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Abstract
Stenger conjectures are claims about the location of the eigenvalues of matrices
whose elements are certain integrals involving basic Lagrange interpolating
polynomials supported on the zeros of orthogonal polynomials. In this paper, we
show the validity of the extended Stenger conjecture for families of classical
orthogonal polynomials. We also show the validity of the restricted Strenger
conjecture for a family of Jacobi and generalized Laguerre orthogonal polynomials. A
connection with the A-stability of the collocation Runge-Kutta methods is
investigated.

Mathematics Subject Classification: Zeros of orthogonal polynomials; Matrix
eigenvalues; Collocation Runge-Kutta; A-stability

1 Introduction
Given a non-negative weight function ω over an interval [a, b], –∞ ≤ a < b ≤ +∞, denote
by πk , k ≥ 0, the orthogonal polynomials with respect to the scalar product

〈f , g〉ω =
∫ b

a
f (x)g(x)ω(x) dx.

Let the matrices Un = [u(n)
ij ] and Vn = [v(n)

ij ] be defined by

u(n)
ij =

∫ xi

a
�

(n)
j (x)ω(x) dx, v(n)

ij =
∫ b

xi

�
(n)
j (x)ω(x) dx, i, j = 1, 2, . . . , n, (1.1)

where xi, i = 1, . . . , n, are the zeros of the orthogonal polynomial πn and �
(n)
1 , . . . ,�(n)

n , are
the associated basic Lagrange interpolating polynomials of degree (n – 1), i.e.,

�
(n)
k (x) =

∏
1≤j≤n,j �=k

x – xj

xk – xj
, k = 1, 2, . . . , n.

The following conjecture is stated in [1] and [2].

Extended Stenger Conjecture Given an almost everywhere positive weight function ω on
[a, b] such that –∞ ≤ a < b ≤ +∞, or equivalently, the associated orthogonal polynomials
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πn, the eigenvalues of each of the matrices Un and Vn defined in (1.1) lie in the open right
half of the complex plane.

The validity of the conjecture is established for Sinc interpolation in [3]. The conjecture
is shown to hold for Legendre polynomials in [4] and its equivalence to the A-stability
of the n-stage Gauss–Runge–Kutta method is proved. Moreover, in [4] the conjecture is
shown to hold for Un in the case of Jacobi orthogonal polynomials with parameters (1, 0).
In [4], the authors provided a counter-example to the conjecture for some piecewise con-
stant weight functions. In this paper, we show the validity of the conjecture for a specific
family of weight functions, which enables us in particular to prove the conjecture for a
family of Jacobi, generalized Laguerre orthogonal polynomials and Jacobi–Koonwinder
orthogonal polynomials.

In the restricted Stenger conjecture, the matrices Un (with a finite) and Vn (with b finite)
are defined by

u(n)
ij =

∫ xi

a
�

(n)
j (x) dx, v(n)

ij =
∫ b

xi

�
(n)
j (x) dx, i, j = 1, 2, . . . , n, (1.2)

and the conjecture states

Restricted Stenger Conjecture Given an almost everywhere positive weight function ω

on [a, b] or equivalently the associated orthogonal polynomials πn, the eigenvalues of each
of the matrices Un and Vn defined in (1.2) lie on the open right half of the complex plane.

It has been shown in [4] that the restricted conjecture is wrong in general. For instance,
they showed, at least numerically, that the real part of some eigenvalues of the matrix Un

with n = 5 and xi, i = 1, 2, . . . , 5, the zeros of Gegenbauer polynomial C(10)
5 , are negative.

However, several conjectures on the range of validity of the restricted Stenger conjecture
for Jacobi and generalized Laguerre orthogonal polynomials were advanced in [4]. In this
paper, we show the validity of the restricted Stenger conjecture for a family of classical
orthogonal polynomials.

2 Extended Stenger conjecture for a family of weight functions
In the following, we give a general result on the validity of the extended Stenger conjecture
for a specific family of weight functions. The theorem and its proof were inspired by the
methodology introduced in [4].

Theorem 2.1 Let ω be weight function on [a, b], –∞ ≤ a < b < +∞, supposed to be positive
on (a, b). Assume that, for any complex polynomial P of degree at most (n – 1), there exist
a complex polynomial Q of degree at most n and a real differentiable strictly increasing
positive function � on (a, b] meeting the following three requirements:

∫ x

a
P(t)ω(t) dt = Q(x)�(x) for all x ∈ [a, b], (2.1)

lim
x→a

�(x)
∣∣Q(x)

∣∣2 = 0, �′|Q|2 ∈ L1([a, b]
)
. (2.2)

Then the extended Stenger conjecture associated with ω is satisfied for the matrix Un de-
fined in (1.1).
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Proof Let λ be an eigenvalue of the matrix Un. Thus, there exists a complex vector

(y1, y2, . . . , yn) �= (0, 0, . . . , 0) (2.3)

such that

∫ xi

a

n∑
k=1

yk�
(n)
k (t)ω(t) dt = λyi, i = 1, . . . , n.

