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Abstract
In this paper, a class of stochastic vector variational inequality (SVVI) problems are
considered. By employing the idea of a D-gap function, the SVVI problem is
reformulated as a deterministic model, which is an unconstrained expected residual
minimization (UERM) problem, while it is reformulated as a constrained expected
residual minimization problem in the work of Zhao et al. Then, the properties of the
objective function are investigated and a sample average approximation approach is
proposed for solving the UERM problem. Convergence of the proposed approach for
global optimal solutions and stationary points is analyzed. Moreover, we consider
another deterministic formulation, i.e., the expected value (EV) formulation for an SVVI
problem, and the global error bound of a D-gap function based on the EV
formulation is given.
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1 Introduction
It is well known that the vector variational inequality (VVI) is an effective tool for study-
ing vector optimization problems [16]. The concept of VVI was originally introduced in
finite-dimensional Euclidean spaces by Giannessi [9]. Since then, the VVI problem has
been extensively considered in studying some related problems, such as vector equilib-
rium [10], traffic network equilibrium [6, 18], market equilibrium [2], and so on. Since
we often encounter uncertain problems in the real world, it is meaningful to consider the
stochastic version of a vector variational inequality.

Let (�,F ,P) be a probability space, K ⊆ R
n be a nonempty, closed and convex set, and

ξ (ω) : � → � a random vector with supported on a closed set � ⊂ R
r . The stochastic

vector variational inequality (SVVI) problem is to find x∗ ∈ K such that

((
y – x∗)�F1

(
x∗, ξ (ω)

)
, . . . ,

(
y – x∗)�Fm

(
x∗, ξ (ω)

))

/∈ -intRm
+ , ∀y ∈ K , a.s. ξ (ω) ∈ �, (1)
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where the vector-valued functions Fj : Rn × R
r → R

n (j = 1, . . . , m) contain certain ran-
dom variables and “a.s.” is the abbreviation for “almost surely” under the given probability
measure. For convenience, we denote ξ (ω) by ξ and F := (F1, . . . , Fm). It is easy to see that
problem (1) includes some models as special cases, for example:

(i) If � only contains a realization, then SVVI (1) reduces to a VVI problem, that is, to
find a vector x∗ ∈ K such that

((
y – x∗)�F1

(
x∗)

, . . . ,
(
y – x∗)�Fm

(
x∗))

/∈ -intRm
+ , ∀y ∈ K .

The interested reader is referred to the monographs [1, 10] and some papers
[3, 4, 13, 16, 17, 27] for more details on VVI problems.

(ii) When m = 1, the SVVI (1) reduces to a stochastic variational inequality (SVI)
problem, that is, to find a vector x∗ ∈ K such that

(
y – x∗)�F1

(
x∗, ξ

) ≥ 0, ∀y ∈ K , a.s.ξ ∈ �.

For more details on SVI problems, please refer to some papers, for example
[11, 12, 19, 21–25, 28].

(iii) When � only contains a realization and m = 1, the SVVI (1) reduces to a classical
variational inequality (VI) problem, that is, to find a vector x∗ ∈ K such that

(
y – x∗)�F1

(
x∗) ≥ 0, ∀y ∈ K . (2)

For VI problems, please refer to, for example, the monograph [7, 8].
In the past decades, much attention has been paid to the study of some SVI problems.

We would like to point out that an important issue in the field of SVI problems is how
to solve them. Gürkan–Özge–Robinson [11] proposed a sample-path solution, also called
the expected value (EV) approach, for dealing with the SVI problem. Subsequently, the SVI
is turned into a certain VI problem. After that, Jiang–Xu [14] reformulated SVI as an opti-
mization problem based on the EV formulation and studied the global convergence results
of the presented approach. He et al. [12] utilized a sample average approximation approach
for dealing with the SVI based on the EV formulation. In addition, another approach,
called the expected residual minimization (ERM), was presented by Chen–Fukushima
[5] for solving a stochastic linear complementarity problem. Luo–Lin [23, 24] applied
the ERM approach as a natural extension to solve the SVI problems, where the functions
F(x, ξ ) are affine and nonlinear, respectively. Later, Ma–Wu–Huang [28] applied the ERM
approach to solve a stochastic affine variational inequality problem with nonlinear pertur-
bations based on the work of Luo–Lin [23]. Lu–Li [21] and Lu–Li–Yang [22] introduced a
new formulation called weighted expected residual minimization (WERM) for solving the
SVI problem based on the works of Ma–Wu–Huang [28] and Luo–Lin [24], respectively.

In the recent literature, there are few studies about SVVI problems [26, 27, 33]. Zhao
et al. [33] applied the ERM approach for solving the SVVI problem, which generalized
some results of Luo–Lin in [23, 24] from an SVI problem to an SVVI problem. There, the
SVVI is converted into a constrained optimization problem. We would like to point out
that it is interesting to propose an unconstrained optimization formulation to deal with
the SVVI problem. By using the idea of the D-gap function, we propose an unconstrained
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optimization reformulation for a class of SVVI problems. For more details on the D-gap
function, please refer to [12, 15, 20, 32], for instance.

The remainder of this paper is structured as follows: in Sect. 2, we recall some funda-
mental results that will be used in the following sections. In Sect. 3, we investigate the
properties of the objective function θ , i.e., continuous differentiability and the bounded-
ness of the level set. In Sect. 4, we use the SAA approach to approximate the expected
value of the objective function, and investigate the convergence of the SAA approach for
global optimal solutions and stationary points. In Sect. 5, another deterministic formula-
tion, i.e., the EV formulation for the SVVI problem is considered. And we give the global
error bound of the D-gap function gαβ (·, ·) based on the EV formulation.

2 Preliminaries
Recently, Zhao et al. [33, Eq. (6)] presented an equivalent scalar variational inequality (with
certain constraints) formulation of the SVVI problem, which is to find (x∗,λ∗) ∈ K × 


such that

(
y – x∗)�

m∑

j=1

λ∗
j Fj

(
x∗, ξ

) ≥ 0, ∀y ∈ K , a.s.ξ ∈ �, (3)

where 
 := {λ ∈R
m : λj ≥ 0,

∑m
j=1 λj = 1}.

Generally, the presence of a random variable ξ ∈ � in problem (3) leads to no solution.
It is therefore particularly significant to give a reasonable deterministic reformulation for
problem (3).

Following the ideas of Yamashita–Taji–Fukushima [32, Eq. (6)] and Zhao et al. [33,
Eq. (7)], we introduce the D-gap function gαβ : Rn × 
 × � → [0,∞) for SVVI (3) as fol-
lows:

gαβ (x,λ, ξ ) := gα(x,λ, ξ ) – gβ (x,λ, ξ ), x ∈R
n,λ ∈ 
, a.s. ξ ∈ �, (4)

where 0 < α < β and gγ (γ = α,β) : Rn × 
 × � → R is the regularized gap function origi-
nated from [33, Eq. (7)] by Zhao et al., which is defined as

gγ (x,λ, ξ ) := max
y∈K

{

(x – y)�
m∑

j=1

λjFj(x, ξ ) –
γ

2
‖x – y‖2

}

. (5)

It is easy to see that

gγ (x,λ, ξ ) =
(
x – Hγ (x,λ, ξ )

)�
m∑

j=1

λjFj(x, ξ ) –
γ

2
∥
∥x – Hγ (x,λ, ξ )

∥
∥2, (6)

where

Hγ (x,λ, ξ ) := ProjK

(

x – γ –1
m∑

j=1

λjFj(x, ξ )

)

. (7)

In what follows, we assume that D-gap function gαβ (x,λ, ·) is integrable on � for each (x,λ).
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Remark 1
(i) If m = 1 and K = R

n
+, then the D-gap function gαβ reduces to the corresponding gap

function [20, Eq. (3)] for the stochastic complementarity problem of Liu–Li [20];
(ii) If � only involves a realization and m = 1, then the D-gap function gαβ is the same as

the gap function [32, Eq. (6)] considered by Yamashita–Taji–Fukushima [32] with
φ(x, y) = (1/2)‖x – y‖2.

