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Abstract
In the framework of complete metric spaces, the major objective of this paper is to
investigate if a common coincidence point exists for more than two fuzzy mappings
meeting the criteria of hybrid fuzzy contractions of Nadler’s type in connection with
the Hausdorff metric. Fascinating examples are also provided to show how the
strategy can be used. For the presence of a common α-fuzzy fixed point of three and
four fuzzy mappings, we have derived sufficient requirements. Further prior
observations are offered as corollaries from the relevant literature. Some implications
that are clear in this mode and widely covered in literature are expanded upon and
included in our study.
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1 Introduction
Von Neumann [17] was the one who first started researching fixed points for multivalued
(set-valued) mappings. Nadler started the process of developing geometric fixed point
theory for multi-valued mapping [16]. To develop the multi-valued contraction princi-
ple, also known as Nadler’s contraction mapping principle, he merged the concepts of
multi-valued mapping, Lipschitz mapping, and the Hausdorff metric. The generalization
of Nadler’s contraction mapping theory has been the subject of numerous studies [1, 23].

In both pure and applied mathematics, fixed point theory is essential. Usually, fixed point
techniques have been used in various disciplines, covering biological sciences, the field of
economics, technology, the theory of games, nonlinear computer programming, mathe-
matical modeling of differential equations, etc. (see [6, 7]). Later, numerous other writers
(see [2–4, 18–20]) expanded this finding and investigated the existence of fixed points and
common fixed points of fuzzy mappings meeting a contractive type condition. Numerous
researchers have utilized fuzzy theory to the well-known outcomes in numerous disci-
plines, including quantum physics, nonlinear dynamical systems, population dynamics,
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computer programming, fuzzy stability issues, statistical convergence, functional equa-
tions, approximation theory, nonlinear equations, and many others.

As one of the uncertain ways to build mathematical models compatible with real-world
problems in engineering, life science, economics, medicine, language theory, and other
fields, Zadeh [25] introduced the concept of fuzzy set in 1965. He introduced the idea of
a fuzzy set (FS), which builds on the notion of a crisp set by assigning membership values
to each element in the range [0, 1]. The descriptions of the levels of possession of a certain
property are vague because it successfully addresses control issues.

FS theory offers the capacity to deal with issues that crisp set theory finds problematic.
Fuzzy sets are used to govern systems that are hazy, complex, and nonlinear in nature.
Since it clarifies and condenses the idea of fuzziness and faults, FS theory has made it easier
to settle real-world problems. It is currently a widely accepted hypothesis. Many scholars
changed fuzzy ideas in many other domains of science, such as [8], due to the theory’s
adaptability in solving real-world problems. The fundamental concepts of the fuzzy set
have been expanded in many ways (see [9, 26, 27] and references therein).

More specifically, in 1981, Heilpern [10] introduced the idea of fixed point results for
fuzzy set-valued mappings and fuzzy contractions by proving a fixed point theorem anal-
ogous to the Banach fixed point theorem in the context of fuzzy sets. The existence
of fixed points and common fixed points of fuzzy mappings satisfying a contraction
kind of requirements was further broadened and examined by a number of authors (see
[11–15, 21, 22, 24]).

The aim of this paper is to obtain a common α-fuzzy fixed point of fuzzy mappings
under generalized fuzzy contractive conditions in connection with the Hausdorff metric
space. This investigation is conducted within the framework of complete metric spaces.
To demonstrate how this strategy can be applied, fascinating examples are also provided.
We have obtained sufficient conditions for the existence of a common alpha-fuzzy fixed
point with three or four fuzzy mappings. The relevant literature’s corollaries are presented
as additional prior observations. In our study, we go into greater detail about some con-
sequences that are obvious in this mode and are widely discussed in literature.

2 Preliminaries
In this section, we will go over several key ideas that are necessary for the presentation of
our main results, and we will do so in preparation for that presentation.

Definition 2.1 [5] Any self-mapping φ defined on a complete metric space (ℵ, ξ ) satisfy-
ing

ξ (φx1,φx2) ≤ βξ (x1, x2) ∀x1, x2 ∈ ℵ,

for 0 < β < 1 has a unique fixed point.

Note Throughout the article, the collection of all non-empty compact subsets of a space
ℵ is denoted C(ℵ), and the collection of all non-empty closed and bounded subsets of a
space ℵ is denoted CB(ℵ)
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Definition 2.2 [16] Let (ℵ, ξ ) be a metric space. The real-valued function Hm defined on
CB(ℵ) × CB(ℵ) by

Hm(C, D) = max
{

sup
a∈C

ξ (a, D), sup
b∈D

ξ (C, b)
}

,

where

ξ (x, C) = inf
y∈C

ξ (x, y).

