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Abstract
In this paper, we study a variational inequality arising from variable annuity (VA) to
find the optimal surrender strategy for a VA investor when the underlying asset
follows a mean reverting process. We formulate the problem as a free boundary
partial differential equation (PDE) to obtain the optimal strategy. The PDE is solved
analytically by the Mellin transform approach. Using the Mellin transform, we derive
the integral equations for the value of the VA and the optimal surrender boundary.
Since the solutions are obtained as the integral equations, we use the recursive
integration method to determine the optimal surrender strategy. Finally, we provide
the optimal surrender boundaries and values of VA with respect to some significant
parameters to show the impacts of mean reversion.

Keywords: Variable annuity; Optimal surrender boundary; Variational inequality;
Mean reversion

1 Introduction
A variable annuity (VA) is one of the most popular insurance contracts because it pro-
vides benefits that depend on the performance of an investment fund, unlike a traditional
annuity. The policyholders in VA contracts can choose to pay in installments or a lump
sum. However, they also have some risks because their payments are invested in various
risky financial assets. To minimize the negative effects of financial market risk, most pol-
icyholders prefer VA contracts with various benefits such as guaranteed minimum death
benefit (GMDB), guaranteed minimum accumulation benefit (GMAB), guaranteed min-
imum income benefit (GMIB), and guaranteed minimum withdrawal benefit (GMWB),
etc.

Many researchers have recently focused on the pricing and hedging of VAs. In particular,
we examine studies on VA contracts with surrender options. Bernard et al. [1] presented
the fair price of a VA and proposed the optimal surrender strategy for it. They derived
a formula by decomposing the price into an early exercise premium and the European
part value. Shen et al. [2] addressed a guaranteed minimum maturity benefit (GMMB)
embedded in a VA with a surrender option as a free boundary problem of an American
put option. The authors derived a formula for the value of GMMB as a semi-closed form
integral expression using a partial differential equation (PDE) approach and employed nu-
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merical integration techniques to examine the impacts of significant factors such as sur-
render fees and insurance charges. In fact, valuing a VA contract requires consideration
of the optimal surrender boundary, which transforms the problem into a free boundary
problem similar to pricing American options. Numerous researchers have recently stud-
ied different American-style options, including perpetual game options [3–5], American
capped options [6], American strangle options [7–9] and cancellable American options
[10–12], utilizing various approaches.

In addition, there have been studies that have expanded the investigation of VA con-
tracts. Jeon and Kwak [13] considered path-dependent guarantees with the optimal sur-
render boundary in VA contracts. They also studied a VA contract with a surrender guar-
antee before maturity [14]. Additionally, Kang and Ziveyi [15] analyzed the surrender be-
havior of policyholders in a VA embedded with a guaranteed minimum maturity benefit
rider under stochastic volatility and interest rate. The authors dealt with a 4-dimensional
PDE to determine the optimal surrender strategy and numerically solved the PDE using
the method of lines approach. Jeon and Kim [16] adopted the Laplace–Carson transform
approach for the efficient valuation of a VA with a surrender option and found that the
Gaver–Stehfest method is the most efficient for valuation. More recently, Jia et al. [17]
proposed an innovative machine learning method for estimating a surrender charge for
VAs, balancing human behavior and logical optimality.

This paper focuses on VA contracts with surrender options and provides the optimal
surrender strategy for VA investors based on a PDE approach. Specifically, we first con-
sider a mean-reverting model to develop the pricing model for a VA. Mean-reverting mod-
els have been widely used for the valuation of various derivatives. Schwartz [18] proposed
a mean-reverting process for the pricing and hedging of commodity contingent claims.
Sorensen [19] employed a mean-reverting process for currency exchange rates and con-
sidered American currency options under this process. Hui and Lo [20] studied the pric-
ing of options with barriers under a mean-reverting model. Wong and Lau [21] addressed
exotic path-dependent options based on the work of Hui and Lo [20] and provided an
efficient and accurate approach for valuing options under the mean-reverting model. In
this sense, we also study a VA contract with a surrender option under the mean-reverting
model.

The Mellin transform approach has been widely utilized in recent years to solve PDEs
with various derivatives since it has the advantage of transforming the given PDE into
a simple ODE. There have been several research works on various derivatives such as
vulnerable options [22–27], Asian options [28, 29], barrier options [30–32], commodity
futures [33], and so on since Panini and Srivastav [34] first proposed the Mellin trans-
forms for valuing European and American options. For this investigation, we also employ
the Mellin transform technique. Specifically, we establish the integral equations for the
value of a VA contract using the Mellin transform approach and demonstrate the optimal
boundaries for the optimal surrender decisions in the VA contract when the underlying
asset follows the model with mean reversion. Our main contribution is deriving an ana-
lytic solution, using the Mellin transform, for the partial differential equation arising from
a variable annuity with the underlying state variable following an exponential Ornstein–
Uhlenbeck process. To the best of my knowledge, utilizing the Mellin transform is the
simplest approach among the methods available to derive such a solution.
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The rest of this paper is organized as follows. In Sect. 2, we propose the problem for
optimal surrender decision of a VA under the mean reversion model. In Sect. 3, we derive
the integral equation for the optimal surrender boundaries based on the Mellin transform
approach. In Sect. 4, using the results in Sect. 3, we provide some numerical examples
of how mean reversion impacts the movement of optimal boundaries and VA values. We
present the concluding remarks in Sect. 5. Finally, we provide the properties of the Mellin
transform used in this paper in the Appendix.