Denote by y the unique complex polynomial of degree at most (n – 1) such that y(xi) = yi.
We have

∫ xi

a
y(t)ω(t) dt – λy(xi) = 0, i = 1, 2, . . . , n. (2.4)

According to condition (2.1), there exists a complex polynomial Q of degree at most n
such that

∫ x

a
y(t)ω(t) dt = Q(x)�(x), (2.5)

where � is a real differentiable strictly increasing positive function on (a, b] and thus is
non-negative on [a, b]. Let ωi, i = 1, 2, . . . , n, be the weights of the Gaussian quadrature
with respect to the weight function ω. Denote by ȳ the conjugate of y. From (2.4), we have

n∑
i=1

ωi

�(xi)
ȳ(xi)

∫ xi

a
y(t)ω(t) dt = λ

n∑
i=1

ωi

�(xi)
∣∣y(xi)

∣∣2.

Thus, according to (2.5), we have

n∑
i=1

ωiȳ(xi)Q(xi) = λ

n∑
i=1

ωi

�(xi)
∣∣y(xi)

∣∣2.

Applying Gaussian quadrature to the polynomial ȳQ of degree at most (2n – 1), we obtain

∫ b

a
ȳ(x)Q(x)ω(x) dx = λ

n∑
i=1

ωi

�(xi)
∣∣y(xi)

∣∣2,

or equivalently

∫ b

a

ȳ(x)ω(x)
�(x)

[∫ x

a
y(t)ω(t) dt

]
dx = λ

n∑
i=1

ωi

�(xi)
∣∣y(xi)

∣∣2. (2.6)

The real part of the left-hand side of (2.6) is given by

1
2

∫ b

a

1
�(x)

(
ȳ(x)ω(x)

[∫ x

a
y(t)ω(t) dt

]
+ y(x)ω(x)

[∫ x

a
ȳ(t)ω(t) dt

])
dx.
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Moreover, using the product derivative formula, we note that

ȳ(x)ω(x)
[∫ x

a
y(t)ω(t) dt

]
+ y(x)ω(x)

[∫ x

a
ȳ(t)ω(t) dt

]
=

d
dx

∣∣∣∣
∫ x

a
y(t)ω(t) dt

∣∣∣∣
2

.

Thus, the real part of the left-hand side of (2.6) is given by

1
2

∫ b

a

1
�(x)

d
dx

∣∣∣∣
∫ x

a
y(t)ω(t) dt

∣∣∣∣
2

dx =
1
2

∫ b

a

1
�(x)

d
dx

(∣∣�(x)Q(x)
∣∣2)dx, (2.7)

while the real part of the right-hand side of (2.6) is equal to

Re(λ)
n∑

i=1

ωi

�(xi)
∣∣y(xi)

∣∣2.

Thus, from (2.6), to prove that the real part of λ is non-negative, it is sufficient to prove the
non-negativity of (2.7). Since the function �′|Q|2 ∈ L1([a, b]), integration by parts shows
that (2.7) is equal to

1
2
�(b)

∣∣Q(b)
∣∣2 –

1
2

lim
x→a

�(x)
∣∣Q(x)

∣∣2 +
1
2

∫ b

a
�′(x)

∣∣Q(x)
∣∣2 dx. (2.8)

Moreover, taking into consideration that limx→a �(x)|Q(x)|2 = 0 and � is a strictly increas-
ing positive function on (a, b] shows that the quantity (2.8) is non-negative and thereby
Re(λ) ≥ 0. Let us assume that Re(λ) = 0. Then necessarily (2.7) vanishes and hence

∫ b

a
�′(x)

∣∣Q(x)
∣∣2 dx = 0.

Therefore, �′Q ≡ 0 on (a, b]. On account of the assumption that � is strictly increasing on
(a, b], this automatically implies that Q is identically zero on (a, b]. Hence, from (2.5) and
the positivity of ω on (a, b), we can conclude that y is identically zero, which contradicts
(2.3). �

Remark 2.1 Note that one can replace the condition limx→a �(x)|Q(x)|2 = 0 in Theorem
2.1 by the less restrictive conditions of the non-negativity of (2.8) or the non-negativity of
1
2�(b)|Q(b)|2 – 1

2 limx→a �(x)|Q(x)|2.

Applying similar arguments, the matrices Vn leads to the following theorem.

Theorem 2.2 Let ω be weight function on [a, b], –∞ < a < b ≤ +∞, supposed to be positive
on (a, b). Assume that, for any complex polynomial P of degree at most (n – 1), there exist
a complex polynomial Q of degree at most n and a real differentiable strictly decreasing
positive function � on (a, b] meeting the following three requirements:

∫ b

x
P(t)ω(t) dt = Q(x)�(x) for all x ∈ [a, b],

lim
x→b

�(x)
∣∣Q(x)

∣∣2 = 0, �′|Q|2 ∈ L1([a, b]
)
.
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Then the extended Stenger conjecture associated with ω is satisfied for the matrix Vn de-
fined in (1.1).

3 Application to Jacobi polynomials
In the following, we shall use Theorem 2.1 to prove the validity of the extended Stenger
conjecture for a family of Jacobi orthogonal polynomials. Jacobi polynomials P(α,β)

n are
orthogonal polynomials on [–1, 1] with respect to the weight function

ω(α,β)(x) = (1 – x)α(1 + x)β , α,β > –1. (3.1)

They admit the following explicit expressions

P(α,β)
n (x) =

n∑
k=0

(
n + α

k

)(
n + β

n – k

)
(x – 1)n–k(x + 1)k .