In what follows, similar to Liu–Li [20, Eq. (6)], we present an unconstrained ERM
(UERM) formulation for problem (3):

min
x∈Rn ,λ∈


θ (x,λ) := E
[
gαβ (x,λ, ξ )

]
, (8)

where E denotes the mathematical expectation with respect to the law of ξ ∈ �.
Following the work of Zhao et al. [33, p. 551], we adopt the following assumptions, which

will be used in the sequel:
(a) For ξ ∈ � and each j = 1, . . . , m, the function Fj(·, ξ ) is a.s. continuously differentiable

on R
n.

(b) There exists an integrable function κ(ξ ) such that

E
[
κ2(ξ )

]
< +∞ and

m∑

j=1

∥∥Fj(x, ξ )
∥∥ +

m∑

j=1

∥∥∇xFj(x, ξ )
∥∥
F ≤ κ(ξ ),

hold a.s. for any x ∈R
n and ξ ∈ �. Here the Frobenius norm ‖ · ‖F is defined by

‖A‖F = (
∑m

i=1
∑n

j=1 a2
ij)

1
2 for a given matrix A.

(c) For each j = 1, . . . , m, the function Fj(·, ξ ) is Lipschitz continuous on R
n with

Lipschitz constant Lj(ξ ) satisfying E[L2
j (ξ )] < +∞, i.e.,

∥∥Fj(y, ξ ) – Fj(x, ξ )
∥∥ ≤ Lj(ξ )‖y – x‖, ∀x, y ∈ R

n.

And meanwhile, L = max1≤j≤m E[Lj(ξ )].
Let us recall some well-known concepts and lemmas, which will be frequently used in

the sequel.

Definition 1 Let F : Rn →R
n be a mapping.

(i) It is said to to be monotone on R
n if for any x, y ∈R

n,

(
F(y) – F(x)

)�(y – x) ≥ 0;

(ii) It is said to be strongly monotone on R
n with modulus σ > 0 if for any x, y ∈ R

n,

(
F(y) – F(x)

)�(y – x) ≥ σ‖y – x‖2.

Definition 2 ([14]) Let F : Rn × R
r → R

n be a mapping and K ⊆ R
n, V ⊆ R

r . Then F is
said to be uniformly strongly monotone on K with modulus μ > 0 over V , if for almost
every ξ ∈ V and any x, y ∈ K ,

(
F(y, ξ ) – F(x, ξ )

)�(y – x) ≥ μ‖y – x‖2.
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Lemma 1 ([7, Theorem 2.3.3]) Let K ⊆ R
n be a nonempty, closed and convex set and let

F : K → R
n be continuous. If F is strongly monotone on K , then VI(K , F) has a unique

solution.

Lemma 2 ([8, Theorem 10.2.3]) Let K ⊆R
n be a nonempty, closed and convex set and let

F : K →R
n be continuous. The following statements are valid for VI (2):

(a) For every x ∈ K , yc(x) = �K (x – α–1F(x)).
(b) θα(x) is continuous on K and nonnegative on K .
(c) [θα(x) = 0, x ∈ K ] if and only if x solves the VI problem,

where θα(x) is the regularized gap function for problem (2), which is defined as θα(x) =
maxy∈K {F(x)�(x – y) – α

2 ‖x – y‖2}.

Lemma 3 ([30, Theorem 16.8]) Suppose that f (x, ξ ) is a measurable and integrable func-
tion of ξ for each x in (a, b). Let φ(x) =

∫
f (x, ξ )μ(dξ ). Suppose that for ξ ∈ A, where

A satisfies μ(� – A) = 0, f (x, ξ ) has in (a, b) a derivative f ′(x, ξ ); suppose further that
|f ′(x, ξ )| ≤ g(ξ ) for ξ ∈ A and x ∈ (a, b), where g is integrable. Then φ(x) has derivative
∫

f ′(x, ξ )μ(dξ ) on (a, b).

3 Properties of the objective function θ

In this section, we first investigate the continuous differentiability of the objective function
θ . To this end, we give some fundamental lemmas.

Lemma 4 For any (x,λ) ∈ R
n × 
 and ξ ∈ �, it holds that

∥∥x – Hγ (x,λ, ξ )
∥∥ ≤ 2

γ

m∑

j=1

∥∥Fj(x, ξ )
∥∥. (9)

Proof We have

γ

2
∥∥x – Hγ (x,λ, ξ )

∥∥2 ≤ (
x – Hγ (x,λ, ξ )

)�
m∑

j=1

λjFj(x, ξ )

≤ ∥∥x – Hγ (x,λ, ξ )
∥∥

m∑

j=1

λj
∥∥Fj(x, ξ )

∥∥

≤ ∥
∥x – Hγ (x,λ, ξ )

∥
∥

m∑

j=1

∥
∥Fj(x, ξ )

∥
∥,

where the first inequality follows from the nonnegativity of the regularized gap function
gγ , the second inequality follows from the Cauchy–Schwarz inequality, and the last in-
equality follows from the fact that λj ∈ [0, 1]. Thus, we get the desired conclusion. This
completes the proof. �

Lemma 5 Let 0 < α < β . For any (x,λ) ∈R
n × 
 and ξ ∈ �, one has

∥
∥Hβ (x,λ, ξ ) – Hα(x,λ, ξ )

∥
∥ ≤ (

α–1 – β–1) m∑

j=1

∥
∥Fj(x, ξ )

∥
∥. (10)
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Proof It holds that

∥
∥Hβ (x,λ, ξ ) – Hα(x,λ, ξ )

∥
∥

=

∥∥
∥∥∥

ProjK

(

x – β–1
m∑

j=1

λjFj(x, ξ )

)

– ProjK

(

x – α–1
m∑

j=1

λjFj(x, ξ )

)∥∥
∥∥∥

≤
∥∥
∥∥∥

(

x – β–1
m∑

j=1

λjFj(x, ξ )

)

–

(

x – α–1
m∑

j=1

λjFj(x, ξ )

)∥∥
∥∥∥

≤ (
α–1 – β–1) m∑

j=1

∥
∥Fj(x, ξ )

∥
∥,

where the first inequality follows from the nonexpansivity property of the projection op-
erator ProjK , and the second inequality follows from the triangle inequality of the norm
and the fact that λj ∈ [0, 1]. This completes the proof. �

Remark 2 If m = 1 and K = R
n
+, then Lemma 5 reduces to [20, Lemma 2.1] due to Liu–Li.