2 Model
In this paper, we consider the variable annuity contract with a constant guaranteed mini-
mum accumulation benefit at maturity T in the commodity market. It is well known that
many underlying assets of option contracts, such as currencies, commodities, energy, tem-
perature, and even some stocks, exhibit mean reversion (Schwartz [18], Wong and Lau
[21], Chiu et al. [35]). In this paper, as in Knoller et al. [36], we assume that the underlying
fund Ft satisfies the following stochastic differential equation (SDE) under the risk-neutral
measure Q:

dFt =
(

κ

(
θ +

σ 2

2κ
– log Ft

)
– c

)
Ft dt + σFt dWt , (1)

where r > 0 is the instantaneous risk-free interest rate, κ is the mean reversion rate, θ is the
long-term mean, σ > 0 is the volatility of the underlying asset, and c is the proportional
insurance fee. We assume that all parameters r,κ , θ ,σ , and c are constants. (Wt)T

t=0 is a
one-dimensional standard Brownian motion defined on the probability space (�,G,Q),
where G is the natural filtration generated by (Wt)T

t=0. Note that the insurance company
withdraws a percentage c from the policyholder’s account. Since the VA contract guaran-
tees a minimum accumulation benefit, this assumption is reasonable.

For simplicity, let us denote μ by

μ = θ +
σ 2

2κ
–

c
κ

. (2)

Since the VA contract guarantees the minimum accumulation benefit, the insurer will
provide

max(FT , G),

where G is the guarantee level and constant, to the policyholder at the maturity T .
Similar as in Bernard et al. [1], we assume that the policyholder is able to surrender the

VA contract at any time t before the maturity T . Then the surrender benefit of the VA
contract is equal to

e–p(T–t)Ft ,

where p ≥ 0 is the constant penalty rate.

Remark 1 There are several types of surrender benefit. In [1], the surrender benefit is
defined as e–p(T–t)Ft , whereas in [14] the surrender benefit is defined as e–p(T–t) max{Ft , G}.
We adopt the surrender benefit in [1].
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Let V (t, Ft) be our VA contract’s value at time t before surrender. Then the value V (t, Ft)
of the VA contract is written as the following optimal stopping problem.

Problem 1 Under the risk-neutral measure Q, the value V (t, Ft) of the VA contract with
surrender benefit e–p(T–t) max(Ft , G) is given by

V (t, f ) = sup
θ∈S(t,T)

EQ
[
e–r(θ–t)(e–p(T–θ )Fθ 1{θ<T} + max(FT , G)1{θ=T}

)|Ft = f
]
, (3)

where S(t, T) is the set of all G-stopping times taking values in [t, T] and EQ[·|Ft] is the
conditional expectation under the risk-neutral measure Q.

3 Optimization problem with variational inequality
By a standard approach for the optimal stopping problem (see Peskir and Shiryaev [37]),
the value function V (t, f ) solution to Problem 1 satisfies the following variational inequal-
ity:

⎧⎪⎪⎨
⎪⎪⎩

∂tV + LV ≤ 0 if V (t, f ) = e–p(T–t)f and (t, f ) ∈D,

∂tV + LV = 0 if V (t, f ) > e–p(T–t)f and (t, f ) ∈D,

V (t, f ) = max{f , G} for f > 0,

(4)

where L is given by

L =
σ 2

2
f 2 ∂2

∂f 2 + κ(μ – log f )f
∂

∂f
– r (5)

and D ≡ {(t, f )|0 < t < T , 0 < f < ∞}.
In terms of the value function V (t, f ), we can define the continuation region CR and the

surrender region SR as

CR =
{

(t, f ) ∈D|V (t, f ) > e–p(T–t)f
}

and SR =
{

(t, f ) ∈D|V (t, f ) = e–p(T–t)f
}

. (6)

There exists the optimal surrender boundary B(t) that separates SR from CR and is
defined as

B(t) = sup
{

f > 0|(t, f ) ∈ CR
}

. (7)

The continuation region CR, the surrender region SR, and the optimal surrender bound-
ary B(t) are presented in Fig. 1.

