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Abstract
This research deals with Krasnoselskii’s fixed point theorem where the entries
operators do not need to be G-weakly compact and contraction. These results were
obtained by using the so-called generalized measure of weak noncompactness and
some user-friendly lemmas. Moreover, these gained fixed point results are applied to
study the existence of solutions of a coupled system for integral equations in the
generalized Banach space C([0, 1], E1)× C([0, 1], E2).
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1 Introduction
The history of generalized Banach spaces in the sense of Perov began in 1934 due to the
Serbian mathematician Duro Kurepa who generalized the notion of metric spaces into
vector-valued metric spaces. In 1965, Perov started the fixed point theory in these spaces
by publishing his remarkable paper [21]. Numerous works of great importance studied
the fixed point theory and its applications in generalized normed spaces; for example, see
[6, 12, 17, 19, 22, 24, 25, 29, 31] and the references therein.

In [4], Laksaci et al. introduced the G–weak topology τG
E on generalized Banach spaces.

Furthermore, they gave several properties and characterizations that allow extending
some existing results of Schauder and Tychonoff [8], Arino et al. [1], and Krasnoselskii
to G–weak topology context.

The measures of (weak) noncompactness are useful techniques in the existence theory
for several types of integral and integral-differential equations [15, 20, 26]. In 1997, Banaś
[2] presented a fixed point result using the concept of k-set weakly contractive formulated
in terms of the measure of weak noncompactness. After that, a number of interesting pa-
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pers [5, 9, 11, 13, 14, 18, 27] on the solvability of various problems associated with measures
of weak noncompactness have appeared.

Motivated by the aforementioned notes, in this manuscript we aim to investigate a num-
ber of extensions of the Krasnoselskii-type theorem by relaxing the G-weakly compact and
the M-contraction conditions of the involved operators defined in the G–weak topology
features. These results are based on the use of the so-called generalized measure of non-
compactness tool.

The scheme of this manuscript is ordered as follows. In Sect. 2, we gather some notations
and preliminary facts. In Sect. 3, we prove the noncompact type of Schauder–Tychonoff’s,
Arino’s, and Krasnoselskii’s fixed point theorems in τG

E topology. Finally, our results are
used to prove the existence of solutions for the following system of functional integral
equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ζ1(ι) = (
∫ ι

0 H1(ς , ι)Ξ1(ι,ς , ζ1(ς ), ζ2(ς )) dς ) · u1

+ Π1(ι,
∫ φ1(ι)

0
ι

ι+ς
Θ1(ι,ς , ζ1(ς ), ζ2(ς )) dς ) · v1,

ζ2(ι) = (
∫ ι

0 H2(ς , ι)Ξ2(ι,ς , ζ1(ς ), ζ2(ς )) dς ) · u2

+ Π2(ι,
∫ φ2(ι)

0
ι

ι+ς
Θ2(ι,ς , ζ1(ς ), ζ2(ς )) dς ) · v2

in the generalized Banach space C([0, 1], E1) × C([0, 1], E2).

2 Preliminaries
This section deals with basic notions and results of generalized Banach spaces, G–
weak topology, generalized measures of weak noncompactness, and fixed point the-
ory, which are needed in sections to come. We begin by defining on Mm×n(R+), the
set of all m × n matrices with nonnegative entries, the partial order relation as fol-
lows: Let Λ,Υ ∈ Mm×n(R+), m ≥ 1, and n ≥ 1. Put Λ = (Λi,j) 1≤j≤m

1≤i≤n
and Υ = (Υi,j) 1≤j≤m

1≤i≤n
.

Then

Λ � Υ if Υi,j ≥ Λi,j for all j = 1, . . . , m, i = 1, . . . , n,

Λ ≺ Υ if Υi,j > Λi,j for all j = 1, . . . , m, i = 1, . . . , n,

and we write I for the identity n × n matrix. Let Ω =
∏n

i=1 Ωi be a bounded set in
R

n. We denote by the supremum bound (resp. the infimum bound) of Ω the vec-
tor

ŝup{λ : λ ∈ Ω}

:=

⎛

⎜
⎜
⎝

sup{λ1 : λ1 ∈ Ω1}
...

sup{λn : λn ∈ Ωn}

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝resp. înf{λ : λ ∈ Ω} :=

⎛

⎜
⎜
⎝

inf{λ1 : λ1 ∈ Ω1}
...

inf{λn : λn ∈ Ωn}

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ .

Definition 2.1 Let E be a vector space on K = R or C. A generalized norm on E is a map
defined by

‖.‖G : E −→ R
n
+,
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ζ −→ ‖ζ‖G =

⎛

⎜
⎜
⎝

‖ζ‖1
...

‖ζ‖n

⎞

⎟
⎟
⎠

which fulfills the following properties:
(i) ‖ζ‖G � 0R

n
+ for all ζ ∈ E ; if ‖ζ‖G = 0R

n
+ , then ζ = 0E ;

(ii) ‖αζ‖G = |α|‖ζ‖G for all ζ ∈ E and α ∈K; and
(iii) ‖ζ + η‖G � ‖ζ‖G + ‖η‖G for all ζ ,η ∈ E .
The pair (E ,‖.‖G) is called a generalized normed space. If the generalized metric gen-

erated by the map ‖.‖G (i.e., δG(ζ ,η) = ‖ζ – η‖G) is complete, then the space (E ,‖.‖G) is
called a generalized Banach space (in short, GBS).

Proposition 2.2 [12] In GBS in the sense of Perov, the notions of convergence sequence,
continuity, open subset, and closed subset are similar to those for the usual Banach spaces.

Now, let (E ,‖.‖G) be a GBS. The space

Ẽ =
{

(ζ , . . . , ζ )
︸ ︷︷ ︸

n times

: ζ ∈ E
}

,

endowed with the following norm

∥
∥(ζ , . . . , ζ )

∥
∥∗ =

n∑

i=1

‖ζ‖i

for all ζ ∈ E , is clearly a Banach space.
Throughout this article, for r = (r1, . . . , rn) ∈ R

n
+ and ζ0 ∈ E , we denote by

B(ζ0, r) =
{
ζ ∈ E : ‖ζ – ζ0‖G ≺ r

} (
resp. Bi(ζ0i , ri) =

{
ζi ∈ Ei : ‖ζ0i – ζi‖i < ri

})

the open ball centered at ζ0 (resp. ζ0i ) with radius r (resp. ri), and by

B(ζ0, r) =
{
ζ ∈ E : ‖ζ0 – ζ‖G � r

} (
resp. Bi(ζ0i , ri) =

{
ζi ∈ Ei : ‖ζ0i – ζi‖i ≤ ri

})
)

the closed ball centered at ζ0 (resp. ζ0i ) with radius r (resp. ri). Finally, we respectively
denote by K and co(K) the closure and the convex hull of an arbitrary set K of E .

The following lemma plays an essential role in this paper.

Lemma 2.3 [12] Let (E ,‖.‖G) be a GBS. Then the map

hE : E −→ Ẽ ,

ζ −→ hE (ζ ) = (ζ , . . . , ζ )

defines a homeomorphism.

