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1 Introduction

Nowadays, a fuzzy concept has become the subject of several research works. Finding the
fuzzy equivalents of the classical set theory is one of the advancements made to the ba-
sic theory of fuzzy sets provided by Zadeh [1]. Following that, the use of a fuzzy metric
space in applied sciences including fixed-point theory, image and signal processing, med-
ical imaging, and decision making occurred. The concept of intuitionistic fuzzy metric
spaces was first proposed by Park [2]. The domains of population dynamics [3] computer
programming [4], chaos control [5], nonlinear dynamical system [6], and medicine [7] are
only a few examples of the scientific and technological fields that have utilized it. Gahler
[8] presented a study on a 2-metric space. Schweizer and Sklar [9] explored the statistical
metric spaces. The concept of intuitionistic fuzzy sets was presented by Atanassov [10]
and Coker [11] and the concept of intuitionistic fuzzy topological was discussed in [12].
In [13] the authors introduced the concepts of intuitionistic fuzzy 2-normed spaces and
in [14] intuitionistic fuzzy 2-metric spaces.

Bera and Mahapatra [15] established the neutrosophic soft linear space. The neutro-
sophic normed linear space was established by Bera and Mahapatra [16]. The concept of
an orthogonal neutrosophic metric space was introduced by Ishtiaq et al. [17] who proved
several fixed-point results in the context of an orthogonal neutrosophic metric space. The
contraction mapping was used to prove common fixed-point results in the context of a
neutrosophic metric space established by Jeyaraman and Sowndrarajan [18]. Several fixed-
point results in weak and rational (¢ — ¥)-contractions in an ordered 2-metric space were
established by Fathollahi et al. [19]. Many authors like Salama and Alblowi [20] worked
on neutrosophic topological spaces and Al-omeri et al. [21] worked on a neutrosophic
cone metric space, etc. Mursaleen and Lohani [22] introduced the idea of an intuitionistic
2-normed space and an intuitionistic 2-metric space. Ali Asghar and Aftab Hussain [23]
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established the basic properties of N2MSs and demonstrated some fixed-point findings.
Umar Ishtiaq [24] introduced the notion of ONMSs and investigated some fixed-point
results. The idea of orthogonality has several applications in mathematics. The notion of
orthogonality in a metric space was established by Eshagi Gordji, Ramezani, De la Sen
and Cho [25] and also expanded the findings in the setting of a metric space with new
orthogonality and proved fixed-point theorems.
The main objectives of this study are as follows:
(i) To introduce the concept of an orthogonal neutrosophic 2-metric space (ON2MS).
(ii) To prove common fixed-point results on the orthogonal neutrosophic 2-metric
space.
(iii) To enhance the literature of an intuitionistic fuzzy 2-metric space and a
neutrosophic metric space.
(iv) To prove the uniqueness of the solution of integral equations.
Now, we provide some basic definitions to help to understand the main section.

2 Preliminaries

Here, “con-t-nm” means continuous triangular-norm, “con-t-conm” means continuous-
triangular-conorm, “NMS” means neutrosophic metric space, “N2MS” means neutro-
sophic 2-metric space, “ON2MS” means orthogonal neutrosophic 2-metric space. Some
basic definitions are given below:

Definition 2.1 [26] Let x: [0,1] x [0,1] — [0,1] be a con-t-nm on a binary operation,
then:
(I) = is associative and commutative;
(I) * is continuous;
(III) w*1=pforall uel0,1];
(IV) uxa<n=*y,whenu <nanda <y forall u,a,n,y €10,1].

Definition 2.2 Let +: [0,1] x [0,1] — [0,1] be a con-t-conm on a binary operation, then
it satisfies (I), (II), (IV), and
(IIT) w+0=p forall uel0,1].

Definition 2.3 Let @ be the universe. A neutrosophic set (NS) A in @ is characterized
by a truth membership function Q 4, an indeterminacy membership function F 4, and a
falsity membership function G 4, where Q 4, F 4, and G 4 are real standard elements of
[0,1]. This can be written as:

A={{v,(Qa(w), Fa(v),Ga(v))):v € @, Qu, Fa,G4 €]70,17[}.

There is no restriction on the sum of Q 4(v), F4(v), and G4(v) and so 0 < Q4(v) +
Fa)+Galv) <3".

Definition 2.4 [27] Let @ #{@. A 6-tuple (@, Q, F, G, *, +), where * is a con-t-nm, + is a
con-t-conm, Q, F, and G are neutrosophic sets on @ x @ x (0,00). If (&, Q, F,G,*,+),
satisfies the conditions below for all v, 0,3 € @, and g,s > 0:

(N1) Qv,0,0)+ F(v,0,0) +G(v,0,9) <3;

(N2) 0=Q(v,0,0)=1;
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(N3) Q(v,0,¢)=1ifand onlyif v = o;
(N4) Q(v,0,p) = Qo v, 9);
(N5) Q(v,5, +5) > Q(v,0,9) * Qo,5,5);
(N6) 9Q(v,0,): [0,00) — [0,1] is continuous;
(N7) limg_, o Q(v,0,0) = 1;
(N8) 0<F(v,0,0)=1;
(N9) F(v,0,)=0ifand onlyif v = o;
(N10) F(v,0,8) = F(o,v,9);
(N11) F(v,c, 0 +5) < F(v,0,8)+ Fl(o,¢,5);
(N12) F(v,0,): [0,00) — [0,1] is continuous;
(N13) limg_, 0 F(v,0,80) = 0;
(N14) 0=G(v,0,9) = 1;
(N15) F(v,0,$)=0ifand only if v = g;
(N16) G(v,0,%) =G(0,v, 9);
(N17) G(v, 6,9 +8) =G(v,0,8) + G(0, 5,5);
(N18) G(v,0,-): [0,00) = [0,1] is continuous;
(N19) limg0 G(v,0,) = 0;
(N20) if g <0, then Q(v,0,8€) =0, F(v,0,9)=1,G(v,0,0) =1.
Then, (Q, F,G) is a neutrosophic metric and (@, Q, F,G, %, +) is a NMS.

