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Abstract
We prove two key inequalities for metric and generalized projections in a certain
Banach space. We then obtain some asymptotic behavior of a sequence generated
by the shrinking projection method introduced by Takahashi et al. (J. Math. Anal. Appl.
341:276–286, 2008) where the computation allows some nonsummable errors. We
follow the idea proposed by Kimura (Banach and Function Spaces IV (ISBFS 2012),
pp. 303–311, 2014). The mappings studied in this paper are more general than the
ones in (Ibaraki and Kimura in Linear Nonlinear Anal. 2:301–310, 2016; Ibaraki and
Kajiba in Josai Math. Monogr. 11:105–120, 2018). In particular, the results in (Ibaraki
and Kimura in Linear Nonlinear Anal. 2:301–310, 2016; Ibaraki and Kajiba in Josai Math.
Monogr. 11:105–120, 2018) are both extended and supplemented. Finally, we discuss
our results for finding a zero of maximal monotone operator and a minimizer of
convex functions on a Banach space.
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1 Introduction
Iterative methods play an important role in approximation theory. Several problems can
be transformed into a problem of finding a fixed point of certain mappings. Many iterative
methods have been proposed and analyzed (for example, see [3, 4, 6, 18, 19, 25, 28]). In this
paper, we are interested in one of the promising methods, namely, the shrinking projection
method. It was proposed by Takahashi et al. [24] who proved that a sequence generated by
this method converges strongly to a fixed point of a certain mapping in the Hilbert space
setting. Kimura [15] modified this iterative scheme in the sense that the inexact value of
the projection is allowed, while the asymptotic behavior of the iterative sequence performs
well. Our paper concerns cutter type mappings in Banach spaces with certain geometric
properties, and it can be regarded as an extension and a supplement to the recent results
of Ibaraki and Kimura [12] and of Ibaraki and Kajiba [11].

Let E := (E,‖ · ‖) be a real Banach space with the dual space E∗. The strong and weak
convergence in E are denoted by → and ⇀, respectively. The normalized duality mapping
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J : E → 2E∗ is defined by

Jx :=
{

x∗ ∈ E∗ :
〈
x, x∗〉 = ‖x‖∥∥x∗∥∥ = ‖x‖2} for all x ∈ E.

Recall that E is
• smooth if limt→0

1
t (‖x + ty‖ – ‖x‖) exists for all x, y ∈ E;

• strictly convex if 1
2‖x + y‖ < 1 for all x, y ∈ E with ‖x‖ = ‖y‖ = 1 and x �= y.

If E is smooth, strictly convex, and reflexive, then J is single-valued and surjective. In this
case, we can treat Jx as an element of E∗. For more details on the duality mappings, we
refer to [5].

Let C be a nonempty subset of a smooth Banach space E. In this paper, we are interested
in the following three different generalizations of cutter mappings in the Banach space
setting [2, 16]. A mapping T : C → E with a nonempty fixed point set Fix(T) := {z ∈ C : z =
Tz} is said to be

• a cutter mapping of type (P) if 〈Tx – z, J(Tx – x)〉 ≤ 0 for all x ∈ C and z ∈ Fix(T);
• a cutter mapping of type (Q) if 〈Tx – z, JTx – Jx〉 ≤ 0 for all x ∈ C and z ∈ Fix(T);
• a cutter mapping of type (R) if 〈JTx – Jz, Tx – x〉 ≤ 0 for all x ∈ C and z ∈ Fix(T).
Suppose that V : E × E → [0,∞) is a function defined by

V (x, y) := ‖x‖2 – 2〈x, Jy〉 + ‖y‖2 for all x, y ∈ E.

It is known that
• (‖x‖ – ‖y‖)2 ≤ V (x, y) ≤ (‖x‖ + ‖y‖)2 for all x, y ∈ E;
• V (x, y) = V (x, z) + V (z, y) + 2〈x – z, Jz – Jy〉 for all x, y, z ∈ E.

Lemma 1 Suppose that E is a smooth Banach space and C is a nonempty closed and convex
subset of E. The following statements are true:

(a) If T : C → E is a cutter mapping of type (P), then Fix(T) is closed and convex;
(b) Suppose that E is strictly convex. If T : C → E is a cutter mapping of type (Q), then

Fix(T) is closed and convex.

Proof (a) Suppose that T is a cutter mapping of type (P) where C is closed and convex. We
show that Fix(T) is closed. Assume that {zn} is a sequence in Fix(T) such that zn → z ∈ C;
then 〈Tz–zn, J(Tz–z)〉 ≤ 0 for all n ≥ 1. In particular, ‖Tz–z‖2 = 〈Tz–z, J(Tz–z)〉 ≤ 0, that
is, z ∈ Fix(T). Hence, Fix(T) is closed. Next, we prove that Fix(T) is convex. To see this,
let z, z′ ∈ Fix(T) and λ ∈ [0, 1]. We write w := λz + (1 – λ)z′. Obviously, w ∈ C. Moreover,
〈Tw – z, J(Tw – w)〉 ≤ 0 and 〈Tw – z′, J(Tw – w)〉 ≤ 0. This implies that ‖Tw – w‖2 = 〈Tw –
w, J(Tw – w)〉 ≤ 0, that is, w ∈ Fix(T).

