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Abstract
In this paper, using the notion of w-distance in metric spaces, we introduce two types
of nonlinear contractions, (ι,ψ ,ϕ ,φ ,p) and rational-(ι,ψ ,ϕ ,φ ,p) contractions. Based
on these contractions, we prove the existence and uniqueness of a ϕ-fixed point for
the corresponding contraction. We also provide some examples to demonstrate the
correctness and practicability of our results, along with a numerical experiment.
Finally, we apply the obtained results to linear matrix equations and nonlinear
Fredholm integral equations.
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1 Introduction
As part of a new study of fixed point theory, the ϕ-fixed point is a hot topic, which has
attracted the interest of many researches. In 2014, Jleli et al. [1] firstly employed a con-
trol function F : [0,∞)3 → [0,∞) satisfying suitable properties in (partial) metric spaces,
(F ,ϕ)-contraction mappings, and ϕ-fixed point results for such mappings. In 2016, Kum-
rod et al. [2] introduced the notionss of (F ,ϕ, θ )-contraction mapping and (F ,ϕ, θ )-weak
contraction mapping in metric spaces by adding an auxiliary function θ and established
the existence of ϕ-fixed points for such mappings, which extended the results by Jleli et al.
[1]. In 2017, Asadi et al. [3] improved the control function F by replacing the continuity
condition on F with more weaker condition and proved results similar to those by Kumrod
et al. [2]. In 2019, Gopal et al. [4] proved the existence and uniqueness of a ϕ-fixed point for
an (F ,ϕ, θ )-contraction mapping in a complete metric space with a binary relation, which
generalized the results of [2]. In the same year, by α-admissible mappings, Imdad et al.
[5] introduced the notions of (F ,ϕ,α-ψ)-contractions and (F ,ϕ,α-ψ)-weak contractions
in metric spaces and presented some results on the existence and uniqueness of ϕ-fixed
points. In 2022, Sun et al. [6] introduced (γ ,ψ ,ϕ,φ) contractions and rational-(γ ,ψ ,ϕ,φ)
contractions in metric spaces by some auxiliary functions and presented some results on
ϕ-fixed points in metric spaces, which generalized some ϕ-fixed point results in [1, 2].

On the other hand, it is worth noting that the study of asymmetric structure and its ap-
plication in mathematics are of great significance. In 1996, Kada et al. [7] firstly introduced
a class of asymmetric structures in metric spaces in trms of w-distance. In 1997, using a
w-distance, Suzuki [8] obtained some fixed point results for classical contractions such as
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in [9, 10]. In 2013, Hossein et al. [11] proved fixed points results for (ϕ,ψ , p)-weakly con-
tractive mappings in metric spaces with w-distance on the basis of the (ϕ,ψ)-contraction
in [12]. In 2020, Kari et al. [13] introduced the notion of a (θ -F) contraction in metric
spaces with w-distance and obtained the related fixed point results. In 2022, Rossafi et al.
[14] presented the notion of θ -φ-contraction on a complete metric space equipped with
w-distance to prove some fixed point theorems. More references on the w-distance can
be found in [15–18].

Based on the above works, employing a w-distance, we introduce two kinds of nonlinear
contractions, (ι,ψ ,ϕ,φ, p) and rational-(ι,ψ ,ϕ,φ, p) contractions. Meanwhile, we establish
some ϕ-fixed point results. Furthermore, we give some examples and applications to show
the effectiveness of our results.

2 Preliminaries
Let ℵ be a nonempty set, let ϕ :→ [0,∞) be a given function, and let � : ℵ → ℵ be a map-
ping. We denote by N the set of all nonnegative integers, the set of all fixed points of �
by

F(�) := {	 ∈ ℵ : �	 = 	},

and the set of all zeros of the function ϕ by

Zϕ :=
{
	 ∈ ℵ : ϕ(	) = 0

}
.

The notions of a ϕ-fixed point, ϕ-Picard mapping, and control function ι : [0,∞)3 →
[0,∞) are introduced by Jleli et al. [1].

Definition 2.1 [1] Let ϕ : ℵ → [0,∞). If �	 = 	 and ϕ(	) = 0, then 	 is called a ϕ-fixed
point of the mapping �.

Definition 2.2 [1] Let (ℵ, d) be a metric space, and let ϕ : ℵ → [0,∞). A mapping � : ℵ →
ℵ is said to be a ϕ-Picard mapping if F� ∩ Zϕ = {	} with 	 ∈ ℵ and limn→∞ �

n	 = 	 for
each 	 ∈ ℵ.

Definition 2.3 [1] A continuous function ι : [0,∞)3 → [0,∞) satisfying the conditions
(ι1) max{	,σ } ≤ ι(	,σ ,ρ) and
(ι2) ι(0, 0, 0) = 0
is called a control function.

For more details of the control function ι, we refer to [1].

Theorem 2.1 [1] Let (ℵ, d) be a complete metric space, and let � : ℵ → ℵ. If � satisfies

ι
(
d(�	,�σ ),ϕ(�	),ϕ(�σ )

) ≤ κι
(
d(	,σ ),ϕ(	),ϕ(σ )

)
,

ϕ is lower semicontinuous, and 0 < κ < 1, then � is a ϕ-Picard mapping.
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Using ϕ-Picard mappings introduced by Jleli et al., some other scholars also generalized
many existing fixed point results. For example, Proinov [19] studied the problem of finding
(sufficient) conditions on functions ψ and ϕ to ensure that T has a unique fixed point.
Their results generalized those by Jleli et al. [1], Wardowski et al. [20], and Piri et al. [21].

Theorem 2.2 [19] Let (ℵ, d) be a complete metric space, and let a mapping � : ℵ → ℵ be
such that

d(�	,�σ ) > 0 ⇒ ψ
(
d(�	,�σ )

) ≤ φ
(
d(	,σ )

)

for all 	,σ ∈ ℵ. Then � has a unique fixed point if ψ ,φ : (0,∞) → (–∞, +∞) satisfy the
following conditions:

(i) ψ is nondecreasing;
(ii) φ(	) < ψ(	) for all 	 > 0;
(iii) lim sup	→ε+ φ(	) < ψ(ε+) for all ε > 0.

Definition 2.4 [7] Let (ℵ, d) be a metric space. Assume that a function p : ℵ×ℵ → [0,∞)
satisfies the following conditions:

(a) p(	,ρ) ≤ p(	,σ ) + p(σ ,ρ) for all 	,σ ,ρ ∈ ℵ;
(b) p(	, ·) : ℵ → [0,∞) is lower semicontinuous for all 	 ∈ ℵ;
(c) for each ε > 0, there exists δ > 0 such that p(ρ,	) ≤ δ and p(ρ,σ ) ≤ δ imply d(	,σ ) ≤ ε.

Then p is called a w-distance on ℵ.

For more details related to w-distances, we refer to [7, 22].

Lemma 2.1 [8] Let (ℵ, d) be a metric space equipped with a w-distance p, and let {	n}
and {σn} be two sequences in ℵ such that limn→∞ αn = 0 and limn→∞ βn = 0. If p(	n,σ ) ≤ αn

and p(	n,ρ) ≤ βn for 	,σ ,ρ ∈ ℵ and n ∈ N , then σ = ρ . In particular, if p(	,σ ) = 0 and
p(	,ρ) = 0, then σ = ρ .

Lemma 2.2 [7] Suppose that (ℵ, d) is a metric space, p is a w-distance on ℵ, {	n}, {σn},
and {ρn} are three sequences in ℵ, and 	,σ ,ρ ∈ ℵ.