Remark 2 Since

log Ft = log F0e–κt + μ
(
1 – e–κt) + e–κt

∫ t

0
σ eκs dWs, (8)

the existence of the optimal surrender boundary B(t) can be shown in a similar way to
Proposition 3.2 in [38].
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Figure 1 The continuation region CR, the surrender region SR, and the optimal surrender boundary B(t) of
V(t, f )

Then we can rewrite the two regions CR and SR as

CR =
{

(t, f ) ∈D|0 < f < B(t)
}

and SR =
{

(t, f ) ∈D|B(t) ≤ f < ∞}
. (9)

At the boundary f = B(t), the smooth-pasting condition or the super-contact condition of
V (t, f ) holds, i.e.,

V
(
t,B(t)

)
= 0 and ∂f V

(
t,B(t)

)
= 0. (10)

Since ∂tV + LV = 0 in CR and V = e–p(T–t)f in SR, V (t, f ) satisfies the following nonho-
mogeneous PDE:

∂tV + LV = e–p(T–t)(p + κμ – r – log f )f 1{B(t)<f } and V (T , f ) = max{f , G}. (11)

We now provide the analytic representation formula for the value function V (t, f ) and
the optimal surrender boundary B(t) based on the Mellin transform approach.

Let us denote the time-reversed process of V (t, f ) and B(t) by

Ṽ (τ , f ) = V (T – τ , f ) and B̃(τ ) = B(T – τ ) (12)

with τ = T – t.
On the domain D̃ = {(τ , f )|0 < τ ≤ T , 0 < f < ∞}, the nonhomogeneous PDE (11) can be

transformed into

–∂τ Ṽ + LṼ = �(τ , f ) and Ṽ (0, f ) = ζ (f ), (13)

where

�(τ , f ) = e–pτ (p + κμ – r – κ log f )f 1{B̃(τ )<f } and ζ (f ) = max{f , G}. (14)

Since the f -domain of the nonhomogeneous PDE (11) is given by 0 < f < ∞, the Mellin
transform to the PDE can be applied. The Mellin transform of Ṽ (τ , f ), VM(τ , x), is defined



Jeon and Kim Journal of Inequalities and Applications         (2023) 2023:99 Page 6 of 20

as

VM(τ , x) ≡M
{

Ṽ (τ , f )
}

=
∫ ∞

0
Ṽ (τ , f )f x–1 dx,

where x is a complex variable. We provide the definition and the basic properties of the
Mellin transform in the Appendix.

Then PDE (13) can be transformed as
⎧⎨
⎩

– ∂VM
∂τ

+ σ 2

2 x(x + 1)VM – κμxVM + κ ∂
∂x (xVM) – rVM = �M(τ , x),

VM(0, x) = ζM(x),
(15)

where we have used the properties of the Mellin transform in Proposition 4, and �M(τ , x)
and ζM(x) are the Mellin transform of �(τ , f ) and ζ (f ), respectively.

To transform PDE (15) to an ODE, let us denote VM(τ , x) by

VM(τ , x) = 
(ξ , z) with ξ = τ , z = log x + κτ . (16)

It follows from PDE (15) and substitution (16) that 
(ξ , x) satisfies
⎧⎨
⎩

– ∂

∂ξ

+ �(ξ , z)
 = �M(ξ , ez–κξ ),


(0, z) = ζM(ez),
(17)

where

�(ξ , z) =
σ 2

2
e2(z–κξ ) +

(
σ 2

2
– κμ

)
ez–κξ – (r – κ). (18)

By multiplying the integrating factorJ (ξ , z) ≡ exp{∫ ξ

0 �(η, z) dη} on both sides of the first-
order ODE (17), we have


(ξ , z) = ζM
(
ez)eJ (ξ ,z) –

∫ ξ

0
�M

(
y, ez–κy)eJ (ξ–y,z) dη dy, (19)

where we have used the fact

J (ξ , z) – J (y, z) = J (ξ – y, z).

From substitution (16), we obtain the solution to (15) in the following proposition.

Proposition 1 The solution for VM(τ , x) is given by

VM(τ , x) = ζM
(
eκτ x

)
e�(τ ,x) –

∫ τ

0
�M

(
y, xeκ(τ–y))e�(τ–y,x) dy, (20)

where �(τ , x) is defined as

�(τ , x) ≡ J
(
τ , eκτ x

)

=
σ 2

2
1 – e–2κτ

2κ
e2κτ x2 +

(
σ 2

2
– κμ

)
1 – e–κτ

κ
eκτ x – (r – κ)τ . (21)
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3.1 Inverting the Mellin transform
Having now obtained VM(τ , x), it is necessary to recover V (τ , f ), the value of the VA con-
tract in the (τ , f )-domain. Taking the inverse Mellin transformation of (20) in Proposi-
tion 1 yields

V (t, f ) = M–1{ζM
(
eκτ x

)
e�(τ ,x)} – M–1

{∫ τ

0
�M

(
y, xeκ(τ–y))e�(τ–y,x) dy

}

≡ VE(t, f ) + VEP(t, f ).
(22)

To calculate (22), let us define H(t, f ) by

H(t, f ) ≡ 1
2π i

∫ c+∞

c–i∞
e�(t,x)f –x dx. (23)

Note that e�(t,x) is the Mellin transform of H(t, f ).