Theorem 1 Suppose that assumptions (a) and (b) hold. Then, one has
(i) gαβ (·, ·, ξ ) is continuously differentiable with respect to (x,λ) for any ξ ∈ �;

(ii) θ (·, ·) is continuously differentiable with respect to (x,λ) and

∇θ (x,λ) = E
[∇(x,λ)gαβ (x,λ, ξ )

]
.

Proof (i) Since the functions Fj(·, ξ ) (j = 1, . . . , m) are continuously differentiable with re-
spect to x on R

n by assumption (a), it follows from item (c) of Lemma 2 that the D-gap
function gαβ (·, ·, ξ ) is continuously differentiable with respect to (x,λ) on R

n × 
 for any
ξ ∈ �.

(ii) From item (c) of Lemma 2, we have

∇(x,λ)gαβ (x,λ, ξ )

=

⎛

⎜⎜
⎝

∑m
j=1 λj∇xFj(x, ξ )(Hβ (x,λ, ξ ) – Hα(x,λ, ξ )) + α(Hα(x,λ, ξ ) – x) – β(Hβ (x,λ, ξ ) – x)

(Hβ (x,λ, ξ ) – Hα(x,λ, ξ ))�F1(x, ξ )
...

(Hβ (x,λ, ξ ) – Hα(x,λ, ξ ))�Fm(x, ξ )

⎞

⎟⎟
⎠. (11)

Hence, we obtain that

∥
∥∇(x,λ)gαβ (x,λ, ξ )

∥
∥

≤
∥
∥∥
∥∥

m∑

j=1

λj∇xFj(x, ξ )
(
Hβ (x,λ, ξ ) – Hα(x,λ, ξ )

)
+ α

(
Hα(x,λ, ξ ) – x

)

– β
(
Hβ (x,λ, ξ ) – x

)
∥
∥∥
∥∥

+
m∑

j=1

∥∥Fj(x, ξ )
(
Hβ (x,λ, ξ ) – Hα(x,λ, ξ )

)∥∥ (12)

≤
m∑

j=1

∥
∥∇xFj(x, ξ )

∥
∥

∥
∥Hβ (x,λ, ξ ) – Hα(x,λ, ξ )

∥
∥ + α

∥
∥Hα(x,λ, ξ ) – x

∥
∥
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+ β
∥∥Hβ (x,λ, ξ ) – x

∥∥ +
m∑

j=1

∥∥Fj(x, ξ )
∥∥∥∥Hβ (x,λ, ξ ) – Hα(x,λ, ξ )

∥∥,

where the last inequality follows from the triangle and Cauchy–Schwarz inequalities, as
well as the fact that λj ∈ [0, 1]. Taking γ = α,β in Lemma 4, we get

∥
∥x – Hα(x,λ, ξ )

∥
∥ ≤ 2

α

m∑

j=1

∥
∥Fj(x, ξ )

∥
∥ (13)

and

∥
∥x – Hβ (x,λ, ξ )

∥
∥ ≤ 2

β

m∑

j=1

∥
∥Fj(x, ξ )

∥
∥. (14)

Thus, we obtain

∥∥∇(x,λ)gαβ (x,λ, ξ )
∥∥

≤
( m∑

j=1

∥
∥∇xFj(x, ξ )

∥
∥ +

m∑

j=1

∥
∥Fj(x, ξ )

∥
∥

)
(∥
∥Hβ (x,λ, ξ ) – Hα(x,λ, ξ )

∥
∥)

+ α
∥
∥Hα(x,λ, ξ ) – x

∥
∥ + β

∥
∥Hβ (x,λ, ξ ) – x

∥
∥

≤ (
α–1 – β–1) m∑

j=1

∥∥Fj(x, ξ )
∥∥

( m∑

j=1

∥∥∇xFj(x, ξ )
∥∥ +

m∑

j=1

∥∥Fj(x, ξ )
∥∥

)

+ 4
m∑

j=1

∥∥Fj(x, ξ )
∥∥

=

(

4 +
(
α–1 – β–1)

( m∑

j=1

∥∥∇xFj(x, ξ )
∥∥ +

m∑

j=1

∥∥Fj(x, ξ )
∥∥

)) m∑

j=1

∥∥Fj(x, ξ )
∥∥,

where the first inequality follows from (12) and the second inequality follows from (13),
(14), and (10) in Lemma 5. From Lemma 3, we know that the function θ is continuously
differentiable, and simultaneously get that ∇θ (x,λ) = E[∇(x,λ)gαβ (x,λ, ξ )]. �

Next, we investigate the boundedness of the level set of the objective function θ . The
level set of θ is defined by

Lθ (c) :=
{

(x,λ) ∈R
n × 
 : θ (x,λ) ≤ c

}
.

Lemma 6 Let 0 < α < β . For any (x,λ) ∈R
n × 
 and ξ ∈ �, one has

β – α

2
∥
∥x – Hβ (x,λ, ξ )

∥
∥2 ≤ gαβ (x,λ, ξ ) ≤ β – α

2
∥
∥x – Hα(x,λ, ξ )

∥
∥2. (15)

Proof We only prove the first inequality of (15). By the definition of D-gap function gαβ

and Lemma 2, we have

gαβ (x,λ, ξ ) =
(
x – Hα(x,λ, ξ )

)�
m∑

j=1

λjFj(x, ξ ) –
α

2
∥
∥x – Hα(x,λ, ξ )

∥
∥2
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–
(
x – Hβ (x,λ, ξ )

)�
m∑

j=1

λjFj(x, ξ ) +
β

2
∥∥x – Hβ (x,λ, ξ )

∥∥2

≥ (
x – Hβ (x,λ, ξ )

)�
m∑

j=1

λjFj(x, ξ ) –
α

2
∥
∥x – Hβ (x,λ, ξ )

∥
∥2

–
(
x – Hβ (x,λ, ξ )

)�
m∑

j=1

λjFj(x, ξ ) +
β

2
∥∥x – Hβ (x,λ, ξ )

∥∥2

=
β – α

2
∥∥x – Hβ (x,λ, ξ )

∥∥2.

In a similar way, we obtain the second inequality of (15). This completes the proof. �

Theorem 2 If K is a compact set, then, for any c ≥ 0, the level set Lθ (c) of the objective
function θ is bounded.

Proof Suppose on the contrary that there exists a c̄ ≥ 0 such that Lθ (c̄) is unbounded. This
implies that there exists a sequence {(xk ,λk)} ⊂ Lθ (c̄) such that

lim
k→∞

∥∥(
xk ,λk)∥∥ = +∞.

Since {λk} ⊂ 
 and 
 is a compact set, we get that

lim
k→∞

∥∥xk∥∥ = +∞.

For each k, we know that Hβ (xk ,λk , ξ ) ∈ K by (7). Taking into account that the set K is
compact, the sequence {Hβ (xk ,λk , ξ )} is also bounded. Therefore, we obtain that ‖xk –
Hβ (xk ,λk , ξ )‖ → ∞, as k tends to ∞.

It follows from the definition of θ (x,λ) and (15) in Lemma 6 that

θ
(
xk ,λk)

= E
[
gαβ

(
xk ,λk , ξ

)]

≥ E

[
β – α

2
∥∥xk – Hβ

(
xk ,λk , ξ

)∥∥2
]

=
β – α

2
E

[∥∥xk – Hβ

(
xk ,λk , ξ

)∥∥2]
.