Definition 2.4 Let (E ,‖.‖G) be a GBS and let K be a subset of E . Then K is said to be
G-bounded if there is a vector V ∈R

n
+ such that

for all ζ ∈K, ‖ζ‖G � V .
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Notation We denote by BG(E) the collection of all nonempty G–bounded subsets of E .

Definition 2.5 Let (E ,‖.‖GE ), (F ,‖.‖GF ) be two GBSs with the generalized norms

‖.‖GE =

⎛

⎜
⎜
⎝

‖.‖E1
...

‖.‖En

⎞

⎟
⎟
⎠ , ‖.‖GF =

⎛

⎜
⎜
⎝

‖.‖F1
...

‖.‖Fm

⎞

⎟
⎟
⎠

respectively, and let A : E → F be a linear operator. Then A is said to be G-bounded if
there is a matrix M ∈Mm×n(R+) such that

‖Aζ‖GF � M‖ζ‖GE for all ∈ E .

Notation We denote by LG(E ,F ) the set of all G–bounded linear operators acting from
(E ,‖.‖GE ) into (F ,‖.‖GF ).

Definition 2.6 Let (E ,‖.‖GE ) and (F ,‖.‖GF ) be two GBSs with the generalized norms

‖.‖GE =

⎛

⎜
⎜
⎝

‖.‖E1
...

‖.‖En

⎞

⎟
⎟
⎠ , ‖.‖GF =

⎛

⎜
⎜
⎝

‖.‖F1
...

‖.‖Fm

⎞

⎟
⎟
⎠

respectively. The generalized norm of LG(E ,F ) is the matrix defined as follows:

‖.‖LG(E ,F ) : LG(E ,F ) −→Mm×n(R+),

A −→ ‖A‖LG(E ,F ) =
(‖A‖L(Ei ,Fj)

)
1≤j≤m
1≤i≤n

.

In the following, we give some definitions and properties related to the generalized weak
topology extracted from [4].

Definition 2.7 [4] Let (E ,‖.‖G) be a GBS. The topology τG
E of E generated by

{
h–1
E
(
Ow); Ow ∈ σ

(
Ẽ , Ẽ∗)}

is called the generalized weak topology of E , here σ (Ẽ , Ẽ∗) denotes the weak topology of
Ẽ .

Proposition 2.8 [4] The generalized weak topology τG
E of a GBS E is a Hausdorff space.

Definition 2.9 [4] Let (E ,‖.‖G) be a GBS. A sequence (ζn)n∈N in E is called G-weakly
convergent to an element ζ ∈ E , and we denote it by ζn

G
⇀ ζ if (hE (ζn))n∈N converges weakly

to hE (ζ ) in Ẽ .

Definition 2.10 Let (E ,‖.‖GE ), (F ,‖.‖GF ) be two GBSs, and let A : E −→F be an opera-
tor. Then A is said to be:
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(i) G-weakly sequentially continuous if for every sequence (ζn)n∈N in E such that
ζn

G
⇀ ζ in E , then Aζn

G
⇀ Aζ in F .

(ii) G–ww-compact if (ζn)n∈N is a G-weakly convergent sequence in E , then (Aζn)n∈N
has a G-weakly convergent subsequence in F .

Lemma 2.11 [4] Let E and F be two GBSs, and let A : E −→F be a linear operator. Then
A is G–bounded if, and only if, A is G-weakly continuous.

Lemma 2.12 [4] Let E and F be two GBSs and A : E →F be a mapping from E into F . If
A is G-weakly continuous, then A is G-weakly sequentially continuous.

For the definitions of G-weakly compact, sequentially G-weakly compact, countably G-
weakly compact, relatively G–(compact, sequentially compact, and countably compact),
we refer the reader to [4] and the references therein.

Notation We denote by WτG
E

(E) the collection of all G-weakly compact subsets of E and
by W(Ẽ) the collection of compact subsets on σ (Ẽ , Ẽ∗).

Now, we define angelic space, which was established by Fremlin in [10].

Definition 2.13 A Hausdorff topological space E is called angelic if for every relatively
countably compact subset K of E the following hold:

(i) K is relatively compact;
(ii) For each ζ ∈K, there is a sequence in K that converges to ζ .

The following theorem expresses the fundamental characteristic of angelic spaces.

Theorem 2.14 [23] If E is an angelic space, then we have the equivalence between com-
pactness, countable compactness, and sequential compactness.

The next result plays an important role in this paper.

Lemma 2.15 [4] The GBS is angelic by its generalized norm topology and generalized weak
topology τG

E .

Next, we present a helpful definition for the generalized measure of weak noncompact-
ness, which will generalize the one introduced in 1988 by J. Banaś and J. Rivero [3].

Definition 2.16 Let (E ,‖.‖G) be a GBS. The following map

μ
τG
E

G : BG(E) −→ [0, +∞)n,

Δ −→ μ
τG
E

G (Δ) =

⎛

⎜
⎜
⎝

μ1(Δ)
...

μn(Δ)

⎞

⎟
⎟
⎠

is called a generalized measure of weak noncompactness (for short G–MWNC) defined
on E if the following requirements are met:
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(i) kerμ
τG
E

G = {Δ ∈ BG(E) : μτG
E

G (Δ) = 0Rn} 
= ∅ and kerμ
τG
E

G ⊂WτG
E

(E).

(ii) For all Δ1, Δ2 ∈ BG(E) with Δ1 ⊂ Δ2, we have μ
τG
E

G (Δ1) � μ
τG
E

G (Δ2).

(iii) For all Δ ∈ BG(E), we have μ
τG
E

G (Δ) = μ
τG
E

G (ΔτG
E ) = μ

τG
E

G (co(Δ)).
(iv) For all Δ1,Δ2 ∈ BG(E) and α ∈ [0, 1], we have

μ
τG
E

G (αΔ1 + (1 – α)Δ2) � αμ
τG
E

G (Δ1) + (1 – α)μτG
E

G (Δ2).
(v) Generalized Cantor intersection property, i.e., if (Δm)n≥1 is a sequence of

nonempty, weakly closed subsets of E with Δ1 is G–bounded and

Δ1 ⊇ Δ2 ⊇ · · · ⊇ Δm . . . and such that limm→+∞μ
τG
E

G (Δm) = 0Rn , then the set
Δ∞ :=

⋂∞
m=1Δm is nonempty and G-weakly compact.

A G-MNWC is called:
(vi) subadditive if μ

τG
E

G (Δ1 + Δ2) � μ
τG
E

G (Δ1) + μ
τG
E

G (Δ2) for all Δ1,Δ2 ∈ BG(E);

(vii) regular if kerμ
τG
E

G = WτG
E

(E).