(b) Suppose that E is strictly convex and T : C → E is a cutter mapping of type (Q), where
C is closed and convex. We show that Fix(T) is closed. Assume that {zn} is a sequence
in Fix(T) such that zn → z ∈ C; then 〈Tz – zn, JTz – Jz〉 ≤ 0 for all n ≥ 1. In particular,
〈Tz – z, JTz – Jz〉 ≤ 0. It follows from the strict convexity of E that z ∈ Fix(T). Hence, Fix(T)
is closed. Next, we prove that Fix(T) is convex. To see this, let z, z′ ∈ Fix(T) and λ ∈ [0, 1].
We write w := λz + (1 – λ)z′. Obviously, w ∈ C. Moreover, 〈Tw – z, JTw – Jw〉 ≤ 0 and 〈Tw –
z′, JTw – Jw〉 ≤ 0. This implies that 〈Tw – w, JTw – Jw〉 ≤ 0 and hence w ∈ Fix(T). �

In this paper, we also consider the following geometric properties. A Banach space E is
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• uniformly convex if limn ‖xn – yn‖ = 0 whenever {xn} and {yn} are sequences in E
satisfying limn ‖xn‖ = limn ‖yn‖ = limn

1
2‖xn + yn‖ = 1;

• uniformly smooth if limt→0
1
t (‖x + ty‖ – ‖x‖) exists uniformly for all x, y ∈ E with

‖x‖ = ‖y‖ = 1.
Note that every uniformly convex (uniformly smooth, respectively) space is reflexive and
strictly convex (smooth, respectively). Moreover, uniform convexity and uniform smooth-
ness are dual to each other, that is, E is uniformly convex (uniformly smooth, respectively)
if and only if E∗ is uniformly smooth (uniformly convex, respectively).

Lemma 2 ([5]) If E is a uniformly smooth Banach space, then J : E → E∗ is norm-to-norm
uniformly continuous on bounded sets.

Lemma 3 ([14]) Suppose that E is a uniformly convex and smooth Banach space and sup-
pose that {xn} and {yn} are sequences in E. If limn V (xn, yn) = 0 and either {xn} or {yn} is
bounded, then limn ‖xn – yn‖ = 0.

In each subsection, we present some prototypes of cutter type mappings of types (P),
(Q), and (R) together with their properties.

1.1 Metric projections
Suppose that E is a strictly convex and reflexive Banach space. Let C be a closed convex
subset of E and x ∈ E. It is known that there exists a unique element z ∈ C such

‖z – x‖ = min
{‖y – x‖ : y ∈ C

}
.

Such an element z is denoted by PCx. Now, we call PC the metric projection of E onto C. It
is easy to see that Fix(PC) = C and PC is a cutter mapping of type (P). The following easy
result is also needed in our study.

Lemma 4 Suppose that C is a closed convex subset of a strictly convex and reflexive Banach
space E and u ∈ E. If F is a nonempty closed convex subset of C such that PCu ∈ F , then
PF u = PCu.

Proof It follows from the definition of PC that ‖PCu – u‖ ≤ ‖y – u‖ for all y ∈ C. Since
F ⊂ C, we have ‖PCu – u‖ ≤ ‖y – u‖ for all y ∈ F . It follows from PCu ∈ F that PCu = PF u. �

The following lemma (see [15, Lemma 2.1]) is easily deduced from the result of Tsukada
[26]. Recall that E satisfies the Kadec–Klee property if xn → x whenever {xn} is a sequence
in E such that xn ⇀ x ∈ E and ‖xn‖ → ‖x‖. It is known that every uniformly convex space
satisfies the Kadec–Klee property.

Lemma 5 ([15]) Suppose that E is a strictly convex reflexive Banach space and E satisfies
the Kadec–Klee property. If {Cn} is a sequence of nonempty closed convex subsets of E such
that Cn+1 ⊂ Cn for all n ≥ 1 and C0 :=

⋂∞
n=1 Cn is nonempty, then {PCn x} converges strongly

to PC0 x for all x ∈ E.



Ibaraki and Saejung Journal of Inequalities and Applications         (2023) 2023:92 Page 4 of 20

1.2 Generalized projections
Suppose that E is a smooth, strictly convex, and reflexive Banach space. Let C be a closed
convex subset of E and x ∈ E. It is known that there exists a unique element z ∈ C such

V (z, x) = min
{

V (y, x) : y ∈ C
}

:= V (C, x).

Such an element z is denoted by ΠCx. Now, we call ΠC the generalized projection of E
onto C. It is easy to see that Fix(ΠC) = C and ΠC is a cutter mapping of type (Q). Moreover,
we have the following result.

Lemma 6 ([1]) Let C be a closed convex subset of a smooth, strictly convex, and reflexive
Banach space E. Suppose that x ∈ E and z ∈ C. Then the following statements are equiva-
lent:

• z = ΠCx;
• 〈y – z, Jz – Jx〉 ≥ 0 for all y ∈ C;
• V (y, z) + V (z, x) ≤ V (y, x) for all y ∈ C.

Lemma 7 Suppose that C is a closed convex subset of a smooth, strictly convex, and re-
flexive Banach space E and u ∈ E. If F is a nonempty closed convex subset of C such that
ΠCu ∈ F , then ΠF u = ΠCu.