Definition 2.5 [28] The 5-tuple (@, Q, F, %, +) is called an intuitionistic fuzzy 2-metric
space if @ is any nonvoid set, * is a con-t-nm, + is a con-t-conm, and Q, F are fuzzy sets
on @ x @ x @ x (0,00), then it satisfies for all v, 0, ¢, € @, and s, p > 0:

(@ Qw,0,6,9)+F(v,0,6,0) <1;

(b) Let v, o of @, there exists an element ¢ of @ such that 0 < Q(v,0,¢,) <1;

(©) Qv,0,¢,)=1ifatleast two of v, o, ¢ are equal;

d) Qv,0,6,0) =2V, 5,0,) =20, s,v,e) forallv, g, ¢ in ;

() Qv,0,w,p)* A(v,w,¢,5) * Aw,0,5,h) < A,0,6, +5+h) forall

v,0,6,0 € &;

() Q,0,¢,-): (0,00) = (0,1] is continuous;

@) F(v,0,6,9)<1;

(h) F(v,0,c,¢) =0if at least two of v, g, ¢ are equal;

i) Fv,0,6,0)=F©,5,09)=F(o,s,v, ) forallv, o, ¢ in &;

() Fv,0,m0,p0) + F(v,w,¢,8) + F(10,0,6,h) = F(v,0,6,6 +5+h);

(k) F(v,0,¢,-): (0,00) = (0,1] is continuous.

Definition 2.6 The 6-tuple (@, Q, F,G,*,+) is said to be a N2MS if @ is any nonempty
set, * is a con-t-nm, + is a con-t-conm, and Q, F, G are neutrosophic sets on @ x @ X
@ x (0,00), then it satisfies for all v, 0, ¢,t0 € @, and s, p > 0;

(N2MS1) Q(v,0,6,0) + F(v,0,6,0) +G(v,0,6,9) < 3;

(N2MS2) Let v, g of @, there exists an element ¢ of @ such that 0 < Q(v,0,¢,€) < 1;

(N2MS3) Q(v,0,¢, ) = 1 if at least two of v, o, ¢ are equal;

(N2MS4) Q(v,0,6,%) = v, 5,0,9) = 20,5, v, 9);

(N2MS5) Q(v, 0,10, ) * Q(v,10,¢,5) * Q(v,0,6,h) < Ov,0,¢,0 +5+b);

(N2MS6) Q(v,0,¢,+): (0,00) — (0,1] is continuous for all v, g, ¢ € @ such that

vilipolg;
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(N2MS7) F(v,0,6,9) <1;

(N2MS8) F(v,0,¢,) =0 if at least two of v, o, ¢ are equal;

(N2MS9) F(v,0,6,8) = F(v,5,0,8) = Flo, 6, v, );

(N2MS10) F(v,0,m, ) + F(v,10,5,8) + F(,0,6,h) > F(v,0,6, + 5+ b);

(N2MS11) F(v,0,¢,-): (0,00) = (0,1] is continuous;

(N2MS12) G(v,0,6,9) <1;

(N2MS13) G(v,0,¢,¢) =0 if at least two of v, g, ¢ are equal;

(N2MS14) G(v,0,6,0)=G(v,5,0,€) =G(0, S, v, 9);

(N2MS15) G(v,0,1,9) +G(v,1,6,8) + G(,0,5,0) = G(v,0,6,0 + 5+ b);

(N2MS16) G(v,0,¢,-): (0,00) = (0,1] is continuous.
Here, the functions Q(v, 0, ¢, ), F(v,0,¢,§€),and G(v, 0, ¢, &) denotes the degree of near-
ness, the degree of nonnearness, and the degree of naturalness between v, g, and ¢ with

respect to g, respectively.
Now, we define the notion of ON2MS

Definition 2.7 The 6-tuple (®,9,F,G,*,+,1) is said to be a ON2MS if @ is any
nonempty set, * is a con-t-nm, + is a con-t-conm, and Q, F, G are neutrosophic sets
on® x @ x @ x (0,00), then it satisfies for all v, 0, ¢c,t0 € @ and s, > 0;
(ON2MS1) Q(v,0,6,9) + F(v,0,6, ) + G(v,0,¢,¢) <3forallv,p,c € @, p >0 such
thatv Lo L g;
(ON2MS2) Let v, ¢ of @, there exists an element ¢ of @ such that 0 < Q(v,0,¢,4) <1
such thatv L o L ¢;
(ON2MS3) Q(v,0,¢, ) =1 if at least two of v, o, ¢ are equal such that v L o L ¢;
(ON2MS4) Q(v,0,¢,) = O, c,0,8) = Q(o, ¢, v, ) forall v, g, ¢ in @ such that
vliolyg;
(ON2MS5) Q(v, 0,1, ) * Q(v,1,¢,5) * Q(,0,5,h) < A(v,0,¢,% +5+b) for all
v,0,6,t0 € @ suchthatv L o L ¢;
(ON2MS6) Q(v,0,¢,): (0,00) = (0,1] is continuous for all v, g, ¢ € @ such that
vliolyg;
(ON2MS7) F(v,0,¢6,) <1,forallv,0,¢ € ® suchthatv L o 1 ¢;
(ON2MS8) F(v,0,¢, ) =0 if at least two of v, g, ¢ are equal for all v, 0, ¢ € @ such
thatv L o L g;
(ON2MS9) F(v,0,¢6,9) =F,c,0,8) = F(0,s,v, ) forall v, 0, ¢ € @ such that
vilipolg;
(ON2MS10) F(v,0,10, ) + F(v,m,¢,8) + F(1v,0,6,h) > F(v,0,¢,0 + 5+ ), forall
v,0,¢ € ®suchthatv Lo Ll g;
(ON2MS11) F(v,0,¢,-): (0,00) = (0,1] is continuous for all v, g, ¢ € @ such that
vipolg;
(ON2MS12) G(v,0,6,8) <1,forallv,0,c € @ such thatv L o | ¢;
(ON2MS13) G(v,0,¢, ) =0 if at least two of v, g, ¢ are equal for all v, o, ¢ € @ such
thatv Lo L g;
(ON2MS14) G(v,0,6, ) =G, c,0,9) =G0, s, v, ) for all v, 0, ¢ € @ such that
vliolyg;
(ON2MS15) G(v,0,10,9€) +G(v,1,¢,5) + G(v,0,6,b) > G(v,0,6, + 5+ b), for all
v,0,6 € ®suchthatv Lol g;

Page 4 of 20
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(ON2MS16) G(v,0,¢,-): (0,00) — (0,1] is continuous for all v, g, ¢ € @ such that
vliolg.