Example 2.17 A typical example of a generalized measure of weak noncompactness that
satisfies properties (vi) and (vii) is the Deblasi measure ω

τG
E

G defined for all G–bounded
subset Ω ⊂ E by

ω
τG
E

G (Ω) := înf
{
ε ∈R

n
+ : there exists Q ∈WτG

E
(E) such that Ω ⊆ Q + εB(0, 1)

}
,

=

⎛

⎜
⎜
⎝

inf{ε1 > 0 : there exists Q1 ∈W(Ẽ) such that Ω ⊆ Q1 + ε1B(0, 1)}
...

inf{εn > 0 : there exists Qn ∈W(Ẽ) such that Ω ⊆ Qn + εnB(0, 1)}

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

ω1(Ω)
...

ωn(Ω)

⎞

⎟
⎟
⎠ .

Definition 2.18 A matrix M ∈Mn×n(R) is called convergent to zero if

Mk −→ 0, as k −→ ∞.

Lemma 2.19 [28] Let M be a square matrix of nonnegative numbers. The following asser-
tions are equivalent:

(i) Mk −→ 0 as k −→ ∞;
(ii) I – M is invertible and

(I – M)–1 = I + M + M2 + · · · + Mk + · · · ;

(iii) The eigenvalues of M lie in the open unit disc of C
.

Remark 2.20 From assertion (ii) of Lemma 2.19, it is easy to verify that if there is p ∈ N

such that Mp converges to zero, then (I – M)–1 exists and

(I – M)–1 =
(
I – Mp)–1

p–1∑

k=0

Mk . (2.1)
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Definition 2.21 Let (E , δG) be a complete generalized metric space with δG : E ×E −→R
n

and A be an operator from E into itself. A is called G-Lipschitz with matrix Υ if there is a
square matrix of nonnegative numbers, and

δG
(
A(ζ ),A(ν)

)
� Υ δG(ζ ,ν) for all ζ ,ν ∈ E .

If the matrix Υ converges to zero, then A is called Υ -contraction.

Definition 2.22 Let (E ,‖.‖G) be a GBS, and let μ
τG
E

G be a G-MWNC. A self-mapping A :

E −→ E is said to be (M,μτG
E

G )-G-weakly set contractive if A is G–bounded, and there exists
a matrix M converging to zero such that

μ
τG
E

G (AΩ) � Mμ
τG
E

G (Ω) for all Ω ∈ BG(E).

Theorem 2.23 (Perov, [21]) Let (E , δG) be a complete generalized metric space, and let
A : E −→ E be an M-contraction operator. Then A has a unique fixed point ζ ∗ ∈ E .

The next result is a consequence of Perov’s fixed point theorem.

Lemma 2.24 [22] Let (E ,‖.‖G) be a GBS and A : E −→ E be a contraction. Then Id – A is
a homeomorphism, where Id denotes the identity operator on E .

In the next, we generalize the previous result as follows.

Lemma 2.25 Let (E ,‖.‖G) be a GBS and A : E → E be G–Lipschitzian with matrix M.
Assume that there is p ∈ N such that the pth power of the operator Aν : E → E defined by
Aνζ = Aζ + ν for each ν ∈ E is an Nν-contraction. Then the operator (Id – A) is surjective
on E . Furthermore, F := Id – A : E → E is invertible and its inverse satisfies

∥
∥F–1ζ – F–1η

∥
∥

G � Υp‖ζ – η‖G, ζ ,η ∈ E , (2.2)

where

Υp =

⎧
⎪⎪⎨

⎪⎪⎩

p.(I – N)–1, if M = I,

(I – M)–1, if M converges to zero,

(I – N)–1(I – Mp).(I – M)–1, otherwise.

(2.3)

Proof Let ν ∈ E be an arbitrary point. Because A
p
ν is Nν-contraction, then

∥
∥Ap

νζ – A
p
νz
∥
∥

G � Nν‖ζ – z‖G, ∀ζ , z ∈ E .

Now, we claim that (Id – A) maps E onto E . Indeed, from the contraction of Ap
ν and an

application of Perov’s theorem, we deduce that there is unique ζ ∗ ∈ E such that Ap
νζ

∗ = ζ ∗.
Hence,

Aνζ
∗ = Aν

(
A

p
νζ

∗) = A
p
ν

(
Aνζ

∗). (2.4)
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According to (2.4), the point Aνζ
∗ is a fixed point of the operator A

p
ν , and thus, by the

uniqueness of ζ ∗, we conclude that ζ ∗ is the unique fixed point of Aν , too. Hence, we have

(Id – A)ζ ∗ = ν,

which gives that Id – A : E → E is onto. Now, the operator Ap is N-contractive. Then, by
using Lemma 2.24, we conclude that (Id – A

p) is a homeomorphism. Thus, the operator
(Id – A)–1 exists on E because

(Id – A)–1 =
(
Id – A

p)–1
p–1∑

k=0

A
k . (2.5)

Taking into account the fact that Ap is an N-contraction, hence for each ζ ,η ∈ E we get

∥
∥
(
Id – A

p)ζ –
(
Id – A

p)η
∥
∥

G =
∥
∥(ζ – η) –

(
A

pζ – A
pη
)∥
∥

G

�
∥
∥(ζ – η)

∥
∥

G –
∥
∥Apζ – A

pη
∥
∥

G

� (I – N)‖ζ – η‖G,

(2.6)

and consequently, by using Lemma 2.19, the matrix (I – N) is invertible, then

∥
∥
(
Id – A

p)–1
ζ –

(
Id – A

p)–1
η
∥
∥

G � (I – N)–1‖ζ – η‖G, ∀ζ ,η ∈ (Id – A
p)(E). (2.7)

On the other hand, a series of induction calculations yields that

∥
∥Akζ – A

kη
∥
∥

G � M
∥
∥Ak–1ζ – A

k–1η
∥
∥

G

...

� Mk‖ζ – η‖G, ∀ζ ,η ∈ E and k ∈N.

(2.8)

Going back to (2.5), (2.7), and (2.8), we conclude that
(1) If M = Id ,

∑p–1
k=0Mk = p.Id , and

Υp = (I – N)–1
p–1∑

k=0

Mk = p.(I – N)–1.

(2) If M converges to zero, then N = Mp, and using Eq. (2.1) we have
∑p–1

k=0Mk = (I – Mp)(I – M)–1, hence

Υp = (I – M)–1.

(3) Else,
∑p–1

k=0Mk = (I – Mp)(I – M)–1, and

Υp = (I – N)–1(I – Mp).(I – M)–1.

In conclusion, (2.3) is verified, and this proves the desired estimate (2.2). �
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Lemma 2.26 [4] Let (E ,‖.‖G) be a GBS and A : E −→ E be a G–bounded linear operator.
If ‖A‖LG converges to zero, then the operator (Id – A) is invertible and

(Id – A)–1 = Id + A + A
2 + · · · + A

k + · · · ∈LG(E).

In [4], the authors presented and proved the following theorems.

Theorem 2.27 [4] Let K be a nonempty, convex, and G-weakly compact subset of a GBS
E . If A is a G-weakly continuous map and transfers K into itself, then A has, at least, a
fixed point.