(i) If p(	n,σ ) → 0 and p(	n,ρ) → 0, then σ = ρ . In particular, if p(	,σ ) = 0 and p(	,ρ) =
0, then σ = ρ .

(ii) If p(	n,σn) → 0 and p(	n,ρ) → 0, then σn converges to ρ .
(iii) If p(	n,σn) → 0 and p(	n,ρn) → 0, then d(σn,ρn) converges to 0.

Lemma 2.3 [7] Assume that (ℵ, d) is a metric space equipped with a w-distance p and {	n}
is a sequence in ℵ such that for each ε > 0, there exists Nε ∈ N such that p(	n,	m) < ε (or
limm,n→∞ p(	n,	m) = 0) for m > n > Nε . Then {	n} is a Cauchy sequence.

Definition 2.5 [6] A mapping � : ℵ → ℵ is called a (ι,ψ ,φ,ϕ) contraction in a metric
space (ℵ, d) if for all 	,σ ∈ ℵ such that ι(d(�	,�σ ),ϕ(�	),ϕ(�σ )) > 0,

ψ
(
ι
(
d(�	,�σ ),ϕ(�	),ϕ(�σ )

)) ≤ φ
(
ι
(
d(	,σ ),ϕ(	),ϕ(σ )

))
,

where ψ , φ satisfy the conditions of Theorem 2.2.
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Theorem 2.3 [6] If � : ℵ → ℵ is a (ι,ψ ,φ,ϕ) contraction in a complete metric space (ℵ, d)
and ϕ is lower semicontinuous, then � is a ϕ-Picard mapping.

Definition 2.6 [6] Let (ℵ, d) be a metric space. Suppose that for all 	,σ ∈ ℵ such that
ι(d(�	,�σ ),ϕ(�	),ϕ(�σ )) > 0, a function � : ℵ → ℵ satisfies

ψ
(
ι
(
d(�	,�σ ),ϕ(�	),ϕ(�σ )

)) ≤ φ
(
ι
(
N(	,σ ),ϕ(	),ϕ(σ )

))
,

where N(	,σ ) = max{d(	,σ ), d(	,�	)(1+d(σ ,�σ ))
1+d(�	,�σ ) }, and ψ , φ satisfy conditions (i), (ii), and (iii)

of Theorem 2.2. Then � : ℵ → ℵ is called a rational-(ι,ψ ,φ,ϕ) contraction.

Theorem 2.4 [6] Let (ℵ, d) be a complete metric space. If � is a rational-(ι,ψ ,φ,ϕ) con-
traction and ϕ is lower semicontinuous, then � is a ϕ-Picard mapping.

3 Main results
In this part, we get some novel results through some new contractions.

Definition 3.1 A mapping � : ℵ → ℵ is called a (ι,ψ ,ϕ,φ, p) contraction in a metric space
(ℵ, d) equipped with a w-distance p if there exist functions ψ and φ satisfying condition
(i), (ii), and (iii) of Theorem 2.2 and the inequality

ψ
(
ι
(
p(�	,�σ ),ϕ(�	),ϕ(�σ )

)) ≤ φ
(
ι
(
p(	,σ ),ϕ(	),ϕ(σ )

))
(1)

for all 	,σ ∈ ℵ such that min{ι(p(�	,�σ ),ϕ(�	),ϕ(�σ )), ι(p(	,σ ),ϕ(	),ϕ(σ ))} > 0.

Example 3.1 Consider a complete metric space ℵ = [0, 1] under the usual metric d(	,σ ) =
2|	 – σ | for 	,σ ∈ ℵ. Then p(	,σ ) = 1

2σ is a w-distance on (ℵ, d). Let � : ℵ → ℵ be given by

�	 =
1
3
	2 for 	 ∈ [0, 1].

Let the functions φ, ϕ, ψ , ι be defined by ψ(	) = 	, φ(	) = 1
3	, ϕ(	) = 0, and ι(	,σ ,ρ) =

max{	,σ ,ρ}.
Then for σ ∈ [0, 1], we have

max
{

p(�	,�σ ),ϕ(�	),ϕ(�σ )
}

=
1
6
σ 2

≤ 1
6
σ

=
1
3

max
{

p(	,σ ),ϕ(	),ϕ(σ )
}

.

So � is a (ι,ψ ,ϕ,φ, p) contraction and satisfies Definition 3.1.
Furthermore, it is easy to observe that � does not satisfy the contractive condition

ψ
(
ι
(
d(�	,�σ ),ϕ(�	),ϕ(�σ )

)) ≤ φ
(
r
(
d(	,σ ),ϕ(	),ϕ(σ )

))
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for any distinct 	,σ ∈ ℵ. Indeed, letting 	 = 1
3 and σ = 3

4 , we can derive that

max
{

d(�	,�σ ),ϕ(�	),ϕ(�σ )
}

=
2
3
∣∣	2 – σ 2∣∣

>
1
3

d(	,σ )

=
1
3

max
{

d(	,σ ),ϕ(	),ϕ(σ )
}
.

So Definition 2.5 is invalid in this example.

Remark 3.1 If p(	,σ ) = d(	,σ ), then a (ι,ψ ,ϕ,φ, p) contraction reduces to a (ι,ψ ,ϕ,φ)
contraction.

Theorem 3.1 Let (ℵ, d) be a complete metric space equipped with a w-distance p, and let
� : ℵ → ℵ be a (ι,ψ ,ϕ,φ, p) contraction. If ϕ is lower semicontinuous, then � is a ϕ-Picard
mapping.

Proof Step 1. We have to prove that F(�) ⊆ Zϕ , so we first assume that there exists 	 ∈
F(�) such that ϕ(	) 
= 0. Set σ = 	 in (1). Then

ψ
(
ι
(
p(	,	),ϕ(	),ϕ(	)

))
= ψ

(
ι
(
p(�	,�	),ϕ(�	),ϕ(�	)

))

≤ φ
(
ι
(
p(	,	),ϕ(	),ϕ(	)

))

< ψ
(
ι
(
p(	,	),ϕ(	),ϕ(	)

))
.

This is a contraction, so F(�) ⊆ Zϕ .
Step 2. We have to check that

lim
n→∞ p(	n,	n+1) = 0, lim

n→∞ p(	n+1,	n) = 0, and lim
n→∞ϕ(	n) = 0.

Let 	0 ∈ ℵ and define {	n} by 	n+1 = �	n for each n ∈N. We consider two cases.
Case 1: There exists n0 ∈N such that p(	n0 ,	n0+1) = 0.
If p(	n0+1,	n0+2) = δ 
= 0, then we have

p(	n0 ,	n0+2) ≤ p(	n0 ,	n0+1) + p(	n0+1,	n0+2) = δ.

By Definition 2.4 we get 0 ≤ d(	n0+1,	n0+2) ≤ ε, and taking the limit as n → ∞ at both
sides of the inequality, we get d(	n0+1,	n0+2) = 0, so that 	n0+1 = 	n0+2 = �	n0+1. When n ≥
n0 + 1, the sequence {	n} is a constant sequence, and each of these terms is 	n0+1 or 	n0+2,
so that

p(	n0+1,	n0+2) = p(	n0+1,	n0+1) = p(	n0+2,	n0+2) = δ > 0.