(16)

Since ‖xk – Hβ (xk ,λk , ξ )‖ → ∞, as k tends to ∞, we get that E[‖xk – Hβ (xk ,λk , ξ )‖2] → ∞,
and so

lim
k→∞

(
β – α

2
E

[∥∥xk – Hβ

(
xk ,λk , ξ

)∥∥2]
)

→ ∞,

whenever 0 < α < β . This, together with (16), implies that θ (xk ,λk) → ∞ as k tends to ∞.
This contradicts the fact that (xk ,λk) ∈ Lθ (c̄), completing the proof. �

4 Convergence analysis
In this section, we utilize the sample average approximation (SAA) approach (for more
about the SAA approach, please refer to, for example, [31]) when dealing with the expected
value of the objective function.
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Lemma 7 ([29]) Let � : � →R be an integrable function. Then, one has

E
[
�(ξ )

]
= lim

N→∞
1
N

N∑

i=1

�(ξi), w.p.1, (17)

where {ξ1, ξ2, . . . , ξN } is the independent and identical distributed (iid) sample of ξ and
“w.p.1” denotes that this procedure converges with probability one.

Consequently, from Lemma 7, the UERM problem (8) is further converted into the fol-
lowing SAA problem:

min
x∈Rn ,λ∈


θN (x,λ) :=
1
N

N∑

i=1

gαβ (x,λ, ξi). (18)

4.1 Convergence of global optimal solutions
In this subsection, we will investigate the limiting behavior of global optimal solutions. We
denote by S∗ and S∗

N the sets of optimal solutions for problems (8) and (18), respectively.

Lemma 8 For any (x,λ) ∈ R
n × 
, one has

θ (x,λ) = lim
N→∞ θN (x,λ), w.p.1. (19)

Proof Since the D-gap function gαβ (x,λ, ·) is integrable on �, by Lemma 7, we obtain that

lim
N→∞ θN (x,λ) = lim

N→∞
1
N

N∑

i=1

gαβ (x,λ, ξi) = E
[
gαβ (x,λ, ξ )

]
= θ (x,λ).

This completes the proof. �

Theorem 3 Suppose that the assumptions (a) and (b) hold. Let (xN ,λN ) ∈ S∗
N for each

N and let (x∗,λ∗) be an accumulation point of the sequence {(xN ,λN )}. Then, we have
(x∗,λ∗) ∈ S∗.

Proof Let (x∗,λ∗) be an accumulation point of the sequence {(xN ,λN )}. Without loss of
generality, we assume that the sequence {(xN ,λN )} converges to a point (x∗,λ∗). It is obvi-
ous that (x∗,λ∗) ∈R

n × 
. We divide the proof into two parts.
Part 1. We claim that

lim
N→∞

(
θN

(
xN ,λN )

– θN
(
x∗,λ∗))

= 0. (20)

In fact, from Theorem 1, for any (x,λ) ∈R
n × 
 and ξ ∈ �, we have

∥
∥∇xgαβ (x,λ, ξ )

∥
∥ ≤

m∑

j=1

∥
∥Fj(x, ξ )

∥
∥

(

4 +
(
α–1 – β–1) m∑

j=1

∥
∥∇xFj(x, ξ )

∥
∥

)

(21)
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and

∥
∥∇λgαβ (x,λ, ξ )

∥
∥ ≤ (

α–1 + β–1)
( m∑

j=1

∥
∥Fj(x, ξ )

∥
∥

)2

. (22)

It follows from the mean-value theorem that for any each (xN ,λN ) and each ξi,

∣
∣gαβ

(
xN ,λN , ξi

)
– gαβ

(
x∗,λ∗, ξi

)∣
∣

=
∣∣∇xgαβ

(
yNi,λNi, ξi

)�(
xN – x∗)

+ ∇λgαβ

(
yNi,λNi, ξi

)�(
λN – λ∗)∣∣, (23)

where (yNi,λNi) ∈ R
n × 
 and yNi = aNixN + (1 – aNi)x∗, λNi = aNiλ

N + (1 – aNi)λ∗ with
aNi ∈ [0, 1]. Then we get that

∣
∣θN

(
xN ,λN )

– θN
(
x∗,λ∗)∣

∣

≤ 1
N

N∑

i=1

∣∣gαβ

(
xN ,λN , ξi

)
– gαβ

(
x∗,λ∗, ξi

)∣∣

≤ 1
N

N∑

i=1

(∥∥∇xgαβ

(
yNi,λNi, ξi

)∥∥∥∥xN – x∗∥∥ +
∥∥∇λgαβ

(
yNi,λNi, ξi

)∥∥∥∥λN – λ∗∥∥)

≤ 1
N

N∑

i=1

( m∑

j=1

∥∥Fj
(
yNi, ξi

)∥∥
)(

4 +
(
α–1 – β–1) m∑

j=1

∥∥∇xFj
(
yNi, ξi

)∥∥
)

∥∥xN – x∗∥∥

+
1
N

N∑

i=1

(
α–1 + β–1)

( m∑

j=1

∥
∥Fj

(
yNi, ξi

)∥
∥

)2
∥
∥λN – λ∗∥

∥

≤ 1
N

N∑

i=1

( m∑

j=1

∥
∥Fj

(
yNi, ξi

)∥
∥

)(

4 +
(
α–1 – β–1) m∑

j=1

∥
∥∇xFj

(
yNi, ξi

)∥
∥
F

)
∥
∥xN – x∗∥

∥

+
1
N

N∑

i=1

(
α–1 + β–1)

( m∑

j=1

∥∥Fj
(
yNi, ξi

)∥∥
)2

∥∥λN – λ∗∥∥

≤ 1
N

N∑

i=1

κ(ξi)
(
4 +

(
α–1 – β–1)

κ(ξi)
)∥
∥xN – x∗∥

∥

+
(
α–1 + β–1) 1

N

N∑

i=1

κ2(ξi)
∥∥λN – λ∗∥∥

N→∞−→ 0,

where the second inequality follows from (23) and Cauchy–Schwarz inequality, the third
inequality follows from (21) and (22), the fourth inequality follows from the definition of
the Frobenius matrix norm, and the last inequality follows from assumption (b). Since the
sequence {(xN ,λN )} converges to a point (x∗,λ∗), using assumption (b), we conclude that
(20) is true.

Part 2. We next show that (x∗,λ∗) ∈ S∗. Since

∣∣θN
(
xN ,λN )

– θ
(
x∗,λ∗)∣∣ ≤ ∣∣θN

(
xN ,λN )

– θN
(
x∗,λ∗)∣∣ +

∣∣θN
(
x∗,λ∗)

– θ
(
x∗,λ∗)∣∣,
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it follows from Lemma 8 and (20) that

lim
N→∞ θN

(
xN ,λN )

= θ
(
x∗,λ∗)

w.p.1.

Notice that (xN ,λN ) ∈ S∗
N for each N , which means that

θN
(
xN ,λN ) ≤ θN (x,λ), ∀(x,λ) ∈R

n × 
.