Definition 2.8 Suppose (@, O, F,G,*,+, L) is a ON2MS. Suppose h € (0,1), >0 and

ve @ . ThesetB(v,h,0)={o€®: Qv,0,¢,9)>1-h,F(v,0,¢,9) <hand G(v,0, ¢, ») <
b for all ¢ € @} is called the open ball with center v and radius § with respect to p.

Definition 2.9 Suppose (@, Q, F,G,*,+,L) is a ON2MS. Then, an open set of Y C @
of its points is the center of a open ball contained in /. The open set in a N2MS
(®,9,F,G,*,+,1) is represented by U.

Definition 2.10 Assume (®,Q, F,G,*,+,L) is a ON2MS. A sequence (v,) in @ is a
Cauchy one if for each € > 0 and each g > 0, there exist n* € N such that Q(vy, v, b, 9) >
1-8, Fvn, v, b, 0) < hand G(vy, v, b, ) < b for all n,m > n* for all h € @.

Definition 2.11 Suppose (@, Q, F, G, *,+, L) isa ON2MS. A sequence v = (v,) is conver-
gent to [ € @, with respect to the ON2MS if, for every € > 0 and p > 0, there exist 1o ¢ N
such that Q(v,,,h, ) >1—¢€, F(v,,L,b,9) <€, and G(v,, 1, b, p)e for all 1 > 17 and for all

. s
h € @. In this case, we write (Q, F,G), —limv = [ (or) v, (QF9 [as1 — oo.

Definition 2.12 Let (&, O, F,G,*,+, L) bea ON2MS. Define (9, r,g), =7 C @ foreach
v € @, there exist g > 0 and § € (0, 1) such that B(v, b, ) C @}. Then, 7o, 7,g), is a topol-
ogyon (®,Q,F,G,*,+,1).

Definition 2.13 Let (®, Q, F,G, %, +, L) be a ON2MS. If each Cauchy sequence converges
with respect to ¢(Q, F, G), then it is called complete.

Theorem 2.1 Every open ball B(v, b, ©) in ON2MS is an open set.

Proof Consider B(v, b, ) to be an open ball with center v and radius §. Assume g €
B(v, b, ). Therefore, Q(v,0,¢,9) >1-b, F(v,0,¢, ) <bh, and G(v,0, ¢, ») < b for each
¢ € E. There exists £ € (0,) such that Q(v,0,p,%) > 1 - b, F(v,0,p,%) < b, and
G(v,0,p, %) <bh,dueto Q(v,0, ¢, ) > 1-h. If we take ho = Q(v, 0, p, %), then for ho > 1B,
€ € (0,1) will exist such that hy > 1 — € > 1 - bh. Given hy and € such that hy > 1 — ¢,
then {bi}‘?=1 € (0,1) such that hg x by xhy > 1 —¢€, (1 —ho) + (1 —h3) + (1 = hg) < ¢, and
(1 -"8o) +(1—-bs)+ (1-bhe) <e. Choose bh; = max{hi}?zl. Consider B(p,1 - b, %). To
show that B(o,1 - b7, §) C B(v,h, ), consider v € B(g,1 - b7, £), then Q(v,p,¢, %) >
b7, F(v,p,6,%) < by, and Q(v,p, 5, %) < b7 and F(p,0,5,5) > b7, F(p,0,5,%) < b7, and
G(p,0,6,%) < by. Then,

O(v,0,6,0) = Q(v,g,p, %) * Q(v,p,g, g) * Q(p,gy S g)

>ho*xh7xbh7>hoxbhrxhy>1-€e>1-h,

F(v,0,6,) 2}'<v,g,p,§) *}'<v,p,g,§) *]:<p,g,g,%)

>(1-ho)+(1-b7)+(1-bhy)

>(1-ho)+(1-b)+(1-hy) <e<h,
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g(VrQ>§’59) > Q<V,Q,P’%> * Q(V’P,§f§> * Q(P:Q»&%)
<(1-ho)+(1-b7)+(1-b7)

=(@-ho)+(1-bh)+(1-hy)<e<h.
We obtain v € B(v, b, ) and B(o,1 - b7, 5) CB(v, b, 0). O
Theorem 2.2 Every ON2MS is Hausdorff.