By (1) we have

ψ
(
ι
(
p(	n0+2,	n0+2),ϕ(	n0+2),ϕ(	n0+2)

))

= ψ
(
ι
(
p(�	n0+1,�	n0+1),ϕ(�	n0+1),ϕ(�	n0+1)

))
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≤ φ
(
ι
(
p(	n0+1,	n0+1),ϕ(	n0+1),ϕ(	n0+1)

))

< ψ
(
ι
(
p(	n0+1,	n0+1),ϕ(	n0+1),ϕ(	n0+1)

))

= ψ
(
ι
(
p(	n0+2,	n0+2),ϕ(	n0+2),ϕ(	n0+2)

))
.

This is contradiction, so p(	n0+1,	n0+2) = 0. Continuing this process inductively, we obtain

lim
n→∞ p(	n,	n+1) = 0, (2)

and ϕ(	n) = 0 for when n ≥ n0 + 1. So

lim
n→∞ϕ(	n) = 0. (3)

Now it suffices to prove that

p(	n0+1,	n0 ) = 0 implies that p(	n0+2,	n0+1) = 0. (4)

Suppose that p(	n0+2,	n0+1) = δ. Then p(	n0+2,	n0 ) ≤ p(	n0+2,	n0+1) + p(	n0+1,	n0 ) = δ

yields 	n0 = 	n0+1 = �	n0 . Therefore for n > n0, both are equal to 	n0 or 	n0+1. Then
p(	n0+2,	n0+1) = p(	n0+1,	n0 ) = 0. Keeping up this process inductively, we obtain

lim
n→∞ p(	n+1,	n) = 0 and lim

n→∞ϕ(	n) = 0. (5)

Case 2: p(	n,	n+1) > 0.
Let 	 = 	n and σ = 	n+1 in (1). We have

ψ
(
ι
(
p(	n+1,	n+2),ϕ(	n+1),ϕ(	n+2)

))
= ψ

(
ι
(
p(�	n,�	n+1),ϕ(�	n),ϕ

(
�(	n+1)

)))
(6)

≤ φ
(
ι
(
p(	n,	n+1),ϕ(	n),ϕ(	n+1)

))

< ψ
(
ι
(
p(	n,	n+1),ϕ(	n),ϕ(	n+1)

))
.

Because ψ is nondecreasing, {ι(p(	n,	n+1),ϕ(	n),ϕ(	n+1))} is a nonincreasing sequence
with a lower bound. So there exists ε ≥ 0 such that limn→∞ ιn = ε, where ιn = ι(p(	n,	n+1),
ϕ(	n),ϕ(	n+1)). For ε > 0, taking the right upper limits on both sides of (6), by (iii) in The-
orem 2.2, we derive

ψ
(
ε+)

= lim sup
ιn+1→ε+

ψ(ιn+1) ≤ lim sup
ιn→ε+

φ(ιn) ≤ lim sup
	→ε+

φ(	) < ψ
(
ε+)

,

a contradiction, so ε = 0. By (ι1) in Definition 2.3 we get

max
{

p(	n,	n+1),ϕ(	n)
} ≤ ι

(
p(	n,	n+1),ϕ(	n),ϕ(	n+1)

)
,

which yields that

⎧
⎨

⎩
p(	n,	n+1) ≤ ι(p(	n,	n+1),ϕ(	n),ϕ(	n+1)),

ϕ(	n) ≤ ι(p(	n,	n+1),ϕ(	n),ϕ(	n+1)).
(7)
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Taking the limits of (7), we derive

⎧
⎨

⎩
0 ≤ limn→∞ p(	n,	n+1) ≤ limn→∞ ι(p(	n,	n+1),ϕ(	n),ϕ(	n+1)) = 0,

0 ≤ limn→∞ ϕ(	n) ≤ limn→∞ ι(p(	n,	n+1),ϕ(	n),ϕ(	n+1)) = 0,

that is,

⎧
⎨

⎩
limn→∞ p(	n,	n+1) = 0,

limn→∞ ϕ(	n) = 0.
(8)

When p(	n+1,	n) > 0, let 	 = 	n+1, σ = 	n in (1). By the same method we can derive that

lim
n→∞ p(	n+1,	n) = 0 and lim

n→∞ϕ(	n) = 0. (9)

Step 3. We want to prove that limm,n→∞ p(	n,	m) = 0.
Suppose on the contrary that there exist ε > 0 and two sequences {	n(k)} and {	m(k)} such

that

p(	n(k),	m(k)) ≥ ε and p(	n(k),	m(k)–1) < ε,

where m(k) > n(k). The by the triangle inequality

ε ≤ p(	n(k),	m(k)) ≤ p(	n(k),	m(k)–1) + p(	m(k)–1,	m(k)). (10)

Taking the limits in (10), by the squeeze theorem we derive that

lim
k→∞

p(	n(k),	m(k)) = ε.

Now

ε ≤ p(	n(k),	m(k))

≤ p(	n(k),	m(k)–1) + p(	m(k)–1,	m(k))

≤ p(	n(k),	n(k)–1) + p(	n(k)–1,	m(k)–1) + p(	m(k)–1,	m(k)) (11)

≤ p(	n(k),	n(k)–1) + p(	n(k)–1,	n(k)) + p(	n(k),	m(k)–1) + p(	m(k)–1,	m(k))

< p(	n(k),	n(k)–1) + p(	n(k)–1,	n(k)) + p(	n(k),	m(k)–1) + ε.

Taking the limits on both sides of (11), we derive

lim
k→∞

p(	n(k)–1,	m(k)–1) = ε+.

Letting 	 = 	n(k)–1 and σ = 	m(k)–1 in (1), we have

ψ(ιn,m) = ψ
(
ι
(
p(�	n(k)–1,�	m(k)–1),ϕ(�	n(k)–1),ϕ(�	m(k)–1)

)) ≤ φ(ιn–1,m–1), (12)
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where ιn,m = ι(p(	n(k),	m(k)),ϕ(	n(k)),ϕ(	m(k))). Taking the right upper limits on both sides
of (12), by (iii) in Theorem 2.2 we obtain

ψ(ι
(
ε+, 0, 0

)
= lim

n,m→∞ψ(ιn,m) ≤ lim
n,m→∞φ(ιn–1,m–1) ≤ lim

	→ι(ε+,0,0)
φ(	) < ψ

(
ι
(
ε+, 0, 0

))
,

a contradiction. So

lim
n,m→∞ p(	n,	m) = 0. (13)

In view of Lemma 2.3, {	n} is a Cauchy sequence.
Step 4. Next, we need to verify that 	∗ is a ϕ-fixed point of �.
Since {	n} is a Cauchy sequence, there exists 	∗ ∈ ℵ such that 	n → 	∗(n → ∞). Since

ϕ is lower semicontinuous, we get

ϕ
(
	∗) ≤ lim

n→∞ infϕ(	n+1) ≤ lim
n→∞ϕ(	n+1) = 0,

so ϕ(	∗) = 0.
Since limm,n→∞ p(	n,	m) = 0, for each ε > 0, there exists Nε ∈ N such that p(	n,	m) < ε

for all n, m > Nε . As 	n → 	∗ and p(	, ·) is lower semicontinuous, we get

0 ≤ p
(
	n,	∗) ≤ lim inf

m→∞ p(	n,	m) ≤ ε. (14)

Taking the limits on both sides of (14), by (13) we obtain

lim
n→∞ p

(
	n,	∗) = 0. (15)

Next, we prove that limn→∞ p(	n,�	∗) = 0. We consider the following two cases.
Case 1: There exists N ∈ N such that p(	n+1,�	∗) > 0 for all n > N . Suppose that there

exists n0 > N such that p(	n0+1,	∗) = 0 and p(	n0+1,�	∗) = δ > 0. Then we can conclude
that p(	n0+1,	∗) ≤ p(	n0+1,�	∗) and p(	n0+1,�	∗) ≤ δ. So by (c) in Definition 2.4 we get
	∗ = �	∗. The proof is completed. If p(	n,	∗) > 0 for all n > N , then by (ii) in Theorem 2.2
and (1) we get

ψ
(
ι
(
p
(
	n+1,�	∗),ϕ(	n+1),ϕ

(
�	∗))) = ψ

(
ι
(
p
(
�	n,�	∗),ϕ(�	n),ϕ

(
�	∗)))

≤ φ
(
ι
(
p
((

	n,	∗),ϕ(	n),ϕ
(
	∗))))

< ψ
(
ι
(
p
(
	n,	∗),ϕ(	n),ϕ

(
	∗))).