Taking the limit in the above inequality as N → ∞, we obtain that

θ
(
x∗,λ∗) ≤ θ (x,λ), ∀(x,λ) ∈R

n × 
w.p.1,

which implies that (x∗,λ∗) ∈ S∗ with probability one. �

4.2 Convergence of stationary points
A point (x∗,λ∗) is said to be a stationary point for problem (8) if it satisfies

∇θ
(
x∗,λ∗)

= 0. (24)

For each N , a point (xN ,λN ) is said to be a stationary point for problem (18) if it satisfies

∇θN
(
xN ,λN )

= 0. (25)

Theorem 4 Suppose that assumptions (a), (b), and (c) hold. Let (xN ,λN ) be a stationary
point of problem (18) for each N and (x∗,λ∗) be an accumulation point of the sequence
{(xN ,λN )}. Then, (x∗,λ∗) is a stationary point of problem (8) with probability one.

Proof In view of the definitions of θ (·, ·) and θN (·, ·), we have

∇θ (x,λ)

=

⎛

⎜⎜
⎝

E[
∑m

j=1 λj∇xFj(x, ξ )(Hβ (x,λ, ξ ) – Hα(x,λ, ξ ))] + αE[(Hα(x,λ, ξ ) – x)] – βE[(Hβ (x,λ, ξ ) – x)]
E[(Hβ (x,λ, ξ ) – Hα(x,λ, ξ ))�F1(x, ξ )]

...
E[(Hβ (x,λ, ξ ) – Hα(x,λ, ξ ))�Fm(x, ξ )]

⎞

⎟⎟
⎠

and

∇θN (x,λ)

=

⎛

⎜⎜
⎝

1
N

∑N
i=1(

∑m
j=1 λj∇xFj(x, ξi)(Hβ (x,λ, ξi) – Hα (x,λ, ξi))) + α

N
∑N

i=1(Hα (x,λ, ξi) – x) – β

N
∑N

i=1(Hβ (x,λ, ξi) – x)
1
N

∑N
i=1((Hβ (x,λ, ξi) – Hα (x,λ, ξi))�F1(x, ξi))

...
1
N

∑N
i=1((Hβ (x,λ, ξi) – Hα (x,λ, ξi))�Fm(x, ξi))

⎞

⎟⎟
⎠.

Let D ⊂R
n × 
 be a compact set. We have from assumptions (a), (b), and (c) that

lim
N→∞ sup

(x,λ)∈D

∥∥∇θN (x,λ) – ∇θ (x,λ)
∥∥ = 0 w.p. 1. (26)
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From assumptions (a) and (b), it is easy to see that ∇θ (·, ·) is a continuous function. Let
(x∗,λ∗) be an accumulation point of the sequence {(xN ,λN )}. Without loss of generality, we
assume that limN→∞(xN ,λN ) = (x∗,λ∗). The sequence {(xN ,λN )} is contained in a closed
neighborhood B ⊂ R

n × 
 of (x∗,λ∗) for sufficiently large N . Thus we conclude that for
any given ε > 0,

∥∥∇θ
(
xN ,λN )

– ∇θ
(
x∗,λ∗)∥∥ ≤ ε

2
. (27)

From (26), there exists N0 > 0 such that (xN ,λN ) ∈ B for all N ≥ N0 and

∥∥∇θN
(
xN ,λN )

– ∇θ
(
xN ,λN )∥∥ ≤ ε

2
. (28)

Since

∥
∥∇θN

(
xN ,λN )

– ∇θ
(
x∗,λ∗)∥

∥

≤ ∥∥∇θN
(
xN ,λN )

– ∇θ
(
xN ,λN )∥∥ +

∥∥∇θ
(
xN ,λN )

– ∇θ
(
x∗,λ∗)∥∥,

we have from (27) and (28) that

∥
∥∇θN

(
xN ,λN )

– ∇θ
(
x∗,λ∗)∥

∥ ≤ ε.

Thus, we obtain that

lim
N→∞∇θN

(
xN ,λN )

= ∇θ
(
x∗,λ∗)

w.p. 1.

By taking the limit as N tends to ∞ in (25), we obtain (24). That is, (x∗,λ∗) is stationary
point of problem (8) with probability one. This completes the proof. �

5 EV formulation and its global error bound
In this section, let us consider another deterministic formulation for the SVVI problem,
i.e., the EV formulation (for more details about the EV formulation, please see, for example,
[11]), that is, to find x∗ ∈ K such that

((
y – x∗)�

E
[
F1

(
x∗, ξ

)]
, . . . ,

(
y – x∗)�

E
[
Fm

(
x∗, ξ

)])

/∈ -intRm
+ , ∀y ∈ K , a.s. ξ ∈ �. (29)

The notations sol(E[F(x, ξ )], K) denotes the solution set of problem (29) and dist(x, X) de-
notes miny∈X ‖x – y‖. Lee et al. [16] provided the following properties for the deterministic
VVI.

Lemma 9 ([16, Theorem 4.2]) Suppose that Fj are strongly monotone on K with modulus
β > 0 and Lipschitz continuous on K with modulus l > 0 for all j (j = 1, . . . , m). Then the
solution set is compact.

Based on the EV formulation, we give some conditions in this section. Then, the D-
gap function provides a global error bound for the SVVI problem (29). Assume that the
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expected value of the function Fj(x, ·) is well defined. Similar to the work of Zhao et al.
[33, Eq. (6)], we give an equivalent scalar variational inequality for problem (29), i.e., find
(x∗,λ∗) ∈ K × 
 such that

(
y – x∗)�

m∑

j=1

λ∗
j E

[
Fj

(
x∗, ξ

)] ≥ 0, ∀y ∈ K . (30)

From the ideas of Yamashita–Taji–Fukushima [32, Eq. (6)] and Zhao et al. [33, Eq. (7)], the
D-gap function gαβ (·, ·) : Rn × 
 of problem (30) is defined as follows:

gαβ (x,λ) := gα(x,λ) – gβ (x,λ),

where 0 < α < β and gγ (·, ·) (γ = α,β) is the regularized gap function, which is defined by

gγ (x,λ) := max
y∈K

{

(x – y)�
m∑

j=1

λjE
[
Fj(x, ξ )

]
–

γ

2
‖x – y‖2

}

.

It is easy to see that

gγ (x,λ) :=
(
x – Hγ (x,λ)

)�
m∑

j=1

λjE
[
Fj(x, ξ )

]
–

γ

2
∥
∥x – Hγ (x,λ)

∥
∥2, (31)

where

Hγ (x,λ) := ProjK

(

x – γ –1
m∑

j=1

λjE
[
Fj(x, ξ )

]
)

. (32)

The following main properties of the D-gap function gαβ (·, ·) hold:
• gαβ (x,λ) ≥ 0 for any (x,λ) ∈R

n × 
;
• gαβ (x∗,λ∗) = 0 if and only if (x∗,λ∗) solves problem (30).

Remark 3 If m = 1, then the D-gap function gαβ (·, ·) considered in the present paper re-
duces to the D-gap function [12, Eq. (5)] discussed by He et al.

As usual, P(V ) denotes the probability of an event V .