Definition 2.3 [16] Let (ℵ, ξ ) be a metric space. For C, D ⊆ ℵ, the distance D∗ between C
and D is defined as:

D∗(C, D) = inf
x∈C,y∈D

ξ (x, y).

Definition 2.4 [2] Let ℵ be any non-empty set. A function A∗ with domain ℵ and values
in [0, 1] is known as fuzzy set in ℵ. If A∗ is a fuzzy set and x ∈ ℵ, then the function value
A∗(x) is called the grade of membership of x ∈ A∗. �(ℵ) stands for the collection of all
fuzzy sets in ℵ unless and until stated otherwise.

Example 2.5 Consider A denotes for the old and B denotes for the young and ℵ = [0, 100].
Then A and B both are fuzzy sets that are defined by

A(x) =
{

[1 + ( x–50
5 )–2]–1, if 50 < x ≤ 100,

A(x) = 0, otherwise,

B(x) =
{

[1 + ( x–25
5 )2]–1, if 25 < x ≤ 100,

B(x) = 0, otherwise.

Fuzzy sets A and B can be seen graphically in Fig. 1 and Fig. 2, respectively.

Definition 2.6 [2] The α-level set o fuzzy set A∗ is denoted by [A∗]α and is defined as:

[
A∗]

α
=

{
x : A∗(ℵ) ≥ α

}
where α ∈ (0, 1],

[
A∗]

0 =
{

x : A∗(x) > 0
}

,

Â∗ =
{

x : A∗(x) = max
y∈ℵ

A∗(y)
}

.

For crisp subset A∗ of ℵ, we denote the characteristic function of A∗ by χA∗ . A fuzzy set
A∗ in a metric linear space V is said to be an approximate quantity if and only if [A∗]α is
compact and convex in V for each α ∈ [0, 1] and supx∈V A∗(x) = 1.

Define some sub-collections of �(ℵ) and �(V ) as follows:

W(V ) =
{

A∗ ∈ �(V ) : A∗ is an approximate quantity in V
}

,

K(ℵ) =
{

A∗ ∈�(ℵ) : Â∗ ∈ C(ℵ)
}

,

C(ℵ) =
{

A∗ ∈�(ℵ) :
[
A∗]

α
∈ C(ℵ), for each α ∈ [0, 1]

}
.
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Figure 1 Graph of fuzzy set A

Figure 2 Graph of fuzzy set B

For A∗, B∗ ∈ �(ℵ), A∗ ⊂ B∗ means A∗(x) ≤ B∗(x) for each x ∈ ℵ. If there exists an α ∈
[0, 1] such that [A∗]α , [B∗]α ∈ C(ℵ), then define

pα

(
A∗, B∗) = inf

x∈[A∗]α ,y∈[B∗]α
ξ (x, y),

Dα

(
A∗, B∗) = Hm

([
A∗]

α
,
[
B∗]

α

)
.

If [A∗]α , [B∗]α ∈ C(ℵ) for each α ∈ [0, 1], then define p(A∗, B∗), ξ∞(A∗, B∗) : C(ℵ) × C(ℵ) →
R (induced by the Hausdorff metric Hm) as follows:

p
(
A∗, B∗) = sup

α

pα

(
A∗, B∗),

ξ∞
(
A∗, B∗) = sup

α

Dα

(
A∗, B∗).
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Figure 3 Graph of fuzzy mapping T

For x ∈ ℵ, we denote the fuzzy set χ{x} by {x} unless and until it is stated, where χA∗ is
the characteristic function of the crisp set A∗.

Definition 2.7 [2] Let ℵ be any non-empty set and Y be a metric space. A mapping T
is called a fuzzy mapping if T is a mapping from ℵ into �(ℵ). A fuzzy mapping T is a
fuzzy subset on ℵ × Y with membership function T(x)(y). The function T(x)(y) is a grade
of membership of y in T(x). For convenience, we denote the α-level set of T(x) by [Tx]α
instead of [T(x)]α .

Example 2.8 Let ℵ = [–3, 3]. Define T : ℵ −→ �(ℵ) by

T(x)(y) =
sin2 x cos2 y

3
.

Then T is a fuzzy mapping. Notice that T(x)(y) ∈ [0, 1], for all x, y ∈ ℵ. The graphical rep-
resentation v = T(x)(y) showing the possible membership values of y in T(x) is shown in
Fig. 3.

Definition 2.9 [2] Let T : ℵ −→ �(ℵ) be a fuzzy mapping. An element u ∈ ℵ is called
fuzzy fixed point of T if u ∈ [Tu]α .

