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Abstract
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1 Introduction
The calculus of time scales was accomplished by Stefan Hilger [7]. A time scale is an ar-
bitrary nonempty closed subset of the real numbers. Let T be a time scale, ξ ,ω ∈ T with
ξ < ω, and an interval [ξ ,ω]T means the intersection of the real interval with the given
time scale. The major aim of the calculus of time scales is to establish results in general,
comprehensive, unified, and extended forms. This hybrid theory is also widely applied in
dynamic inequalities, see [2, 8–12]. The basic ideas about time scale calculus are given in
the monographs [3, 4].

We state here the different versions of reverses of Callebaut, Rogers–Hölder, and
Cauchy–Schwarz inequalities, see [5].

Let xk > 0, yk > 0, and wk ≥ 0 for any k ∈ {1, 2, . . . ,η} with
∑η

k=1 wk = 1. If there exist
constants m, M > 0 such that 0 < m ≤ xk
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for any v ∈ [0, 1] and, in particular,
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Let 1
p + 1

q = 1 with p > 1. If there exist constants m, M, n, N such that 0 < m ≤ xk ≤ M < ∞
and 0 < n ≤ yk ≤ N < ∞ for any k ∈ {1, 2, . . . ,η}, then we have the following reverse of
Rogers–Hölder discrete inequality:

(
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) 1
p
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) 1
q

≤ S
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m

)p(N
n

)q) η∑

k=1

wkxkyk , (1.3)

and, in particular, the reverse of Cauchy–Bunyakovsky–Schwarz inequality

(
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) 1
2
(
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) 1
2

≤ S
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mn

)2) η∑
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2 Preliminaries
First, we present a short introduction to the diamond-α derivative as given in [1, 13].

Let T be a time scale and f (τ ) be differentiable on T in the � and ∇ sense. For τ ∈ T,
the diamond-α dynamic derivative f �α (τ ) is defined by

f �α (τ ) = αf �(τ ) + (1 – α)f ∇ (τ ), 0 ≤ α ≤ 1.

Thus f is diamond-α differentiable if and only if f is � and ∇ differentiable.
The diamond-α derivative reduces to the standard �-derivative for α = 1, or the stan-

dard ∇-derivative for α = 0. It represents a weighted dynamic derivative for α ∈ (0, 1).
The following definition is given in [13].
Let ξ , τ ∈ T and h : T →R. Then the diamond-α integral from ξ to τ of h is defined by

∫ τ

ξ

h(λ) �α λ = α

∫ τ

ξ

h(λ)�λ + (1 – α)
∫ τ

ξ

h(λ)∇λ, 0 ≤ α ≤ 1,

provided that there exist delta and nabla integrals of h on T.
The following well-known Young inequality holds:
For 	,
 > 0 and v ∈ [0, 1], we have

	1–v
v ≤ (1 – v)	 + v
 . (2.1)

The following inequalities are given in [5].
For any 	,
 ∈ [m, M] ⊂ (0,∞) and v ∈ [0, 1], we have

(1 – v)	 + v
 ≤ S
(

M
m

)

	1–v
v, (2.2)

where Specht ratio [6, 14] is defined by

S(h) =
h

1
h–1

e log h
1

h–1
,

with h > 0, h 
= 1.



Sahir et al. Journal of Inequalities and Applications         (2023) 2023:98 Page 3 of 10

Let v ∈ [0, 1] and 	,
 > 0. Then

(1 – v)	 + v
 ≤ S(L)	1–v
v, (2.3)

where 0 < L–1 ≤ 	



≤ L < ∞ and L > 1.
Let v ∈ [0, 1] and 	,
 > 0. Then

(1 – v)	 + v
 ≤ max
{

S(l), S(L)
}
	1–v
v, (2.4)

where 0 < l–1 ≤ 	



≤ L < ∞ and L, l > 0, with Ll > 1.
In this paper, it is assumed that all considered integrals exist and are finite.

3 Main results
In the following, we give an extension of reverse Callebaut inequality on time scales.
Throughout this section, we assume that neither s ≡ 0 nor t ≡ 0.