Theorem 2.28 [4] Let E be a GBS, and let K be a G-weakly compact and convex subset
of E . Then any G-weakly sequentially continuous map A : K −→ K has, at least, a fixed
point.

3 Fixed point results
Our first purpose in this section is to give the noncompact type of Theorem 2.27 and
Theorem 2.28.

Theorem 3.1 Let E be a GBS and let μ
τG
E

G be an arbitrary G-MWNC. Then every nonempty,
G–bounded, closed, convex subset K of E has the fixed point property for G-weakly contin-
uous mapping, which is a (M,μτG

E
G )-G-weakly set contractive mapping.

Proof Defining the following sequence of sets:

Kn =

⎧
⎨

⎩

K if n = 0,

co(AKn–1) otherwise.

Obviously, the sequence (Kn)n∈N is of nonempty closed convex decreasing subsets of K.
Taking into consideration that A is (M,μτG

E
G )-G-weakly set contractive, we have

μ
τG
E

G (K2) = μ
τG
E

G
(
co(AK1)

)
= μ

τG
E

G (AK1) � Mμ
τG
E

G (K1).

Continuing this process, we obtain

μ
τG
E

G (Kn) � Mnμ
τG
E

G (K) for each n ∈N.

Since M converges to zero, we conclude that limn→∞μ
τG
E

G (Kn) = 0Rn . Using property (v)

of μ
τG
E

G (·), we conclude that Q :=
⋂∞

n=1Kn is a nonempty closed convex G-weakly compact
subset of K. Furthermore, it is easily seen that AQ ⊂ Q. Now, Theorem 2.27 completes
the proof. �

Theorem 3.2 Let E be a GBS, μτG
E

G be an arbitrary G-MWNC, and letK be a nonempty, G–
bounded, closed, and convex subset of E . Assume that A : K −→K is G-weakly sequentially
continuous and (M,μτG

E
G )-G-weakly set contractive mapping, then A has, at least, a fixed

point in K.
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Proof By using the same ideas applied in Theorem 3.1, we find that all the hypotheses of
Theorem 2.28 are fulfilled. �

We now prove certain fixed point theorems of Krasnoselskii type.

Theorem 3.3 Let K be a nonempty, G–bounded, closed, and convex subset of a GBS E ,
and let μ

τG
E

G be an arbitrary G-MWNC. Suppose that B : K −→ E and A : E −→ E are such
that:

(i) B is G-weakly sequentially continuous;
(ii) There exists a matrix M converging to zero such that

μ
τG
E

G (B(Ω) + A(Ω)) � Mμ
τG
E

G (Ω) for all Ω ⊂K;
(iii) A is a contraction with a matrix N and G-weakly sequentially continuous; and
(iv) (ζ = Aζ + Bν,ν ∈K) �⇒ ζ ∈K.
Then the sum of A and B has, at least, a fixed point in K.

Proof On account of the fact that A is an N-contraction, it comes as a consequence of
Lemma 2.24 that the map Id – A is a homeomorphism from E into E . Taking now ν ∈ K,
the map A · +Bν defines a contraction from E into itself. Hence, by the Perov fixed point
Theorem 2.23, the equation ζ = Aζ + Bν has a unique solution ζ ∈ E . By hypothesis (iv)
we have ζ ∈ K. So, ζ = (Id – A)–1

Bν ∈ K; in other words, the mapping (Id – A)–1
B maps

K into itself.
Presently, we define the following sequence of sets:

Kn =

⎧
⎨

⎩

K if n = 0,

co((Id – A)–1
BKn–1) otherwise.

We have already seen that (Kn)n∈N is a decreasing sequence of nonempty closed convex
subsets of K. Moreover, for each n ∈N, we get

(Id – A)–1
B(Kn) = (Id – A + A)(Id – A)–1

B(Kn)

= B(Kn) + A(Id – A)–1
B(Kn),

so

(Id – A)–1
B(Kn) ⊂ B(Kn) + A

(
co
(
(Id – A)–1

B(Kn)
))

⊂ B(Kn) + A(Kn).

Moreover, the use of assumption (ii) leads to

μ
τG
E

G
(
(Id – A)–1

B(Kn)
)
� μ

τG
E

G
(
B(Kn) + A(Kn)

)

� Mμ
τG
E

G (Kn)

...

� Mn+1μ
τG
E

G (K),
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but M converges to zero, thus Q :=
⋂∞

n=1Kn is a nonempty closed convex G-weakly com-
pact subset of K and (Id – A)–1

B(Q) ⊂Q.
Next, we verify that (Id – A)–1

B : Q → Q is G-weakly sequentially continuous. Indeed,
let (ζn)n∈N be a sequence in Q with ζn

G
⇀ ζ . Set νn = (Id –A)–1

Bζn ∈Q for all n ∈N, then by
Lemma 2.15 the sequence {νn}n∈N has a subsequence G-weakly convergence to some ν in
Q. Evidently, by the G–weak sequential continuity of the maps A and B and the equation

νnk = (Id – A)–1
Bζnk

= Bζnk + A(Id – A)–1
Bζnk for all k ∈N,

we have ν = Aν + Bζ , and thus ν = (Id – A)–1
Bζ .

We next claim that

(Id – A)–1
Bζn

G
⇀ (Id – A)–1

Bζ .

Assume the opposite; hence there exists a neighborhood of (Id – A)–1
Bζ in the sense

of τG
E , let us denote it by UτG

E , and there is a subsequence {ζnj}j∈N of {ζn}n∈N such that
(Id – A)–1

Bζnj /∈ UτG
E for all j ≥ 1. The sequence {ζnj}j∈N converges to ζ in the sense of

τG
E ; then, reasoning as before, we can extract a subsequence {ζnjk

}k∈N of {ζnj}j∈N so that

(Id – A)–1
Bζnjk

G
⇀ (Id – A)–1

Bζ . But this is a contradiction with (Id – A)–1
Bζnj /∈ UτG

E for
all j ≥ 1. Our claim is hence verified. Finally, the fixed point theorem, Theorem 2.28, en-
sures the existence of the fixed point of the operator (Id – A)–1

B in Q. Thus, the proof of
the theorem is completed. �

Theorem 3.4 Let K be a nonempty, G–bounded, closed, and convex subset of a GBS E .
Suppose that A : E → E and B : K → E are G-weakly sequentially continuous mappings
such that:

(i) A satisfies the conditions of Lemma 2.25 and (Id – A)–1 is G–ww–compact;
(ii) B is a (�,ωτG

E
G )-G–set contractive map; and

(iii) [ζ = Aζ + Bν,ν ∈K] �⇒ ζ ∈K.
Then the sum A + B admits at least one fixed point in K provided that the matrix Λ =

� · Υp converges to zero.

Proof Since A : E → E verifies all the hypotheses of Lemma 2.25, the operator (Id – A)
maps E onto E . Keeping in mind that B : K → E , for each ζ ∈ K, there exists ν ∈ E such
that

y – Aν = Bζ ⇐⇒ (Id – A)ν = Bζ . (3.1)

Using Lemma 2.25 one more time, we infer that (Id – A)–1 exists on E , and thus, from
the third condition and (3.1), we get ν = (Id – A)–1

Bζ ∈ K. From (2.2), (Id – A)–1 is
Υp–G–Lipschitz.