Lemma 10 Let 0 < α < β . For any (x,λ) ∈R
n × 
, one has

β – α

2
∥
∥x – Hβ (x,λ)

∥
∥2 ≤ gαβ (x,λ) ≤ β – α

2
∥
∥x – Hα(x,λ)

∥
∥2. (33)

Proof This proof is similar to that of Lemma 6, so we omit it here. �

Lemma 11 Suppose that assumptions (a) and (c) hold, and each function Fj(·, ξ ) (j =
1, . . . , m) is monotone on K for almost every ξ ∈ �. Let Fj (j = 1, . . . , m) be uniformly strongly
monotone on K with modulus μj > 0 over Vj ⊂ � ⊂R

n with P(Vj) > 0, μ := min1≤j≤m μj and
ν := min1≤j≤m P(Vj). Then the solution set sol(E[F(x, ξ )], K) is compact.
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Proof For each j = 1, . . . , m, since Fj is uniformly strongly monotone on K with modulus
μj > 0 over Vj, we have

∫

Vj

(
Fj(y, ξ ) – Fj(x, ξ )

)�(y – x)P(dξ ) ≥
∫

Vj

μj‖y – x‖2
P(dξ )

= μj‖y – x‖2
∫

Vj

P(dξ )

= μj‖y – x‖2
P(Vj)

≥ μν‖y – x‖2.

(34)

In addition, since Fj(·, ξ ) is monotone on R
n for almost every ξ ∈ �, we have

∫

�\Vj

(
Fj(y, ξ ) – Fj(x, ξ )

)�(y – x)P(dξ ) ≥
∫

�\Vj

0P(dξ ) = 0. (35)

Combining (34) and (35), for any x, y ∈R
n, we get

(
E

[
Fj(y, ξ )

]
– E

[
Fj(x, ξ )

])�(y – x) =
∫

Vj

(
Fj(y, ξ ) – Fj(x, ξ )

)�(y – x)P(dξ )

+
∫

�\Vj

(
Fj(y, ξ ) – Fj(x, ξ )

)�(y – x)P(dξ )

≥ νμ‖y – x‖2.

Hence, for each j (j = 1, . . . , m), E[Fj] is strongly monotone with modulus νμ > 0. On the
other hand, by assumption (c), for any x, y ∈R

n, it holds that

∥∥E
[
Fj(y, ξ )

]
– E

[
Fj(x, ξ )

]∥∥ =
∫

�

∥∥Fj(y, ξ ) – Fj(x, ξ )
∥∥P(dξ )

≤
∫

�

Lj(ξ )‖y – x‖P(dξ )

≤ L‖y – x‖.

Therefore, for each j (j = 1, . . . , m), E[Fj] is Lipschitz continuous with modulus L > 0
and strongly monotone with modulus νμ > 0. Then, from Lemma 9, we obtain that
sol(E[F(x, ξ )], K) is compact. �

Theorem 5 Suppose that assumptions (a), (b), and (c) hold, and each function Fj(·, ξ ) (j =
1, . . . , m) is monotone on K for almost every ξ ∈ �. Let Fj (j = 1, . . . , m) be uniformly strongly
monotone on K with modulus μj > 0 over Vj ⊂ � ⊂R

n with P(Vj) > 0, μ := min1≤j≤m μj and
ν := min1≤j≤m P(Vj). Thus, for any λ ∈ 
, one has

dist
(
x, sol

(
E

[
F(x, ξ )

]
, K

)) ≤ L + β

νμ

√
2

β – α

√
gαβ (x,λ).

Proof From (30), it is natural that as we change λ ∈ 
, x will also change. Furthermore,
once we have fixed λ∗ ∈ 
, the corresponding x is also fixed. Since each function Fj (j =
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1, . . . , m) is uniformly strongly monotone on R
n, using the concepts of monotonicity and

strong monotonicity, for any x, y ∈R
n, one has

( m∑

j=1

λ∗
j E

[
Fj(y, ξ )

]
–

m∑

j=1

λ∗
j E

[
Fj(x, ξ )

]
)�

(y – x)

=
m∑

j=1

∫

Vj

λ∗
j
(
Fj(y, ξ ) – Fj(x, ξ )

)�(y – x)P(dξ )

+
m∑

j=1

∫

�\Vj

λ∗
j
(
Fj(y, ξ ) – Fj(x, ξ )

)�(y – x)P(dξ )

≥ νμ‖y – x‖2,

(36)

where λ∗
j ∈ [0, 1]. Hence,

∑m
j=1 λ∗

j E[Fj] is strongly monotone with modulus νμ > 0 for fixed
λ∗ ∈ 
. Therefore, from Lemma 1, there is a unique solution x∗ such that

(
y – x∗)�

m∑

j=1

λ∗
j E

[
Fj

(
x∗, ξ

)] ≥ 0, ∀y ∈ K . (37)

For any x, y ∈R
n, using the concepts of monotonicity and Lipschitz continuity, we obtain

( m∑

j=1

λ∗
j E

[
Fj(y, ξ )

]
–

m∑

j=1

λ∗
j E

[
Fj(x, ξ )

]
)�

(y – x)

=
m∑

j=1

∫

�

λ∗
j
(
Fj(y, ξ ) – Fj(x, ξ )

)�(y – x)P(dξ )

≤ L‖y – x‖2,

(38)

where λ∗
j ∈ [0, 1]. Hence,

∑m
j=1 λ∗

j E[Fj] is Lipschitz continuous with modulus L > 0. Then,
we claim that there exists a constant r > 0 such that

dist
(
x, sol

(
E

[
F(x, ξ )

]
, K

)) ≤ ∥∥x – x∗∥∥ ≤ r
∥∥Hβ

(
x,λ∗)

– x
∥∥. (39)

In fact, given x ∈ K , from item (a) of Lemma 2, we know that Hβ (x,λ∗), defined by (32), is
the unique solution of the following strongly convex minimization problem:

min
y∈K

{〈 m∑

j=1

λ∗
j E

[
Fj(x, ξ )

]
, y – x

〉

+
β

2
‖y – x‖2

}

.

Hence, Hβ (x,λ∗) fulfills, for all y ∈ K , the following optimality condition:

〈 m∑

j=1

λ∗
j E

[
Fj(x, ξ )

]
– β

(
x – Hβ

(
x,λ∗))

, y – Hβ

(
x,λ∗)

〉

≥ 0.
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Taking y = x∗ in the above inequality, we obtain

〈 m∑

j=1

λ∗
j E

[
Fj(x, ξ )

]
– β

(
x – Hβ

(
x,λ∗))

, Hβ

(
x,λ∗)

– x∗
〉

≤ 0. (40)

From (36), the function
∑m

j=1 λ∗
j E[Fj(·, ξ )] is strongly monotone with modulus μν . Hence,

there exists a unique solution x∗ such that

〈 m∑

j=1

λjE
[
Fj

(
x∗, ξ

)]
, x∗ – Hβ

(
x,λ∗)

〉

≤ 0. (41)

Adding (40) with (41), we have

〈 m∑

j=1

λ∗
j E

[
Fj(x, ξ )

]
–

m∑

j=1

λ∗
j E

[
Fj

(
x∗, ξ

)]
– β

(
x – Hβ

(
x,λ∗))

, Hβ

(
x,λ∗)

– x∗
〉

≤ 0.

This can be rewritten as follows:

〈 m∑

j=1

λ∗
j E

[
Fj(x, ξ )

]
–

m∑

j=1

λ∗
j E

[
Fj

(
x∗, ξ

)]
, x – x∗

〉

≤ –β
∥
∥Hβ

(
x,λ∗)

– x
∥
∥2

–

〈 m∑

j=1

λ∗
j E

[
Fj(x, ξ )

]
–

m∑

j=1

λ∗
j E

[
Fj

(
x∗, ξ

)]
, Hβ

(
x,λ∗)

– x

〉

+ β
〈
Hβ

(
x,λ∗)

– x, x∗ – x
〉
.