Theorem 3.1 Let z, s, t ∈ C([ξ ,ω]T,R) be �α-integrable functions. Assume further that 0 <
m ≤ |s(λ)|

|t(λ)| ≤ M < ∞ on the set [ξ ,ω]T. Let v ∈ [0, 1]. Then the following inequalities hold
true:
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Proof For λ, ζ ∈ [ξ ,ω]T, we observe that

m2 ≤ |s(λ)|2
|t(λ)|2 ,

|s(ζ )|2
|t(ζ )|2 ≤ M2. (3.2)

Let 	(λ) = |s(λ)|2
|t(λ)|2 and 
(ζ ) = |s(ζ )|2

|t(ζ )|2 , λ, ζ ∈ [ξ ,ω]T. Then using the inequalities (2.1) and
(2.2), we have
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.

(3.3)

Multiplying by |t(λ)|2|t(ζ )|2, λ, ζ ∈ [ξ ,ω]T, (3.3) takes the form
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Multiplying by |z(λ)| and integrating (3.4) with respect to λ from ξ to ω, we obtain
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Again, multiplying by |z(ζ )| and integrating (3.5) with respect to ζ from ξ to ω, we obtain
the desired inequality (3.1). �

The following reverse of Callebaut inequality holds:

Corollary 3.1 Let z, s, t ∈ C([ξ ,ω]T,R) be �α-integrable functions. Assume further that 0 <
m ≤ |s(λ)|

|t(λ)| ≤ M < ∞ on the set [ξ ,ω]T. Then the following inequalities hold true:
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(3.6)

Proof Take v = 1
2 in Theorem 3.1, and the result follows. �

The following another reverse of Callebaut inequality holds:

Corollary 3.2 Let z, s, t ∈ C([ξ ,ω]T,R) be �α-integrable functions. Assume further that 0 <
m ≤ |s(λ)|

|t(λ)| ≤ M < ∞ on the set [ξ ,ω]T. Let v ∈ [0, 1]. Then the following inequalities hold
true:
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Proof Replace v by 1
2 (1 – v) in Theorem 3.1, and the result follows. �

The following another reverse of Callebaut inequality holds:

Corollary 3.3 Let z, s, t ∈ C([ξ ,ω]T,R) be �α-integrable functions. Assume further that 0 <
m ≤ |s(λ)|

|t(λ)| ≤ M < ∞ on the set [ξ ,ω]T. Let ν ∈ [0, 2]. Then the following inequalities hold
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true:

∫ ω
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Proof Take v = 1
2ν in Theorem 3.1, and the result follows. �

In the following, we give an extension of reverse Rogers–Hölder inequality on time
scales.

Theorem 3.2 Let z, s, t ∈ C([ξ ,ω]T,R) be �α-integrable functions satisfying
∫ ω

ξ
|z(λ)|�α λ =

1. Assume further that 0 < m ≤ |s(λ)| ≤ M < ∞ and 0 < n ≤ |t(λ)| ≤ N < ∞ on the set
[ξ ,ω]T. Let 1

p + 1
q = 1 with p > 1. Then the following inequality holds true:

(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣s(λ)

∣
∣p �α λ
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Proof Using the given conditions, for λ ∈ [ξ ,ω]T, we have
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∣
∣p ≤ Mp and nq ≤ ∣

∣t(λ)
∣
∣q ≤ Nq,

which imply that

(
m
M

)p

≤ |s(λ)|p
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≤
(

M
m

)p

(3.10)

and

(
n
N

)q

≤ |t(λ)|q
∫ ω

ξ
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≤
(

N
n

)q

. (3.11)

Therefore,
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M
m

)p(N
n

)q]–1

≤
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∫ ω
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)(∫ ω
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|z(λ)||t(λ)|q �α λ
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)

≤
(

M
m

)p(N
n

)q

.