Since ψ is nondecreasing,

0 ≤ ι
(
p
(
	n+1,�	∗),ϕ(	n+1),ϕ

(
�	∗)) < ι

(
p
(
	n,	∗),ϕ(	n),ϕ

(
	∗)),

and by (ι1) we obtain

0 ≤ p
(
	n+1,�	∗) ≤ ι

(
p
(
	n+1,�	∗),ϕ(	n+1),ϕ

(
�	∗)) < ι

(
p
(
	n,	∗),ϕ(	n),ϕ

(
	∗)).
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Taking the limits on both sides of the inequality, it follows that

lim
n→∞ p

(
	n+1,�	∗) = 0.

By the triangle inequality this yields that

p
(
	n,�	∗) ≤ p(	n,	n+1) + p

(
	n+1,�	∗),

and therefore

lim
n→∞ p

(
	n,�	∗) = 0. (16)

Hence by (i) in Lemma 2.2 and (15)–(16) we can conclude that 	∗ = �	∗.
Case 2: If limn→∞ p(	n,	∗) = 0, then there exist N ∈ N and δ > 0 such that p(	n,	∗) < δ

for all n > N . If there exists n0 > N such that p(	n0+1,�	∗) = 0, then we have �	∗ = 	∗.
Step 5. We have to prove that 	∗ is a unique fixed point of �.
Let 	∗,σ ∈ F(�). Assume that p(	∗,σ ) 
= 0. Letting 	 = 	∗ in (1), we have

ψ
(
ι
(
p
(
	∗,σ

)
, 0, 0

))
= ψ(ι

(
p
(
	∗,σ

)
,ϕ

(
	∗),ϕ(σ )

)

= ψ
(
ι
(
p
(
�	∗,�σ

))
,ϕ

(
�	∗),ϕ(�σ )

)

≤ φ(r
(
p
(
	∗,σ

)
,ϕ

(
	∗),ϕ(σ )

)

= φ
(
ι
(
p
(
	∗,σ

)
, 0, 0

))

< ψ
(
ι
(
p
(
	∗,σ

)
, 0, 0

))
,

a contradiction. Therefore

p
(
	∗,σ

)
= 0.

In the same way, we get p(	∗,	∗) = 0. So 	∗ = σ . This completes the proof of the theorem.�

Example 3.2 Let ℵ = [0, 2] be endowed with the usual metric d(	,σ ) = |	 – σ |, and let
p(	,σ ) = 2d(	,σ ) for 	,σ ∈ ℵ. Then (ℵ, d) is a complete metric space. Consider the map-
ping � : ℵ → ℵ defined by

�(	) =

⎧
⎨

⎩

1
4	 for 	 ∈ [0, 2),
1
8 otherwise.

Let the functions φ, ϕ, ψ , ι be defined by ψ(	) = 	, φ(	) = 1
2	, ϕ(	) = 	, and ι(u, v,	) =

u + v + 	.
Case 1: 	 = σ ∈ ℵ – {0, 2}. Then

2d(�	,�σ ) + ϕ(�	) + ϕ(�σ ) ≤ 1
2
(
2d(	,σ ) + ϕ(	) + ϕ(σ )

)
.
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Case 2: 	 ∈ [0, 2), σ = 2. Then

2d(�	,�σ ) + ϕ(�	) + ϕ(�σ ) = 2
∣∣∣∣
1
8

–
1
4
	

∣∣∣∣ +
1
4
	 +

1
8

≤ max

{
3
8

–
1
4
	,

3
4
	 –

1
8

}

≤ 2

≤ 1
2
(
2d(	,σ ) + ϕ(	) + ϕ(σ )

)
.

Case 3: σ ∈ [0, 2), 	 = 2. Then

2d(�	,�σ ) + ϕ(�	) + ϕ(�σ ) = 2
∣∣∣∣
1
4
	 –

1
4
σ

∣∣∣∣ +
1
4
	 +

1
4
σ

≤ max

{
3
4
	 –

1
4
σ ,

3
4
σ –

1
4
	

}

≤ 1
2
(
2d(	,σ ) + ϕ(	) + ϕ(σ )

)
.

Then � is a (ι,ψ ,ϕ,φ, p) contraction and satisfies all conditions of Theorem 3.1. By Theo-
rem 3.1 we know that � has a unique fixed point 	 = 0 such that �(0) = 0 and ϕ(0) = 0.

Example 3.3 Let ℵ = [0,∞) be endowed with the metric

d(	,σ ) =

⎧
⎨

⎩
0 if 	 = σ ,

1 if 	 
= σ ,

and let p(	,σ ) = σ for 	,σ ∈ ℵ. Then (ℵ, d) is a complete metric space. Consider the map-
ping � : ℵ → ℵ defined by

�(	) =

⎧
⎨

⎩

1
8	 for 	 ≥ 1,

0 for 	 < 1.

Let the functions φ, ϕ, ψ , ι be defined by ψ(	) = 	, φ(	) = 1
2	, and ϕ(	) = 	, ι(	,σ ,ρ) =

max{	,σ }. We consider the following cases (the iterates of Picard iterations and the con-
vergence behavior in Example 3.3, see Figs. 1 and 2).

Case 1: 	,σ ∈ [1,∞). Then

ψ
(
ι
(
p(�	,�σ ),ϕ(�	),ϕ(�σ )

))
= max

{
p(�	,�σ ),ϕ(�	)

}

= max

{
1
8
σ ,

1
8
	

}

≤ 1
2

max{σ ,	}

=
1
2

max
{

p(	,σ ),ϕ(	)
}

= φ
(
ι
(
p(	,σ ),ϕ(	),ϕ(σ )

))
.
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Figure 1 Picard iteration

Figure 2 Convergence behavior

Case 2: 	,σ ∈ [0, 1). Then

max
{

p(�	,�σ ),ϕ(�	)
}

= 0

≤ 1
2

max{σ ,	}

=
1
2

max
{

p(	,σ ),ϕ(	)
}

.

Case 3: x ∈ [1,∞), y ∈ [0, 1). Then

max
{

p(�	,�σ ),ϕ(�	)
}

= max

{
0,

1
8
	

}

≤ 1
2

max{σ ,	}

=
1
2

max
{

p(	,σ ),ϕ(	)
}

.

Case 4: x ∈ [0, 1), y ∈ [1,∞). Then

max
{

p(�	,�σ ),ϕ(�	)
}

= max

{
0,

1
8
σ

}

≤ 1
2

max{σ ,	}

=
1
2

max
{

p(	,σ ),ϕ(	)
}

.
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Then � is a (ι,ψ ,ϕ,φ, p) contraction and satisfies all conditions of Theorem 3.1. By Theo-
rem 3.1 we know that � has a unique fixed point 	 = 0 such that �(0) = 0 and ϕ(0) = 0.