Proof It follows from the definition of ΠC that V (ΠCu, u) ≤ V (y, u) for all y ∈ C. Since F ⊂
C, we have V (ΠCu, u) ≤ V (y, u) for all y ∈ F . It follows from ΠCu ∈ F that ΠCu = ΠF u. �

The following lemma is easily deduced from the result of Ibaraki et al. [13].

Lemma 8 ([13]) Suppose that E is a strictly convex, smooth, and reflexive Banach space
and E satisfies the Kadec–Klee property. If {Cn} is a sequence of nonempty closed convex
subsets of E such that Cn+1 ⊂ Cn for all n ≥ 1 and C0 :=

⋂∞
n=1 Cn is nonempty, then {ΠCn x}

converges strongly to ΠC0 x for all x ∈ E.

1.3 Sunny generalized nonexpansive retractions
Suppose that E is a smooth Banach space and C ⊂ E. A mapping R : C → E is a general-
ized nonexpansive if Fix(R) �= ∅ and V (Rx, p) ≤ V (x, p) for all x ∈ C and for all p ∈ Fix(R).
A mapping R : E → C is

• a retraction if R2 = R;
• sunny if R(Rx + t(x – Rx)) = Rx for all x ∈ E and for all t > 0.

If R : E → C is a sunny generalized nonexpansive retraction from E onto C, then Fix(R) = C
and R is a cutter mapping of type (R).

Kohsaka and Takahashi [17] proved the following result.

Lemma 9 ([17]) Suppose that E is a smooth, strictly convex, and reflexive Banach space,
and suppose that C∗ is a nonempty closed convex subset of E∗. Then R := J–1ΠC∗ J is a sunny
generalized nonexpansive retraction from E onto J–1C∗, where ΠC∗ is the generalized pro-
jection of E∗ onto C∗.

The purpose of this paper is to present some asymptotic behavior of an iterative se-
quence generated by the shrinking projection method for cutter type mappings.
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2 Preliminaries
In this section, we collect some auxiliary results used in our main results. For a Banach
space E := (E,‖ · ‖) and r > 0, we let Br := {x ∈ E : ‖x‖ ≤ r}.

Lemma 10 ([27]) Suppose that E is a Banach space and r > 0. Then the following state-
ments are true:

(a) If E is uniformly convex, then there is a continuous, strictly increasing, and convex
function g

r
: [0, 2r] → [0,∞) such that g

r
(0) = 0 and

∥∥(1 – λ)x + λy
∥∥2 ≤ (1 – λ)‖x‖2 + λ‖y‖2 – (1 – λ)λg

r

(‖x – y‖)

for all x, y ∈ Br and for all λ ∈ [0, 1];
(b) If E is uniformly smooth, then there is a continuous, strictly increasing, and convex

function gr : [0, 2r] → [0,∞) such that gr(0) = 0 and

∥∥(1 – λ)x + λy
∥∥2 ≥ (1 – λ)‖x‖2 + λ‖y‖2 – (1 – λ)λgr

(‖x – y‖)

for all x, y ∈ Br and for all λ ∈ [0, 1].

Lemma 11 ([15]) Suppose that E is a Banach space and r > 0. Then the following state-
ments are true:

(a) If E is uniformly convex and smooth, then the function g
r

in Lemma 10(a) satisfies
g

r
(‖x – y‖) ≤ V (x, y) for all x, y ∈ Br ;

(b) If E is uniformly smooth, then the function gr in Lemma 10(b) satisfies
gr(‖x – y‖) ≥ V (x, y) for all x, y ∈ Br .

3 Main results
The main results are presented according to the types of cutter mappings. The results of
each subsection are given with respect to the functionals ‖·‖2 and V (·, ·). The correspond-
ing remark about the related results is presented. Our results are some extensions of the
recent ones proved by Ibaraki and Kajiba [11] for mappings of types (P), (Q), and (R). Re-
call that for a nonempty subset C of a smooth, strictly convex, and reflexive Banach space
E, a mapping T : C → E is of

• type (P) if 〈Tx – Ty, J(x – Tx) – J(y – Ty)〉 ≥ 0 for all x, y ∈ C;
• type (Q) if 〈Tx – Ty, (Jx – JTx) – (Jy – JTy)〉 ≥ 0 for all x, y ∈ C;
• type (R) if 〈JTx – JTy, (x – Tx) – (y – Ty)〉 ≥ 0 for all x, y ∈ C.

It is clear that every mapping of type (X) with a fixed point is a cutter mapping of type (X)
where X = P, Q, R. Moreover, it is not hard to see that if T : C → E is a mapping of type
(X) where X = P, Q, R, then I – T is strongly closed at zero, that is, p ∈ Fix(T) whenever
{xn} is a sequence in C such that xn → p ∈ C and Txn → p.

3.1 Two key inequalities for metric projections and generalized projections
We now prove two key inequalities of this paper. The first result is a Banach space version
of the result in [23] concerning the generalized projection. The second one is for the metric
projection.
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Lemma 12 Suppose that E is a smooth, strictly convex, and reflexive Banach space and C
is a closed convex subset of E. Suppose that u ∈ E and δ ≥ 0. If x ∈ C satisfies

V (x, u) ≤ V (C, u) + δ,

then V (x,ΠCu) ≤ δ.