Definition 2.10 [2] Let S, T : ℵ → �(ℵ) be two fuzzy mappings. If for x ∈ ℵ, there exists
αS(x),αT(x) ∈ (0, 1] such that x ∈ [Sx]αSx ∩ [Tx]αTx , then x is said to b an α-fuzzy common
fixed point of S and T.

For the sake of convenience, we first state some known results for subsequent use in the
next section.
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Lemma 2.11 [16] Let (V , d) be a metric space and E, F ∈ CB(V ) with Hm(E, F) < ε. Then
for each e ∈ E, there exists an element f ∈ F such that

ξ (e, f ) < ε.

Lemma 2.12 [16] Let (V , ξ ) be a metric space and E, F ∈ CB(V ) with Hm(E, F) < ε. Then
for each e ∈ E,

ξ (e, F) ≤ Hm(E, F).

3 Main results
Theorem 3.1 Consider a metric space (V , ξ ) and CB(V ) to be the class of all bounded
and closed subsets of V. Let S, T , F , G : V → �(V ) be fuzzy mappings. Suppose for each
u ∈ V , there exists αS(u),αT (u),αG(u),αF (u) ∈ (0, 1] such that [Su]αS(u), [Tu]αT (u), [Fu]αF (u),
[Gu]αG(u) ∈ CB(V ) and

⋃
u∈V

[Su]αS(u) ⊆
⋃
u∈V

[Gu]αG(u) and
⋃
u∈V

[Tu]αT (u) ⊆
⋃
u∈V

[Fu]αF (u). (3.1)

Also suppose that

⋃
u∈V

[Su]αS(u) or
⋃
u∈V

[Gu]αG(u) and
⋃
u∈V

[Tu]αT (u) or
⋃
u∈V

[Fu]αF (u)

are complete. If there exists � ∈ [0, 1) such that

Hm
(
[Sj]αS(j), [Tk]αT (k)

) ≤ �D
(
[Fj]αF (j), [Gk]αG(k)

) ∀j, k ∈ V (3.2)

then there exists u, u′ ∈ V such that

[Tu]αT (u) ∩ [Gu]αG(u) �= ∅

and

[
Su′]

αS(u′) ∩ [
Fu′]

αF (u′) �= ∅.

Proof Let j0 ∈ V be arbitrary point of V. Choose j1 ∈ V , ∃ α ∈ (0, 1] such that k1 ∈ [Sj0]αS(j0)

and k2 ∈ [Tj1]αT (j1), where [Sj0]αS(j0) and [Tj1]αT (j1) are closed and bounded subsets of V .
Since

⋃
u∈V

[Su]αS(u) ⊆
⋃
u∈V

[Gu]αG(u) and
⋃
u∈V

[Tu]αT (u) ⊆
⋃
u∈V

[Fu]αF (u)

we can choose j2 ∈ V such that k1 ∈ [Gj1]αG(j1) and k2 ∈ [Fj2]αF (j2),

⇒ [Sj0]αS(j0) ∩ [Gj1]αG(j1) �= ∅ and [Tj1]αT (j1) ∩ [Fj2]αF (j2) �= ∅. (3.3)



Kanwal et al. Journal of Inequalities and Applications        (2023) 2023:100 Page 7 of 18

If � = 0 then by inequality (3.6),

Hm
(
[Sj0]αS(j0), [Tj1]αT (j1)

) ≤ 0

⇒ [Sj0]αS(j0) = [Tj1]αT (j1)

⇒ k1 ∈ [Tj1]αT (j1) ∩ [Gj1]αG(j1).

Also,

Hm
(
[Sj2]αS(j2), [Tj1]αT (j1

)
) ≤ 0

⇒ [Sj2]αS(j2) = [Tj1]αT (j1)

⇒ k2 ∈ [Fj2]αF (j2) ∩ [Sj2]αS(j2)

⇒ j1 and j2 are coincidence points.
Now if

D
(
[Fj0]αF (j0), [Gj1]αG(j1)

)
= 0 and D

(
[Gj1]αG(j1), [Fj2]αF (j2)

)
= 0.

Then the same arguments follow.
If D([Fj0]αF (j0), [Gj1]αG(j1)) �= 0, then by inequality (3.6), we have

Hm
(
[Sj0]αS(j0), [Tj1]αT (j1)

) ≤ �D
(
[Fj0]αF (j0), [Gj1]αG(j1)

)
,

Hm
(
[Sj0]αS(j0), [Tj1]αT (j1)

)
<

√
�D

(
[Fj0]αF (j0), [Gj1]αG(j1)

)
.