Next, let Ω ⊂ K and r � ω
τG
E

G (Ω). There exist 0Rn � r0 � r and a G-weakly compact
subset Q of E such that Ω ⊆Q + r0B(0, 1).
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Let ι ∈ Ω . Then there is ς ∈ Q such that ‖ς – ι‖G � r0. Since (Id – A)–1 is Υp-G-
Lipschitzian, then ‖(Id – A)–1ς – (Id – A)–1ι‖G � Υp‖ς – ι‖G � Υpr0, then

(Id – A)–1A ⊆ (Id – A)–1Q + Υpr0B(0, 1) ⊆ (Id – A)–1QτG
E + Υpr0B(0, 1). (3.2)

Since the operator (Id – A)–1 is ww–G–compact, if (ξn)n∈N is a G-weakly convergent se-
quence in Q, then (σn)n∈N := ((Id – A)–1ξn)n∈N has a G-weakly convergent subsequence;

which means (Id – A)–1QτG
E is G-weakly sequentially continuous, hence Lemma 2.15 im-

plies that (Id – A)–1QτG
E is G-weakly compact. Consequently, by using (3.2) and the sub-

additivity of ω
τG
E

G , we get

ω
τG
E

G
(
(Id – A)–1A

)
� Υpr0 ≺ Υpr.

Letting r → ω
τG
E

G (Ω), we get

ω
τG
E

G
(
(Id – A)–1Ω

)
� Υpω

τG
E

G (Ω).

Using now condition (ii), we get

ω
τG
E

G
((

(Id – A)–1
B
)
(Ω)

)≺ Mω
τG
E

G (Ω).

In other words, (Id – A)–1
B : K → K is an (M,μτG

E
G )-G-weakly set contractive map, thus

(in view of the proof of Theorem 3.1) there is a subset Q ⊂ K invariant by (Id – A)–1
B

and G-weakly compact. Now we show that (Id – A) : Q → Q is G– weakly sequentially
continuous. To this end, let ζ , ζn ∈ Q such that ζn

G
⇀ ζ and set M = {ζn : n ∈ N}. Clearly,

(Id – A)–1
B(M) is relatively G-weakly compact. Thus, by Lemma 2.15, there is a subse-

quence (ζnk )k∈N of (ζn)n∈N such that

(Id – A)–1
Bζnk

G
⇀ u.

Using the equality

(Id – A)–1
Bζnk = Bζnk + A(Id – A)–1

Bζnk

together with the G–weak sequential continuity of B and A, we deduce u = Au + Bζ , and
thus u = (Id – A)–1

Bζ = (Id – A)–1
Bζ . Accordingly,

(Id – A)–1
Bζnk

G
⇀ (Id – A)–1

Bζ .

Now, we are going to prove the following convergence:

(Id – A)–1
Bζn

G
⇀ (Id – A)–1

Bζ .

Suppose the opposite, then there is a G-weak neighborhood UτG
E of (Id – A)–1

Bζ and a
subsequence (ζnj )j∈N of (ζn)n∈N such that (Id – A)–1

Bζnj /∈ UτG
E for all j ≥ 1. The sequence
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(ζnj )j∈N converges G-weakly to ζ . By reasoning as before, we may then extract a subse-

quence (ζnjk
)k∈N of (ζnj )j∈N such that (Id –A)–1

Bζnjk

G
⇀ (Id –A)–1

Bζ , which is absurd since

(Id –A)–1
Bζnjk

/∈ UτG
E for all k ≥ 1. Finally, (Id –A)–1

B is G-weakly sequentially continuous.
Applying Theorem 3.2, we infer that the sum A + B has a fixed point. �

Let us now state the following consequence of Theorem 3.4.

Corollary 3.5 Let K be a nonempty, G–bounded, closed, and convex subset of a GBS E .
Suppose that A : E → E and B : K → E such that:

(i) A is linear, G–bounded and there exists p ≥ 1 such that Ap is a contraction;
(ii) B is a G-weakly sequentially continuous mapping and (�,ωτG

E
G )-G–set contractive;

and
(iii) [ζ = Aζ + Bν,ν ∈K] �⇒ ζ ∈K.
Then A+B admits at least one fixed point in K whenever the matrix Λ = � ·Υp converges

to zero.

Proof We are going to see that A verifies all the conditions of Theorem 3.4. Indeed, be-
cause A is a G–bounded linear operator, it is G-Lipschitzian with matrix M := ‖A‖LG . Let
ν ∈ E be arbitrary. One may conclude from induction that

Aνζ = Aζ + ν,

A
2
νζ = Aν(Aζ + ν) = A(Aζ + ν) + ν = A

2ζ + Aν + ν,

...

A
k
νζ = A

kζ + A
k–1ν + · · · + Aν + ν for all k ∈N.

This shows

∥
∥Ak

νζ – A
k
νz
∥
∥

G =
∥
∥Akζ – A

kz
∥
∥

G for all k ∈N and for all ζ , z ∈ E .

In particular, for k = p,

∥
∥Ap

νζ – A
p
νz
∥
∥

G =
∥
∥Apζ – A

pz
∥
∥

G � Mp‖ζ – z‖G for all ζ , z ∈ E .

Consequently, Ap
ν is a contraction, and so all the conditions of Lemma 2.25 are verified. On

the other hand, it follows by Lemma 2.26 that (Id – A
p)–1 exists on E and is G–bounded,

hence

(Id – A)–1 =
(
Id – A

p)–1
p–1∑

k=0

A
k ∈LG(E).

When combining Eq. (2.2) and Lemma 2.11, we conclude that (Id –A)–1 is G-weakly con-
tinuous. In view of Lemma 2.12, (Id – A)–1 is G-weakly sequentially continuous, thus it is
a G–ww–compact operator. Now, Theorem 3.4 completes the proof. �
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4 An application
Let E1 and E2 be two reflexive Banach spaces. Consider the following system of integral
equations (SIE):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ζ1(ι) = (
∫ ι

0 H1(ς , ι)Ξ1(ι,ς , ζ1(ς ), ζ2(ς )) dς ) · u1

+ Π1(ι,
∫ φ1(ι)

0
ι

ι+ς
Θ1(ι,ς , ζ1(ς ), ζ2(ς )) dς ) · v1,

ζ2(ι) = (
∫ ι

0 H2(ς , ι)Ξ2(ι,ς , ζ1(ς ), ζ2(ς )) dς ) · u2

+ Π2(ι,
∫ φ2(ι)

0
ι

ι+ς
Θ2(ι,ς , ζ1(ς ), ζ2(ς )) dς ) · v2,

(4.1)

where u1, v1 ∈ E1\{0} and u2, v2 ∈ E2\{0}. We will prove that system (4.1) has a solution
in the GBS E = C([0, 1], E1) × C([0, 1], E2) of all couple of continuous functions on [0, 1]
equipped with the generalized norm

‖.‖G : E −→R
2
+

ζ = (ζ1, ζ2) �→ ∥
∥(ζ1, ζ2)

∥
∥

G =

(
supι∈[0,1]‖ζ1(ι)‖E1

supι∈[0,1]‖ζ2(ι)‖E2

)

.