Lemma 1

H(t, f ) = exp

{
–(r – κ)t – A(t)

(
β(t)

)2 –
1

4A(t)
(log f )2

}
× 1

2
(
πA(t)

)– 1
2 f β(t), (24)

where

A(t) =
1
2
(
v(t)

)2e2κt with v(t) = σ

√
1 – e–2κt

2κ
,

β(t) =
(

1 –
2κμ

σ 2

)
1 – e–κt

1 – e–2κt e–κt .
(25)

Proof It follows from the definition of �(t, s) in (21) that

�(t, x) =
σ 2

2
1 – e–2κt

2κ
e2κt

(
x +

(
1 –

2κμ

σ 2

)
1 – e–κt

1 – e–2κt e–κt
)2

– (r – κ)t

–
σ 2

2
1 – e–2κt

2κ

(
1 –

2κt
σ 2

)2( 1 – e–κt

1 – e–2κt

)2

= –(r – κ)t – A(t)
(
β(t)

)2 + A(t)
(
x + β(t)

)2.

(26)

Since A(t) ≥ 0 for all t ≥ 0, it follows from Proposition 5 that

H(t, f ) =
1

2π i

∫ c+iπ

c–iπ
e�(t,x)f –x dx

= exp
{

–(r – κ)t – A(t)
(
β(t)

)2 + A(t)
} 1

2π i

∫ c+iπ

c–iπ
eA(t)(x+β(t))2

f –x dx

= exp

{
–(r – κ)t – A(t)

(
β(t)

)2 –
1

4A(t)
(log f )2

}

× 1
2
(
πA(t)

)– 1
2 f β(t).

(27)

�
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Lemma 2 For any K > 0, the following relationships hold:

∫ ∞

K
e–κtH

(
t,

f
u

)
du
u

= e–rt�

(
log f

K – 2A(t)β(t)√
2A(t)

)
,

∫ K

0
e–κtH

(
t,

f
u

)
du
u

= e–rt�

(
–

log f
K – 2A(t)β(t)√

2A(t)

)
,

∫ ∞

K
e–κtue–κtH

(
t,

f
u

)
du
u

= e–rt–2A(t)β(t)e–κt+A(t)e–2κt
f e–κt

�

(
log f

K – 2A(t)(β(t) – e–κt)√
2A(t)

)

(28)

and

∫ ∞

K
e–κtue–κt

log ue–κtH
(

t,
f
u

)
du
u

= e–rt–2A(t)β(t)e–κt+A(t)e–2κt
f e–κt (

e–κt log f – 2A(t)β(t)e–κt + 2A(t)e–2κt)

× �

(
log f

K – 2A(t)(β(t) – e–κt)√
2A(t)

)

+ e–rt–2A(t)β(t)e–κt+A(t)e–2κt
f e–κt

e–κt
√

2A(t)n
(

log f
K – 2A(t)(β(t) – e–κt)√

2A(t)

)
,

(29)

where �(·) is the standard normal cumulative distribution function, n(·) is the standard
normal probability density function, and A(t) and β(t) are defined in Lemma 1.

Proof It follows from Lemma 1 that

∫ ∞

K
e–κtue–κtH

(
t,

f
u

)
du
u

= e–rt–A(t)(β(t))2
f e–κt

∫ ∞

K

1
2
(
πA(t)

)– 1
2

(
f
u

)β(t)–e–κt

e– 1
4A(t) (log (f /u))2 du

u

= –e–rt–A(t)(β(t))2
f e–κt

∫ –∞

log f
K

1
2
(
πA(t)

)– 1
2 eν(β(t)–e–κt )e– 1

4A(t) ν
2

dν

(
ν = log

f
u

)

= e–rt–2A(t)β(t)+A(t)e–2κt
f e–κt

∫ (log f
K –2A(t)(β(t)–e–κt))/

√
2A(t)

–∞
1√
2π

e– 1
2 v2

dv

= e–rt–2A(t)β(t)e–κt+A(t)e–2κt
f e–κt

�

(
log f

K – 2A(t)(β(t) – e–κt)√
2A(t)

)
.

(30)

Similarly, we can easily derive

∫ ∞

K
e–κtH

(
t,

f
u

)
du
u

= e–rt�

(
log f

K – 2A(t)β(t)√
2A(t)

)
,

∫ K

0
e–κtH

(
t,

f
u

)
du
u

= e–rt�

(
–

log f
K – 2A(t)β(t)√

2A(t)

)
.
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On the other hand,

∫ ∞

K
e–κtue–κt

log ue–κtH
(

t,
f
u

)
du
u

=
∫ ∞

K
e–κtue–κt

e–κt
(

log
u
f

+ log f
)
H

(
t,

f
u

)
du
u

= e–κt log f
∫ ∞

K
e–κtue–κtH

(
t,

f
u

)
du
u

+ e–κt
∫ ∞

K
e–κtue–κt

log
u
f
H

(
t,

f
u

)
du
u

= e–rt–2A(t)β(t)e–κt+A(t)e–2κt
f e–κt

�

(
log f

K – 2A(t)(β(t) – e–κt)√
2A(t)

)
× e–κt log f

+ e–κt
∫ ∞

K
e–κtue–κt

log
u
f
H

(
t,

f
u

)
du
u

.