By Lemma 2.11, we can choose k2 ∈ [Tj1]αT (j1) such that

ξ (k1, k2) <
√

�D
(
[Fj0]αF (j0), [Gj0]αG(j0)

)
. (3.4)

For this k2 ∈ [Tj1]αT (j1),we may use the fact that
⋃

u∈V [Tu]αT (u) ⊆ ⋃
u∈V [Fu]αF (u) to obtain

j2 ∈ V such that k2 ∈ [Fj2]αF (j2).
If D([Gj1]αG(j1), [Fj2]αF (j2)) �= 0, then by Lemma (2.11) k3 ∈ [Sj2]αS(j2) such that

Hm
(
[Sj2]αS(j2), [Tj1]αT (j1)

) ≤ �D
(
[Fj2]αF (j2), [Gj1]αG(j1)

)

<
√

�D
(
[Fj2]αF (j2), [Gj1]αG(j1)

)
.

This implies

ξ (k2, k3) <
√

�D
(
[Fj2]αF (j2), [Gj1]αG(j1)

)

<
√

�ξ (k2, k1) by def (2.3)

< �D
(
[Fj0]αF (j0), [Gj0]αG(j0)

)
by inequality (3.4).

Continuing this process, we obtain

ξ (kn, kn+1) <
√

�D
(
[Fjn]αF (jn), [Gjn–1]αG(jn–1)

)
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<
√

�ξ (kn, kn–1)

< �ξ (kn–1, kn–2)

...

< �
n
2 ξ (k0, k1)

⇒ {kn} is a Cauchy sequence in
⋃

u∈V [Gu]αGu. By completeness of
⋃

u∈V [Gu]αGu, there
exists z ∈ ⋃

u∈V [Gu]αG(u) such that kn → z. (This also holds if
⋃

u∈V [Tu]αT (u) is complete).
It further implies that z ∈ [Gu]αG(u) for some u ∈ V . Now,

ξ
(
z, [Tu]αT (u)

) ≤ ξ (z, kn) + ξ
(
kn, [Tu]αT (u)

)

≤ ξ (z, kn) + Hm
(
[Sjn–1]αS(jn–1), [Tu]αT (u)

)
by Lemma 2.12

≤ ξ (z, kn) + �D
(
[Fjn–1]αF (jn–1), [Gu]αG(u)

)

< ξ (z, kn) + �ξ (kn–1, z) by def (2.3).

Letting n → ∞, we have ξ (z, [Tu]αT (u)) → 0, and this implies that

z ∈ [Tu]αT (u).

Hence

z ∈ [Tu]αT (u) ∩ [Gu]αG(u).

⇒ u is a coincidence point of T and G.
Now, since {kn} is a Cauchy sequence in

⋃
u∈V [Fu]αF (u), so by completeness property

z ∈ ⋃
u∈V [Fu]αF (u). (This also holds if

⋃
u∈V [Su]αS(u) is complete). This implies that there

exists u′ ∈ V such that z ∈ [Fu′]αF (u′). Now

ξ
(
z,

[
Su′]

αS(u′)
) ≤ ξ (z, kn) + ξ

(
kn,

[
Su′]

αS(u′)
)

≤ ξ (z, kn) + Hm
(
[Tjn–1]αT (jn–1),

[
Su′]

αS(u′)
)

≤ ξ (z, kn) + �D
(
[Gjn–1]αG(jn–1),

[
Fu′]

αF (u′)
)

≤ ξ (z, kn) + �ξ (jn–1, z) by def (2.3).

Letting n → ∞

ξ
(
z,

[
Su′]

αS(u′)
)

= 0

⇒ z ∈ [
Su′]

αS(u′)

⇒ z ∈ [
Fu′]

αF (u′) ∩ [
Su′]

αS(u′).

Hence, u′ is a coincidence point of F and S. Since

z ∈ (
[Tu]αT (u) ∩ [Gu]αG(u)

)
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and

z ∈ ([
Fu′]

αF (u′) ∩ [
Su′]

αS(u′)
)
.