Lemma 3.1 Let α > –1 be a real number and P a polynomial of degree m. Then,

∫ x

–1
P(t)(1 + t)α dt = R(x)(1 + x)α+1,

where R is the polynomial

R(x) =
m∑

k=0

(–1)kP(k)(x)(1 + x)k

(α + 1)(α + 2) . . . (α + k + 1)
.

Proof We proceed by induction of the degree of the polynomial P. For constant polyno-
mials, the claim is trivial. Let P be a polynomial of degree n. Integration by parts leads
to

∫ x

–1
P(t)(1 + t)α dt =

(1 + x)α+1P(x)
α + 1

–
1

α + 1

∫ x

–1
P′(t)(1 + t)α+1 dt.

We conclude the proof using the induction hypothesis. �

Corollary 3.1 The extended Stenger conjecture holds true in each of the following case:
– (a) for Un in the case of Jacobi polynomials P(m,α)

n for all n ≥ 1, α > –1 and m = 0, 1.
– (b) for Vn in the case of Jacobi polynomials P(α,m)

n for all n ≥ 1, α > –1 and m = 0, 1.

Proof (a) We shall consider the cases m = 0, 1 separately.
• Case m = 0: According to Lemma 3.1, the weight function ω(0,α)(t) = (1 + t)α satisfies

the conditions of Theorem 2.1, with �(x) = (1 + x)α+1.
• Case m = 1: According to Lemma 3.1, for any polynomial P of degree at most n – 1, we

have
∫ x

–1
P(t)(1 – t)(1 + t)α dt = Q(x)(1 + x)α+1,

where Q is the polynomial of degree at most n given by

Q(x) =
n∑

k=0

(–1)k(P(x)(1 – x))(k)(1 + x)k

(α + 1)(α + 2) . . . (α + k + 1)
.
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Thus, the weight function ω(1,α)(t) = (1 – t)(1 + t)α satisfies the conditions of Theorem 2.1,
with �(x) = (1 + x)α+1. The proof of (b) is a direct consequence of the fact that the eigen-
values of Vn for P(α,β)

n coincide with the eigenvalues of Un for P(β ,α)
n (see [4]). �

4 Application to generalized Laguerre polynomials
In the following, we shall use Theorem 2.2 to prove the validity of the extended Stenger
conjecture for a family of generalized Laguerre orthogonal polynomials.

Generalized Laguerre polynomials L(α)
n are orthogonal polynomials on [0, +∞) with re-

spect to the weight function

ω(α)(x) = xαe–x, α > –1. (4.1)

They admit explicit expressions as

L(α)
n (x) =

n∑
k=0

(–1)k
(

n + α

n – k

)
xk

k!
.

Lemma 4.1 Let P be a polynomial of degree m. Then,
∫ +∞

x
P(t)e–t dt = R(x)e–x,

where R is the polynomial

R(x) =
m∑

k=0

P(k)(x).

Proof We proceed by induction of the degree of the polynomial P. For constant polyno-
mials, the claim is trivial. Let P be a polynomial of degree m. Integration by parts leads
to

∫ +∞

x
P(t)e–t dt = P(x)e–x +

∫ +∞

x
P′(t)e–t dt.

We conclude the proof using the induction hypothesis. �

Corollary 4.1 The extended Stenger conjecture holds true for Vn in the case of generalized
Laguerre polynomials L(m)

n for all n ≥ 1 and m = 0, 1.

Proof We shall consider the cases m = 0 and 1 separately.
• Case m = 0: According to Lemma 4.1, the weight function ω(0)(t) = e–t satisfies the

conditions of Theorem 2.2 with �(x) = e–x.
• Case m = 1: According to Lemma 3.1, for any polynomial of degree n – 1, we have

∫ +∞

x
P(t)te–t dt = Q(x)e–x,

where Q is the polynomial of degree at most n

Q(x) =
n∑

k=0

dk(xP(x))
dxk .
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Thus, the weight function ω(1)(t) = te–t satisfies the conditions of Theorem 2.2 with �(x) =
e–x. �

Remark 4.1 Similar arguments as in the proof of Theorem 2.1 can be applied to show that
the extended Stenger conjecture is valid for Un for the Legendre weight ω ≡ 1 and for Vn

for the Laguerre weight ω = e–x if, in the definition of the matrices Un and Vn, we take
the real numbers x1, x2, . . . , xn as the nodes of a (2n, n) positive quadrature. Similarly, the
extended Stenger conjecture can be shown to hold when we take x1, x2, . . . , xn as the zeros
of the othogonal polynomials with respect to the Sobolev inner product

〈f , g〉 =
∫ b

a
f (x)g(x)ω(x) dx + r0f (a)g(a), r0 > 0,

for Un for Jacobi weights ω(m,β) with m = 0 or 1 and β > –1 (Jacobi–Koornwinder poly-
nomials [5]) and for Vn for the Laguerre weights xme–x with m = 0 or 1 (Laguerre–
Koornwinder polynomials [6]) when we replace r0f (a)g(a) by r0f (b)g(b) in the Sobolev
inner product.