(31)

The second term in the last equality in (31) can be written as

e–κt
∫ ∞

K
e–κtue–κt

log
u
f
H

(
t,

f
u

)
du
u

= –e–rt–A(t)(β(t))2
f e–κt

e–κt
∫ ∞

K

1
2
(
πA(t)

)– 1
2

(
f
u

)β(t)–e–κt

log
f
u

e– 1
4A(t) (log (f /u))2 du

u

= e–rt–A(t)(β(t))2
f e–κt

e–κt
∫ –∞

log f
K

1
2
(
πA(t)

)– 1
2 νeν(β(t)–e–κt )e– 1

4A(t) ν
2

dν

(
ν = log

f
u

)

= e–rt–2A(t)β(t)e–κt+A(t)e–2κt
f e–κt

e–κt
∫ –∞

log f
K

1
2
(
πA(t)

)– 1
2 νe– 1

4A(t) (ν–2A(t)(β(t)–e–κt))2
dν

= e–rt–2A(t)β(t)e–κt+A(t)e–2κt
f e–κt (

–2A(t)β(t)e–κt + 2A(t)e–2κt)

× �

(
log f

K – 2A(t)(β(t) – e–κt)√
2A(t)

)

+ e–rt–2A(t)β(t)e–κt+A(t)e–2κt
f e–κt

e–κt
√

2A(t)n
(

log f
K – 2A(t)(β(t) – e–κt)√

2A(t)

)
.

(32)

It follows from (31) and (32) that

∫ ∞

K
e–κtue–κt

log ue–κtH
(

t,
f
u

)
du
u

= e–rt–2A(t)β(t)e–κt+A(t)e–2κt
f e–κt (

e–κt log f – 2A(t)β(t)e–κt + 2A(t)e–2κt)

× �

(
log f

K – 2A(t)(β(t) – e–κt)√
2A(t)

)

+ e–rt–2A(t)β(t)e–κt+A(t)e–2κt
f e–κt

e–κt
√

2A(t)n
(

log f
K – 2A(t)(β(t) – e–κt)√

2A(t)

)
. �

Theorem 1 The value V (t, s) of the VA contract is given by

V (t, f ) = VE(t, f ) + VEP(t, f ), (33)
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where

VE(t, f ) = e–rτ+θ (1–e–κτ )+(v(τ ))2
f e–κτ

�

(
d1

(
τ ,

f
G

))
+ Ge–rτ�

(
–d2

(
τ ,

f
G

))
,

VEP(t, f ) = e–pτ

∫ τ

0
e–(r–p)y+θ (1–e–κy)+ 1

2 (v(y))2
f e–κy

[
(r – p – κμ)�

(
d1

(
y,

f
B(t + y)

))

+ κ
(
e–κy log f + θ

(
1 – e–κy) +

(
v(y)

)2))�
(

d1

(
y,

f
B(t + y)

))

+ κv(y)n
(

d1

(
y,

f
B(t + y)

))]
dy

(34)

and τ = T – t, μ defined in (2),

d1(t, f ) =
e–κt log f + θ (1 – e–κt) + (v(t))2

v(t)
, d2(t, f ) = d1(t, f ) – v(t),

v(t) = σ

√
1 – e–2κt

2κ
, θ = μ –

σ 2

2κ
.

(35)

Proof By Proposition 4, we can easily deduce that ζM(eκτ x) and �M(y, eκ(τ–y)x) are the
Mellin transforms of ζ (f e–κτ )e–κτ and �(y, f e–κ(τ–y) )e–κ(τ–y), respectively. It follows from the
Mellin convolution theorem in Proposition 6 that

V (t, f ) = M–1{ζM
(
eκτ x

)
e�(τ ,x)} – M–1

{∫ τ

0
�M

(
y, xeκ(τ–y))e�(τ–y,x) dy

}

=
∫ ∞

0
ζ
(
ue–κτ )

e–κτH
(

τ ,
f
u

)
du
u

–
∫ τ

0

∫ ∞

0
�

(
y, ue–κ(τ–y))

e–κ(τ–y)H
(

τ – y,
f
u

)
du
u

dy

=
∫ ∞

0
ζ
(
ue–κτ )

e–κτH
(

τ ,
f
u

)
du
u

–
∫ τ

0

∫ ∞

0
�

(
τ – y, ue–κy)