So,

(
[Tu]αT (u) ∩ [Gu]αG(u)

) �= ∅,
([

Fu′]
αF (u′) ∩ [

Su′]
αS(u′)

) �= ∅. �

Example 3.2 Let V = [0,∞), ξ (j, k) = |j–k|, whenever j, k ∈ V and φ,ψ ,μ,ν ∈ (0, 1]. Define
mappings K , L, M, N : [0,∞) →�(V ) as follows:

K(j)(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ, if 0 ≤ t ≤ 4j,
φ

4 , if 4j < t ≤ 6j,
φ

6 , if 6j < t ≤ 8j,

0, if 8j < t < ∞,

L(j)(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ψ , if 0 ≤ t ≤ 6j,
ψ

5 , if 6j < t ≤ 8j,
ψ

7 , if 8j < t ≤ 10j,

0, if 10j < t < ∞,

M(j)(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

μ, if t = 6j,
μ

4 , if t = 8j,
μ

8 , if t = 10j,

0, otherwise,

N(j)(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ν, if t = 8j,
ν
5 , if t = 10j,
ν
7 , if t = 12j,

0, otherwise.

Now define S, T , F , G : V →�(V ) as follows:

S(j) =

⎧⎨
⎩

χ{0}, if j = 0,

K(j), if j > 0,

T(j) =

⎧⎨
⎩

χ{0}, if j = 0,

L(j), if j > 0,

F(j) =

⎧
⎨
⎩

χ{0}, if j = 0,

M(j), if j > 0,
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and

G(j) =

⎧⎨
⎩

χ{0}, if j = 0,

N(j), if j > 0.

If αS(j) = φ, αT (j) = ψ , αF (j) = μ, αG(j) = ν then,

[
S(j)

]
αS(j) =

⎧⎨
⎩

{0}, if j = 0,

[0, 4j], if j > 0,

[
T(j)

]
αT (j) =

⎧⎨
⎩

{0}, if j = 0,

[0, 6j], if j > 0,

[
F(j)

]
αF (j) =

⎧⎨
⎩

{0}, if j = 0,

{6j}, if j > 0,

and

[
G(j)

]
αG(j) =

⎧⎨
⎩

{0}, if j = 0,

{8j}, if j > 0,

and

⋃
j∈V

[Sj]αS(j) = [0,∞) =
⋃
j∈V

[Gj]αG(j)

and

⋃
j∈V

[Tj]αT (j) = [0,∞) =
⋃
j∈V

[Fj]αF (j).

If j, k = 0 then,

Hm
(
[Sj]αS(j), [Tk]αT (k)

)
= �D

(
[Fj]αF (j), [Gk]αG(k)

) ∀j, k ∈ V .

If j, k �= 0 then,

Hm
(
[Sj]αS(j), [Tk]αT (k)

)
= 4|j – k|.

Thus, for � = 2
3 , all the assumptions of Theorem 3.1 are satisfied to obtain

[T0]αT (0) ∩ [G0]αG(0) �= ∅

and

[S0]αS(0) ∩ [F0]αF (0) �= ∅.
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Corollary 3.3 Consider a metric space (V , ξ ) and CB(V ) to be the class of all bounded and
closed subsets of V. Let S, F : V → �(V ) be two fuzzy mappings. Suppose for each u ∈ V ,
there exists αS(u),αF (u) ∈ (0, 1] such that [Su]αS(u), [Fu]αF (u) ∈ CB(V ) and

⋃
u∈V

[Su]αS(u) ⊆
⋃
u∈V

[Fu]αF (u). (3.5)

Also suppose that

⋃
u∈V

[Su]αS(u) or
⋃
u∈V

[Fu]αF (u)

is complete. If there exists � ∈ [0, 1) such that

Hm
(
[Sj]αS(j), [Sk]αS(k)

) ≤ �D
(
[Fj]αF (j), [Fk]αF (k)

) ∀j, k ∈ V (3.6)

then there exists u′ ∈ V such that

[
Su′]

αS(u′) ∩ [
Fu′]

αF (u′) �= ∅.

Proof By setting S = T and F = G in Theorem 3.1, we get the required result. �

Theorem 3.4 Consider a metric space (V , ξ ) and S, T , F , G : V → �(V ) to be fuzzy map-
pings. Suppose that [Fv]αF (v) and [Gv]αG(v) are singletons for α ∈ (0, 1].

⋃
v∈V

[Sv]αS(v) ⊆
⋃
v∈V

[Gv]αG(v) and
⋃
v∈V

[Tv]αT (v) ⊆
⋃
v∈V

[Fv]αF (v),

and also one of
⋃

v∈V [Sv]αS(v) or
⋃

v∈V [Gv]αG(v) and
⋃

v∈V [Tv]αT (v) or
⋃

v∈V [Fv] are com-
plete, also [Sv]αS(v) and [Tv]αT (v) are closed and bounded subsets of V . If there exists
� ∈ [0, 1) such that

Hm
(
[Sj]αS(j), [Tk]αT (k)

) ≤ �D
(
[Fj]αF (j), [Gk]αG(k)

) ∀j, k ∈ V . (3.7)

Then there exists points u, u′ ∈ V , such that

[Gu]αG(u) ∈ [Tu]αT (u) and
[
Fu′]

αF (u′) ∈ [
Su′]

αS(u′).