We recall that problem (SIE) (4.1) can be written in the following form:

ζ = (A + B)ζ ,

where

Aζ (ι) =

(
A1ζ (ι)
A2ζ (ι)

)

=

(
(
∫ ι

0 H1(ς , ι)Ξ1(ι,ς , ζ1(ς ), ζ2(ς )) dς ) · u1

(
∫ ι

0 H2(ς , ι)Ξ2(ι,ς , ζ1(ς ), ζ2(ς )) dς ) · u2

)

and

Bζ (ι) =

(
B1ζ (ι)
B2ζ (ι)

)

=

(
Π1(ι,

∫ φ1(ι)
0

ι
ι+ς

Θ1(ι,ς , ζ1(ς ), ζ2(ς )) dς ) · v1

Π2(ι,
∫ φ2(ι)

0
ι

ι+ς
Θ2(ι,ς , ζ1(ς ), ζ2(ς )) dς ) · v2

)

.

Problem (4.1) will be discussed under the following assumptions:
(H1) The functions Ξ1,Ξ2, : [0, 1] × [0, 1] × E1 × E2 −→ R such that

(a) Ξi, i ∈ {1, 2} are linear on E , and there are constants ai ∈R+ such that

∣
∣Ξi
(
ι,ς , ζ1(ι), ζ2(ι)

)∣
∣≤ ai

∥
∥ζi(ι)

∥
∥

Ei
, i = 1, 2.

(b) Ξi, i ∈ {1, 2} are continuous on [0, 1] with respect to the first variable.
(H2) φ1,φ2 : [0, 1] −→ [0, 1] are continuous and nondecreasing,
(H3) The functions Θ1,Θ2, : [0, 1] × [0, 1] ×R×R −→R such that:

(a) For arbitrary fixed ς ∈ [0, 1] and ζ ∈ E , the partial function
ι → Θi(ι,ς , ζ1, ζ2), i = 1, 2, is continuous on [0, 1],

(b) There exist functions θi ∈ C([0, 1],R+), i = 1, 2, and a vector r ∈R
2
+ such that

|Θi(ι,ς , ζ1(ς ), ζ2(ς ))| ≤ θi(ς ), i = 1, 2, for ζ ∈ E such that ‖ζ‖G � r with

∫ 1

0

1
ι + ς

θ (ς ) dς < ∞,
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(c) The functions Θ1, Θ2 are weakly sequentially continuous.
(H4) The mappings Πi : [0, 1] ×R−→ R, i ∈ {1, 2} such that:

(a) Π1, Π2 are continuous with respect to the first variable and Li-Lipschitz
with respect to the second variable i = 1, 2.

(b) Π1, Π2 are weakly sequentially continuous with respect to the second
variable.

(H5) The functions H1, H2 defined on � = {(ι,ς ) : 0 ≤ ι ≤ 1, 0 ≤ ς ≤ ι} in R are essen-
tially bounded, measurable, and continuous with respect to the second variable.

Theorem 4.1 Suppose that assumptions (H1)–(H5) are satisfied, then (SIE) (4.1) has a
solution in E provided that for i = 1, 2

0 ≤ Liδ + supι∈[0,1] |Πi(ι, 0)|)‖vi‖Ei

1 – βiai · ‖ui‖Ei

≤ ri, (4.2)

where

δ ≥
∫ 1

0
θi(ς )

1
ι + ς

dς .

Proof LetK = B(0, r) on E , where r above-mentioned in (H3)(b) and satisfies the inequality
in (4.2).

To determine a fixed point in E for the operator A + B, we focus on applying Corol-
lary 3.5. There will be numerous steps to complete the proof.

Claim 1: It should be highlighted that the operators involved in (4.1) are well defined.
First, we show the continuity of the mapping Aζ on [0, 1] for all ζ ∈ E . To this end, let
ζ ∈ E and {ιn}n∈N be a convergent sequence in [0, 1] with limit ι in [0, 1]. Then, for any
i = 1, 2, we get

∥
∥(Aiζ )(ιn) – (Aiζ )(ι)

∥
∥

Ei

≤
(∫ ιn

0

∣
∣Hi(ς , ιn)Ξi

(
ιn,ς , ζi(ς )

)
– Hi(ς , ι)Ξi

(
ι,ς , ζi(ς )

)∣
∣dς

+
∫ ιn

ι

∣
∣Hi(ς , ι)Ξi

(
ι,ς , ζi(ς )

)∣
∣dς

)

‖ui‖Ei

≤
(∫ 1

0

∣
∣Hi(ς , ιn)Ξi

(
ιn,ς , ζi(ς )

)
– Hi(ς , ι)Ξi

(
ι,ς , ζi(ς )

)∣
∣dς

+ βiai sup
ι∈[0,1]

∥
∥ζi(ι)

∥
∥

Ei
|ιn – ι|

)

‖ui‖Ei .

(4.3)

In view of hypotheses (H1)(b) and (H5), we have

Hi(ς , ιn)Ξi
(
ιn,ς , ζi(ς )

)→Hi(ς , ι)Ξi
(
ι,ς , ζi(ς )

)
in R when ιn goes to ι.

Moreover, the use of inequality (H1)(a), the boundedness of H1, H2, and the dominated
convergence theorem shows that

∥
∥(Aiζ )(ιn) – (Aiζ )(ι)

∥
∥

Ei
→ 0 when ιn → ι,

then the operator Aiζ ∈ C(J , Ei) for each i ∈ {1, 2}; in other words, A is well defined.
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Now, we are going to prove the continuity of the mapBζ on [0, 1] for all ζ ∈ E . Indeed, let
{ιn}n∈N be a convergent sequence in [0, 1] with limit ι in [0, 1]; and by setting Ψi(ι,ς , ζ (ς )) :=

ι
ι+ς

Θi(ι,ς , ζ1(ς ), ζ2(ς )), we get for i = 1, 2

∣
∣
∣
∣

∫ φi(ιn)

0
Ψi
(
ιn,ς , ζ (ς )

)
dς –

∫ φi(ι)

0
Ψi
(
ι,ς , ζ (ς )

)
dς

∣
∣
∣
∣

≤
∫ φi(ιn)

0

∣
∣Ψi
(
ιn,ς , ζ (ς )

)
– Ψi

(
ι,ς , ζ (ς )

)∣
∣dς

+
∫ φi(ιn)

φi(ι)

∣
∣Ψi
(
ι,ς , ζ (ς )

)∣
∣dς

≤
∫ 1

0

∣
∣Ψi
(
ιn,ς , ζ (ς )

)
– Ψi

(
ι,ς , ζ (ς )

)∣
∣dς

+ (θi(ς )|φi(ιn) – φi(ι)|.