Proof Let(®,Q,F,G,*,+)beaN2MS. Let v and o be pointsin @. Then, 0 < Q(v, 0, ¢, ) <
1,0< F(v,0,6,9)<1,and 0 < G(v,0,¢6,9¢) < 1 for every ¢ € @. Put h; = Q(v,0, 61, €),
1—by=F(v,0,61,9), and 1 - b3 = G(v,0,61,9), ha = Qv, 0,9, ), 1 = b5 = F(v,0,p, %),
1-be=G(v,0,p,%) and b = max{hy,1 - by, 1 - b3,ha,1 - hs,1 - h}. For each ho € (h, 1)
there exist b7 and hg such that hs * b7 x h7 > ho and (1 — hs) * (1 — bhg) * (1 — hg) < 1 - h,.
Put hy = max{hy, hs} and consider the open balls B(v,1 — b, £) and B(e, 1 - ho, ). Then,
clearly

® 2
Blv,1-he,= | NB(o0,1-5he, = ) =0.
0 (v bo 3> (Q bo 3> )

If there is p € B(v,1 - ho, §) NB(0,1 - bo, §) = ¥, then

bl = Q(V,Q» S1y K’)) Z Q<V,p,§1; %) * Q(P;Q;S’l; %) * Q(VyQ,P, %)

> Ba* b *ho > hax b7 % b7 > ho > by
and similarly, 1 — h, < 1 — by, is its contrary. Hence, (®, Q, F, G, *, +) is Hausdorff. a

3 Main results
Lemmal If(®,Q,F,G,x,+,L)isa N2MS. Then, Q(v, 0, ¢, §) is nondecreasing, F (v, 0, ¢,
) is nonincreasing, and G(v, 0, ¢, §) is nonincreasing for all v,0,¢ € ®.

£—S

Proof Let 5, >0 be any points such that p >s- p =5+ &5

+ 252, Hence, we have

y(V,Q’S'»BO)=y<V,Q,g,5+ 502 + 502 )7

<YWv,0,6,5) + y(w S 6, ?) + y(g,g, S, ?) =Y(v,0,¢5,5)

and

-5 -5
Q(v,Q,g,ga)zw(v,Q,g,5+ goz W )

<G(v,0,6,5) + w(v,g,g, @T_s) + Q(;Q, S, 5@7—5) =G(v,0,¢,5).

Similarly, Q(v,0, ¢, ) > Q(v,0, 5, 5). O
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From Lemma 1, let (@, O, F, G, %, +, L) be a ON2MS with the following conditions:
lim Q(v,0,¢,9) =1, lim F(v,0,¢,9)=0 and lim G(v,0,¢,¢)=0.
p—00 p—>00 p—00

Lemma 2 Let (®,0Q,F,G,*,+, 1) be a ON2MS. If there exists £ € (0,1) such that
Qv,0,6,Lp+0) = Q(v,0,6,0), F(v,0,6,Lp +0) < F(v,0,6,9€),and G(v,0,¢,¢p +0) <
G(v,0,6,9) forallv,0,c € ® with ¢ #v, ¢ #0,and © >0, then v = 9.

Proof Since

Q,0,6,9) = Q,0,6,¢p +0) > O(v,0,5, ),
F,0,6,9) <Fv,0,6,Lp +0)<F(v,0,6,9€)

and
Gv,0,6,90) <G,0,6, L +0) <G(v,0,6, ),

forallp >0, Q(v,0,¢,-), F(v,0,6,-),and G(v, 0, 5, -) are constant. Since lim,,_, o Q(v,0, ¢,
KJ) = 1: hmp—)OO‘F(V,Q,grp) =0 and hmp—M)o g(V,Q,§,B/«)) = O, then Q(V,Q’grp) = 1,
Fv,0,6,9)=0and G(v,0,, ) = 0. Consequently, for all p > 0. Hence, v = 0 because

s#v,c#o. U

Lemma 3 Let (®,9,F,G,%,+,1) be a ON2MS and let limg,_, o vy = v, limg_, 00 0n = 0.
Then, it satisfies for all t € ® and g > 0:
1)

JLH;O lnf Q(Vﬂr Qn; T: {SO) Z Q(V; Q; Ty B/:)),
lim sup F(vy, 00, T, 9) < F(v,0,7,9€)

and

Jlim sup Gn, 00T, 0) <G(v, 0,7, 9).

Qv,0,7,p) = lim sup Q(vn, 0n, T, ),
F,0,1,0+0) < nlingo inf F(vy, 0n, T, )
and
G079 +0) < lim infG(vy, 0n, 7, ).
Proof Forall T € @ and p > 0, we have

Q(vﬂl on 7T, BO) > Q(vt‘l’ Ons V) 601) * Q(Un; v, T, 602) * Q(V! On T, @)! 1t 2= 0
> Q(vnf Onws Vs K')l) * Q(Unl v, T, 6/')2) * Q(V,QmQy 503)

* Q,0,7,04) % 0,00, T,8€),  3+4=0,



Janardhanan et al. Journal of Inequalities and Applications (2023) 2023:112 Page 8 of 20

which implies limy 00 Q(Vn, 00, T,0) > 1% 1% 1% Q(v,0,7,9) * 1 = Q(v,0,7, ), also

F(n0n T, 0) < F (W, 00 v, 01) + F (0, 0, T,802) + F(V, 00, T,0), 01+ 602=0
=< -F(VQO v, KJI) + ]:(Vm v, T, 6/92) + -F(Vr On 0, 6/1)3)

+F(v,0,7,94) + F(0,00,T,9), g3+ 94 =0,
which implies
nli)rglosupf(vn,gn,r,bo) <0+0+0+F(v,0,17,9)+0=F(v,0,17,0€)
and

G, 00, T, ) <G, 005V, 01) + GV, v, T, 02) + G(V, 00, T, 0), 1+ 62=0
< g(Vm Onws V) 691) + g(vm v, T, K)Z) + g(V’ On> 0, 593)

+G(v,0,7T,04) +G(0, 00, T, 94), 3+ 1 =0,

which implies lim,_, 5o SUp G (Vy, 00, T, ) <0+0+ 0+ G(v,0,7,0) +0=G(v,0, T, ).
Let € > 0 be given. For all 7 € v and p > 0, we have

Q(v,0,7,p€ +2€) > Q(v,g, Vn, g) * Q(v,vn,r, g) * Q(Vn, 0,7, +€)

€ € €
2 Q(‘)r Q; Vn, E) * Q(Vr Vn, T, 5) * Q(Uner Qnr E)

€
* Q(Vn, On, T, ) * Q(.ng,r, 5).