Proof By taking [Fv]αF (v) and [Gv]αG(v) singleton in Theorem 3.1, we have the required
results. �

Corollary 3.5 Consider a metric space (V , ξ ) and S, T , : V →�(V ) to be fuzzy mappings.
Suppose that f and g are single valued maps and α ∈ (0, 1].

⋃
v∈V

[Sv]αS(v) ⊆ gV and
⋃
v∈V

[Tv]αT (v) ⊆ fV ,

and also one of
⋃

v∈V [Sv]αS(v) or gV and
⋃

v∈V [Tv]αT (v) or fV are complete, also [Sv]αS(v) and
[Tv]αT (v) are closed and bounded subsets of V. If there exists � ∈ [0, 1) such that

Hm
(
[Sj]αS(j), [Tk]αT (k)

) ≤ �D(fj, gk) ∀j, k ∈ V . (3.8)
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Then there exists points u, u′ ∈ V , such that

gu ∈ [Tu]αT (u) and fu′ ∈ [
Su′]

αS(u′).

Theorem 3.6 Consider a metric space (V , ξ ). Let S, T , F : V → �(V ) be fuzzy mappings.
Suppose that for α ∈ (0, 1] [Sv]αS(v), [Tv]αT (v), [Fv]αF (v) ∈ CB(V ) and

⋃
v∈V

[Sv]αS(v) ∪
⋃
v∈V

[Tv]αT (v) ⊆
⋃
v∈V

[Fv]αF (v), (3.9)

also either
⋃

v∈V [Sv]αS(v) ∪ ⋃
v∈V [Tv]αT (v) or

⋃
v∈V [Fv]αF (v) are complete. If there exists � ∈

[0, 1) such that

Hm
(
[Sj]αS(j), [Tk]αT (k)

) ≤ �D
(
[Fj]αF (j), [Fk]αF (k)

)
, ∀j, k ∈ V . (3.10)

then there exists u ∈ V such that

[Su]αS(u) ∩ [Tu]αT (u) ∩ [Fu]αF (u) �= ∅.

Proof Let j0 be the arbitrary fixed element of V. Since [Sj0]αS(j0) �= ∅, so let k1 ∈ [Sj0]αS(j0),
then there exists some j1 ∈ V such that k1 ∈ [Fj1]αF (j1). Thus, k1 ∈ [Sj0]αS(j0) ∩ [Fj1]αF (j1).
Now

Hm
(
[Sj0]αS(j0), [Tj1]αT (j1)

) ≤ �D
(
[Fj0]αF (j0), [Fj1]αF (j1)

)

<
√

�D
(
[Fj0]αF (j0), [Fj1]αF (j1)

)

By Lemma 2.11, we choose k2 ∈ [Tj1]αT (j1) such that

ξ (k1, k2) <
√

�D
(
[Fj0]αF (j0), [Fj1]αF (j1)

)

For this k2 ∈ [Tj1]αT (j1), we may use inequality (3.9) to obtain j2 ∈ V such that k2 ∈ [Fj2]αF (j2),
and so

k2 ∈ [Tj1]αT (j1) ∩ [Fj2]αF (j2),

Hm
(
[Sj2]αS(j2), [Tj1]αT (j1)

) ≤ �D
(
[Fj1]αF (j1), [Fj2]αF (j2)

)

<
√

�D
(
[Fj1]αF (j1), [Fj2]αF (j2)

)
.

By Lemma 2.11, we choose k3 ∈ [Sj2]αS(j2) such that

ξ (k2, k3) <
√

�D
(
[Fj1]αF (j1), [Fj2]αF (j2)

)

<
√

�ξ (k1, k2) by def (2.3)

<
√

�D
(
[Fj0]αF (j0), [Fj1]αF (j1)

)

by continuing this process,

ξ (kn, kn+1) <
√

�D
(
[Fjn–1]αF (jn–1), [Fjn]αF (jn)

)
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<
√

�ξ (kn–1, kn) by def (2.3)

< �ξ (kn–1, kn–2)

< · · ·
< �

n
2 ξ (k0, k1).

This implies that {kn} is a Cauchy sequence in
⋃

v∈V [Fv]αF (v). By completeness there ex-
ists an element z ∈ ⋃

v∈V [Fv]αF (v), such that kn → z. (This also holds if (
⋃

v∈V [Sv]αS(v)) ∪
(
⋃

v∈V [Tv]αT (v)) =
⋃

v∈V ([Sj]αS(j) ∪ [Tj]αT (j)) is complete with z ∈ ⋃
v∈V ([Sj]αS(j) ∪ [Tj]αS(j) ⊆⋃

v∈V [Fv]αF (v)). It further implies that

z ∈ [Fu]αF (u) for some u ∈ V .