5 Restricted Stenger conjecture
For the rest of the paper, we shall study the restricted Stenger conjecture. It has been shown
in [4] that the conjecture is wrong in general. For instance, they showed, at least numeri-
cally, that the real part of some eigenvalues of the matrix Un with n = 5 and xi, i = 1, 2, . . . , 5,
the zeros of Gegenbauer polynomial C(10)

5 , are negative. The validity of the restricted
Stenger conjecture for Legendre polynomial is shown in [4] and its equivalence with the
A-stability of the n-stage Gauss–Runge–Kutta method is established. Several conjectures
on the range of validity of the restricted Stenger conjecture for Jacobi and generalized
Laguerre orthogonal polynomials were advanced in [4].

In the following, we use the techniques introduced in [4] to prove the validity of the
restricted Stenger conjecture for monotonous differentiable weight functions.

Theorem 5.1 For differentiable non-increasing (resp. non-decreasing) weight functions ω

over [a, b], all the eigenvalues of the matrices Un (resp. Vn) defined in (1.2) have positive
real part.

Proof Let λ be an eigenvalue of the matrix Un. Thus there exists a non-zero complex vector
y = (y1, y2, . . . , yn) such that

∫ xi

a

n∑
k=1

yk�
(n)
k (x) dx = λyi, i = 1, . . . , n.

Denote by y the unique complex polynomial of degree at most (n – 1) such that y(xi) = yi.
Thus,

∫ xi

a
y(x) dx – λy(xi) = 0, i = 1, 2, . . . , n.

The polynomial

Q(x) =
∫ x

a
y(t) dt – λy(x)
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is of degree at most n such that Q(xi) = 0 for i = 1, 2, . . . , n. Therefore, there exists a complex
constant K such that

∫ x

a
y(t) dt – λy(x) = Kπn(x). (5.1)

Multiplying (5.1) by ω(x)ȳ(x) and integrating over [a, b], we obtain

∫ b

a
ω(x)ȳ(x)

[∫ x

a
y(t) dt

]
dx = λ

∫ b

a
ω(x)

∣∣y(x)
∣∣2 dx (5.2)

The real part of the left side of (5.2) is given by

1
2

∫ b

a
ω(x)

d
dx

∣∣∣∣
∫ x

a
y(t) dt

∣∣∣∣
2

dx, (5.3)

while the real part of right side of (5.2) is given by

Re(λ)
∫ b

a
ω(x)

∣∣y(x)
∣∣2 dx.

Thus, to show the non-negativity of Re(λ), we should prove the non-negativity of (5.3).
Integration by parts shows that (5.3) is equal to

1
2
ω(b)

∣∣∣∣
∫ b

a
y(t) dt

∣∣∣∣
2

–
1
2

∫ b

a
ω′(x)

∣∣∣∣
∫ x

a
y(t) dt

∣∣∣∣
2

dx. (5.4)

Since the non-negative differentiable weight function ω is a non-increasing function on
[a, b], the expression (5.4) is non-negative and therefore the real part of λ is non-negative.
To prove that Re(λ) > 0, we should prove that (5.4) is strictly positive. We first note that
(5.4) is equal to zero only when the weight function is a constant function and that

∫ b

a
y(t) dt = 0. (5.5)

In this case, one can use the methodology in [4] (page 5) to conclude that y is orthogonal
to all polynomials of degree at most (n – 1) and in particular

∫ b
a y2(t) dt = 0 and thus y ≡

0. This contradiction shows that Re(λ) > 0. Similar arguments can be used to prove the
theorem for the matrices Vn. �

As an application of Theorem 5.1, we give instances for which the restricted Stenger
conjecture holds for Jacobi and generalized Laguerre orthogonal polynomials.

The following is a direct consequence of Theorem 5.1.

Corollary 5.1 The restricted Stenger conjecture holds true in each of the following cases:
– (a) for Un in the case of Jacobi polynomials P(α,β)

n for all n ≥ 1, α ≥ 0 and –1 < β ≤ 0.
– (b) for Vn in the case of Jacobi polynomials P(α,β)

n for all n ≥ 1, β ≥ 0 and –1 < α ≤ 0.
– for Un in the case of generalized Laguerre polynomials L(α)

n for all n ≥ 1 and
–1 < α ≤ 0.
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Proof The statement (a) is a direct consequence of the fact that for α ≥ 0 and –1 < β ≤ 0
the Jacobi weight function (3.1) is a non-increasing functionon [–1, 1] since

d
dx

ωα,β (x) = –(1 – x)α–1(1 + x)β–1((α + β)x + (α – β)
) ≤ 0, for any x ∈ [–1, 1].

Statement (b) is a consequence of the fact proved in [4] that U (α,β)
n = V (β ,α)

n , i.e.; the matrice
Un for the Jacobi polynomials with parameters (α,β) coincide with the matrix Vn for Jacobi
polynomials with parameters (β ,α). To prove (c), we simply remark that, for –1 < α ≤ 0,
the generalized Laguerre weight function (4.1) is non-increasing on [0, +∞[, i.e.,

d
dx

ω(α)(x) = xα–1e–x(α – x) ≤ 0, for any x ∈ [0, +∞[.

