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Abstract
Let X be an infinite-dimensional complex Banach space, B(X ) the algebra of all
bounded linear operators on X . Denote the spectral domain by
σγ (T ) = {λ ∈ σa(T ) : T that is semi-Fredholm and asc(T – λI) <∞}. In this paper, we
characterize the structure of additive surjective maps ϕ : B(X )→ B(X ) with
σγ (ϕ(T )) = σγ (T ) for all T ∈ B(X ).
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1 Introduction
The study of preserver problems has a long history and has established many remark-
able results in past decades. Preserver problems aim to characterize those linear or
nonlinear maps on operator algebras preserving certain properties, subsets or relations
([1–6, 9, 12, 15, 16, 22]). One of the most famous problems in this area is Kaplansky’s
problem [12] asking whether every surjective unital invertibility preserving linear map
between two semisimple Banach algebras is a Jordan homomorphism. This problem was
solved in some special cases of semisimple Banach algebras ([10, 13, 23]). Then, Aupetit in
[2] solved it for von Neumann algebras. It is known that a spectrum is a very fundamental
and key concept in operator theory. Some results about linear or additive maps preserving
the spectrum as well as certain parts of the spectrum have been established by many au-
thors ([2, 9, 20, 21]). Recently, many authors are interested in nonadditive preserver prob-
lems related to spectral domains of operators. For example, Hajighasemi and Hejazian in
[11] characterized the nonlinear surjective maps on B(X ) preserving the semi-Fredholm
domain, the Fredholm domain, and the Weyl domain respectively. In [4], Bouramdane and
Ech-Chérif El Kettani investigated the form of maps preserving some spectral domains of
the skew product of operators. As is known, certain parts of a spectrum of operators are
introduced to analyze the structure of operators, such as various spectra in the Weyl-type
theorem. The Weyl-type theorem can reflect the connections between several spectra,
which has been studied for more than one hundred years. There have been numerous sig-
nificant results in terms of this. Note that some spectral domains play a key role in the
research of the Weyl-type theorem and its perturbation [8, 17–19]. Moreover, these spec-
tral domains are at most countable and very “small” subsets of a spectrum in general, such
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as normal eigenvalues, the semi-Fredholm domain in a spectrum, and so on. Thus, how
may these spectral domains influence the structure of automorphisms on the algebra of all
bounded linear operators on a Banach space? In [20], the authors characterized additive
surjective maps ϕ on B(X ) that preserve the semi-Fredholm domain in a spectrum, and
showed that such a map is an automorphism or an antiautomorphism on B(X ). In [7], Cao
discussed the linear surjective maps preserving upper semi-Weyl operators, and showed
that their induced maps on the Calkin algebra are Jordan automorphisms. In this paper,
we combine the approximate point spectrum with a semi-Fredholm domain of operators,
and consider an additive map that preserves the intersection of a semi-Fredholm domain
with finite ascent and approximate point spectrum. How does the spectral domain influ-
ence the structure of automorphisms on the algebra of all bounded linear operators on a
Banach (or Hilbert) space?

Throughout this paper let X be a complex infinite-dimensional Banach space and B(X )
the algebra of all bounded linear operators on X . For T ∈ B(X ), we denote by X ∗, T∗,
N (T), and R(T) the dual space of X , the conjugate operator, the null space, and the range
of T , respectively. Let dimN (T) be the dimension of N (T), and codimR(T) be the codi-
mension of R(T). An operator T is called Fredholm if R(T) is closed, dimN (T) < ∞
and codimR(T) < ∞. Also, an operator T is called semi-Fredholm if R(T) is closed and
dimN(T) < ∞ or codimR(T) < ∞. If T is a semi-Fredholm operator, then the index of T
is denoted by ind(T) = dimN(T) – codimR(T). An operator T is Weyl if it is Fredholm of
index zero. Recall that a bounded operator T is said to be bounded below if it is injective
and has closed range. For an operator T , the ascent of T is defined by

asc(T) = inf
{

n ∈N : N
(
Tn) = N

(
Tn+1)}.

If the infimum does not exist, then the asc(T) is defined as ∞. It is known that

asc(T) ≤ p ⇔R
(
Tp) ∩N (T) = {0}

for some p ≥ 0.
Denote the spectrum, the point spectrum, and the approximate point spectrum of T ,

respectively, by

σ (T) = {λ ∈C : T – λI is not invertible},
σp(T) = {λ ∈C : T – λI is not injective},
σa(T) = {λ ∈ C : T – λI is not bounded below}.

In [24, 25], Cao considered property (R), which is a variant of Weyl’s theorem. Also, there
is a spectral domain that plays an important role in the study of property (R). Now, we
define the spectral domain by

σγ (T) =
{
λ ∈ σa(T) : T is semi-Fredholm and asc(T – λI) < ∞}

.