Example 3.4 Consider the complete metric space ℵ = [0, 1] under the usual metric
d(	,σ ) = |	 – σ | for all 	,σ ∈ ℵ. Defining p(	,σ ) = σ , we obtain that p is a w-distance
on (ℵ, d). Let � : ℵ → ℵ be given by

�	 =
4
5
	2 for 	 ∈ [0, 1].

Let the functions φ, ϕ, ψ , ι be defined by ψ(	) = 	, φ(	) = 4
5	, ϕ(	) = 0, and ι(	,σ ,ρ) =

max{	,σ ,ρ}.
For each σ ∈ (0, 1], we have

max
{

p(�	,�σ ),ϕ(�	),ϕ(�σ )
}

=
4
5
σ 2

≤ 4
5
σ

=
4
5

max
{

p(	,σ ),ϕ(	),ϕ(σ )
}

.

So � is a (ι,ψ ,ϕ,φ, p) contraction and satisfies the conditions of Theorem 3.1, so that �
has a unique ϕ-fixed point 	 = 0.

Furthermore, it is easy to observe that � does not satisfy the contractive condition

ψ
(
ι
(
d(�	,�σ ),ϕ(�	),ϕ(�σ )

)) ≤ φ
(
r
(
d(	,σ ),ϕ(	),ϕ(σ )

))

for distinct 	,σ ∈ ℵ. Indeed, let 	 = 1
2 and σ = 2

3 , we derive that

max
{

d(�	,�σ ),ϕ(�	),ϕ(�σ )
}

=
4
5
∣∣	2 – σ 2∣∣

>
4
5

d(	,σ )

=
4
5

max
{

d(	,σ ),ϕ(	),ϕ(σ )
}
.

So Theorem 2.3 is not valid in this example.

Definition 3.2 A mapping � : ℵ → ℵ is called a rational-(ι,ψ ,ϕ,φ, p) contraction in
a metric space (ℵ, d) equipped with a w-distance p if there are functions ψ and φ

satisfying conditions (i), (ii), and (iii) of Theorem 2.2 such that for all 	,σ ∈ ℵ with
ι(d(�	,�σ ),ϕ(�	),ϕ(�σ )) > 0,

ψ
(
ι
(
p(�	,�σ ),ϕ(�	),ϕ(�σ )

)) ≤ φ
(
ι
(
M(	,σ ),ϕ(	),ϕ(σ )

))
, (17)

where M(	,σ ) = max{p(	,σ ), p(	,�	)(1+p(σ ,�σ ))
1+p(�	,�σ ) }.

Example 3.5 Consider the complete metric space ℵ = [0, 1] under the usual metric
d(	,σ ) = |	 – σ | for 	,σ ∈ ℵ. Defining p(	,σ ) = σ , we obtain that p is a w-distance on
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(ℵ, d). Let � : ℵ → ℵ be given by

�	 =
4
5
	2 for 	 ∈ [0, 1].

Let the functions φ, ϕ, ψ , ι be defined by ϕ(	) = 0, ι(	,σ ,ρ) = 	 + σ , and ψ(	) = 	, φ(	) =
4
5	. Then

p(�	,�σ ) =
4
5
σ 2

≤ 4
5

max

{
σ ,

4
5
	2

}

=
4
5

max

{
p(	,σ ),

p(	,�	)(1 + p(σ ,�σ ))
1 + p(�	,�σ )

}
.

So � is a rational-(ι,ψ ,ϕ,φ, p) contraction and satisfies Definition 3.2.
Furthermore, it is easy to observe that � does not satisfy the contractive condition

ψ
(
ι
(
d(�	,�σ ),ϕ(�	),ϕ(�σ )

)) ≤ φ
(
ι
(
M(	,σ ),ϕ(	),ϕ(σ )

))
,

where M(	,σ ) = max{d(	,σ ), d(	,�	)(1+d(σ ,�σ ))
1+d(�	,�σ ) } for distinct 	,σ ∈ ℵ. Indeed, letting 	 = 1

2
and σ = 1, we derive that

ψ
(
ι
(
d(�	,�σ ),ϕ(�	),ϕ(�σ )

))
= d(�	,�σ )

=
4
5
∣∣	2 – σ 2∣∣

=
3
5

>
2
5

=
4
5

max

{
d(	,σ ),

d(	,�	)(1 + d(σ ,�σ ))
1 + d(�	,�σ )

}
.

So Definition 2.6 is not valid in this example.

Remark 3.2 If p(	,σ ) = d(	,σ ), then a rational-(ι,ψ ,ϕ,φ, p) contraction reduces to a
rational-(ι,ψ ,ϕ,φ) contraction.

Theorem 3.2 Let (ℵ, d) be a complete metric space equipped with a w-distance p, and let �
be a rational-(ι,ψ ,ϕ,φ, p) contraction. If ϕ is lower semicontinuous, then � is a ϕ-Picard
mapping.

Proof Step 1. We have to prove that F(�) ⊆ Zϕ . We suppose that there exists 	0 ∈ F(�)
such that ϕ(	0) 
= 0. Set σ = 	0 in (17). Then

ψ
(
ι
(
p(	,	0),ϕ(	),ϕ(	0)

))
= ψ

(
ι
(
p(�	,�	0),ϕ(�	),ϕ(�	0)

))

≤ φ
(
ι
(
M(	,	0),ϕ(	),ϕ(	0)

))

< ψ
(
ι
(
p(	,	0),ϕ(	),ϕ(	0)

))
.

This is a contradiction, so F(�) ⊆ Zϕ .
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Step 2. It suffices to prove that

lim
n→∞ p(	n,	n+1) = 0, lim

n→∞ p(	n+1,	n) = 0 and lim
n→∞ϕ(	n) = 0.

Suppose 	0 ∈ ℵ and the sequence {	n} is defined by 	n+1 = �	n for n ≥ 0. We discuss two
cases.

Case 1: There exists n0 ∈ N such that p(	n0 ,	n0+1) = 0.
If p(	n0+1,	n0+2) = δ 
= 0, then we have

p(	n0 ,	n0+2) ≤ p(	n0 ,	n0+1) + p(	n0+1,	n0+2) = δ.

So 	n0+1 = 	n0+2 = �	n0+1. When n ≥ n0 + 1, {	n} is a constant sequence, and each of these
terms is 	n0+1 or 	n0+2, so that

p(	n0+1,	n0+2) = p(	n0+1,	n0+1) = p(	n0+2,	n0+2) = δ > 0.

By (17) and

M(	n0+1,	n0+1) = max

{
p(	n0+1,	n0+1),

p(	n0+1,	n0+1)(1 + p(	n0+1,	n0+1))
1 + p(	n0+1,	n0+1)

}

= p(	n0+1,	n0+1)

we have

ψ
(
ι
(
p(	n0+2,	n0+2),ϕ(	n0+2),ϕ(	n0+2)

))

= ψ
(
ι
(
p(�	n0+1,�	n0+1),ϕ(�	n0+1),ϕ(�	n0+1)

))

≤ φ
(
ι
(
M(	n0+1,	n0+1),ϕ(	n0+1),ϕ(	n0+1)

))

< ψ
(
ι
(
M(	n0+1,	n0+1),ϕ(	n0+1),ϕ(	n0+1)

))

= ψ
(
ι
(
p(	n0+2,	n0+2),ϕ(	n0+2),ϕ(	n0+2)

))
.