e–κyH
(

y,
f
u

)
du
u

dy

=
∫ ∞

0
max{u, G}e–κτH

(
τ ,

f
u

)
du
u

+ e–pτ

∫ τ

0

∫ ∞

0

(
r – p – κμ + κ log ue–κy)

ue–κy

× 1{B̃(τ–y)<ue–κy }e
pye–κyH

(
y,

f
u

)
du
u

dy

=
∫ ∞

Geκt
ue–κτ

e–κτH
(

τ ,
f
u

)
du
u

+ G
∫ Geκt

0
e–κτH

(
τ ,

f
u

)
du
u

+ e–pτ

∫ τ

0

∫ ∞

(B̃(τ–y))eκy

(
r – p – κμ + κ log ue–κy)

ue–κy
epye–κyH

(
y,

f
u

)
du
u

dy.
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Since B̃(τ – y) = B(T – (τ – y)) = B(t + y), it follows from Lemma 2 and the definitions of
A(t) and β(t) that we obtain the desired results. �

From Theorem 1 and the smooth pasting condition (10), we can directly obtain the in-
tegral equation of the optimal stopping boundary B(t).

Corollary 1 The optimal stopping boundary z(t) satisfies the following integral equation:

e–p(T–t)B(t) = VE
(
t,B(t)

)
+ VEP

(
t,B(t)

)
. (36)

Proposition 2 When the time to maturity T –t goes to zero, the optimal stopping boundary
B(t) goes to G, i.e.,

lim
t→T–

B(t) = max
{

G, e
p+κμ–r

κ
}

. (37)

Proof We first show B(T–) ≥ G. If B(T–) < G, then

lim
t→T–

VE
(
t,B(t)

)
= lim

t→T–

[
e–rτ+θ (1–e–κτ )+(v(τ ))2(B(t)

)e–κτ

�

(
d1

(
τ ,

B(t)
G

))

+ Ge–rτ�

(
–d2

(
τ ,

B(t)
G

))]
= G

(38)

and

lim
t→T–

VEP
(
t,B(t)

)
= 0. (39)

It follows from

B(T–) = lim
t→T–

e–p(T–t)B(t) = lim
t→T–

V
(
t,B(t)

)

= lim
t→T–

VE
(
t,B(t)

)
+ lim

t→T–
VEP

(
t,B(t)

) (40)

that

B(T–) = G.

Since this contradicts B(T–) < G, we conclude that B(T–) ≥ G.
From the variational inequality in (4), for any (t, f ) ∈ SR,

∂tV + LV ≤ 0.

Since V (t, f ) = e–p(T–t)f in SR, we have f ≥ e
p+κμ–r

κ for all (t, f ) ∈ SR.
This implies that

B(T–) ≥ B̂ ≡ max
{

G, e
p+κμ–r

κ
}

.
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Let us temporarily denote Ṽ by

Ṽ (t, f ) = ep(T–t)V (t, f ).

Then Ṽ (t, f ) satisfies

⎧⎪⎪⎨
⎪⎪⎩

∂tṼ + LpṼ ≤ 0 if Ṽ (t, f ) = f and (t, f ) ∈D,

∂tṼ + LpṼ = 0 if Ṽ (t, f ) > f and (t, f ) ∈D,

Ṽ (t, f ) = max{f , G} for f > 0,

(41)

where Lp is given by

Lp =
σ 2

2
f 2 ∂2

∂f 2 + κ(μ – log f )f
∂

∂f
– (r – p). (42)

If B(T–) > B̂, then there exists a domain Dε = {T – ε ≤ t ≤ T , B̂ < f < B(T–)} ⊂ CR for
any sufficiently small ε > 0 such that

∂tṼ (t, f ) + LpṼ (t, f ) = 0 for (t, f ) ∈Dε .

At t = T in the domain Dε , we deduce that

∂Ṽ
∂t

∣∣∣∣
t=T

= –
[
LṼ (t, f )

]
t=T > 0, (43)

where we have used that Ṽ (T , f ) = max{f , G} = f for (T , f ) ∈ Dε . Hence, we have Ṽ (t, f ) <
Ṽ (T , f ) = f in the domain Dε , which contradicts Ṽ (t, f ) > f in the domain Dε ⊂ CR. This
implies that

lim
t→T–

B(t) = B(T–) = max
{

G, e
p+κμ–r

κ
}

. �

In the following proposition, we provide the delta for VA contract, which is one of the
Greeks and essential for delta hedging strategy.