Proof Note that V (x,ΠCu) + V (C, u) = V (x,ΠCu) + V (ΠCu, u) ≤ V (x, u) ≤ V (C, u) + δ.
Specifically, V (x,ΠCu) ≤ δ. �

Lemma 13 Suppose that E is a uniformly convex Banach space, u ∈ E, and δ ≥ 0. Suppose
that C is a closed convex subset of E such that C – u ⊂ Br for some r > 0. If x ∈ C satisfies

‖u – x‖2 ≤ d2(u, C) + δ,

then g
r
(‖x – PCu‖) ≤ δ, where g

r
is the function defined in Lemma 10(a).

Proof Let p := PCu. Then ‖u–x‖2 ≤ ‖u–p‖2 +δ. Let λ ∈ (0, 1). It follows that λp+(1–λ)x ∈
C. Note that {p– u, x – u} ⊂ C – u ⊂ Br , and we make use of the function g

r
in Lemma 10(a)

to estimate the term ‖λ(p – u) + (1 – λ)(x – u)‖2. Hence,

‖p – u‖2 ≤ ∥∥λp + (1 – λ)x – u
∥∥2

=
∥∥λ(p – u) + (1 – λ)(x – u)

∥∥2

≤ λ‖p – u‖2 + (1 – λ)‖x – u‖2 – λ(1 – λ)g
r

(‖p – x‖)

≤ ‖p – u‖2 + (1 – λ)δ – λ(1 – λ)g
r

(‖p – x‖).

In particular, λg
r
(‖p – x‖) ≤ δ. Letting λ ↑ 1 gives the result. �

3.2 Cutter mappings of type (P)
Theorem 14 Suppose that E is a smooth and uniformly convex Banach space and C is a
closed convex subset of E. Suppose that T : C → E is a cutter mapping of type (P). Suppose
that {δn} is a sequence of nonnegative real numbers such that δ0 := lim supn δn. For given
u ∈ E, a sequence {xn} ⊂ C is generated as follows: x1 ∈ C, C1 := C, and

Cn+1 :=
{

z ∈ Cn :
〈
Txn – z, J(xn – Txn)

〉 ≥ 0
}

;

xn+1 ∈ Cn+1 satisfies ‖xn+1 – u‖2 ≤ d2(u, Cn+1) + δn+1

for all n ≥ 1. Then the following statements are true:
(1) If C – u ⊂ Br for some r > 0, then lim supn ‖xn – Txn‖ ≤ g–1

r
(δ0), where g

r
is defined by

Lemma 10;
(2) If δ0 = 0 and I – T is strongly closed at zero, then xn → PFix(T)u.

Proof First, we note that each Cn is nonempty because Fix(T) ⊂ Cn. Moreover, it is clear
that each Cn is closed and convex. For convenience, we write pn := PCn u and p := P⋂∞

n=1 Cn u.



Ibaraki and Saejung Journal of Inequalities and Applications         (2023) 2023:92 Page 7 of 20

Note that pn → p (see Lemma 5). It follows from p ∈ Cn+1 that

〈
Txn – p, J(xn – Txn)

〉 ≥ 0.

In particular,

〈
xn – p, J(xn – Txn)

〉 ≥ ‖xn – Txn‖2.

(1) Suppose that C – u ⊂ Br for some r > 0. It follows from Lemma 13 that

‖xn – Txn‖ ≤ ‖xn – p‖ ≤ ‖xn – pn‖ + ‖pn – p‖ ≤ g–1
r

(δn) + ‖pn – p‖.

Hence, lim supn ‖xn – Txn‖ ≤ g–1
r

(δ0).
(2) We assume that δ0 = 0 and I – T is strongly closed at zero. Note that ‖xn – u‖2 ≤

‖pn – u‖2 + δn. In particular, {xn} is bounded. We prove that xn ⇀ p. Suppose that {xnk } is
a subsequence of {xn} such that xnk ⇀ q for some q ∈ E. It follows that q ∈ ⋂∞

n=1 Cn and
‖q – u‖2 ≤ lim infk ‖xnk – u‖2 ≤ lim supk ‖xnk – u‖2 ≤ limk ‖pnk – u‖2 = ‖p – u‖2. Hence,
q = p. Moreover, we have limn ‖xn – u‖ = ‖p – u‖. It follows from the Kadec–Klee property
and xn – u ⇀ p – u that xn – u → p – u and hence xn → p. It follows from a part of (1) that
limn ‖xn – Txn‖ = 0. Since I – T is strongly closed at zero, we have p ∈ Fix(T) ⊂ ⋂∞

n=1 Cn.
Note that Fix(T) is closed and convex (see Lemma 1). It follows from Lemma 4 that xn →
p = PFix(T)u. �

Theorem 15 Suppose that E is a smooth and uniformly convex Banach space and C is a
closed convex subset of E. Suppose that T : C → E is a cutter mapping of type (P). Suppose
that {δn} is a sequence of nonnegative real numbers such that δ0 := lim supn δn. For given
u ∈ E, a sequence {xn} ⊂ C is generated as follows: x1 ∈ C, C1 := C, and

Cn+1 :=
{

z ∈ Cn :
〈
Txn – z, J(xn – Txn)

〉 ≥ 0
}

;

xn+1 ∈ Cn+1 satisfies V (xn+1, u) ≤ V (Cn+1, u) + δn+1

for all n ≥ 1. Then the following statements are true:
(1) If C ⊂ Br for some r > 0, then lim supn ‖xn – Txn‖ ≤ g–1

r
(δ0), where g

r
is defined by

Lemma 10.
(2) If δ0 = 0 and I – T is strongly closed at zero, then xn → ΠFix(T)u.