This is contradiction, so p(	n0+1,	n0+2) = 0. Continuing this process inductively, we obtain

lim
n→∞ p(	n,	n+1) = 0, (18)

and when n ≥ n0 + 1, we have ϕ(	n) = 0. So

lim
n→∞ϕ(	n) = 0. (19)

Next, we have to prove

p(	n0+1,	n0 ) = 0 implies that p(	n0+2,	n0+1) = 0.

Suppose that p(	n0+2,	n0+1) = δ. Then

p(	n0+2,	n0 ) ≤ p(	n0+2,	n0+1) + p(	n0+1,	n0 ) = δ,
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which implies that 	n0 = 	n0+1 = �	n0 . So when n > n0, both are equal to 	n0 or 	n0+1. Then
p(	n0+2,	n0+1) = p(	n0+1,	n0 ) = 0. Continuing this process inductively, we obtain

⎧
⎨

⎩
limn→∞ p(	n+1,	n) = 0,

limn→∞ ϕ(	n) = 0.
(20)

Case 2: p(	n,	n+1) > 0.
Let 	 = 	n and σ = 	n+1 in (17). By M(	n,	n+1) = max{p(	n,	n+1), p(	n ,	n+1)(1+p(	n+1,	n+2))

1+p(	n+1,	n+2) } =
p(	n,	n+1) we have

ψ
(
ι
(
p(	n+1,	n+2),ϕ(	n+1),ϕ(	n+2)

))
= ψ

(
ι
(
p(�	n,�	n+1),ϕ(�	n),ϕ

(
�(	n+1)

)))
(21)

≤ φ
(
ι
(
M(	n,	n+1),ϕ(	n),ϕ(	n+1)

))

< ψ
(
ι
(
p(	n,	n+1),ϕ(	n),ϕ(	n+1)

))
.

Because ψ is nondecreasing, {ι(p(	n,	n+1),ϕ(	n),ϕ(	n+1))} is a nonincreasing sequence
with a lower bound. So there exists ε ≥ 0 such that limn→∞ ιn = ε, where ιn = ι(p(	n,	n+1),
ϕ(	n),ϕ(	n+1)). If ε > 0, then taking the right upper limits on both sides of (21), by (iii) in
Theorem 2.2 we derive that

ψ
(
ε+)

= lim sup
ιn+1→ε+

ψ(ιn+1) ≤ lim sup
ιn→ε+

φ(ιn) ≤ lim sup
	→ε+

φ(	) < ψ
(
ε+)

,

a contradiction, so ε = 0. By (r1) in Definition 2.3, letting ι(p(	n,	n+1),ϕ(	n),ϕ(	n+1)) = R,
we derive that

max
{

p(	n,	n+1),ϕ(	n)
} ≤ R.

This implies that

⎧
⎨

⎩
p(	n,	n+1) ≤ R,

ϕ(	n+1) ≤ R.
(22)

Taking the limits in (22), we have

⎧
⎨

⎩
0 ≤ limn→∞ p(	n,	n+1) ≤ R = 0,

0 ≤ limn→∞ ϕ(	n+1) ≤ R = 0,

that is,

⎧
⎨

⎩
limn→∞ p(	n,	n+1) = 0,

limn→∞ ϕ(	n+1) = 0.
(23)

When p(	n+1,	n) > 0, letting 	 = 	n+1, σ = 	n in (17), by the same method we have

lim
n→∞ p(	n+1,	n) = 0 and lim

n→∞ϕ(	n) = 0. (24)
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Step 3. We want to prove that limm,n→∞ p(	n,	m) = 0.
Suppose on the contrary that there exist ε > 0 and two sequences {	n(l)} and {	m(l)} such

that

p(	n(l),	m(l)) ≥ ε and p(	n(l),	m(l)–1) < ε,

where m(l) > n(l), and

ε ≤ p(	n(l),	m(l)) ≤ p(	n(l),	m(l)–1) + p(	m(l)–1,	m(l)). (25)

Taking the limits on both sides of (25), we have

lim
l→∞

p(	n(l),	m(l)) = ε+. (26)

Now

ε ≤ p(	n(l),	m(l))

≤ p(	n(l),	m(l)–1) + p(	m(l)–1,	m(l))

≤ p(	n(l),	n(l)–1) + p(	n(l)–1,	m(l)–1) + p(	m(l)–1,	m(l)) (27)

≤ p(	n(l),	n(l)–1) + p(	n(l)–1,	n(l)) + p(	n(l),	m(l)–1) + p(	m(l)–1,	m(l))

< p(	n(l),	n(l)–1) + p(	n(l)–1,	n(l)) + p(	n(l),	m(l)–1) + ε.

Taking the limits on both sides of (27), we obtain

lim
l→∞

p(	n(l)–1,	m(l)–1) = ε+. (28)

Letting 	 = 	n(l)–1 and σ = 	m(l)–1 in (17), we have

ψ(ιn,m) = ψ
(
ι
(
p(�	n(l)–1,�	m(l)–1),ϕ(�	n(l)–1),ϕ(�	m(l)–1)

))

≤ φ
(
ι
(
M(	n(l)–1,	m(l)–1),ϕ(	n(l)–1),ϕ(	m(l)–1)

))
, (29)

where M(	n(l)–1,	m(l)–1) = max{p(	n(l)–1,	m(l)–1), p(	n(l)–1,�	n(l)–1)(1+p(	m(l)–1,�	m(l)–1))
1+p(�	n(l)–1,�	m(l)–1)

}. By (28)
we obtain

lim
l→∞

M(	n(l)–1,	m(l)–1) = ε+.

Taking the right upper limits on both sides of (29), by (iii) in Theorem 2.2 and (26) we
obtain

ψ
(
r
(
ε+, 0, 0

))
= lim

n,m→∞ψ(ιn,m)

≤ lim
n,m→∞φ

(
M(	n(l)–1,	m(l)–1),ϕ(	n(l)–1),ϕ(	m(l)–1)

)
)
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≤ lim
	→ι(ε+,0,0)

φ(	)

< ψ
(
ι
(
ε+, 0, 0

))
,

a contradiction, so

lim
n,m→∞ p(	n,	m) = 0. (30)

In view of Lemma 2.3, {	n} is a Cauchy sequence.
Step 4. Next, we need to verify that 	∗ is a ϕ-fixed point of �.
Since {	n} is a Cauchy sequence, there exists 	∗ ∈ ℵ such that 	n → 	∗(n → ∞). Since

ϕ is lower semicontinuous, we get

ϕ
(
	∗) ≤ lim

n→∞ infϕ(	n+1) ≤ lim
n→∞ϕ(	n+1) = 0,

so ϕ(	∗) = 0.
Since limm,n→∞ p(	n,	m) = 0, for each ε > 0, there exists Nε ∈ N such that p(	n,	m) < ε

for n, m > Nε . Since {	n} → 	∗ and p(	, ·) is lower semicontinuous, we get

0 ≤ p
(
	n,	∗) ≤ lim inf

m→∞ p(	n,	m) ≤ ε. (31)

Taking the limits on both sides of (31), by (30) we obtain

lim
n→∞ p

(
	n,	∗) = 0. (32)

Next, we prove that limn→∞ p(	n,�	∗) = 0. We consider two cases.
Case 1: There exists N ∈ N such that p(	n+1,�	∗) > 0 for all n > N . Suppose that

there exists n0 > N such that p(	n0+1,	∗) = 0 and p(	n0+1,�	∗) = δ > 0. Then we have
p(	n0+1,	∗) ≤ p(	n0+1,�	∗) = δ and p(	n0+1,�	∗) ≤ δ, so 	∗ = �	∗ by (c) in Definition 2.4.
The proof is completed. If p(	n,	∗) > 0 for all n > N , by (17) we get

ψ
(
ι
(
p
(
	n+1,�	∗),ϕ(	n+1),ϕ

(
�	∗))) = ψ

(
ι
(
p
(
�	n,�	∗),ϕ(�	n),ϕ

(
�	∗)))

≤ φ
(
ι
(
M

((
	n,	∗),ϕ(	n),ϕ

(
	∗))))

< ψ
(
ι
(
M

(
	n,	∗),ϕ(	n),ϕ

(
	∗))).