Now

ξ
(
z, [Tu]αT (u)

) ≤ ξ (z, kn) + ξ
(
kn, [Tu]αT (u)

)

≤ ξ (z, kn) + Hm
(
[Sjn–1]αS(jn–1), [Tu]αT (u)

)
by Lemma 2.12

≤ ξ (z, kn) + �D
(
[Fjn–1]αF (jn–1), [Fu]αF (u)

)
by inequality (3.10)

< ξ (z, kn) +
√

�ξ (kn–1, z).

Letting n → ∞,

ξ
(
z, [Tu]αT (u)

)
= 0

⇒ z ∈ [Tu]αT (u).

Hence z ∈ [Tu]αTu ∩ [Fu]αF (u). Now

ξ
(
z, [Su]αS(u)

) ≤ ξ (z, kn) + ξ
(
kn, [Su]αS(u)

)

≤ ξ (z, kn) + Hm
(
[Tjn–1]αT (jn–1), [Su]αS(u)

)
by Lemma 2.12

≤ ξ (z, kn) + �D
(
[Fjn–1]αF (jn–1), [Fu]αF (u)

)
by inequality (3.10)

< ξ (z, kn) + �ξ (kn–1, z) by def (2.3).

Letting n → ∞,

ξ
(
z, [Su]αS(u)

)
= 0

⇒ z ∈ [Su]αS(u).

Hence z ∈ ([Fu]αF (u) ∩ [Tu]αT (u) ∩ [Su]αS(u)), thus ([Fu]αF (u) ∩ [Tu]αT (u) ∩ [Su]αS(u)) �= ∅, and
u is a common coincidence fuzzy fixed point of S, T and F . �
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Example 3.7 Let V = [0,∞), ξ (v, w) = |v – w|, whenever v, w ∈ V and δ1, δ2, δ3 ∈ (0, 1]. De-
fine mappings P, Q, R : [0,∞) →�(V ) as follows:

P(v)(t) =

⎧
⎪⎪⎨
⎪⎪⎩

δ1, if 0 ≤ t ≤ 2v;
δ1
2 , if 2v < t ≤ 3v;

0, otherwise,

Q(v)(t) =

⎧⎪⎪⎨
⎪⎪⎩

δ2, if 0 ≤ t ≤ 4v;
δ2
3 , if 4v < t ≤ 6v;

0, otherwise,

R(v)(t) =

⎧⎪⎪⎨
⎪⎪⎩

δ3, if t = 6v;
δ3
3 , if t = 8v;

0, otherwise.

Define S, T , F : V →�(V ) as follows

S(v) =

⎧
⎨
⎩

χ{0}, if v = 0;

P(v), if v > 0,

T(v) =

⎧
⎨
⎩

χ{0}, if v = 0;

Q(v), if v > 0,

F(v) =

⎧⎨
⎩

χ{0}, if v = 0;

R(v), if v > 0.

If αS(v) = δ1, αT (v) = δ2, αF (v) = δ3, then

[
S(v)

]
αS(v) =

⎧⎨
⎩

{0}, if v = 0,

[0, 2v], if v > 0,

[
T(v)

]
αT (v) =

⎧⎨
⎩

{0}, if v = 0,

[0, 4v], if v > 0,

[
F(v)

]
αF (v) =

⎧
⎨
⎩

{0}, if v = 0,

{6v}, if v > 0,
⋃
v∈V

[Sv]αS(v) ∪
⋃
v∈V

[Tv]αT (v) = [0,∞) =
⋃
v∈V

[Fv]αF (v).

Then for � = 2
5 , all the axioms of Theorem 3.6 are satisfied to obtain

[S0]αS(0) ∩ [T0]αT (0) ∩ [F0]αF (0) �= ∅.
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Corollary 3.8 Consider a metric space (V , ξ ) and S, F : V → (V ) to be fuzzy mappings
such that [Sv]αS(v), [Fv]αF (v) ∈ CB(V ). Suppose that

⋃
v∈V

[Sv]αS(v) ⊆
⋃
v∈V

[Fv]αF (v). (3.11)

Also either
⋃

v∈V [Sv]αS(v) or
⋃

v∈V [Fv]αF (v) are complete. If there exists � ∈ [0, 1) such that

Hm
(
[Sj]αS(j), [Sk]αS(k)

) ≤ �D
(
[Fj]αF (j), [Fk]αF (k)

) ∀j, k ∈ V . (3.12)

Then there exists a point u ∈ V such that [Su]αS(u) ∩ [Fu]αF (u) �= ∅.