Note that if λ ∈ σγ (T), then T – λI is a semi-Fredholm operator. Thus, T – λI has closed
range. It follows from λ ∈ σa(T) that N (T – λI) 
= {0}. This implies that σγ (T) ⊆ σp(T).



Wang Journal of Inequalities and Applications        (2023) 2023:102 Page 3 of 8

Moreover, since asc(T –λI) < ∞, we have that there exists ε > 0 such that T –λI is bounded
below for all λ with 0 < |λ – λ0| < ε. Then, λ ∈ isoσa(T), which induces that

σγ (T) ⊆ isoσa(T) ⊆ σ (T).

Thus, the spectral domain σγ (T) is at most countable and is a very “small” subset of a
spectrum in general.

In this paper, we will characterize additive surjective maps ϕ on B(X ) preserving the
spectral domain σγ (T) in both directions. The main result is the following Theorem:

Theorem 1.1 Let ϕ : B(X ) → B(X ) be a surjective additive map. If σγ (ϕ(T)) = σγ (T) for
all T ∈ B(X ), then one of the following assertions holds:

(1) there is an invertible operator A ∈ B(X ) such that

ϕ(T) = ATA–1 for all T ∈ B(X );

(2) there is a bounded invertible linear operator C : X ∗ →X such that

ϕ(T) = CT∗C–1 for all T ∈ B(X ).

In this case, X must be a reflexive space.

2 Preliminaries
Let z ∈ X and f ∈ X ∗, we denote by z ⊗ f the bounded linear rank-one operator if both
z and f are nonzero. The rank-one operator z ⊗ f is defined by (z ⊗ f )x = f (x)z for all
x ∈X . For a subset M of X ,

∨{M} denotes the closed subspace spanned by M. We first
establish some useful results that are needed for the proof of our main Theorem.

Proposition 2.1 Let T ∈ B(X ) be such that 0 ∈ σγ (T). If K ∈ B(X ) is a rank-one operator
such that 0 ∈ σγ (T + 2K), then 0 ∈ σγ (T + K) or 0 ∈ σγ (T – K).

Proof From the fact that the class of Fredholm operators is invariant under compact per-
turbations and 0 ∈ σγ (T), we derive that the operators T + K , T – K are Fredholm.

Let K = x ⊗ f , where x ∈ X and f ∈ X ∗. Then, it follows from 0 ∈ σγ (T + 2K) ⊆ σp(T +
2K) that N (T + 2K) 
= {0}. Moreover, note that 0 ∈ σγ (T) ⊆ σp(T), we also have N (T) 
=
{0}. We claim that

N (T + K) 
= {0} and N (T – K) 
= {0}.

Note that N (T) ∩N (f ) ⊆ (N (T + K) ∩N (T – K)). Thus, we assume that N (T) ∩N (f ) =
{0}. Then, there exist nonzero vectors u ∈N (T) and v ∈N (T +K) such that f (u) = f (v) = 1.
Take w = u + v and z = 3u – v, then f (w) = f (z) = 2. Thus, we obtain that w, z are nonzero
vectors such that

w ∈N (T + K) and z ∈N (T – K).

Thus, we have that the operators T – K and T + K are Fredholm with N (T – K) 
= {0} and
N (T + K) 
= {0}.
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Moreover, note that 0 ∈ σγ (T), then asc(T) < ∞. By the Proposition 2.7 in [14], we obtain
that asc(T – K) < ∞ or asc(T + K) < ∞. This implies that 0 ∈ σγ (T + K) or 0 ∈ σγ (T – K). �

The following result will give a necessary condition for operators with the rank not less
than one.

Proposition 2.2 Let T ∈ B(X ) and dimR(T) ≥ 2. Then, there exists an operator S such
that 0 ∈ σγ (S) and σγ (S + 2T), but 0 /∈ σγ (S – T) and 0 /∈ σγ (S + T).

Proof Assume that dimR(T) ≥ 2. Then, there exist two linearly independent vectors x1, x2

such that Tx1, Tx2 are linearly independent. Let L =
∨{x1, x2}, M =

∨ {Tx1, Tx2}. Then,
there are two infinite-dimensional closed subspaces K, R such that X = L⊕K = M⊕R,
with respect to this decomposition, the operator T can be expressed as follows:

T =

(
T11 T12

0 T22

)

.

Note that dimL = dimM = 2. This implies that

R∼= X /L∼= X /M∼= K,

where “∼=” denotes isomorphism. Then, the two closed subspaces K, R are isomorphic.
Thus, we can find an invertible operator A : R→K. For the operator T22A : R→R, there
exists a complex number μ ∈ C such that the operators μI + T22A, μI + 2T22A, and μI –
2T22A are invertible. It follows that the operators μA–1 + T22, μA–1 + 2T22 and μA–1 – 2T22

are invertible. With respect to the decomposition X = L⊕K = M⊕R, we now define an
operator S ∈ B(X ) by

S =

(
S11 0
0 μA–1

)

,

where

⎧
⎨

⎩
S11x1 = 0,

S11x2 = –2Tx2.