This concludes the proof of the corollary. �

6 Restricted Stenger conjecture for Jacobi orthogonal polynomials
In this section, we show that the eigenvalues of the restricted matrices Un and Vn defined
in (1.2) coincide with the zeros of certain polynomials with coefficients expressed in terms
of the value of the successive derivatives of the orthogonal polynomials at the endpoints of
the interval. This allows us to restate the restricted Stenger conjecture for Jacobi orthog-
onal polynomials as a result already proved in [7] and permits us to improve the results of
Corollary 5.1. To state the results in their full generality, we shall assume that in the def-
inition of the restricted matrices Un and Vn, the real numbers x1, x2, . . . , xn are arbitrary
distinct real numbers in the interval [a, b].

Proposition 6.1 The eigenvalues of the restricted matrices Un and Vn coincide with the
zeros of the polynomials

�n(z) =
n∑

k=0

π (k)
n (a)zk , 	n(z) =

n∑
k=0

π (k)
n (b)(–z)k , (6.1)

respectively, where πn(x) = (x – x1)(x – x2) . . . (x – xn) and π
(k)
n refer to the kth derivative of

the polynomial πn.

Proof Let λ be an eigenvalue of the matrix Un. Thus, from (5.1), there exists a non-zero
complex vector y = (y1, y2, . . . , yn) and a complex number C such that

∫ x

a
y(t) dt – λy(x) = Cπn(x), (6.2)

where y the unique complex polynomial of degree n – 1 such that y(xi) = yi. Writing the
polynomial y and the polynomial πn as

y(x) =
n–1∑
k=0

bk(x – a)k , πn(x) =
n∑

k=0

αk(x – a)k with αk =
π

(k)
n (a)
k!

,

and solving (6.2), we obtain the system

bk–1

k
– λbk = Cαk , k = 0, 1, . . . , n,
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with the convention that b–1 = bn = 0. Solving for bk leads to

bn–k = C
k–1∑
j=0

(n – j)!
(n – k)!

λk–1–jαn–j, k = 1, . . . , n – 1.

Moreover, using the fact that b0 = λb1 + Cα1, we obtain

b0 = C
n–1∑
k=0

(n – k)!λn–k–1αn–k .

Inserting this equation into the relation –λb0 = Cα0, we obtain

n∑
k=0

k!αkλ
k = 0.

This proves that λ is a zero of the polynomial �n. We shall now show that the eigen-
values of Un are simple, so that the spectrum of Un coincides with the zeros of �n. Let
y = (y1, y2, . . . , yn) and z = (z1, z2, . . . , zn) be two eigenvectors associated with the eigenvalue
λ. Then, there exist two non-zero constants C1, C2 such that

∫ x

a
y(t) dt – λy(x) = C1πn(x),

∫ x

a
z(t) dt – λz(x) = C2πn(x),

where y (resp. z) is the unique complex polynomial of degree (n – 1) such that y(xi) = yi

(resp. z(xi) = zi). Thus, denoting F(x) = (y(x)/C1) – (z(x)/C2), we have

∫ x

a
F(t) dt – λF(x) = 0 for all x ∈ [a, b]. (6.3)

Since F is a polynomial, this implies that F ≡ 0 and thus the vectors y and z are linearly
dependent. The proof for Vn follows similar arguments. �

Proposition 6.2 An eigenvector (y1, y2, . . . , yn) of the matrix Un (resp. Vn) associated with
the eigenvalue λ is given by yi = y(xi), where

y(x) =
n∑

k=1

λkπ (k)
n (x), (6.4)

where λ is a zero of �n (resp. 	n).

Proof We should simply show that there is a constant C such that (6.2) holds. We have

y(x) – λy′(x) =
n∑

k=1

λkπ (k)
n (x) –

n∑
k=1

λk+1π (k+1)
n (x) = λπ ′

n(x).

Integrating, we obtain

∫ x

a
y(t) dt – λ

(
y(x) – y(a)

)
= λ

(
πn(x) – πn(a)

)
.
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Since λ is a zero of �n, we have y(a) = –πn(a) and therefore

∫ x

a
y(t) dt – λy(x) = λπn(x). (6.5)

This concludes the proof. �

In connection with the tau approximation for an eigenvalue problem, Csordas et al. [7]
proved the Hurwitz stability of the polynomials

	 (α,β)
n (z) =

n∑
k=0

(
dk

dxk P(α,β)
n (x)

)
x=1

zk , n ≥ 2.

More precisely, they showed that if –1 < α ≤ 1 and β > –1, then the zeros of the polynomial
	

(α,β)
n lie in the half-plane Re(z) < 0; and thus by virtue of Proposition 6.1, the eigenvalues

of Vn for Jacobi polynomials lie in the half-plane Re(z) > 0. Moreover, since for Jacobi
polynomials, we have U (α,β)

n = V (β ,α)
n , we conclude

Theorem 6.1 The restricted Stenger conjecture holds true in each of the following cases:
• for Un in the case of Jacobi polynomials P(α,β)

n for all n ≥ 1, α > –1 and –1 < β ≤ 1.
• for Vn in the case of Jacobi polynomials P(α,β)

n for all n ≥ 1, β > –1 and –1 < α ≤ 1.

