

(b …a)x(b) …
∫ b

a
x(s) ds +

8
b …a

∫ b

a
ds

∫ b

s
x(u) du

…
20

(b …a)2

∫ b

a
ds

∫ b

s
du

∫ b

u
x(r) dr,

Θ̃2,0 = …(b …a)x(a) +
∫ b

a
x(s) ds,

Θ̃2,1 =
b …a

2
x(a) +

∫ b

a
x(s) ds …

3
b …a

∫ b

a
ds

∫ s

a
x(u) du,

Θ̃2,2 = …
1
3

(b …a)x(a) +
∫ b

a
x(s) ds …

8
b …a

∫ b

a
ds

∫ u

a
x(u) du

+
20

(b …a)2

∫ b

a
ds

∫ s

a
du

∫ u

a
x(r) dr.
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Remark 5 It should be pointed out that one can choose polynomial sequence else, for

example, Legendre polynomials{Lk(·),k ∈ N} or {̃Lk(·),k ∈ N}, to replacep0(s) = 1,p1(s) =

s …a,p2(s) = (s …a)2, . . . ,pN (s) = (s …a)N , which are used to derive other double-integral

inequalities similar to Theorem4. Nevertheless, such other double-integral inequalities

are more complex in form than those in Theorem4.

Remark 6 By following the same procedure as thatm = 2, some related multiple integral

inequalities withm ≥ 3 can be available without di�culty. Considering that they are rather

complicated in form and they are seldom applied to analyze practical problems, we do not

particularize here.

4 Conclusions
In this paper, we develop a class of single/multiple integral inequalities in a systemic way.

Some integral inequalities in the literature are regarded as special cases of the proposed

inequalities. In contrast, the proposed integral inequalities are less conservative. Extend-

ing the proposed single/multiple integral inequalities to the corresponding summation

visions is our future research direction.
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