Proposition 3 The delta � of VA contract can be presented as

�(t, f ) = �E(t, f ) + �P(t, f ), (44)

where

�E(t, f ) = e–rτ+γ (1–e–κτ )+(v(τ ))2
e–κτ f e–κτ –1�

(
d1

(
τ ,

f
G

))

+ e–rτ+γ (1–e–κτ )+(v(τ ))2
f e–κτ

n
(

d1

(
τ ,

f
G

))
e–κτ

v(τ )f

– Ge–rτ n
(

–d2

(
τ ,

f
G

))
e–κτ

v(τ )f

(45)
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and

�P(t, f ) = e–pτ

∫ τ

0
e–(r–p)y+γ (1–e–κy)+ 1

2 (v(y))2

× e–κyf e–κy–1
[

(r – p – κμ)�
(

d1

(
y,

f
B(t + y)

))

+ κ
(
log fe–κy + γ

(
1 – e–κy) +

(
v(y)

)2))�
(

d1

(
y,

f
B(t + y)

))

+ κv(y)n
(

d1

(
y,

f
B(t + y)

))]
dy

+ e–pτ

∫ τ

0
e–(r–p)y+γ (1–e–κy)+ 1

2 (v(y))2
f e–κy

(r – p – κμ)

× n
(

d1

(
y,

f
B(t + y)

))
e–κτ

v(y)f
dy

+ e–pτ

∫ τ

0
e–(r–p)y+γ (1–e–κy)+ 1

2 (v(y))2
f e–κy

× κ

(
1
f

e–κy + γ
(
1 – e–κy) +

(
v(y)

)2
)

)�
(

d1

(
y,

f
B(t + y)

))
dy

+ e–pτ

∫ τ

0
e–(r–p)y+γ (1–e–κy)+ 1

2 (v(y))2
f e–κy

κ
(
log fe–κy + γ

(
1 – e–κy)

+
(
v(y)

)2))n
(

d1

(
y,

f
B(t + y)

))
e–κτ

v(y)f
dy

– e–pτ

∫ τ

0
e–(r–p)y+γ (1–e–κy)+ 1

2 (v(y))2
f e–κy

κv(y)

× n
(

d1

(
y,

f
B(t + y)

))
d1

(
y,

f
B(t + y)

)
e–κτ

v(y)f
dy.

(46)

Proof Since

�(t, f ) =
∂V
∂f

=
∂VE

∂f
+

∂VP

∂f
, (47)

the proof is clear. �

4 Numerical examples
In this section, we present the example for fair fee rate and several numerical examples
to demonstrate the impact of mean reversion and to show the sensitivity of the optimal
surrender boundary of VA contract with respect to significant parameters. Since the op-
timal surrender boundary is derived as the integral equation in Corollary 1, we use the
recursive integration method, which is proposed by Huang and Subrahmanyam [39], to
solve the integral equation efficiently. For the numerical examples, we employ the baseline
parameters in Table 1.

We first consider the example for fair fee rate. As suggested by Bernard et al. [1], the fair
fee rate c∗ can be determined by the following equation:

F0 = VE
(
0, Fc∗

0
)
, (48)
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Table 1 The baseline parameters

Parameter Value Parameter Value

T – t 5 r 0.04
κ 0.02 σ 0.2
θ log20 G 20

Figure 2 Optimal surrender boundary B(t) varying with parameter p

where VE is the European benefit of the VA contract in Theorem 1, F0 is the initial single
premium, and Fc

t denotes the policyholder’s account value at time t with fee rate c. To
compute this fair fee, it is possible to use the root finding techniques such as the bisection
method.

Suppose that the initial single premium F0 is equal to the constant guarantee G, i.e.,

F0 = G = 20.

Then, under the baseline parameters given in Table 1, the fair fee c∗ is 0.0019 or 0.19%.
Figure 2 presents the optimal surrender boundaries for different values of the penalty

rate p as time-to-maturity increases. We note that the optimal surrender is determined if
the account value process touches the optimal surrender boundary. As expected, a high
value of p leads to a high surrender boundary at all times. We also find the effect and
sensitivity of the penalty rate p on the optimal surrender boundaries. Moreover, in contrast
to Bernard et al. [1], the optimal surrender boundaries exist even when the penalty rate p
is greater than or equal to r in our model (see Fig. 2(b)).

Figure 3 presents the sensitivity of optimal surrender boundaries for different values of
the guarantee level G. As one can see, the optimal surrender boundaries are increasing
or decreasing depending on the remaining time-to-maturity and the guarantee level G.
More concretely, if the time-to-maturity (T – t) is short (roughly T – t < 0.5), the optimal
boundaries increases as T – t increases. In contrast, if the time-to-maturity (T – t) is long
(roughly T – t > 0.5), the boundaries decrease as T – t increases. We also find that a high
value of G leads to a high surrender boundary in Fig. 3.