Then,

S + 2T =

(
S11 + 2T11 2T12

0 μA–1 + 2T22

)

.

We can verify that 0 ∈ σγ (S) and 0 ∈ σγ (S + 2T). Moreover,

S ± T =

(
S11 ± T11 ±T12

0 αA–1 ± T22

)

.
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Note that (S11 ±T11)x1 = ±Tx1, (S11 +T11)x2 = –Tx2 and (S11 –T11)x2 = –3Tx2. This implies
that the operators S + T and S – T are invertible operators. Therefore,

0 /∈ σγ (S + T) and 0 /∈ σγ (S – T). �

The next Proposition gives a criterion of two operators being equal by rank-one opera-
tors and the spectral domain σγ (•).

Proposition 2.3 Let A, B ∈ B(X ). If σγ (A + F) = σγ (B + F) for all rank-one operator F ∈
B(X ). Then, A = B.

Proof For any nonzero vector x ∈ X , let G = {f ∈ X ∗|f (x) = 1}. We choose a scalar α ∈ C

such that α > ‖A‖ + ‖B‖. For any f ∈ G , we define an operator

Ff = (A – αI)x ⊗ f .

Then, Ff x = Ax – αx. Thus, α ∈ σp(A – Ff ). Note that

‖A – Fx‖ ≥ α > ‖A‖ ≥ ‖A‖e = ‖A – Fx‖e,

where ‖A‖e is the essential norm of A. We derive that α ∈ σγ (A – Ff ), and so α ∈ σγ (B –
Ff ). It follows that α ∈ σp(B – Ff ). Then, there exists a nonzero vector yf ∈ X such that
(B – Ff )yf = αyf . We can obtain

yf = f (yf )(B – αI)–1(A – αI)x.

Putting y = (B – αI)–1(A – αI)x, it follows from (B – Ff )yf = αyf that (B – Ff )y = αy for
any f ∈ G . We claim that x and y are linearly dependent. Indeed, if x and y are linearly
independent, then there exists some f ′ ∈ G such that f ′(y) = 0. This implies that By = αy.
This is a contradiction with the fact α > ‖A‖+‖B‖. It follows that (B–Ff )x = αx. Therefore,
we obtain Ax = Bx. From the arbitrariness of x, we have A = B. �

3 Proof of main result
In the following, we will give the proof of the main theorem and show the result in four
steps.

Step 1. ϕ is injective.
Let ϕ(T) = 0. If T 
= 0, then we can choose z0 ∈X such that Tz0 
= 0. It follows that there

is f ∈ X ∗ such that f (z0) = 1 and f (Tz0) 
= 0. Choose a scalar μ0 ∈ C such that |μ0| > ‖T‖.
Now, we define a rank-one operator U ∈ B(X ) as follows

U = (Tz0 + μ0z0) ⊗ f .

Then, we have (U – T)(z0) = μ0z0. This implies that μ0 ∈ σγ (U – T). Thus,

μ0 ∈ σγ

(
ϕ(U – T)

)
= σγ

(
ϕ(U)

)
= σγ (U).

However, σγ (U) = {μ0 + f (Tz0)}, which is a contradiction. Thus, ϕ is injective.
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Step 2. ϕ preserves rank-one operators in both directions.
Let T ∈ B(X ) be such that dimR(T) ≥ 2. From Proposition 2.2, we derive that there

exists an operator S such that

0 ∈ σγ (S) and 0 ∈ σγ (S + 2T).

However,

0 /∈ σγ (S – T) and 0 /∈ σγ (S + T).

Then,

0 ∈ σγ

(
ϕ(S)

)
and 0 ∈ σγ

(
ϕ(S) + 2ϕ(T)

)
.

Moreover,

0 /∈ σγ

(
ϕ(S) + ϕ(T)

)
and 0 /∈ σγ

(
ϕ(S) – ϕ(T)

)
.

Then, by Proposition 2.1, we have that dimR(ϕ(T)) ≥ 2. Since ϕ is bijective and ϕ–1 has
the same property as ϕ, it follows that ϕ preserves the set of operators of rank one in both
directions.

Step 3. ϕ preserves idempotents of rank one and their linear spans in both directions.
Let x ⊗ f be an idempotent of rank one and ϕ(x ⊗ f ) = y ⊗ g . Then, σγ (x ⊗ f ) = {1}, and

so σγ (y ⊗ g) = {1}. This implies that σ (y ⊗ g) = {0, 1}. Then, y ⊗ g is an idempotent of rank
one. That is, g(y) = 1. Thus, ϕ preserves idempotents of rank one in both directions. In
the following, we will prove ϕ(Cx ⊗ f ) ⊆ Cy ⊗ g . We choose a nonzero vector z ∈ X and
a linear function h ∈X ∗ such that

g(z) = 0, h(y) = 0 and h(z) = 1.