Consequently,
OW,0, 7,8 +2€) > lim sup Q(vy, 0n, T, §)-
n—oo
Letting € — 0, we have
OW,0,7, +0) > lim sup Q(Vu, 0n, T, ).
n—oo
Also, we have
€ €
F,0,T, +2¢€) S./—"(\),Q,l)n, 5) of(v,vn,r,§> O F(vn,0, T, +€)
€ €
> J-'(v,g, Va, 5) o }'(v, Vn, T, 5) O F(Vn, 0, T, )

€ €
o ]:(Qn;Q; T, 5) O F (Vi 0ns T, 0) © ]:(Qn,g, T, 5).

Consequently,

FW,0,7, +2¢€) < lim inf F(vy, 0n, T, 9)-
n—-oo
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Letting € — 0, we have
F,0,7,9 +0) < lim inf F(vy, 0n, 7, )
n—-oo
and
€ €
g(U’Q’ TyKJ + 26) S g(”r@; Un; 5) < g("': Un) T, 5) < g(vn;Q’Tréo + 6)

€ € €
—) o G(v, Vn, T, 5) o G(vn,e,gm —) © GV, 00, T, )

> b ) )
_g(VQan )

° (J(Qme, T %) G (v, 00, T, 9) <>Q<Qme,r, %)
Consequently,
G, 0,7, +2€) < lim infG(vn, 0n, 7, ).
Letting € — 0, we have

GW,0, 7,9 +0) < lim infG(vy, 0n, T, ). O
n—oo

Lemma4 Let (D, Q,F,G,*,+, L) bea N2MS. Let T and A be a continuous self-map on &
and [T, A] are compatible. Let v, be a sequence in ® such that Vv, — w and Av, — o.
Then, T Av, — Aw.

Proof Since Y, A are compatible maps, T Av, — Tw, AT v, - Awandso, Q(T Av,, T o,
7,8) = 1, F(AT vy, Ao, 7, %) — 0 and G(AT vy, Aw, 7, %) — Oforallt € @ and p > 0,

QT Avy, Aw,7,9) > Q(TAvn,Aw,ATun, %) x Q(TAvn,ATuu,r, %)
* Q(ATvn, Aw,T, %)
1% 1%
> Q| AT v,, Aw, T Avy, 3 * O AT vy, wAv,, T, 3
%
* Q ATvn,Aw,r,g — 1.
Also, we have
» '
F(Y Avy, Aw, T,90) < F T Avy, Aw, AT vy, 3 +dF| T Avy, AT vy, T, 3
+}'<ATvn,Aw,r, %)

< ]—"(ATvn, Aw, T Avy, g) + ]—'(ATvn,a)Avn, z, %)

+ f(AQvn,Aa), z %) 0.

Page 9 of 20
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Forall t € E and g >0, and

G(Y Avy, Aw, T, 90) < Q(TAVH,A&),ATU“, g) + g(TAvn,ATvn,r, %)
+Q<ATvn,Aa),t,%)
i i
<G ATvn,Aa),TAvu,E +G ATvn,a)Avn,r,E
1%
+3G ATvn,Aa),t,g — 0.

Forall t € @ and g > 0. Hence, T Av, —> Aw. |

Theorem 3.1 Let (®,0Q,F,G,*,+,.L) be an orthogonal complete neutrosophic 2-metric
space with “x” as con-t-nm and “+” as con-t-conm. Let © and I" be continuous self-
mappings on . Then, © and I' have a unique common fixed point in @ if and only if
there exist two self-mappings T, A of @ satisfying:

1) YOCTd, AP C OD;

(2) The pair {T,0} and { A, I'} are compatible;

(3) T, A, O, T be L-preserving;

(4) There exists £ € (0,1) such that for every v,0,c € ® and g >0,

Q(Yv, Ag, 5, Lp) = min{Q(Ov, I'v, g, ), A(Tv,Ov,¢,p),
QA0 T0,6,$€), AT v, Ag, s, L)},

F(Yv, Ag, ¢, Lp) < max{]:(@v, I'v,¢,0), F(Tv,O0v,c,p),
F(Ao,To,5,9), F(Yv, Ao, s, L)},

G(TYv, Ag, ¢, Lp) < max{f(@u, I'v,¢,0), F(Tv,O0v,¢,0),

F(Ao, To,5,9), F(Yv, Ao, 6, L)}
Then T, A, ©, and I" have a unique common fixed point in .

Proof Suppose ® and I" have a unique common fixed point, say t € @. Define 7": ¢ — @
by Tv=rtforallve ® and A: & — @ by Av =t forall v € @. Then, it satisfies(1)—(4)
Conversely, if there exist two self-mappings 7", A of v this satisfies (1)—(4). From (1) if
two sequences are v, and g, of @ such that 03,1 = I'vyy_1 and vy = O vy = Avy,_; for
n=1,2,3. Putting v = vy,, and v = vy,; in condition (4), for all ¢ € @ and p > 0.
Since (@, Q, F, G, *,+, 1) is an orthogonal complete neutrosophic 2-metric space there
exists vy € @, such that

volo, forallpe®,
ie, vg L Tvy take

Vo =T"vy=Tv,_1, forallne F.
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Since 7 is L -preserving, {v,} is an O-sequence. Now, since 7" is an _L -contraction, we can
obtain

Q(0Van+1,0V2n42, 6, L) = QY van, Avani1, 6, €80)
> min{ Q(Ovyn, IMani1, 5 ), QT Van, Ovan, 6, ),
Q(AQ2n+1, TVans1, S5 ), Q( Va0, T'ooni, 6, 9) )
> min{Q(ovan, 0Vans1, 6, €9), Q(OVans1,0Van11, 6, L)},
F(ovans1,0Vans2, §, L) = F (Y von, Avanst, 6, L)

=< max{]:(@VZn7FV2n+lr g:&o)r]:(TVZny@VZn; 5‘,50),
f(AQQer Fv2n+1) §,5<>),f(TV2n,FV2n+1,§:KJ)}