In particular, the previous theorem shows that restricted Stenger conjecture holds for
Chebyshev polynomials of the first and second kind Tn and Sn with

Tn(x) = P(– 1
2 ,– 1

2 )
n (x), Sn(x) = P( 1

2 , 1
2 )

n (x).

Also, Theorem 6.1 shows that the restricted Stenger conjecture holds for Legendre poly-
nomials P(0,0)

n and for Gegenbauer (or ultra-spherical) polynomials C(μ)
n when – 1

2 < μ ≤ 3
2 ,

where

C(μ)
n (x) = P(μ– 1

2 ,μ– 1
2 )

n (x).

7 Restricted Stenger conjecture for generalized Laguerre polynomials
In the following, we show that the restricted Stenger conjecture for Un holds for gener-
alized Laguerre polynomials L(α)

n when the parameter α is restricted to lie in the interval
(–1, 1]. An explicit expression of generalized Laguerre polynomials L(α)

n is given by

L(α)
n (x) =

n∑
k=0

(–1)k

(n+α

n–k
)

k!
xk .

Thus, the associated polynomials �n according to Proposition 6.1 are given by

�n(z) =
n∑

k=0

(–1)k
(

n + α

n – k

)
zk .
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To study the restricted Stenger conjecture for Laguerre polynomials, we shall study instead
the zeros of the degree n truncation of the binomial function (1 + z)n+α , i.e.,

B(α)
n (z) =

n∑
k=0

(
n + α

k

)
zk = zn�n(–1/z). (7.1)

We shall need the following Eneström–Kakeya theorem [8].

Theorem 7.1 Let Pn(z) =
∑n

k=0 akzk be any polynomial with ak > 0 for all 0 ≤ k ≤ n. Setting

γ = min
0≤k<n

ak

ak+1
, μ = max

0≤k<n

ak

ak+1
,

then all the zeros of Pn are contained in the annulus

γ ≤ |z| ≤ μ.

We introduce the polynomials

H (α)
n (z) =

n∑
k=0

(
α – 1 + k

k

)
zk . (7.2)

The connection between the polynomials B(α)
n and H (α)

n is given by the following.

Lemma 7.1 For any z �= –1, we have

B(α)
n (z) = (1 + z)nH (α)

n

(
z

1 + z

)
. (7.3)

Proof We proceed by induction on n ≥ 1. The claim is trivial for n = 1. Let us assume that
(7.3) holds for n. We have

(1 + z)n+1H (α)
n+1

(
z

z + 1

)
= (1 + z)B(α)

n (z) +
(

α + n
n + 1

)
zn+1 = B(α)

n+1(z).

This concludes the proof. �

Proposition 7.1 For 0 < α ≤ 1, all the zeros of the polynomial B(α)
n lie in the half-plane

Re(z) < 0.

Proof The condition 0 < α ≤ 1 guarantees that the coefficients of the polynomial H (α)
n

defined in (7.2) are positive. The successive ratios of the coefficients of H (α)
n are

ξk =
(
α–1+k

k
)

(
α+k
k+1

) =
k + 1
α + k

, 0 ≤ k ≤ n – 1,

which, for 0 < α ≤ 1, are non-increasing as k runs from 0 to n – 1. Thus by the Eneström–
Kakeya Theorem 7.1, the zeros of H (α)

n are contained in the annulus

ξn–1 =
n

n + α – 1
≤ |z| ≤ ξ0 =

1
α

.
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Since –1 is not a zero of B(α)
n and in view of Lemma 7.1, the zeros of B(α)

n satisfy

n
n + α – 1

≤
∣∣∣∣ z
1 + z

∣∣∣∣ ≤ 1
α

. (7.4)

Thus, we have

α ≤
∣∣∣∣1

z
+ 1

∣∣∣∣ ≤ n + α – 1
n

(7.5)

and for each zero z of Bα
n , 1/z lies in a ring with center (–1, 0) and radii smaller than 1.

Thus, each zero z of Bα
n satisfies Re(z) < 0. �

Propositions 6.1, 7.1, and (7.1) clearly prove the following.

Corollary 7.1 The restricted Stenger conjecture holds for Un for Laguerre polynomials L(α)
n

when 0 < α ≤ 1.

Remark 7.1 One can improve Corollary 7.1 by using the results in [6], where it is shown
that for n ≥ 2 and –1 < α ≤ 1, the polynomial

n∑
k=0

(
dk

dxk L(α,M)
n (x)

)
x=0

(–z)k

is Hurwitz stable, where L(α,M)
n is the Laguerre–Koornwinder polynomials defined by

L(α,M)
n (x) =

(
1 +

(
n + α

n – 1

))
L(α)

n (x) + M
(

n + α

n

)
d

dx
L(α)

n (x), M ≥ 0.

Thus, in virtue of Proposition 6.1, the restricted Stenger conjecture for Un holds for
Laguerre–Koornwinder polynomials when –1 < α ≤ 1. The advantage of the proof of
Corollary 7.1 we have provided is that it can be applied to other orthogonal polynomi-
als using Eneström–Kakeya theorem or the many existing variants of it.