For the operator y ⊗ h and z ⊗ g , since ϕ is surjective, there are two rank-one operators
y0 ⊗ h0 and z0 ⊗ g0 such that

ϕ(y0 ⊗ h0) = y ⊗ h and ϕ(z0 ⊗ g0) = z ⊗ g.

Note that

ϕ(x ⊗ f + y0 ⊗ h0) = y ⊗ g + y ⊗ h, ϕ(x ⊗ f + z0 ⊗ g0) = y ⊗ g + z ⊗ g.

Then, x⊗ f + y0 ⊗h0 and x⊗ f + z0 ⊗ g0 are two rank-one operators. Thus, for any nonzero
λ ∈ C, λx ⊗ f + y0 ⊗ h0 and λx ⊗ f + z0 ⊗ g0 are also rank-one operators. Fix a nonzero
complex number λ, we let ϕ(λx ⊗ f ) = λyλ ⊗ gλ, where yλ ⊗ gλ is a rank-one idempotent.
Then, ϕ(λx ⊗ f + y0 ⊗ h0) = λyλ ⊗ gλ + y ⊗ h is also rank one. We obtain that yλ and y are
linearly dependent or the same is true for gλ and h. We claim that yλ and y are linearly de-
pendent. Indeed, suppose on the contrary, we can obtain gλ and h are linearly dependent.
Then, there exists a nonzero αλ ∈ C such that gλ = αλh. Thus,

ϕ(λx ⊗ f + z0 ⊗ g0) = αλλyλ ⊗ h + z ⊗ g.
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Since h and g are linearly independent, we choose βλ ∈C such that yλ = βλz, and so ϕ(λx⊗
f ) = αλβλλz ⊗ h, where z ⊗ h is a rank-one idempotent. Note that ϕ(λx ⊗ f ) = λyλ ⊗ gλ,
where yλ ⊗ gλ is a rank-one idempotent. Thus, αλβλλ = λ. It follows that

ϕ(λx ⊗ f ) = λz ⊗ h.

Since ϕ is surjective, there is a rank-one operator e0 ⊗ k0 such that ϕ(e0 ⊗ k0) = z ⊗ h and
k0(e0) = 1. Since y ⊗ g + z ⊗ h is a projection of rank two, we have x ⊗ f + e0 ⊗ k0 is a
rank-two operator. Thus, λx ⊗ f + e0 ⊗ k0 is also a rank-two operator. However,

ϕ(λx ⊗ f + e0 ⊗ k0) = (λ + 1)z ⊗ h.

This contradicts the fact that ϕ preserves the set of operators of rank one in both di-
rections. Therefore, we have that yλ and y are linearly dependent. Then, there exists a
nonzero γλ ∈ C such that yλ = γλy. Since ϕ(λx ⊗ f + z0 ⊗ g0) = γλλy ⊗ gλ + z ⊗ g and the
two vectors y and z are linearly independent, we can find a nonzero μλ ∈ C such that
gλ = μλg . Then, ϕ(λx ⊗ f ) = γλμλλy ⊗ g , where y ⊗ g is a rank-one idempotent. We know
that ϕ(λx ⊗ f ) = λyλ ⊗ gλ, where yλ ⊗ gλ is also a rank-one idempotent. Thus, γλμλλ = λ.
It follows that

ϕ(λx ⊗ f ) = λy ⊗ g.

Therefore, ϕ preserves idempotents of rank one and their linear spans in both directions.
From the main result of [16] it gives that
(1) There is an invertible operator A ∈ B(X ) such that ϕ(T) = AFA–1 for all finite-rank

operators F ∈ B(X ), or
(2) There is a bounded invertible linear operator C : X ∗ → X such that ϕ(T) = CF∗C–1

for all finite-rank operators F ∈ B(X ). In this case X must be a reflexive space.
Step 4. ϕ takes the desired from.
Assume that (1) holds. Let T ∈ B(X ) and for any rank-one operator F , we have

σγ (T + F) = σγ

(
ϕ(T) + ϕ(F)

)

= σγ

(
ϕ(T) + AFA–1)

= σγ

(
A

(
A–1ϕ(T)A + F

)
A–1)

= σγ

(
A–1ϕ(T)A + F

)
.

Then, we obtain that T = A–1ϕ(T)A by the Proposition 2.3. Consequently, ϕ(T) = ATA–1

for all T ∈ B(X ).
If (2) holds, then we similarly have that ϕ(T) = CT∗C–1 for all T ∈ B(X ). �
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