=< max{]:(QVZmQVZtHhg;ﬁp),]:(QVZnJrl’QVZile 5,460)}

and

G(ovani1,0V2n42, 6, €)= G(Y van, Avanit, 6, 490)
= max{g(@v2m T4, 65 ), G (Y V20, O vy, 6, 0),
G(A02n+1, I'V2ns1, 6, ), G(T Vo, Iy, §r6/9)}

< max{G(oVan, OVan+1, 6> €), G(OVans1, 0V2ns1, 6, £0) },

which implies that

Q(QVZnH; OVon4s2, G, EKJ) > Q(QV211+1; OVon+15 65 Z@):

F(oVan+1,0V2n+2, 6, €8) < F(0Vons1,0Vonse1, S5 £80)
and
g(Q”ZrHl; OVoni2, S, EKJ) < g(Qv2n+1,QV2n+1: §,£6/~))~

By using Lemma 1 and letting v = vop,1 and @ = van,41 in condition (4), we have

Q(Q2n+2: O2n+3» g:zp) = Q(Q2n+1: O21+1, G, 50);

‘F(an+2} O21n+3,6S> 6/)) < ‘F(an+17 O2n+1, S 6/))
and

g(Q2n+2: O21+3, 6> 89) = g(Q2n+1’ O21+1, G 60)7

forall ¢ € @ and p > 0.
In general, we obtain that forall ¢ € ® and p >0andn=1,2,3,....

Q(QI‘UQI‘le §;£69) > Q(Qn—l: on S 6/!)):

]:(QanJrlr S, lp) < Q(Qn—l» ons S )
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and

g(gnr On+1, 5',569) = g(Qn—ler S @)'

Thus, forall ¢ € ® and p > 0,andn=1,2,3,...

&

Q(Qn!QI‘leg:ZSO)z Q(QO:Q]:S‘; Z_“)’ (1)
&

]:(QmQrHl) 5';46”)) < F 00,01,6» E_n ) (2)
&

g(Qm On+1s 5'7550) = g<Q01Q1; S E_n> (3)

To show that {0} is a Cauchy sequence in @, let m > n. Then, for all ¢ € @ and p > v, we

obtain

1% & &
Q(Qm; Ons S 69) > Q(Qm; On; On+1s g) * Q(Qnﬂr Ons S g) * Q(er On+1> 6> g)

& & i
> Q(Qm;QanH: §> * Q(Qn+1,gu,§, §> * Q(Qm,gu+1,gn+1, §>

& &

* Q(QrHZ: On+l» S ?) * Q(Qm;Qner () ?) ke
&

* Q(Qm; Om-1, 6> 3m_u>y

1% & &
}-(meQnyS';@) S]:<Qm:Qan+1’§) *]:<Qn+lrQu: () E) *]:(Qm»Qqul; S E)

® & 'Y
5}—<Qm’Qan+1,§) *-7:<Qn+1»é?m§; g) *]:(Qm»le:le; g)

L p
* }—<Qn+2’ On+1, S ?) * f<Q1an+2y S 3—2) [ORR

&
* ]:<Qm7Qm—1; S Sm——“>

and

& 1% &
g(Qm’ O0ns G, P) < g(@m) Ons On+1» _> * g(@rwlr Ons S _> * g(@m) On+15 5> _>

3 3 3
2 2 2
< G(Qm,gn,em, 5) * G(Qm,gm < §> * Q(Qm,gm,@m, §)

%G ® g L2 P
On+2,0n+15 S 32 Om;>0n+2, 6> 32

1%
* g(@mr Om-1,65> Sm—‘“>



Janardhanan et al. Journal of Inequalities and Applications (2023) 2023:112

Letting m,n — oo, we have

lim Q(om,0n 6,9) =1, lim F(om,0n S, ) =0 and
n—oo n—>oo

lim G(om,0n, 6, ) = 0.
n—o00
Thus, {0} is a Cauchy sequence in @. By completeness of @ there exist v € @ such that

lim o, =v, lim @gy-1 = lim vy 1 = lim Vv p =t
n—oo n—oo n—oo n—oo

and

lim g9, = lim vy, = lim Avy,_ g =t.
n—oo n—-oo n—oo

From Lemma 4, we have
TOvy =@t and Alvy,,1 =Tt (4)
Meanwhile, for all ¢ € @ with ¢ # ®tand ¢ # 't and g > 0, we have

QY Ovany1, Al'vans1, 6, L)
> min{ QO Ovyn1, I'Tvani1, 6, ), AT Ovani1, @OVoni1, 6, ),
QAT Vi1, T T, L6, ), QY Ovynr, ' a1, 6,9) )
F(Y Ovany1, Aoy, 6, L)
< max{F(OOvan,1, ' Toni1, 6, 9), F(X Ovoni1, @Ovini1, S, 9),

]:(AFVZnJrlrFFVZnJrl;ZS',éQ))‘F(T@VZnJrI:FFVZtHl,5‘;6/'))}

and

G(Y Ovani1, AlMvoni1, 6, L90)
< max{G(OOvyn.1, I Tvani1, 6, ), G(T Ovani1, @Ovnin, s, 0),
G(AT V3041, T T 3041, €6, ), G(X Oviny1, T'Togns1, 6, 0) )
Taking the limit as n — oo and using (4), we have for all ¢ € @ with ¢ # @vand ¢ # I't
and p >0,
QO I't,g,Lp +0)
>min{Q(Or, I't, 5, ), AO, O, 6, 9), AT, I't, 5, 9), AOT, O, 5, 0) }
=Q(0r,I't, 6, ),
F(Or,I't,c,Lp +0)
<max{F (O, I't,c,p), F(Or,01,6,0), F(I't,I't, g, 0), F(Or,0r,¢,9)}

=F (O, I't,c,p)

Page 13 of 20
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and

g@r,I't,g,Lp +0)
< maX{g(@t, Ft, [ KD); g(@t, @t, S, 5’3), g(rty Ft: () BO); g(@tl @tl S &O)}