(3.12)
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Using the inequality (2.3) with v = 1
q , L = ( M

m )p( N
n )q, 	(λ) = |z(λ)||s(λ)|p∫ ω

ξ |z(λ)||s(λ)|p�αλ
, and 
(λ) =

|z(λ)||t(λ)|q∫ ω
ξ |z(λ)||t(λ)|q�αλ

, we get

1
p

|z(λ)||s(λ)|p
∫ ω

ξ
|z(λ)||s(λ)|p �α λ

+
1
q

|z(λ)||t(λ)|q
∫ ω

ξ
|z(λ)||t(λ)|q �α λ

≤ S(L)
|z(λ)||s(λ)t(λ)|

(
∫ ω

ξ
|z(λ)||s(λ)|p �α λ)

1
p (

∫ ω

ξ
|z(λ)||t(λ)|q �α λ)

1
q

. (3.13)

Integrating (3.13) with respect to λ from ξ to ω, we obtain

1 ≤ S(L)

∫ ω

ξ
|z(λ)||s(λ)t(λ)| �α λ

(
∫ ω

ξ
|z(λ)||s(λ)|p �α λ)

1
p (

∫ ω

ξ
|z(λ)||t(λ)|q �α λ)

1
q

. (3.14)

This completes the proof of Theorem 3.2. �

Next, we give an extension of reverse Cauchy–Schwarz inequality on time scales.

Corollary 3.4 Let z, s, t ∈ C([ξ ,ω]T,R) be �α-integrable functions satisfying
∫ ω

ξ
|z(λ)| �α λ = 1. Assume further that 0 < m ≤ |s(λ)| ≤ M < ∞ and 0 < n ≤ |t(λ)| ≤ N < ∞

on the set [ξ ,ω]T. Then the following inequality holds true:

(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣s(λ)

∣
∣2 �α λ

) 1
2
(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣t(λ)

∣
∣2 �α λ

) 1
2

≤ S
((

MN
mn

)2)∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣s(λ)t(λ)

∣
∣ �α λ. (3.15)

Proof Take p = q = 2 in Theorem 3.2, and the result follows. �

Remark 3.1 We have the following:
(i) Let α = 1, T = Z, ξ = 1, ω = η + 1, s(k) = xk > 0, t(k) = yk > 0, and z(k) = wk ≥ 0 for

any k ∈ {1, 2, . . . ,η} with
∑η

k=1 wk = 1. Then inequality (3.1) reduces to inequality
(1.1).

(ii) Let α = 1, T = Z, ξ = 1, ω = η + 1, s(k) = xk > 0, t(k) = yk > 0, and z(k) = wk ≥ 0 for
any k ∈ {1, 2, . . . ,η} with

∑η

k=1 wk = 1. Then inequality (3.6) reduces to inequality
(1.2).

(iii) Let α = 1, T = Z, ξ = 1, ω = η + 1, s(k) = xk > 0, t(k) = yk > 0, and z(k) = wk ≥ 0 for
any k ∈ {1, 2, . . . ,η}. Then inequality (3.9) reduces to inequality (1.3).

(iv) Let α = 1, T = Z, ξ = 1, ω = η + 1, s(k) = xk > 0, t(k) = yk > 0, and z(k) = wk ≥ 0 for
any k ∈ {1, 2, . . . ,η}. Then inequality (3.15) reduces to inequality (1.4).

Finally, we give another extension of reverse Rogers–Hölder dynamic inequality.

Theorem 3.3 Let z, u1, u2, s, t ∈ C([ξ ,ω]T,R) be �α-integrable functions. Assume further
that 0 < m ≤ |s(λ)| ≤ M < ∞ and 0 < n ≤ |t(λ)| ≤ N < ∞ on the set [ξ ,ω]T. Let 1

p + 1
q = 1
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with p > 1. Then the following inequalities hold true:

(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣u1(λ)s(λ)

∣
∣ �α λ

)(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣u2(λ)t(λ)

∣
∣ �α λ

)

≤ 1
p

(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣u1(λ)

∣
∣
∣
∣s(λ)

∣
∣p �α λ

)(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣u2(λ)

∣
∣ �α λ

)

+
1
q

(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣u1(λ)

∣
∣ �α λ

)(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣u2(λ)

∣
∣
∣
∣t(λ)

∣
∣q �α λ

)

≤ max

{

S
(

Nq

mp

)

, S
(

Mp

nq

)}(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣u1(λ)s(λ)

∣
∣ �α λ

)

×
(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣u2(λ)t(λ)

∣
∣ �α λ

)

.