Since ψ is nondecreasing, we have

0 ≤ ι
(
p
(
	n+1,�	∗),ϕ(	n+1),ϕ

(
�	∗)) < ι

(
M

(
	n,	∗),ϕ(	n),ϕ

(
	∗)).

By (ι1) we can derive that

0 ≤ p
(
	n+1,�	∗) ≤ ι

(
p
(
	n+1,�	∗),ϕ(	n+1),ϕ

(
�	∗))

< ι
(
M

(
	n,	∗),ϕ(	n),ϕ

(
	∗)). (33)

In addition, limn→∞ M(	n,	∗) = limn→∞ max{p(	n,	∗), p((	n ,�	n)(1+p((	∗,�	∗)))
1+p(�	n ,�	∗) } = 0.
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Taking the limits on both sides of (33), it follows that

lim
n→∞ p

(
	n+1,�	∗) = 0.

By the triangle inequality it follows that

p
(
	n,�	∗) ≤ p(	n,	n+1) + p

(
	n+1,�	∗),

and therefore

lim
k→∞

p
(
	n,�	∗) = 0. (34)

Hence by (i) in Lemma 2.2, (32), and (34) we can conclude that 	∗ = �	∗.
Case 2: limn→∞ p(	n,	∗) = 0. Then there exist N ∈ N and δ > 0 such that p(	n,	∗) < δ

for all n > N . If there exists n0 > N such that p(	n0+1,�	∗) = 0, then �	∗ = 	∗.
Step 5. We claim that 	∗ is a unique fixed point of �.
If 	∗ ∈ F(�), then assuming that p(	∗,	∗) 
= 0 and letting 	 = σ = 	∗ (17), we have

ψ
(
ι
(
p
(
	∗,	∗), 0, 0

))
= ψ(ι

(
p
(
	∗,	∗),ϕ

(
	∗),ϕ

(
	∗))

= ψ
(
ι
(
p
(
�	∗,�	∗))ϕ

(
�	∗),ϕ

(
�	∗))

≤ φ(ι
(
M

(
	∗,	∗),ϕ

(
	∗),ϕ

(
	∗))

= φ
(
ι
(
M

(
	∗,	∗), 0, 0

))

< ψ
(
ι
(
p
(
	∗,	∗), 0, 0

))
.

This leads to a contradiction, so p(	∗,	∗) = 0.
If 	∗,σ ∈ F(�), then assuming that p(	∗,σ ) 
= 0 and letting 	 = 	∗ in (17), we have

ψ
(
ι
(
p
(
	∗,σ

)
, 0, 0

))
= ψ(ι

(
p
(
	∗,σ

)
,ϕ

(
	∗),ϕ(σ )

)

= ψ
(
ι
(
p
(
�	∗,�σ

))
ϕ
(
�	∗),ϕ(�σ )

)

≤ φ(ι
(
M

(
	∗,σ

)
,ϕ

(
	∗),ϕ(σ )

)

= φ
(
ι
(
M

(
	∗,σ

)
, 0, 0

))

< ψ

(
ι

(
max

{
p
(
	∗,σ

)
,

p(	∗,�	∗)(1 + p(σ ,�σ ))
1 + p(�	∗,�σ )

}
, 0, 0

))

= ψ
(
ι
(
p
(
	∗,σ

)
, 0, 0

))
,

a contradiction, and therefore p(	∗,σ ) = 0. So we deduce that 	∗ = σ . The proof is com-
pleted. �

Example 3.6 Let ℵ = 0 ∪ { 1
8n : n ≥ 1}, where (ℵ, d) is a complete metric space with a met-

ric d. We define p : ℵ × ℵ → [0,∞) by p(	,σ ) = σ . Let φ(	) = 1
4	, ι(	,σ ,ρ) = 	 + σ + ρ ,

ϕ(	) = 2	, and ψ(	) = 1
2	. Let � : ℵ → ℵ be defined by �	 = 	

32 for 	 ∈ ℵ.
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For 	 
= 0 or σ 
= 0, we have

ψ
(
ι
(
p(�	,�σ ),ϕ(�	),ϕ(�σ )

))
= ψ

(
ι

(
	 + σ

32

)
,

	

16
,
σ

16

)
)

=
3	 + 3σ

64

≤ 1
4

(3	 + 3σ )

= φ

(
ι

(
max (	 + σ ),

33	+33σ

32
1 + 	+σ

32

)
, 2	, 2σ

)

= φ
(
ι
(
M(	,σ ),ϕ(	),ϕ(σ )

))
.

So � is a rational-(ι,ψ ,ϕ,φ, p) contraction and satisfies all conditions of Theorem 3.2.
So � has a unique ϕ-fixed point 	 = 0.

4 Application
Application 1 For convenience, we first give the following notations. We denote the set of
all complex number matrices of order m by Mm, the set of all Hermitian matrices of order
m by Hm, and Pm and Hm

+ represent the sets of all m × n positive matrices and m × m
positive semidefinite matrices, respectively. Clearly, Pm ⊆ Hm ⊆ Mm and Hm

+ ⊆ Hm. Here
A1 � O (O represents the null matrix of the same order) and A1 � O mean that A1 ∈ Pm

and A1 ∈ Hm
+ , respectively; for A1 – A2 � O and A1 – A2 � O, we will use A1 � A2 and

A1 � A2, respectively.
In this section, we study the existence of solutions for the following linear matrix equa-

tion:

U = G +
m∑

i=1

A∗
i UAi +

m∑

i=1

B∗
i UBi, (35)

where G ∈ Pm, Ai, Bi are arbitrary m × m matrices for each i. We use the metric d(A, B) =‖
A – B ‖tr,R=‖ R 1

2 (A – B)R 1
2 ‖tr, which is induced by the norm ‖ A ‖tr=

∑n
i=1 σi(A), where

R ∈ Pm, A, B ∈ Hm, and σi(A), i = 1, 2, . . . , n, are the eigenvalues of A ∈ Mm. Clearly, the set
Hm equipped with the metric d is a complete metric space. Then (Hm, d) is a complete
extended rectangular b-metric space with respect to ξ = 3.

Define the mapping � : Hm → Hm by

�(U) = G +
m∑

i=1

A∗
i UAi +

m∑

i=1

B∗
i UBi

for A, B ∈ Hm.

Lemma 4.1 [23] If A, B ∈ Hm
+ , then 0 ≤ tr(AB) ≤‖ A ‖ tr(B).