(4.4)

Since ιn → ι, so (ιn,ς , ζ1(ς ), ζ2(ς )) → (ι,ς , ζ1(ς ), ζ2(ς )) for all ς ∈ [0, 1]. By using hypoth-
esis (H3)(a), we get

ιn

ιn + ς
Θi
(
ιn,ς , ζ1(ς ), ζ2(ς )

)→ ι

ι + ς
Θi
(
ι,ς , ζ1(ς ), ζ2(ς )

)
in R.

Moreover, the use of the first inequality (H3)(b) and the dominated convergence theorem
and (H4)(a) shows that Biζ ∈ C([0, 1],R) for each i ∈ {1, 2}, hence B is well defined.

Claim 2: Proving that A is G–bounded and there is p ∈ N such that Ap is a contraction.
In fact, from (H1)(a) the first part is obvious, now let ζ ∈ E , then

∥
∥(Aiζ )(ι)

∥
∥

Ei
≤
(∫ ι

0

∣
∣Hi(ς , ι)

∣
∣
∣
∣Ξi
(
ι,ς , ζi(ς )

)∣
∣dς

)

‖ui‖Ei

≤
(

βi

∫ ι

0
ai
∥
∥ζi(ς )

∥
∥

Ei
dς

)

‖ui‖Ei

≤
(
βiai sup

ι∈[0,1]

∥
∥ζi(ι)

∥
∥

Ei
ι
)
‖ui‖Ei ,

(4.5)

where βi = ess sup(ι,ς )∈�|Hi(ι,ς )| < ∞. Again we have

∥
∥
(
A

2
i ζ
)
(ι)
∥
∥

Ei
≤
(∫ ι

0

∣
∣Hi(ι,ς )

∣
∣|Ξi

(

ι,ς ,
∫ ς

0
Hi(ς ,σ )Ξi

(
ς ,σ , ζi(σ )dσ

)|ds
)

‖ui‖Ei

≤
(

βi

∫ ι

0
ai

∣
∣
∣
∣

∫ ς

0
Hi(ς ,σ )Ξi

(
ς ,σ , ζi(σ ),

)
dσ

∣
∣
∣
∣

)

‖ui‖Ei

≤ (βiaiι)2

2!
‖ui‖Ei sup

ι∈[0,1]

∥
∥ζi(ι)

∥
∥

Ei
.

(4.6)

By induction, one can deduce from (4.6) and (4.5) that

∥
∥
(
A

n
i ζ
)
(ι)
∥
∥

Ei
≤ (βiaiι)n

n!
‖ui‖Ei sup

ι∈[0,1]

∥
∥ζi(ι)

∥
∥

Ei
.
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Hence,

sup
ι∈[0,1]

∥
∥
(
A

n
i ζ
)
(ι)
∥
∥

Ei
≤ (βiai)n

n!
‖ui‖Ei sup

ι∈[0,1]

∥
∥ζi(ι)

∥
∥

Ei
. (4.7)

Notice that

lim
n→∞

(βiai)n

n!
‖ui‖Ei = 0.

And we set

p = min

{

n ∈N : max

{

i = 1, 2 :
(βiai)n

n!
‖ui‖Ei < 1

}}

.

Clearly, p is finite, then

∥
∥Apζ

∥
∥

G =

(
‖Ap

1ζ‖∞
‖Ap

2ζ‖∞

)

� M · ‖ζ‖G.

In other words, there is p ∈N such that Ap is an M-contraction with

M =

( (β1a1)p

p! ‖u1‖E1 0

0 (β2a2)p

p! ‖u2‖E2

)

.

As result, our claim is verified.
Claim 3: Next, let us show that B is G-weakly compact. It suffices us to prove that

B(B(0, r)) is relatively G-weakly compact. By definition, for all ι ∈ (0, 1), we have

Bi
(
B(0, r)

)
(ι)

=
{

Πi

(

ι,
∫ φi(ι)

0

ι

ι + ς
Θi
(
ι,ς , ζ1(ς ), ζ2(ς )

)
dς

)

· vi,‖ζ‖G � r
}

, ι ∈ [0, 1].

Proving now that for each i = 1, 2, Bi(B(0, r))(ι) is weakly sequentially relatively compact
in Ei. To this end, let {ζn}∞n=0 = {(ζ1n , ζ2n )}∞n=0 be any sequence in B(0, r). From assumptions
(H4)(a) and (H3)(b), it follows that for all ι ∈ [0, 1]

∥
∥Biζn(ι)

∥
∥

Ei
≤
[∣
∣
∣
∣Πi

(

ι,
∫ φi(ι)

0

ι

ι + ς
Θi
(
ι,ς , ζ1n (ς ), ζ2n (ς )

)
dς

)

– Πi(ι, 0)
∣
∣
∣
∣

+
∣
∣Πi(ι, 0)

∣
∣

]

· ‖vi‖Ei

≤
[

Li

∣
∣
∣
∣

∫ φi(ι)

0

ι

ι + ς
Θi
(
ι,ς , ζ1n (ς ), ζ2n (ς )

)
dς

∣
∣
∣
∣ +
∣
∣Πi(ι, 0)

∣
∣

]

· ‖vi‖Ei

≤
[

Li

∫ φi(ι)

0

ι

ι + ς

∣
∣Θi

(
ι,ς , ζ1n (ς ), ζ2n (ς )

)∣
∣dς + sup

ι∈[0,1]

∣
∣Πi(ι, 0)

∣
∣

]

(4.8)

· ‖vi‖Ei

≤
[

Li

∫ 1

0
θi(ς )

1
ι + ς

dς + sup
ι∈[0,1]

∣
∣Πi(ι, 0)

∣
∣

]

· ‖vi‖Ei
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≤
(

Liδ + sup
ι∈[0,1]

∣
∣Πi(ι, 0)

∣
∣
)
‖vi‖Ei ,

where δ ≥ ∫ 1
0 θi(ς ) 1

ι+ς
dς ; this shows that {Biζn, n ∈N} is a uniformly bounded sequence in

Bi(B(0, r)). As a result, Bi(B(0, r))(ι) is sequentially relatively weakly compact. Next, we will
show that Bi(B(0, r)) is a weakly equicontinuous set for i = 1, 2. If we take ε > 0, ζ ∈ B(0, r),
ζ ∗

i ∈ E∗
i , and ι, ι′ ∈ [0, 1] such that ι ≤ ι′, ι′ – ι ≤ ε,

∥
∥ζ ∗

i
(
Biζ (ι) – Biζ

(
ι′
))∥
∥

Ei

≤
∣
∣
∣
∣Πi

(

ι,
∫ φi(ι)

0

ι

ι + ς
Θi
(
ι,ς , ζ1(ς ), ζ2(ς )

)
dς

)

– Πi

(

ι′,
∫ φi(ι′)

0

ι′

ι′ + ς
Θi
(
ι′,ς , ζ1(ς ), ζ2(ς )