(3.16)

Proof For λ, ζ ∈ [ξ ,ω]T, it is clear that

mp

Nq ≤ |s(λ)|p
|t(ζ )|q ≤ Mp

nq . (3.17)

Let l = Nq

mp , L = Mp

nq , 	(λ) = |s(λ)|p, 
(ζ ) = |t(ζ )|q, and v = 1
q . Then using the inequalities

(2.1) and (2.4), respectively, we have

∣
∣s(λ)

∣
∣
∣
∣t(ζ )

∣
∣ ≤ 1

p
∣
∣s(λ)

∣
∣p +

1
q
∣
∣t(ζ )

∣
∣q ≤ max

{

S
(

Nq

mp

)

, S
(

Mp

nq

)}
∣
∣s(λ)

∣
∣
∣
∣t(ζ )

∣
∣. (3.18)

Multiplying by |z(λ)||u1(λ)| and integrating (3.18) with respect to λ from ξ to ω, we obtain

(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣u1(λ)s(λ)

∣
∣ �α λ

)
∣
∣t(ζ )

∣
∣

≤ 1
p

(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣u1(λ)

∣
∣
∣
∣s(λ)

∣
∣p �α λ

)

+
1
q

(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣u1(λ)

∣
∣ �α λ

)
∣
∣t(ζ )

∣
∣q

≤ max

{

S
(

Nq

mp

)

, S
(

Mp

nq

)}(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣u1(λ)s(λ)

∣
∣ �α λ

)
∣
∣t(ζ )

∣
∣.

(3.19)

Multiplying by |z(ζ )||u2(ζ )| and integrating (3.19) with respect to ζ from ξ to ω, we obtain
the desired inequality (3.16). �

Next, we give an extension of reverse Rogers–Hölder inequality on time scales.

Corollary 3.5 Let z, s, t ∈ C([ξ ,ω]T,R) be �α-integrable functions. Assume further that 0 <
m ≤ |s(λ)| ≤ M < ∞ and 0 < n ≤ |t(λ)| ≤ N < ∞ on the set [ξ ,ω]T. Let 1

p + 1
q = 1 with p > 1.
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Then the following inequalities hold true:

(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣s(λ)t(λ)

∣
∣ �α λ

)2

≤ 1
p

(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣t(λ)

∣
∣
∣
∣s(λ)

∣
∣p �α λ

)(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣s(λ)

∣
∣ �α λ

)

+
1
q

(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣t(λ)

∣
∣ �α λ

)(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣s(λ)

∣
∣
∣
∣t(λ)

∣
∣q �α λ

)

≤ max

{

S
(

Nq

mp

)

, S
(

Mp

nq

)}(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣s(λ)t(λ)

∣
∣ �α λ

)2

.

(3.20)

Proof Put |u1(λ)| = |t(λ)| and |u2(λ)| = |s(λ)| on [ξ ,ω]T in Theorem 3.3, and then the result
follows. �

Now, we give another extension of reverse Rogers–Hölder inequality on time scales.

Corollary 3.6 Let z, s, t ∈ C([ξ ,ω]T,R) be �α-integrable functions. Assume further that 0 <
m ≤ |s(λ)| ≤ M < ∞ and 0 < n ≤ |t(λ)| ≤ N < ∞ on the set [ξ ,ω]T. Let 1

p + 1
q = 1 with p > 1.

Then the following inequalities hold true:

(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣s(λ)

∣
∣2 �α λ

)(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣t(λ)

∣
∣2 �α λ

)

≤ 1
p

(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣s(λ)

∣
∣p+1 �α λ

)(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣t(λ)

∣
∣ �α λ

)

+
1
q

(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣s(λ)

∣
∣ �α λ

)(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣t(λ)

∣
∣q+1 �α λ

)

≤ max

{

S
(

Nq

mp

)

, S
(

Mp

nq

)}(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣s(λ)

∣
∣2 �α λ

)(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣t(λ)

∣
∣2 �α λ

)

.