We provide Fig. 4 and Fig. 5 to show the impacts of mean reversion. In particular,
Fig. 4(b) and Fig. 5(b) present the illustrations of sensitivities of optimal surrender bound-
aries with respect to the parameters for mean reverting model. Figure 4 illustrates how the
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Figure 3 Optimal surrender boundary B(t) varying with parameters G

Figure 4 Optimal surrender boundary B(t) varying with parameter θ

Figure 5 Optimal surrender boundary B(t) varying with parameters κ

optimal surrender boundaries vary with respect to the long-term mean θ . Figure 4 shows
that a lower value of θ induces a lower boundary. As time-to-maturity increases, in Fig. 4,
we also observe that the surrender boundaries increase logarithmically, and that the dif-
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Figure 6 Optimal surrender boundary B(t) varying with parameters r

Figure 7 Value V of the VA contract varying with parameters p and G

ference in values of boundaries increases. Figure 5 illustrates how the optimal surrender
boundaries vary with respect to mean reversion rate κ . We observe that the boundaries
converge similar values for sufficiently small or large time-to-maturity. In other words,
we may conclude that mean reversion rate κ becomes a significant parameter if time-to-
maturity of a VA contract is in the appropriate range. Figure 6 shows the effects of risk-free
interest rate r. We find that high interest rate has a large impact on the optimal surren-
der boundary for VA contract when time-to-maturity is long. Specifically, we can see that
there is a large difference in values for different interest rate and long time-to-maturity.

Figure 7 presents how the values of VA contract move with respect to the parameters
p and G. As shown in Fig. 7, the values increase exponentially as the initial premium F0

increases. For large F0 in Fig. 7(a), we can see that values are roughly the same for differ-
ent values of the penalty rate p. However, for different values of the guarantee level G in
Fig. 7(b), we find that the values remain different. Finally, Fig. 8 plots the delta of VA for
deep-in-money guarantees based on the result in Proposition 3. From Fig. 8, we observe
a positive linear relation between the delta and the initial premium.
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Figure 8 Delta of the VA contract for deep-in-money guarantees

5 Concluding remarks
We study how to determine the optimal surrender decision of a VA contract in the mean
reversion environment. We first deal with the optimal surrender boundary and the value
of a VA in the mean reverting model, which is considered as a more realistic market model.
Under the mean reversion environment, the policyholder’s account value is kept in a small
range around the mean level during the lifetime of the VA contract. Since the account value
may include the derivatives such as currencies and commodities that seem to exhibit some
mean reversion property, the proposed model is suitable for modeling the account value.

To obtain the boundary for the optimal surrender decision, we adopt the PDE approach
and derive an integral equation for the optimal stopping boundary via the Mellin trans-
form approach. The integral equation is solved numerically using the recursive integration
method. We perform numerical examples with respect to some significant parameters and
present the optimal surrender boundaries as nonmonotonic functions. From the exam-
ples for sensitivity analyses of the optimal surrender boundaries, we find the meaningful
movements of the boundaries with respect to the significant parameters. In particular, we
show how the optimal surrender strategy for a VA investor depends on the account value
process with mean reversion. That is, we conclude that these results help to make optimal
decisions when investing in VA contracts. We also believe that our method can be applied
to other exotic VA contracts when the underlying asset follows the mean reverting model.

Appendix: Summary: properties of the Mellin transform
In this appendix we briefly review the definition and properties of the Mellin transforma-
tion. The readers can refer to Sneddon [40] for more details.

Definition 1 For a locally integrable function g(z) in (0, +∞), the Mellin transform of
M[g](x) of g(z) is defined by

M[g](x) =
∫ ∞

0
g(z)zx–1 dx, x ∈C,
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and if this integral converges for a1 < Re(x) < a2, then the inverse Mellin transform is given
by

g(z) = M–1[M[g]
]
(z) =

1
2π i

∫ c+i∞

c–i∞
M[g](x)z–x dz.

Here, Re(x) is the real part of a complex number x.

Proposition 4 Let g(z) be a locally integrable function in (0, +∞). Suppose that the Mellin
transform M[f ](x) of g(z) exists for a1 < Re(x) < a2.

(a) For any positive integer n,

M
[(

z
∂

∂z

)n

g
]

(x) = (–x)nM[g](x),

M
[
(log z)ng

]
(x) =

∂nM[g]
∂xn (x).

(49)

(b) For any constant ξ �= 0,

M
[
g
(
xδ

)]
(x) =

⎧⎨
⎩

1
ξ
M[g(z)]( x

ξ
) for ξ > 0,

– 1
ξ
M[g(z)]( x

ξ
) for ξ < 0.

(50)

Proposition 5 For α ∈C with Re(α) > 0 and b ∈R, the inverse Mellin transform of g(x) =
eα(x+b)2 is given by

M–1[g](z) =
1

2
√

πα
zbe– 1

4α (log z)2
.

Proposition 6 (The Mellin convolution theorem) Suppose that g(z) and h(z) are locally
integrable functions in (0,∞) and the Mellin transforms M[g](x) and M[h](x) exist for
a1 < Re(x) < a2, where Re(x) denotes the real part of a complex number x. Then

g(z) ∗ h(z) � 1
2π i

∫ c+i∞

c–i∞
M[g](x)M[h](x)z–x dx

=
∫ ∞

0
g
(

z
u

)
h(u)

du
u

, where a1 < c < a2.
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