)
dς

)∣
∣
∣
∣ ·
∣
∣ζ ∗

i (vi)
∣
∣

≤ Li

∣
∣
∣
∣

∫ φi(ι)

0

ι

ι + ς
Θi
(
ι,ς , ζ1(ς ), ζ2(ς )

)
dς

–
∫ φi(ι′)

0

ι′

ι′ + ς
Θi
(
ι′,ς , ζ1(ς ), ζ2(ς )

)
dς

∣
∣
∣
∣ ·
∣
∣ζ ∗

i (vi)
∣
∣

≤ Li

[∫ φi(ι)

0

∣
∣
∣
∣

ι

ι + ς
Θi
(
ι,ς , ζ1(ς ), ζ2(ς )

)
–

ι′

ι′ + ς
Θi
(
ι′,ς , ζ1(ς ), ζ2(ς )

)
∣
∣
∣
∣dς

]
∣
∣ζ ∗

i (vi)
∣
∣

+ Li

[∫ φi(ι′)

φi(ι)

∣
∣
∣
∣

ι′

ι′ + ς
Θi
(
ι′,ς , ζ1(ς ), ζ2(ς )

)
∣
∣
∣
∣dς

]
∣
∣ζ ∗

i (vi)
∣
∣

≤ Li

(

sup
ι,ι′ ,ς∈[0,1],|ι–ι′|<ε,

(ζ1,ζ2)∈B(0,r)

∣
∣
∣
∣

ι

ι + ς
Θi
(
ι,ς , ζ1(ς ), ζ2(ς )

)

–
ι′

ι′ + ς
Θi
(
ι′,ς , ζ1(ς ), ζ2(ς )

)
∣
∣
∣
∣

)
∣
∣ζ ∗

i (vi)
∣
∣

+ Li

(∫ φi(ι′)

φi(ι)

∣
∣
∣
∣θi(ς )

1
ι′ + ς

∣
∣
∣
∣dς

)
∣
∣ζ ∗

i (vi)
∣
∣

≤ Li

(

sup
ι,ι′ ,ς∈[0,1],|ι–ι′|<ε,

(ζ1,ζ2)∈B(0,r)

∣
∣
∣
∣

ι

ι + ς
Θi
(
ι,ς , ζ1(ς ), ζ2(ς )

)

–
ι′

ι′ + ς
Θi
(
ι′,ς , ζ1(ς ), ζ2(ς )

)
∣
∣
∣
∣

)
∣
∣ζ ∗

i (vi)
∣
∣

+ Li

(
sup

ι,ι′∈[0,1],
|ι–ι′|<ε

{∣
∣φi(ι) – φi

(
ι′
)∣
∣
} · sup

ς∈[0,1]

∣
∣θi(ς )

∣
∣
)∣
∣ζ ∗

i (vi)
∣
∣. (4.9)

Remembering that the functions Θi(.,ς , ζ1, ζ2) and φi are uniformly continuous on [0, 1],
for each i = 1, 2, so |ζ ∗

i ((Biζ )(ι) – (Biζ )(ι′))| → 0 when ι goes to ι′. By applying Arzelà–
Ascoli’s theorem [30], we infer that Bi(B(0, r)) is weakly sequentially relatively compact in
Ei for i = 1, 2, hence B is G-weakly compact on E .

Claim 4: Next, we show that B is G-weakly sequentially continuous. To this end, let
{ξn, n ∈N} be a converging sequence of B(0, r) to a point ξ in τG

E settings, then

ξin ⇀ ξi in C
(
[0, 1], Ei

)
, i = 1, 2.
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By the boundedness of Bi(0, ri) and Dobrakov’s theorem [7], we have

ξin (ι) ⇀ ξi(ι) in Ei, i = 1, 2. (4.10)

Combining (4.10), assumptions (H3)(b), (H3)(c), and Dobrakov’s theorem, we obtain

ι

ι + ς
Θi
(
ι,ς , ξ1n (ς ), ξ2n (ς )

)
⇀

ι

ι + ς
Θi
(
ι,ς , ξ1(ς ), ξ2(ς )

)
in R.

Now, by using (H3)(b) and the dominated convergence theorem [16], we infer that

lim
n→∞

∫ φi(ι)

0

ι

ι + ς
Θi
(
ι, s, ξn(ς )

)
dς =

∫ φi(ι)

0

ι

ι + ς
Θi
(
ς , ι, ξ (ς )

)
dς .

The use of assumption (H4)(b) and Dobrakov’s theorem allows us to obtain

Πi
(
ι, ξn(ι)

)
⇀ Πi

(
ι, ξ (ι)

)
in R, i = 1, 2.

So,

Biξn(ι) ⇀ Biξ (ι) in Ei, i = 1, 2.

In view of Eq. (4.8), we deduce that (Biξn)n∈N, i = 1, 2, is bounded by (Liδ + supι∈[0,1] |Πi(ι,
0)|)‖vi‖Ei . Then, by using Dobrakov’s theorem again, we get that Biξn ⇀ Biξ , hence B is
G-weakly sequentially continuous on B(0, r).

Claim 5: Proving that (ζ = Aζ + Bν , ν ∈ B(0, r)) implies ζ ∈ B(0, r)

‖ζ‖G = ‖Aζ + Bν‖G

=

(
supι∈[0,1]‖B1ν(ι) + A1ζ (ι)‖E1

supι∈[0,1]‖B2ν(ι) + A2ζ (ι)‖E2

)

.

And we have

∥
∥ζi(ι)

∥
∥

Ei
=
∥
∥
∥
∥

(∫ ι

0
Hi(ς , ι)Ξi

(
ι,ς , ζ1(ς ), ζ2(ς )

)
dς

)

· ui

+ Πi

(

ι,
∫ φi(ι)

0

ι

ι + ς
Θi
(
ι,ς ,ν1(ς ),ν2(ς )

)
dς

)

· vi

∥
∥
∥
∥

Ei

≤
∫ ι

0

∣
∣Hi(ς , ι)

∣
∣
∣
∣Ξi
(
ι,ς , ζ1(ς ), ζ2(ς )

)∣
∣dς · ‖ui‖Ei .

+
∣
∣
∣
∣Πi

(

ι,
∫ φi(ι)

0

ι

ι + ς
Θi
(
ι,ς ,ν1(ς ),ν2(ς )

)
dς

)∣
∣
∣
∣ · ‖vi‖Ei

≤
(
βiai sup

ι∈[0,1]

∥
∥ζi(ι)

∥
∥

Ei

)
· ‖ui‖Ei +

(
Liδ + sup

ι∈[0,1]

∣
∣Πi(ι, 0)

∣
∣
)
‖vi‖Ei ;

so

sup
ι∈[0,1]

∥
∥ζi(ι)

∥
∥

Ei
≤ Liδ + supι∈[0,1] |Πi(ι, 0)|)‖vi‖Ei

1 – βiai · ‖ui‖Ei

≤ ri,
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to put it simply,

‖ζ‖G � r.

By applying Corollary 3.5, we get that problem (4.1) has a solution in E , and thus the proof
is completed. �
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