8 Restricted Stenger conjecture and blossoming
The notion of polar form (or blossom) (Ramshaw, 1989) associated with a polynomial P of
degree n is defined as follows:

Definition 8.1 Let P be a complex polynomial of degree less or equal to n. There exists
a unique multi-affine, symmetric function in n variables p: Cn −→ C such that for each z
in C we have p(z, z, . . . , z) = P(z). The function p is called the polar form or the blossom of
the polynomial P.

Consider the following bilinear de Boor–Fix operator on the space of polynomials of
degree less than or equal to n defined as follows: for two given polynomials P, Q of degree
less than or equal to n, we define

[P, Q]n =
n∑

k=0

(–1)k

n!
P(k)(τ )Q(n–k)(τ ). (8.1)
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The expression [P, Q]n is independent of τ and for any complex numbers u1, u2, . . . , un and
any degree n polynomial P, we have

[
P(z), (z – u1)(z – u2) . . . (z – un)

]
n = p(u1, u2, . . . , un), (8.2)

where p is the polar form of the polynomial P.
In the following, for generality, we assume that the x1, x2, . . . , xn in the definition of the

resticted matrices Un and Vn are arbitrary distinct real numbers in the interval [a, b].

Theorem 8.1 The eigenvalues of the restricted matrices Un and Vn coincide with the zeros
of the polynomials

�n(z) = n!znfn

(
a – x1

z
,

a – x2

z
, . . . ,

a – xn

z

)
,

and

	n(z) = n!znfn

(
x1 – b

z
,

x2 – b
z

, . . . ,
xn – b

z

)

respectively, where fn is the polar form of Fn; the degree n truncation of the exponential
function, i.e.,

Fn(t) =
n∑

k=0

tk

k!
. (8.3)

Proof Denote by Rn the polynomial

Rn(t) =
n∑

k=0

(a – t)k

k!
zn–k .

We have R(k)
n (a) = (–1)kzn–k . Thus, the polynomial �n defined in (6.1) can be written as

�n(z) =
n∑

k=0

(–1)kR(k)
n (a)π (n–k)

n (a) = n![Rn,πn]n.

Therefore, from (8.2), we have �n(z) = n!rn(x1, x2, . . . , xn), where rn is the blossom of the
polynomial Rn. Moreover, from the definition of blossom, it is clear that

rn(x1, x2, . . . , xn) = znfn

(
a – x1

z
,

a – x2

z
, . . . ,

a – xn

z

)
.

This concludes the proof for Un. Similar arguments provide a proof for Vn. �

We need the well-known coincidence theorem of Walsh and thus the need to define
circular regions in the complex planes.

A circular region of the complex plane is defined as the image of either the closed or the
open unit disc under a non-singular Moebius maps γ (z) of the form

γ (z) =
az + b
cz + d

,
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where a, b, c, and d are complex numbers such that ad – bc �= 0. Moebius maps are 1 – 1
mapping of the extended plane into itself with the property of mapping every circle to
either a circle or a line, and every line to either a circle or a line. A circular region is one of
the following: an open disk, a closed disk, an open half-plane, a closed half-plane including
∞, the open exterior of a circle including ∞, or a closed exterior of a circle including ∞.

Theorem 8.2 (Walsh coincidence theorem [9]). Let f be a symmetric multi-affine func-
tion of n complex variables and total degree n. Let u1, u2, . . . , un be n complex numbers
which lie in a circular region C . Then, there exists a ζ in C such that

f (u1, u2, . . . , un) = f (ζ , ζ , . . . , ζ ).

From the previous theorem, we deduce the following.

Corollary 8.1 The restricted Stenger conjecture holds for Un and Vn, with 1 ≤ n ≤ 4, for
any weight function ω.

Proof One can verify that the truncation polynomial of the exponential; Fn; for 1 ≤ n ≤
4 has all its zeros in the circular region H– = {z ∈ C|Re(z) < 0}. Let us assume that the
polynomial �n has a zero η with Re(η) ≤ 0. Then, we have

fn

(
a – x1

η
,

a – x2

η
, . . . ,

a – xn

η

)
= 0.

Since the complex numbers (a–xi)/η, i = 1, 2, . . . , n, belong to the circular region H+ = {z ∈
C|Re(z) ≥ 0}, by Walsh coincidence theorem, there exists ξ ∈H+ such that fn(ξ , ξ , . . . , ξ ) =
Fn(ξ ) = 0. This leads to a contradiction when 1 ≤ n ≤ 4. Similar arguments can be applied
to prove the theorem for Vn with 1 ≤ n ≤ 4. �

Remark 8.1 In the proof of Corollary 8.1, the only used property of the zeros of the or-
thogonal polynomials is that they are real distinct and lie in the interval [a, b]. Thus, the
conclusion of Corollary 8.1 remains true if we define the restricted matrices Un and Vn

with arbitrary distinct real numbers xi, i = 1, 2, . . . , n, in the interval ]a, b[ with 1 ≤ n ≤ 4.