(42)

Noticing that β > 0 and simultaneously utilizing Cauchy–Schwarz inequality, we get that

〈 m∑

j=1

λ∗
j E

[
Fj(x, ξ )

]
–

m∑

j=1

λ∗
j E

[
Fj

(
x∗, ξ

)]
, x – x∗

〉

≤
∥
∥∥∥
∥

m∑

j=1

λ∗
j E

[
Fj(x, ξ )

]
–

m∑

j=1

λ∗
j E

[
Fj

(
x∗, ξ

)]
∥
∥∥∥
∥

∥
∥Hβ

(
x,λ∗)

– x
∥
∥

+ β
∥
∥Hβ

(
x,λ∗)

– x
∥
∥

∥
∥x – x∗∥

∥.

This, together with (36) and (38), implies that

νμ
∥∥x – x∗∥∥2 ≤ L

∥∥x – x∗∥∥∥∥Hβ

(
x,λ∗)

– x
∥∥ + β

∥∥Hβ

(
x,λ∗)

– x
∥∥∥∥x – x∗∥∥,

which means that

dist
(
x, sol

(
E

[
F(x, ξ )

]
, K

)) ≤ ∥∥x – x∗∥∥ ≤ L + β

νμ

∥∥Hβ

(
x,λ∗)

– x
∥∥. (43)
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As a result, the needed constant r > 0 is defined by r = L+β

νμ
. Thus, (39) is true. From the

first inequality of (33) in Lemma 10, we have

∥∥x – Hβ

(
x,λ∗)∥∥ ≤

√
2

β – α

√
gαβ

(
x,λ∗)

. (44)

Combining (43) with (44) and using the arbitrariness of λ∗ ∈ 
, we get the desired con-
clusion. This completes the proof. �

In the rest of this section, we investigate the boundedness of the level set of the D-gap
function gαβ (·, ·). The level set of the D-gap function gαβ (·, ·) is defined by

Lgαβ
(η) :=

{
(x,λ) ∈ R

n × 
 : gαβ (x,λ) ≤ η
}

.

Corollary 1 Suppose that assumptions (a), (b), and (c) hold, and each function Fj(·, ξ ) (j =
1, . . . , m) is monotone on K for almost every ξ ∈ �. Let Fj (j = 1, . . . , m) be uniformly strongly
monotone on K with modulus μj > 0 over Vj ⊂ � ⊂R

n with P(Vj) > 0, μ := min1≤j≤m μj and
ν := min1≤j≤m P(Vj). Then, for any η ≥ 0, the level set Lgαβ

(η) is bounded.

Proof Suppose on the contrary that there exists a η̄ ≥ 0 such that Lgαβ
(η̄) is unbounded.

This implies that there exists a sequence {(xk ,λk)} ⊂ Lgαβ
(η̄) such that

lim
k→∞

∥
∥(

xk ,λk)∥
∥ = +∞.

Since {λk} ⊂ 
 and 
 is a compact set, we get that

lim
k→∞

∥∥xk∥∥ = +∞.

By the proof of Theorem 5, one has

dist
(
xk , sol

(
E

[
F

(
xk , ξ

)]
, K

)) ≤ L + β

νμ

√
2

β – α

√
gαβ

(
xk ,λk

)
.

This means that

gαβ

(
xk ,λk) ≥ ν2μ2(β – α)

2(L + β)2 dist2(
xk , sol

(
E

[
F

(
xk , ξ

)]
, K

))
.

Then, taking the limit of the right-hand side of the above inequality, we have

lim
k→∞

(
ν2μ2(β – α)

2(L + β)2 dist2(
xk , sol

(
E

[
F

(
xk , ξ

)]
, K

)))
= ∞,

which means that gαβ (xk ,λk) → ∞ as k tends to ∞. This contradicts the fact that (xk ,λk) ∈
Lgαβ

(η̄), completing the proof. �

Remark 4 We would like to point out that the condition that each function Fj (j = 1, . . . , m)
is Lipschitz continuous with Lipschitz constant Lj(ξ ) used in Theorem 5 and Corollary 1
can be replaced by a requirement that K is a compact set.
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We only prove the corresponding result of Theorem 5. In fact, since K is a compact set,
there exists a positive number b > 0 such that K ⊂ {x|‖x‖ ≤ b}. Let B be a closed ball with
radius 3b, that is, B = {x|‖x‖ ≤ 3b}. For any x ∈R

n, let us consider two possible cases:
(Case (i): x ∈ B) Since each function Fj(·, ξ ) (j = 1, . . . , m) is continuously differentiable,

each function Fj(·, ξ ) (j = 1, . . . , m) is Lipschitz continuous on B. From the proof of Theo-
rem 5, for all x ∈B, we have ‖x – x∗‖ ≤ L+β

νμ
‖Hβ (x,λ∗) – x‖.

(Case (ii): x /∈ B) For an arbitrary x /∈ B, we have ‖x‖ ≥ 3b. Since x∗ ∈ K , Hβ (x,λ∗) ∈ K
and K is a compact set, we obtain that ‖x∗‖ ≤ b and ‖Hβ (x,λ∗)‖ ≤ b. Hence, we have

∥∥x – x∗∥∥ ≤ ∥∥x – Hβ

(
x,λ∗)∥∥ +

∥∥Hβ

(
x,λ∗)∥∥ +

∥∥x∗∥∥ ≤ ∥∥x – Hβ

(
x,λ∗)∥∥ + 2b. (45)

It follows from the triangle inequality that

∥
∥x – Hβ

(
x,λ∗)∥

∥ ≥ ‖x‖ –
∥
∥Hβ

(
x,λ∗)∥

∥ ≥ 3b – b = 2b.

This, together with (45), implies that ‖x – x∗‖ ≤ 2‖x – Hβ (x,λ∗)‖.
Setting r̄ = max{ L+β

νμ
, 2}, we have ‖x – x∗‖ ≤ r̄‖x – Hβ (x,λ∗)‖, which plays the role of (39).

Then by repeating the rest of the proof of Theorem 5, we get the desired conclusion.
Similarly, the analogue for Corollary 1 is true in the case where the set K is compact.

6 Concluding remarks
In the present paper, mainly motivated by the works [20, 32, 33], we have presented an
UERM approach (i.e., problem (8)) for solving the SVVI problem (1). Several properties
of the objective function θ were discussed, namely, the continuous differentibility and the
boundedness of the level set. Furthermore, a well-known sample average approximation
approach was presented for solving problem (8). The convergence of the proposed ap-
proach for global optimal solutions and stationary points was analyzed. Finally, we con-
sidered another deterministic formulation, i.e., the EV formulation for the SVVI problem.
And the global error bound of the D-gap function gαβ (·, ·) based on the EV formulation
was given.

We would like to mention that the UERM approach presented in this paper is formalistic,
since the projection operator on K is still needed in the calculation of gαβ . Thus, in order
to convert the formalistic approach into practical methods, it is interesting to investigate
the following aspects:

(i) Based on the structure of the constraint set K , how to design effective algorithms;
(ii) The sample complexity of the SAA approach proposed in this paper;

(iii) The convergence rate of the SAA approach.