(3.21)

Proof Put |u1(λ)| = |s(λ)| and |u2(λ)| = |t(λ)| on [ξ ,ω]T in Theorem 3.3, and then the result
follows. �

Next, we give another extension of reverse Rogers–Hölder inequality on time scales.

Corollary 3.7 Let z, f1, f2 ∈ C([ξ ,ω]T,R) be �α-integrable functions, with neither f1 ≡ 0 nor
f2 ≡ 0. Assume further that 0 < m ≤ |f1(λ)|

|f2(λ)| ≤ M < ∞ on the set [ξ ,ω]T. Let 1
p + 1

q = 1 with
p > 1. Then the following inequalities hold true:

(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣f1(λ)f2(λ)

∣
∣ �α λ

)2

≤
[

1
p

∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣f1(λ)

∣
∣p∣∣f2(λ)

∣
∣2–p �α λ

+
1
q

∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣f1(λ)

∣
∣q∣∣f2(λ)

∣
∣2–q �α λ

]∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣f2(λ)

∣
∣2 �α λ

≤ max

{

S
(

Mq

mp

)

, S
(

Mp

mq

)}(∫ ω

ξ

∣
∣z(λ)

∣
∣
∣
∣f1(λ)f2(λ)

∣
∣ �α λ

)2

.

(3.22)
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Proof Put |s(λ)| = |t(λ)| = |f1(λ)|
|f2(λ)| , |u1(λ)| = |u2(λ)| = |f2(λ)|2 on [ξ ,ω]T, M = N , and m = n in

Theorem 3.3, and then the result follows. �

Remark 3.2 We have the following:
(i) Let α = 1, T = Z, ξ = 1, ω = η + 1, s(k) = xk > 0, t(k) = yk > 0, and z(k) = wk ≥ 0 for

any k ∈ {1, 2, . . . ,η} with
∑η

k=1 wk = 1. Then inequality (3.20) reduces to inequality
[5]

(
η∑

k=1

wkxkyk

)2

≤ 1
p

η∑

k=1

wkykxp
k

η∑

k=1

wkxk +
1
q

η∑

k=1

wkyk

η∑

k=1

wkxkyq
k

≤ max

{

S
(

Nq

mp

)

, S
(

Mp

nq

)}(
η∑

k=1

wkxkyk

)2

.

(3.23)

(ii) Let α = 1, T = Z, ξ = 1, ω = η + 1, s(k) = xk > 0, t(k) = yk > 0, and z(k) = wk ≥ 0 for
any k ∈ {1, 2, . . . ,η} with

∑η

k=1 wk = 1. Then inequality (3.21) reduces to inequality
[5]

η∑

k=1

wkx2
k

η∑

k=1

wky2
k ≤ 1

p

η∑

k=1

wkxp+1
k

η∑

k=1

wkyk +
1
q

η∑

k=1

wkxk

η∑

k=1

wkyq+1
k

≤ max

{

S
(

Nq

mp

)

, S
(

Mp

nq

)} η∑

k=1

wkx2
k

η∑

k=1

wky2
k .

(3.24)

(iii) Let α = 1, T = Z, ξ = 1, ω = η + 1, f1(k) = xk > 0, f2(k) = yk > 0, and z(k) = wk ≥ 0 for
any k ∈ {1, 2, . . . ,η} with

∑η

k=1 wk = 1. Then inequality (3.22) reduces to inequality
[5]

(
η∑

k=1

wkxkyk

)2

≤
(

1
p

η∑

k=1

wkxp
ky2–p

k +
1
q

η∑

k=1

wkxq
ky2–q

k

)
η∑

k=1

wky2
k

≤ max

{

S
(

Mq

mp

)

, S
(

Mp

mq

)}(
η∑

k=1

wkxkyk

)2

.

(3.25)
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