Proof First, we note that each Cn is nonempty because Fix(T) ⊂ Cn. Moreover, it is
clear that each Cn is closed and convex. For convenience, we write πn := ΠCn u and
π := Π⋂∞

n=1 Cn u. Note that πn → π (see Lemma 8). It follows from π ∈ Cn+1 that

〈
Txn – π , J(xn – Txn)

〉 ≥ 0.

In particular,

‖xn – Txn‖2 ≤ 〈
xn – π , J(xn – Txn)

〉 ≤ ‖xn – π‖‖xn – Txn‖.

Note that V (xn,πn) ≤ δn (see Lemma 12).
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(1) Suppose that C ⊂ Br for some r > 0. It follows from Lemma 11 that ‖xn – πn‖ ≤
g–1

r
(V (xn,πn)) ≤ g–1

r
(δn), which implies that

‖xn – Txn‖ ≤ ‖xn – π‖
≤ ‖xn – πn‖ + ‖πn – π‖
≤ g–1

r
(δn) + ‖πn – π‖.

Hence, lim supn ‖xn – Txn‖ ≤ g–1
r

(δ0).
(2) We assume that δ0 = 0 and I – T is strongly closed at zero. Since δ0 = 0, we have

limn V (xn,πn) = 0. It follows from Lemma 3 that limn ‖xn –πn‖ = 0. In particular, limn ‖xn –
Txn‖ ≤ limn ‖xn – π‖ = limn ‖xn – πn‖ = 0. Since I – T is strongly closed at zero, we have
π ∈ Fix(T) ⊂ ⋂∞

n=1 Cn. Note that Fix(T) is closed and convex (see Lemma 1). It follows
from Lemma 7 that xn → π = ΠFix(T)u. �

Remark 16 Our Theorem 14 and Theorem 15 generalize Theorem 3.1 of [12] and Theo-
rem 3.1 of [11], respectively. In fact, the mapping of type (P) in [11, 12] is replaced by the
cutter mapping of type (P).

3.3 Cutter mappings of type (Q)
Theorem 17 Suppose that E is a uniformly smooth and uniformly convex Banach space
and C is a closed convex subset of E. Suppose that T : C → E is a cutter mapping of type (Q).
Suppose that {δn} is a sequence in [0,∞) with δ0 := lim supn δn. For given u ∈ E, a sequence
{xn} ⊂ C is generated as follows: x1 ∈ C, C1 := C and

Cn+1 :=
{

z ∈ Cn : 〈Txn – z, Jxn – JTxn〉 ≥ 0
}

;

xn+1 ∈ Cn+1 satisfies ‖xn+1 – u‖2 ≤ d2(u, Cn+1) + δn+1

for all n ≥ 1. Then the following statements are true:
(1) If (C – u) ∪ C ⊂ Br for some r > 0, then lim supn ‖xn – Txn‖ ≤ g–1

r
(gr(g–1

r
(δ0))), where

g
r

and gr are defined by Lemma 10;
(2) If δ0 = 0 and I – T is strongly closed at zero, then xn → PFix(T)u.

Proof First, we note that each Cn is nonempty because Fix(T) ⊂ Cn. Moreover, it is clear
that each Cn is closed and convex. For convenience, we write pn := PCn u and p := P⋂∞

n=1 Cn u.
Note that pn → p (see Lemma 8). It follows from p ∈ Cn+1 that 〈Txn – p, Jxn – JTxn〉 ≥ 0
and hence

V (Txn, xn) ≤ V (p, Txn) + V (Txn, xn) ≤ V (p, xn).

(1) Assume that (C – u) ∪ C ⊂ Br for some r > 0. It follows from Lemma 13 that g
r
(‖pn –

xn‖) ≤ δn. By Lemma 11, we have V (p, xn) ≤ gr(‖p – xn‖). This implies that

V (Txn, xn) ≤ V (p, xn)

≤ gr
(‖p – xn‖

)
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≤ gr
(‖p – pn‖ + ‖pn – xn‖

)

≤ gr
(‖p – pn‖ + g–1

r
(δn)

)
.

This implies that

lim sup
n

V (Txn, xn) ≤ gr
(
g–1

r
(δ0)

)
.

In particular, lim supn ‖xn – Txn‖ ≤ g–1
r

(gr(g–1
r

(δ0))).
(2) We assume that δ0 = 0 and I – T is strongly closed at zero. Note that ‖xn – u‖2 ≤

‖pn – u‖2 + δn. In particular, {xn} is bounded. We prove that xn ⇀ p. Suppose that {xnk } is
a subsequence of {xn} such that xnk ⇀ q for some q ∈ E. It follows that q ∈ ⋂∞

n=1 Cn and
‖q – u‖2 ≤ lim infk ‖xnk – u‖2 ≤ lim supk ‖xnk – u‖2 ≤ limk ‖pnk – u‖2 = ‖p – u‖2. Hence,
q = p. Moreover, we have limn ‖xn – u‖ = ‖p – u‖. It follows from the Kadec–Klee property
and xn – u ⇀ p – u that xn – u → p – u and hence xn → p. It follows from the uniform
convexity of E and limn V (p, xn) = 0 that limn ‖xn –Txn‖ = 0. Since I –T is strongly closed at
zero, we have p ∈ Fix(T) ⊂ ⋂∞

n=1 Cn. Note that Fix(T) is closed and convex (see Lemma 1).
It follows from Lemma 4 that xn → p = PFix(T)u. �

Theorem 18 Suppose that E is a uniformly smooth and uniformly convex Banach space
and C is a closed convex subset of E. Suppose that T : C → E is a cutter mapping of type (Q).
Suppose that {δn} is a sequence in [0,∞) with δ0 := lim supn δn. For given u ∈ E, a sequence
{xn} ⊂ C is generated as follows: x1 ∈ C, C1 := C and

Cn+1 :=
{

z ∈ Cn : 〈Txn – z, Jxn – JTxn〉 ≥ 0
}

;

xn+1 ∈ Cn+1 satisfies V (xn+1, u) ≤ V (Cn+1, u) + δn+1

for all n ≥ 1. Then the following statements are true:
(1) If C ⊂ Br for some r > 0, then lim supn ‖xn – Txn‖ ≤ g–1

r
(gr(g–1

r
(δ0))), where g

r
and gr

are defined by Lemma 10;
(2) If δ0 = 0 and I – T is strongly closed at zero, then xn → ΠFix(T)u.

Proof First, we note that each Cn is nonempty because Fix(T) ⊂ Cn. Moreover, it is
clear that each Cn is closed and convex. For convenience, we write πn := ΠCn u and
π := Π⋂∞

n=1 Cn u. It follows from π ∈ Cn+1 that

〈Txn – π , Jxn – JTxn〉 ≥ 0,

and hence

V (Txn, xn) ≤ V (π , Txn) + V (Txn, xn) ≤ V (π , xn).

Note that πn → π (see Lemma 8). By Lemma 12, we have V (xn,πn) ≤ δn.
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(1) Suppose that C ⊂ Br for some r > 0. It follows from Lemma 11 that V (π , xn) ≤ gr(‖π –
xn‖) and g

r
(‖π – xn‖) ≤ V (xn,πn) ≤ δn. In particular,

V (Txn, xn) ≤ V (π , xn)

≤ gr
(‖π – xn‖

)

≤ gr
(‖π – πn‖ + ‖πn – xn‖

)

≤ gr
(‖π – πn‖ + g–1

r
(δn)

)
.

This implies that

lim sup
n

V (Txn, xn) ≤ gr
(
g–1

r
(δ0)

)
.

In particular, lim supn ‖xn – Txn‖ ≤ g–1
r

(gr(g–1
r

(δ0))).
(2) We assume that δ0 = 0 and I – T is strongly closed at zero. Since δ0 = 0, we

have limn V (xn,πn) = 0. It follows from Lemma 3 that limn ‖xn – πn‖ = 0. In particular,
limn ‖xn – π‖ = 0. Now, we have limn V (Txn, xn) ≤ limn V (π , xn) = 0. It follows from the
uniform convexity of E that limn ‖xn – Txn‖ = 0. Since I – T is strongly closed at zero,
we have π ∈ Fix(T) ⊂ ⋂∞

n=1 Cn. Note that Fix(T) is closed and convex (see Lemma 1). It
follows from Lemma 7 that xn → π = ΠFix(T)u. �

Remark 19 Our Theorem 17 and Theorem 18 generalize Theorem 4.1 of [12] and Theo-
rem 4.1 of [11], respectively. In fact, the mapping of type (Q) in [11, 12] is replaced by the
cutter mapping of type (Q).

3.4 Cutter mappings of type (R)
Suppose that V ∗ : E∗ × E∗ → [0,∞) is defined by

V ∗(x∗, y∗) :=
∥∥x∗∥∥2 – 2

〈
x∗, J∗y∗〉 +

∥∥y∗∥∥2 for all x∗, y∗ ∈ E∗.

Note that for x, y ∈ E we have

V ∗(Jy, Jx) = ‖Jy‖2 – 2
〈
Jy, J∗Jx

〉
+ ‖Jx‖2

= ‖y‖2 – 2〈x, Jy〉 + ‖x‖2

= V (x, y).

Inspired by the work of Honda et al. [7], we obtain the following results.

Lemma 20 Suppose that C is a nonempty subset of a smooth, strictly convex, and reflexive
Banach space E. Suppose that T : C → E is a mapping, and we define T∗ : JC → E∗ by

T∗x∗ := JTJ–1x∗ for all x∗ ∈ JC.

Then the following statements are true:
(1) J Fix(T) = Fix(T∗);
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(2) T is a cutter mapping of type (Q) if and only if T∗ is a cutter mapping of type (R);
(3) T is a cutter mapping of type (R) if and only if T∗ is a cutter mapping of type (Q).

Proof (1) Suppose that p ∈ C and p∗ := Jp. If p = Tp, then T∗p∗ = JTJ–1(Jp) = Jp = p∗. If
p∗ = T∗p, then Tp = J–1T∗Jp = J–1T∗p∗ = J–1p∗ = p.

(2) Suppose that T is a cutter mapping of type (Q). To see that T∗ is a cutter mapping of
type (R), let x∗ ∈ JC and p∗ ∈ Fix(T∗). Then x∗ = Jx and p∗ = Jp for some (x, p) ∈ C ×Fix(T).
It follows that

〈
J∗p∗ – J∗T∗x∗, T∗x∗ – x∗〉 = 〈p – Tx, JTx – Jx〉 ≥ 0.