Acknowledgements
The authors are grateful to the editor and referee for their valuable comments and suggestions.

Funding
This work was supported by National Natural Science Foundation of China (No. 11961006), Guangxi Natural Science
Foundation (2020GXNSFAA159100) and Innovation Project of Guangxi Graduate Education (gxun-chxs2021055).

Availability of data and materials
Not applicable.



Dong et al. Journal of Inequalities and Applications         (2023) 2023:97 Page 19 of 20

Declarations

Competing interests
The authors declare no competing interests.

Author contributions
Dan-Dan Dong contributed to methodology and writing-original draft; Guo-ji Tang contributed to conceptualization,
methodology and supervision; Hui-ming Qiu contributed to the revision of the manuscript.

Author details
1School of Mathematics and Physics, Guangxi Minzu University, Guangxi, 530006, P.R. China. 2School of Mathematics and
Physics, Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis, Guangxi Minzu University, Guangxi,
530006, P.R. China.

Received: 1 April 2023 Accepted: 12 July 2023

References
1. Ansari, Q.H., Köbis, E., Yao, J.C.: Vector Variational Inequalities and Vector Optimization: Theory and Applications.

Springer, Switzerland (2018)
2. Bianchi, M., Konnov, I.V., Pini, R.: Limit vector variational inequalities and market equilibrium problems. Optim. Lett. 15,

817–832 (2021)
3. Charitha, C., Dutta, J.: Regularized gap functions and error bounds for vector variational inequalities. Pac. J. Optim. 6,

497–510 (2010)
4. Charitha, C., Dutta, J., Lalitha, C.S.: Gap functions for vector variational inequalities. Optimization 64, 1499–1520 (2015)
5. Chen, X.J., Fukushima, M.: Expected residual minimization method for stochastic linear complementarity problems.

Math. Oper. Res. 30, 1022–1038 (2005)
6. Daniele, P., Maugeri, A.: Vector variational inequalities and modelling of a continuum traffic equilibrium problem. In:

Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria, Mathematical Theories, pp. 97–111. Kluwer
Academic, Dordrecht (2000)

7. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, Volume I. Springer,
New York (2003)

8. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. II. Springer,
New York (2003)

9. Giannessi, F.: Theorems of alternative, quadratic programs and complementarity problems. In: Cottle, R.W., Giannessi,
F., Lions, J.L. (eds.) Variational Inequalities and Complementarity Problems, pp. 151–186. Wiley, New York (1980)

10. Giannessi, F. (ed.): Vector Variational Inequalities and Vector Equilibria: Mathematical Theories. Nonconvex
Optimization and Its Applications, vol. 38. Kluwer Academic, Dordrecht (2000)

11. Gürkan, G., Özge, A.Y., Robinson, S.M.: Sample-path solution of stochastic variational inequalities. Math. Program. 84,
313–333 (1999)

12. He, S.X., Zhang, P., Hu, X., Hu, R.: A sample average approximation method based on a D-gap function for stochastic
variational inequality problems. J. Ind. Manag. Optim. 10, 977–987 (2014)

13. Huang, N.J., Li, J., Yang, X.Q.: Weak sharpness for gap functions in vector variational inequalities. J. Math. Anal. Appl.
394, 449–457 (2012)

14. Jiang, H.Y., Xu, H.F.: Stochastic approximation approaches to the stochastic variational inequality problem. IEEE Trans.
Autom. Control 53, 1462–1475 (2008)

15. Kanzow, C., Fukushima, M.: Theoretical and numerical investigation of the D-gap function for box constrained
variational inequalities. Math. Program. 83, 55–87 (1998)

16. Lee, G.M., Kim, D.S., Lee, B.S., Yen, N.D.: Vector variational inequality as a tool for studying vector optimization
problems. Nonlinear Anal. 34, 745–765 (1998)

17. Lee, G.M., Yen, N.D.: A result on vector variational inequalities with polyhedral constraint sets. J. Optim. Theory Appl.
109, 193–197 (2001)

18. Li, S.J., Chen, G.Y.: On relations between multiclass, multicriteria traffic network equilibrium models and vector
variational inequalities. J. Syst. Sci. Syst. Eng. 15, 284–297 (2006)

19. Lin, G.H., Fukushima, M.: Stochastic equilibrium problems and stochastic mathematical programs with equilibrium
constraints: a survey. Pac. J. Optim. 6, 455–482 (2010)

20. Liu, J.X., Li, S.J.: Unconstrained optimization reformulation for stochastic nonlinear complementarity problems. Appl.
Anal. 100, 1158–1179 (2021)

21. Lu, F., Li, S.J.: Method of weighted expected residual for solving stochastic variational inequality problems. Appl. Math.
Comput. 269, 651–663 (2015)

22. Lu, F., Li, S.J., Yang, J.: Convergence analysis of weighted expected residual method for nonlinear stochastic variational
inequality problems. Math. Methods Oper. Res. 82, 229–242 (2015)

23. Luo, M.J., Lin, G.H.: Expected residual minimization method for stochastic variational inequality problems. J. Optim.
Theory Appl. 140, 103–116 (2009)

24. Luo, M.J., Lin, G.H.: Convergence results of ERM method for nonlinear stochastic variational inequality problems. J.
Optim. Theory Appl. 142, 569–581 (2009)

25. Luo, M.J., Lin, G.H.: Stochastic variational inequality problems with additional constraints and their applications in
supply chain network equilibria. Pac. J. Optim. 7, 263–279 (2011)

26. Luo, M.J., Zhang, K.: Convergence analysis of the approximation problems for solving stochastic vector variational
inequality problems. Complexity 2020, Article ID 1203627 (2020)

27. Ma, H.Q., Huang, N.J., Wu, M., Regan, D.O.: A new gap function for vector variational inequalities with an application. J.
Appl. Math. 2013, Article ID 423040 (2013)

28. Ma, H.Q., Wu, M., Huang, N.J.: Expected residual minimization method for stochastic variational inequality problems
with nonlinear perturbations. Appl. Math. Comput. 219, 6256–6267 (2013)



Dong et al. Journal of Inequalities and Applications         (2023) 2023:97 Page 20 of 20

29. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia (1992)
30. Patrick, B.: Probability and Measure. Wiley, New York (1995)
31. Shapiro, A., Xu, H.F.: Stochastic mathematical programs with equilibrium constraints, modelling and sample average

approximation. Optimization 57, 395–418 (2008)
32. Yamashita, N., Taji, K., Fukushima, M.: Unconstrained optimization reformulations of variational inequality problems. J.

Optim. Theory Appl. 92, 439–456 (1997)
33. Zhao, Y., Zhang, J., Yang, X.M., Lin, G.H.: Expected residual minimization formulation for a class of stochastic vector

variational inequalities. J. Optim. Theory Appl. 175, 545–566 (2017)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	On the unconstrained optimization reformulations for a class of stochastic vector variational inequality problems
	Abstract
	Keywords

	Introduction
	Preliminaries
	Properties of the objective function theta
	Convergence analysis
	Convergence of global optimal solutions
	Convergence of stationary points

	EV formulation and its global error bound
	Concluding remarks
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Author contributions
	Author details
	References
	Publisher's Note