4 Application
Theorem 4.1 Let (ℵ, ξ ) be a metric space and S, T , F , G : ℵ → CB(ℵ) be multi-valued map-
pings. Suppose that

Sℵ ⊆ Gℵ and Tℵ ⊆ Fℵ,

also one of Sℵ or Gℵ and Tℵ or Fℵ are complete. If there exists � ∈ [0, 1) such that

Hm(Sx, Ty) ≤ �D(Fx, Gy), ∀x, y ∈ ℵ. (4.1)

Then there exist points u, u′ ∈ ℵ such that Tu ∩ Gu �= ∅ and Su′ ∩ Fu′ �= ∅.

Proof Consider four fuzzy mapping A, B, C, D : ℵ → �(ℵ) defined by

A(x) = χTx, B(x) = χFx, C(x) = χSx, D(x) = χGx,

then for

αA(x),αB(x),αC(x),αD(x) ∈ (0, 1],
[
A(x)

]
αA(x)

=
{

t : A(x)(t) ≥ αA(x)
}

=
{

t : χTx(t) ≥ αA(x)
}

=
{

t : χTx(t) = 1
}

= {t : t ∈ Tx}
= Tx.

Similarly

[
B(x)

]
αB(x)

= Fx,
[
C(x)

]
αC(x)

= Sx,
[
D(x)

]
αD(x)

= Gx.

Now

⋃
x∈ℵ

[
A(x)

]
αA(x)

=
⋃
x∈ℵ

{
t : A(x)(t) ≥ αA(x)

}
=

⋃
x∈ℵ

Tx = Tℵ ⊆ Fℵ =
⋃
x∈ℵ

[
B(x)

]
αB(x)

.



Kanwal et al. Journal of Inequalities and Applications        (2023) 2023:100 Page 16 of 18

Also

⋃
x∈ℵ

[
C(x)

]
αC(x)

=
⋃
x∈ℵ

{
t : C(x)(t) ≥ αC(x)

}
=

⋃
x∈ℵ

Sx = Sℵ ⊆ Gℵ =
⋃
x∈ℵ

[Dx]αD(x) .

Since Hm([C(x)]αC(x) , [A(y)]αA(y) ) = Hm(Sx, Ty) and D([B(x)]αB(x) , [D(y)]αD(y) ) = D(Fx, Gy),
Theorem 3.1 can be applied to obtain u, u′ ∈ ℵ such that Tu ∩ Gu �= ∅ and Su′ ∩ Fu′ �= ∅. �

Theorem 4.2 Let (ℵ, ξ ) be a metric space and S, T , F : ℵ → CB(ℵ) be multi-valued map-
pings. Suppose that

Sℵ ∪ Tℵ ⊆ Fℵ, (4.2)

also either Sℵ ∪ Tℵ or Fℵ is complete. If there exists � ∈ (0, 1) such that

Hm(Sx, Ty) ≤ �D(Fx, Fy), ∀x, y ∈ ℵ. (4.3)

Then there exist a point u ∈ ℵ such that Su ∩ Tu ∩ Fu �= ∅.

Proof By setting G = F in above theorem, the required result can be obtained. �

5 Conclusion
Integral inequalities and integral inclusions arise in several problems in mathematical
physics, control theory, critical point theory for non-smooth energy functional, differen-
tials, variational inequalities, fuzzy set arithmetic, traffic theory, etc. These can be solved
by fixed point methods. In this study, coupled common coincidence points for two fuzzy
mappings that fulfill a rational inequality and common coincidence points for three fuzzy
mappings that meet a rational inequality are constructed within the framework of com-
plete metric spaces. Examples are provided to highlight the superiority and rationality of
the discovered results. The concept under consideration here unifies and generalizes a
number of well-known coincidence point and fixed point theories in the associated liter-
ature. Moreover, our work will motivate researchers to go ahead and help them in finding
the solutions of various types of equations and inequalities.

We conclude this paper by indicating, in the form of open questions, some directions
for further investigation and work.

1. Exploring common coincidence points for mappings having contractive type condi-
tions in rectangular metric, F-metric and fuzzy metric spaces, and so on in the future.

2. Can the conditions of inclusion in all theorems be relaxed?
3. If the answer to 2 is yes, then what hypotheses are needed to guarantee the existence

of coincidence points?
4. Whether the concept of coincidence point for these contractions can be extended to

more than four mappings?
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