On the other hand, we assume that T∗ is a cutter mapping of type (R). To see that T is a
cutter mapping of type (Q), let (x, p) ∈ C × Fix(T). We write x∗ = Jx and p∗ = Jp. It follows
that x∗ ∈ JC and p∗ ∈ Fix(T∗). Moreover, we have

〈p – Tx, JTx – Jx〉 =
〈
J∗p∗ – J∗T∗x∗, T∗x∗ – x∗〉 ≥ 0.

(3) follows similarly. �

Based on Lemma 20 and Theorem 17, we obtain the following result.

Theorem 21 Suppose that E is a uniformly smooth and uniformly convex Banach space.
Suppose that C is a subset of E such that JC is closed and convex. Suppose that T : C → E is
a cutter mapping of type (R). Suppose that {δn} is a sequence of nonnegative real numbers
such that δ0 := lim supn δn. For given u ∈ E, a sequence {xn} ⊂ C is generated as follows:
x1 ∈ C, C1 := C, and

Cn+1 :=
{

z ∈ Cn : 〈JTxn – Jz, xn – Txn〉 ≥ 0
}

;

xn+1 ∈ Cn+1 satisfies ‖Ju – Jxn+1‖2 ≤ d2(Ju, JCn+1) + δn+1

for all n ≥ 1. Then the following statements are true:
(1) If (JC – Ju) ∪ JC ⊂ B∗

r for some r > 0, then lim supn ‖xn – Txn‖ ≤ g–1
r

(g∗
r (g∗

r
–1(δ0))),

where g
r

is defined by Lemma 10 (as E is uniformly convex) and g∗
r

and g∗
r are

defined by Lemma 10 (as E∗ is uniformly convex and uniformly smooth, respectively).
Here, B∗

r := {x∗ ∈ E∗ : ‖x∗‖ ≤ r}.
(2) If δ0 = 0 and I – T is strongly closed at zero, then xn → J–1P∗

J Fix(T)Ju, where P∗
J Fix(T) is

a metric projection of E∗ onto J Fix(T).

Proof Set T∗ := JTJ–1. Then T∗ : JC → E∗ is a cutter mapping of type (Q). Let u∗ = Ju.
Define two sequences {x∗

n} ⊂ JC and {C∗
n} by

x∗
n := Jxn and C∗

n := JCn for all n ≥ 1.

It follows that

C∗
n+1 =

{
z∗ ∈ C∗

n :
〈
T∗x∗

n – z∗, Jx∗
n – JT∗x∗

n
〉 ≥ 0

}
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and

x∗
n+1 ∈ C∗

n+1 satisfies
∥∥x∗

n+1 – u∗∥∥2 ≤ d2(u∗, C∗
n+1

)
+ δn+1.

(1) Suppose that (JC – Ju) ∪ JC ⊂ B∗
r for some r > 0. Using Theorem 17 for cutter map-

pings of type (Q) gives

lim sup
n

V (xn, Txn) = lim sup
n

V ∗(T∗xn, x∗
n
) ≤ g∗

r
(
g∗

r
–1(δ0)

)
.

This implies that

lim sup
n

‖xn – Txn‖ ≤ g–1
r

(
g∗

r
(
g∗

r
–1(δ0)

))
.

(2) We assume that δ0 = 0 and I – T is strongly closed at zero. It follows from the uniform
convexity and uniform smoothness of E that I∗ – T∗ is strongly closed at zero, where I∗

is an identity mapping of E∗. Using Theorem 17 for cutter mappings of type (Q) gives
x∗

n → P∗
Fix(T*)u

∗. Hence, xn = J–1x∗
n → J–1P∗

J Fix(T)Ju. �

Based on Lemma 20 and Theorem 18, we obtain the following result.

Theorem 22 Suppose that E is a uniformly smooth and uniformly convex Banach space.
Suppose that C is a subset of E such that JC is closed and convex. Suppose that T : C → E is
a cutter mapping of type (R). Suppose that {δn} is a sequence of nonnegative real numbers
such that δ0 := lim supn δn. For given u ∈ E, a sequence {xn} ⊂ C is generated as follows:
x1 ∈ C, C1 := C, and

Cn+1 :=
{

z ∈ Cn : 〈JTxn – Jz, xn – Txn〉 ≥ 0
}

;

xn+1 ∈ Cn+1 satisfies V (u, xn+1) ≤ V (u, Cn+1) + δn+1

for all n ≥ 1. Then the following statements are true:
(1) If C ⊂ Br for some r > 0, then lim supn ‖xn – Txn‖ ≤ g–1

r
(g∗

r (g∗
r

–1(δ0))), where g
r

is
defined by Lemma 10 (as E is uniformly convex) and g∗

r
and g∗

r are defined by
Lemma 10 (as E∗ is uniformly convex and uniformly smooth, respectively);

(2) If δ0 = 0 and I – T is strongly closed at zero, then xn → RFix(T)u.

Proof Set T∗ := JTJ–1. Then T∗ : JC → E∗ is a cutter mapping of type (Q). Let u∗ = Ju.
Define two sequences {x∗

n} ⊂ JC and {C∗
n} by

x∗
n := Jxn and C∗

n := JCn for all n ≥ 1.