=GO, 't g, ).
By Lemma 2, we have
Ov=1T".
From condition (4), we obtain for all ¢ € @ with ¢ # Y't, ¢ # 't and p >0,

Q(Tt)AFv211+17§’Ep) = min{Q(@t; FFU2n+1¢§)6O); Q(Tm@t; §¢50)
QAT vani1, I'Tans, 6, 80), QT FFV2n+1r§’@)}:
F(Yt, AT vyn.1, 6,£9) < max{F(Ot, ' Tvyni1, 6, 9), F (T, Or, 6, 9)

}—(AFVZnﬂ; FFV211+1:§;@);]:(Tty I'T"vyn., §:69)}

and

g(TtrAFVZnJrl: S"EK'))S max{g(@t,Fszn+1, g;éfe))rg(’rt,@t; 5‘,50)

G(AT V3041, T T 3041, 6, ), G(Y T, T T g1, 6, 9) |-

Let n — o0, by condition (4), and Lemma 3, for all ¢ € @

(T, I't, 6, L +0) = min{Q(O, I't, 5, ), AT, Or, 5, ),
Iy, I'e,6,9), Qe I't, s, 0)}
=Q(TyI't, g, p),
F(Ye, It g, L +0) < max{F(O, I't, g, ), F(Yt, 01,6, 0),
F(Ie, Iy, 6,0), F(Ye, It 6, 9))

=F(Te, 'y, c,p)

and

G(re, I't, 6,89 +0) < max{G(Or, I't, 5, 9),G(Yr, 01,6, ),
G(Ire, ', ,9),6(Yv, I't, g, 9))

=G(Ty, 'ty 6, p0).
By Lemma 2, we have

Te=T1v.

(5)

(6)

Page 14 of 20
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For all ¢ € @ with ¢ # Tvand ¢ # At and g > 0, we have

AT, Av, ¢, Lp)
>min{Q(Or, I't, g, 9), AT, Iy, 5, 9), QAL 'ty 6, 0), QAVe, 'ty 6, )}
>min{Q(I't, I't, 6, ), ATt 'ty 6, ), QAL T, 6, 0), AU, It 6, ) )
= QT Av, 6, 9),

F(Te, Av, 6, Lp)
<max{F(Ot,I't,c,p), F(Yt,I't,5,9), F(Ar, I't,6,0), F(Yt, 't 6, 0)}
<max{F(I't,I't,c,0), F(Yt, ', c,90), F(Ar, Tt 6,0), F(I't, ', 6, 0)}

= F(Tt, At, ¢, )

and

G(Tr, Av, ¢, Lp)
<max{G(Ot, 't 6,0),G(Tt, I't,,9),G(Ar, 't 6,9),G(Y, Ty, 6, 0) ),
<max{G(I't, I't,¢,9), GV, I't, 6, 0), G(AL T, 6,9), G, 't 6, 90) |

=G(Tt, Av, 6, 9).
By Lemma 2,
Tt= At
It follows that Yt = At =@t =TI"tv. Forall ¢ € ® with ¢ # Avand ¢ #v, and p >0,

QY van, A, 6, L) > min{Q(@VZmFt» S ), QT van, Ovon, 6, 0)
Q(Av, I't, 6, 9), QY van, Iy 6, 9) },
F(Yvgn, A, 6, £p) < maX{]:(@VZm ', 6,90), F(Y v, Ovan, 6, )

‘F(At>Ft:§,6<))r‘F(Tv2nrFr1§r60)}
and

g(Tl)Zn’ At’ S KK‘)) =< max{g(@"'Znt Ft) S BO), g(TVan @V2n; S 60)

g(At; Fty 5'; K')): g(TVZT‘U Ft: §, BO)}'

Taking the limit as n — oo and using (4) and Lemma 3, we have for all ¢ € @ we ¢ # Ar,

¢#rand p >0

Q(r, At, ¢, £p +0) > min{ Q(x, I't, 6, ), Q(r, 1,1, ), Q(Ar, A, 6, ), Q(x, I't, 6, ) }

> 9, I'y, g, p0) > O, Av, 6, 0),

Page 15 of 20
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F(t, Ar, 6, Lp +0) <max{F (v, I't, g, 9), F(t, 0,1, 0), F(Ar, Av, 6, 9), F(t, I't, 6, 0) }

<F{,I'vg,0) <F(, Av, 6, p0)

and

G(x, At, g, Lp +0) <max{G(x, I't, 6, 9),G(v, 1,1, ), G(Ar, Av, 6, 9),G(v, T't, 5, 9) |

<G Ity s, p) <G, Ar, g, 0).

Hence, we have

O, Av, 6, Lp) = O(t, Av, 6, 0), F(r, Av, 6, p) < F(r, Av, 6, 0)

and

G(r, Av, 6, p) < G(v, Av, g, 0).

Therefore, Av =t. Thus, t = Tt = At = @v = I'v. Hence, t is a common fixed point of 7",
A, ©,and I'.
Let p be another common fixed point of T, A, @, and I for all ¢ € @ with ¢ #t, ¢ #p,
and g > 0, we have
vo L v,

vo L o*.
Since, I' is L -preserving, one writes

T vy LT,

T vy L T 0"
Now,

Qv,p, 6, L) = Q(Tr, Ap, 6, L)
> min{ Q(O1, I'p, 5, 9), AT, O, 6, ), AAp, I'p, 5, ),
QTre, Iy, s, )}
> min{Q(t,p, 5, ), A, b, 5, ), AP, b, 6, 9), A, b, 5, ) }
> Qt,p,6,0),
Fop, 6, lp) = F(T, Ap, 6, L)
< max{F(Or, I'p, 5, ), F(T1,01,6,0), F(Ap, I'p, 5, ),
F(re Iy, s )}
< max{F(t,p, 5, 0), F(&, 0, 6, 0), F0, 0, 6, 9), F(t, 0, 6, ) }
<Fp,s.e)
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and

G(vp, 5, Lp) =G(Tv, Ap, 5, Lp)
< max{G(O, I'p, 5, ), G(Tt,0t,c,9),G(Ap, T'p, s, 9),
G(Ye,I'p, g, )}
< max{G(t,p, 5, ), G(t, 0, 5, 9), G, b, S, ), G(t, b, 5, ) }
=G(p, s 9),

which implies that

A, p,6,€p) > Ar,p, 6, L),

Fop 6, lp) < F(r,p,6,Lp)
and
g(v,p, 6, lp) <G(,p,6,00).
Hence, v = p. g

Example3.2 Let @ = [-1,2] and define a binary relation L byv L o | ¢ <= v+0+¢ >0.
Define Q, F, G by,

]" if V= Q = 5‘,
Q(Tv, Ag, ¢, L) = - . .