9 Restricted Stenger conjecture and collocation Runge–Kutta methods
Let c1, c2, . . . , cn, be a set of n distinct collocation points in the interval [0, 1]. The collo-
cation method of degree n based on the points ci gives as a solution of the differential
equation

y′(t) = f
(
t, y(t)

)
, y(t0) = y0,

in each integration interval [t0, t0 + h], as y1 = P(t0 + h), where the collocation polynomial
P is defined by

P(t0) = y0,

P′(t0 + cih) = f
(
t0 + cih, P(t0 + cih)

)
.
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Given b = (bi), A = (ai,j) (i, j = 1, . . . , s) with bi and ai,j real numbers and let ci =
∑s

j=1 ai,j. An
s-stage Runge–Kutta method for solving the initial-value problem is given by

ki = f

(
t0 + cih, y0 + h

s∑
j=1

ai,jkj

)
, i = 1, . . . , s,

y1 = y0 + h
s∑

i=1

biki.

In [10], it is shown that a collocation method based on c1, c2, . . . , cn is equivalent to the
Runge–Kutta method with matrix A and coefficient b given by

aij =
∫ ci

0
�n

j (τ ) dτ and bi =
∫ 1

0
�n

i (τ ) dτ , i, j = 1, 2, . . . , n, (9.1)

where �n
i (τ ) are the elementary Lagrange interpolation polynomials based on ci. Moreover,

the order of the collocation method coincides with the order of the underlying quadrature
formula. The stability function of the Runge-Kutta method is given by

R(z) =
det(I – zA + zebT )

det(I – zA)
; e = (1, 1, . . . , 1)T ,

and the stability region of the method is defined by

S =
{

z ∈C,
∣∣R(z)

∣∣ ≤ 1
}

.

A Runge–Kutta is said to be A-stable if its stability region satisfies

H– ⊂ S.

Theorem 9.1 The stability function of the collocation Runge–Kutta method with data
(9.1) is given by

R(z) =
fn((1 – c1)z, (1 – c2)z, . . . , (1 – cn)z)

fn(–c1z, –c2z, . . . , –cnz)
, (9.2)

where fn is the blossom of the degree n truncation of the exponential function Fn.

Proof One should note that the matrix A is nothing but the matrix Un with xi = ci,
i = 1, 2, . . . , n and [a, b] = [0, 1] and similarly the matrix A – ebT is the matrix –Vn. Thus,
according to Theorem 8.1, we have

det(I – zA) = (–1)nzn det

(
Un –

1
z

I
)

=
zn

n!
�n

(
1
z

)
= fn(–c1z, –c2z, . . . , –cnz).

Similarly, we have

det
(
I – zA + zebT)

= fn
(
(1 – c1)z, (1 – c2)z, . . . , (1 – cn)z

)
.

This concludes the proof. �
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Figure 1 Order-star configuration of Legendre (top left), Chebyshev first kind (top right), Chebyshev second
kind (bottom left), and Gegenbauer with μ = 1.4 (bottom right) collocation Runge–Kutta methods for n = 5.
The configurations show the A-stability of the methods

Corollary 9.1 For symmetric weight functions ω over the interval [0, 1], the A-stability of
the collocation Runge–Kutta method with c1, c2, . . . , cn, as the zeros of the associated orthog-
onal polynomial πn is equivalent to the validity of the restricted Stenger conjecture for ω.

Proof If the method is A-stable, then necessarily the poles of R belongs to the complex
right half-plane and therefore the restricted Stenger conjecture holds for ω. Let us now
assume that the restricted Stenger conjecture holds for ω. Since the weight function is
symmetric over the interval [0, 1], the zeros c1, c2, . . . , cn, are symmetric with respect to
the interval [0, 1]. Thus

fn(–c1iα, –c2iα, . . . , –cniα) = fn
(
(1 – c1)iα, (1 – c2)iα, . . . , (1 – cn)iα

)

for any real number α. Therefore, |R(z)| = 1 for z in the imaginary axis. Moreover, since

lim
z→∞ R(z) = (–1)n

and R has no poles in the complex left half-plane, we conclude thatH– ⊂ S. This concludes
the proof. �

From the previous corollary and Theorem 6.1, we conclude the following.

Corollary 9.2 The collocation Runge-Kutta methods based on the zeros of the shifted Ja-
cobi polynomials P̃(α,α)

n (x) with –1 < α ≤ 1 are A-stable. In particular, this is true for (see
Fig. 1)

• Shifted Chebyshev polynomials P̃(–1/2,–1/2)(x)
• Shifted Gegenbauer polynomials P̃(μ–1/2,μ–1/2)(x); –1/2 < μ ≤ 3/2
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Similarly, from Corollary 8.1, we conclude that any collocation Runge–Kutta method
based on collocation points c1, c2, . . . , cn symmetric with respect to the interval [0, 1], with
1 ≤ n ≤ 4, is A-stable.

10 Conclusion
In this paper, we have shown the validity of the extended and restricted Stenger conjec-
tures for a family of weight functions with specific properties. As applications, we proved
the validity of the conjecture for a family of Jacobi and generalized Laguerre orthogonal
polynomials. We related the restricted Stenger conjecture to the A-stability of collocation
Runge-Kutta method when the collocation points are symmetric with respect to the inter-
val [0, 1]. This enabled us to prove the A-stability of a large family of collocation methods.
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