Lemma 4.2 [23] If A ∈ Hm is such that A ≺ In, then ‖ A ‖< 1.
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Theorem 4.1 If R ∈ Pm,
∑m

i=1 A∗
i RAi ≺ 1

5 R, and
∑m

i=1 B∗
i RBi ≺ 1

5 R, then the mapping � has
a fixed point in Hm.

Proof Suppose that U , V ∈ Hm and let p(x, y) = d(x, y). Then

P
(
�(U),�(V )

)

=‖ �(U) – �(V ) ‖tr,R

= tr
(
R

1
2
(
�(U) – �(V )

)
R

1
2
)

= tr

( m∑

i=1

{
R

1
2
(
A∗

i (U – V )Ai + B∗
i (U – V )BiR

1
2
)}

)

= tr

( m∑

i=1

R
1
2 A∗

i (U – V )AiR
1
2 +

m∑

i=1

R
1
2 B∗

i (U – V )BiR
1
2

)

=
m∑

i=1

tr
(
R

1
2 A∗

i (U – V )AiR
1
2 + R

1
2 B∗

i (U – V )BiR
1
2
)

=
m∑

i=1

tr
(
A∗

i RAi(U – V )
)

+
m∑

i=1

tr
(
B∗

i RBi(U – V )
)

=
m∑

i=1

tr
(
A∗

i RAiR– 1
2 R

1
2 (U – V )R– 1

2 R
1
2
)

+
m∑

i=1

tr
(
B∗

i RBiR– 1
2 R

1
2 (U – V )R– 1

2 R
1
2
)

=
m∑

i=1

tr
(
R– 1

2 A∗
i RAiR– 1

2 R
1
2 (U – V )R

1
2
)

+
m∑

i=1

tr
(
R– 1

2 B∗
i RBiR– 1

2 R
1
2 (U – V )R

1
2
)

= tr

( m∑

i=1

R– 1
2 A∗

i RAiR– 1
2 R

1
2 (U – V )R

1
2

)

+ tr

( m∑

i=1

R– 1
2 B∗

i RBiR– 1
2 R

1
2 (U – V )R

1
2

)

≤
∥∥∥∥∥

m∑

i=1

R– 1
2 A∗

i RAiR– 1
2

∥∥∥∥∥
∥∥(U – V )

∥∥
tr,R +

∥∥∥∥∥

m∑

i=1

R– 1
2 B∗

i RBiR– 1
2

∥∥∥∥∥
∥∥(U – V )

∥∥
tr,R

=

(∥∥∥∥∥

m∑

i=1

R– 1
2 A∗

i RAiR– 1
2

∥∥∥∥∥
+

∥∥∥∥∥

m∑

i=1

R– 1
2 B∗

i RBiR– 1
2

∥∥∥∥∥

)
∥∥(U – V )

∥∥
tr,R

= k1
∥∥(U – V )

∥∥
tr,R

≤ k1N(U , V ),

where k1 = (‖∑m
i=1 R– 1

2 A∗
i RAiR– 1

2 ‖ + ‖∑m
i=1 R– 1

2 B∗
i RBiR– 1

2 ‖) < 2
5 and

N(U , V ) = max

{
p(U , V ),

p(U , T(U))(1 + P(V , T(V )))
1 + P(T(U), T(V ))

}

≥ p(U , V )

= ‖U – V‖tr,R.

When ϕ(	) = 0, φ(	) = k1	, ι(	,σ ,ρ) = 	 +σ +ρ , ψ(	) = 	, T satisfies Theorem 3.2. There-
fore � has a unique fixed point, and (35) has a solution. �
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Application 2 Here we apply Theorem 3.1 to guarantee the existence of a solution to the
following nonlinear Fredholm integral equation:

	(t) =
∫ b

a
G(t, s)f

(
t,	(s)

)
ds, (36)

where G : [a, b] × [a, b] → [0,∞) and f : [a, b] × R → R are continuous. Consider ℵ =
C[a, b], the set of all continuous functions from [a, b] into R. Define � : ℵ → ℵ as

(
�	(t)

)
(t) =

∫ b

a
G(t, s)f

(
t,	(s)

)
ds

for 	 ∈ ℵ and t ∈ [a, b]. Take on ℵ the complete metric

d(	,σ ) = sup
t∈[a,b]

∣∣	(t) – σ (t)
∣∣.

Consider also on ℵ the w-distance p : ℵ × ℵ → [0,∞) given by

p(	,σ ) = sup
t∈[a,b]

∣∣	(t)
∣∣ + sup

t∈[a,b]

∣∣σ (t)
∣∣

for 	,σ ∈ ℵ. We will prove that � has a fixed point under the following conditions:
(i) There is φ : (0, +∞) → (–∞, +∞) such that for all t ∈ [a, b] and 	,σ ∈R,

∣∣f (t,	)
∣∣ +

∣∣f (t,σ )
∣∣ ≤ φ

(
max

{
|	| + |σ |, (|	| + |�	|)(1 + |σ | + |�σ |)

1 + (|�	| + |�σ |)
)})

;

(ii) supa≤t≤b
∫ b

a G(t, s) ds ≤ 1
3 ;

(iii) inf{p(	,σ ), p(	,�	)(1+p(σ ,�σ ))
1+p(�	,�σ ) } > 0 for all 	,σ ∈ ℵ.

Theorem 4.2 Under assumptions (i)–(iii), equation (36) has a solution.

Proof

∣∣(�	)(t)
∣∣ +

∣∣(�σ )(t)
∣∣

≤
∫ b

a
G(t, s))

∣∣f
(
t,	(s)

)∣∣ +
∣∣f

(
t,σ (s)

)∣∣ds

≤
∫ b

a
G(t, s)φ

(
max

{∣∣	(s)
∣∣ +

∣∣σ (s)
∣∣,

(|	(s)| + |�	(s)|)(1 + |σ (s)| + |�σ (s)|)
1 + (|�	(s)| + |�σ (s)|)

})
ds

≤ 1
3
φ

(
max

{∣∣	(s)
∣∣ +

∣∣σ (s)
∣∣,

(|	(s)| + |�	(s)|)(1 + |σ (s)| + |�σ (s)|)
1 + (|�	(s)| + |�σ (s)|)

})

≤ φ

(
max

{∣∣	(s)
∣∣ +

∣∣σ (s)
∣∣,

(|	(s)| + |�	(s)|)(1 + |σ (s)| + |�σ (s)|)
1 + (|�	(s)| + |�σ (s)|)

})
. �

So � satisfies the contraction expression (17), where ϕ(	) = 0, φ(	) = 1
2	, ι(	,σ ,ρ) = 	 +

σ + ρ , and ψ(	) = 	. Therefore equation (36) has a solution.
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5 Conclusion
In this paper, we introduce two new nonlinear contractions by using the idea of a w-
distance in a metric space and establish some new ϕ-fixed point results in metric spaces
with w-distance. Next, we use some simple examples to show the validity of our main re-
sults. Then we use our results for investigating the existence and uniqueness of a solution
for a nonlinear integral equation and nonlinear matrix equation. There is no doubt about
the importance of fixed point theory.

6 Prospective
The two nonlinear contractions proposed in this paper contain some existing nonlinear
contraction conditions. By taking some special functions our results develop the results
of [1, 2, 6, 11, 13, 14] and so on. At the same time, we apply our results to linear ma-
trix equations and nonlinear Fredholm integral equations. However, this paper has strong
constraints on several types of functions in such contraction conditions and may need
finding some relatively weak conditions. At the same time the recent generation of some
new metric spaces has attracted the research of many scholars.

There are some possible works in the future:
(i) Can the metric space in this paper be replaced with other generalized metric spaces

(such as fuzzy metric space, ordered metric space, b2-distance space, etc.)?
(ii) Is it possible to obtain similar ϕ-fixed point results by weakening the conditions

required for the contraction expression in this paper?
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