Tprmin(Tv, Aoc,lp)’ if otherwise,

0’ 1f1) =0=¢g,
‘F(TV,AQ,g,e&O): o ‘ .

1- Tprmax(Tv,Ao,c,lp)’ if otherwise,
G(Yv,Ao,s,tp) =1 ifv=c=g,

vresr toma{Tv. 4050} - if otherwise.

142

With CTN pu *a = u - o and CTCN u + a = max{u + o}, (D,9,F,G,*,+, L) is an O-
complete N2MS. Also, observe that lim,_,,, Q(T'v, Ao, ¢, €p) = 1, lim,_, oo F(Y'v, Ao, ¢,
Lp)=0and lim,_ o, G(Yv, Ao, ¢, L) =0Vv,0,c € D.

Define V', A,0,I": @ > @

Tv =12 Av=v, Ov=4a*-3, v=4v>-3.
From this, we obtain

Q(Qlﬂ Qn+l! g,ﬂ@) Z Q(Qn—l; Qn; §1 BO))
F(0ns0n+15 6, £8) < Q(0n-1,0n, S5 )5

g(Qm Qn+1: S EK')) Z Q(Qn—l» on S, B/r))
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This implies
lim Q(om,0n 6,9) =1, lim F(om,0n, ¢, 9) =0 and
n—o0 n—o0
lim G(om,0n 6, 9)=0 forallv,p,c € ®.
n—o0

All the conditions of the above theorem are satisfied and 1 is a common fixed point of 7",
A, 0,and I'.

4 Application

In this section, we given an application to the Fredholm integral equation as below:
Suppose Z = C([p, ], R) is the set of real-valued continuous functions defined on [p, 7].
Consider the integral equation,

dw) = f(w) + 8/7T Uy (,0)8()db  forall b, € [p, ], 8
P

d(w):f(w)+8/ﬂul(w,9){’(w)d6 for all 0, w € [p, 7], )
P

where § > 0, f(z') is a neutrosophic function of w : @ € [p, 7] and Uy, Us: C([p, 7] X R) —
R*. Define the binary relation L on X by Ly L 3iffr+y+3 > 0 and define Q, F and G by

lp
Lo +min{Yv, Ag, 5, Lp}

Q(Tv, Ag, ¢, Lp) = min{ } Vv,0,¢ € ®and p >0,

142
Lo +max{Yv, Ag, ¢, e}

]-'(Tv,Ag,g,Zga):max{l } VYv,0,¢ € ®and p >0,

max{Yv, Ag, ¢, L}
Ly

Q(TU,AQ,g,Ep):max{ } Vv,0,¢ € ® and p > 0.

With con-t-nm and con-t-conm defined by p * 7 = p - ¥ and p + 7 = max{p,n}, then
(®,9,F,G,*,+) is a O-complete N2MS. Consider f; df < £p < 1. Then, the neutro-
sophic integral equations (8) and (9) have a unique common solution.

Proof Define T, A: & — ® by
dw) =f(w) + 8/71 Uy (,0)t(w)do  forall 0,w € [p,n], (10)
P
dlw) =f(w) + 8/71 U (,0)(o)dd  forall b, € [p,x]. (11)
P

The survival of a fixed of the operator U has come to the survival of solution of a neutro-
sophic integral equation,

Q(TU(ZD), Ao(w), gw,ﬂp)

142
sup "
welp,m] 669 + mln(TV(w)x AQ(@'), gw,e@)

= sup E@/(Ep +

welpn]

() +8 / Un(@,0)T (@) - c7 — ()
P

Page 18 of 20
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—5/ Us(,0) Ao(@) - s —p’)
P

Ly
sup
welpr) Lo +1Tv() - Ao(w) — s — )]
> 9(Tv, Ao, s, 9),

F(Tv(@), Ao(w), s, Lp)

lp
sup
welp,m] Eé/‘) + max(Tv(w), AQ(W), gw,@p)

=1-

=1- sup Zp/(€p+

welp,m]

f() + 8/ Ui (,0)Tv() — coo — g — f(oo)
P

—5/ Uz(ZU,Q)AQ(w)—S'W—KJD
p

0
sup L
welp,n] Lo + |Tv(w) - AQ(U)‘) —Gw — 6/3)|

<1-
<F(Tv, Ao, )
and

Q(Tu(w), Ag(w@), gw:eéo)

142
sup
we[p,m] EB/') + max(Tv(zzr), AQ(ZD'), gw,%@)

sup E@/(Z&o +

welpn]

() +8 / Un(@.0)T (@) = s - — (o)
o

~s / Uy(w,60) Ao(ar) — s - p‘)
P

Ly
sup
welor) L9 + 1T V(@) — Ao(w) - s — )|

<F(Tv,Ag ¢, ).

Hence, all the conditions of Theorem 3.1 are satisfied. Hence, 7" and A have a unique

common solution. O

5 Conclusion

We introduced the notion of a neutrosophic metric space to an orthogonal neutrosophic
2-metric space that deals with greater ambiguity and uncertainty in engineering and re-
search studies. Finally, we obtained the common fixed-point theorem in an orthogonal

neutrosophic 2-metric space.
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