It follows that

C∗
n+1 =

{
z∗ ∈ C∗

n :
〈
T∗x∗

n – z∗, Jx∗
n – JT∗x∗

n
〉 ≥ 0

}

and

x∗
n+1 ∈ C∗

n+1 satisfies V ∗(x∗
n+1, u∗) ≤ V ∗(C∗

n+1, u∗) + δn+1.
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(1) Suppose that C ⊂ Br for some r > 0. Using Theorem 18 for cutter mappings of type
(Q) gives

lim sup
n

V (xn, Txn) = lim sup
n

V ∗(T∗xn, x∗
n
) ≤ g∗

r
(
g∗

r
–1(δ0)

)
.

This implies that

lim sup
n

‖xn – Txn‖ ≤ g–1
r

(
g∗

r
(
g∗

r
–1(δ0)

))
.

(2) We assume that δ0 = 0 and I –T is strongly closed at zero. Note that I∗ –T∗ is strongly
closed at zero, where I∗ is the identity mapping of E∗. Using Theorem 18 for cutter map-
pings of type (Q) gives x∗

n → Π∗
Fix(T∗)u

∗, where Π∗
Fix(T∗) is the generalized projection from

E∗ onto Fix(T∗). It follows from Lemma 9 that

xn = J–1Jxn → J–1Π∗
Fix(T∗)u

∗ = J–1Π∗
Fix(T∗)Ju = RFix(T)u. �

Remark 23 Our Theorem 21 and Theorem 22 generalize Theorem 5.1 of [12] and The-
orem 5.1 of [11], respectively. In fact, the mapping of type (R) in [11, 12] is replaced by
the cutter mapping of type (R). It is worth mentioning that the bound of the limit superior
lim supn ‖xn – Txn‖ in [11, 12] is g–1

r
(g∗

r (g∗–1
r

(g∗
r (g∗

r
–1(δ0))))).

4 Deduced results for maximal monotone operators
We now discuss the problem of finding a zero of maximal monotone operators in a Banach
space ([8–10]). Suppose that E is a smooth, strictly convex, and reflexive Banach space. An
operator A ⊂ E × E∗ with domain dom(A) := {x ∈ E : Ax �= ∅} and range ran(A) :=

⋃{Ax :
x ∈ E} is monotone if 〈x – y, x∗ – y∗〉 ≥ 0 for all (x, x∗), (y, y∗) ∈ A. A monotone operator
A ⊂ E × E∗ is maximal if A′ = A whenever A′ ⊂ E × E∗ is monotone and A ⊂ A′. We are
interested in finding a zero of a maximal monotone operator, that is, an element u ∈ E such
that (u, 0) ∈ A. The set of zeros of A is denoted by Zer(A).

Suppose that A ⊂ E × E∗ and B ⊂ E∗ × E(= E∗ × (E∗)∗) are maximal monotone. It is
known that dom(A) and dom(B) are convex; and

ran
(
I + λJ–1A

)
= J–1(ran(J + λA)

)
= ran(I + λBJ) = E

for all λ > 0. Here, I is the identity operator. In particular, the following three single-valued
operators are well defined:

Pλ :=
(
I + λJ–1A

)–1 : dom(A) → E;

Qλ := (J + λA)–1J : dom(A) → E;

Rλ := (I + λBJ)–1 : J–1dom(B) → E.

It is known that
(a) Fix(Pλ) = Fix(Qλ) = Zer(A) and Fix(Rλ) = Zer(BJ).
(b) Pλ, Qλ, and Qλ are mappings of types (P), (Q), and (R), respectively.
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(c) If Zer(A) �= ∅, then Pλ and Qλ are cutter mappings of types (P) and (Q), respectively,
and both I – Pλ and I – Qλ are strongly closed at zero.

(d) If Zer(BJ) �= ∅, then Rλ is a cutter mapping of type (R), and I – Rλ is strongly closed
at zero.

We immediately obtain the following corollaries.

4.1 Results for the resolvent Pλ

Corollary 24 Suppose that E is a smooth and uniformly convex Banach space and A ⊂
E × E∗ is a maximal monotone operator such that Zer(A) �= ∅. Suppose that u ∈ E and
λ ∈ (0,∞). Suppose that {δn} is a sequence of nonnegative real numbers such that δ0 :=
lim supn δn. Construct a sequence {xn} ⊂ dom(A) as follows: x1 ∈ dom(A), C1 := dom(A),
and

Cn+1 :=
{

z ∈ Cn :
〈
Pλxn – z, J(xn – Pλxn)

〉 ≥ 0
}

;

xn+1 ∈ Cn+1 satisfies ‖xn+1 – u‖2 ≤ d2(u, Cn+1) + δn+1

for all n ≥ 1. Then the following statements are true:
(1) If dom(A) – u ⊂ Br for some r > 0, then lim supn ‖xn – Pλxn‖ ≤ g–1

r
(δ0), where g

r
is

defined by Lemma 10;
(2) If δ0 = 0, then xn → PZer(A)u.

Corollary 25 Suppose that E is a smooth and uniformly convex Banach space and A ⊂
E × E∗ is a maximal monotone operator such that Zer(A) �= ∅. Suppose that u ∈ E and
λ ∈ (0,∞). Suppose that {δn} is a sequence of nonnegative real numbers such that δ0 :=
lim supn δn. Construct a sequence {xn} ⊂ dom(A) as follows: x1 ∈ dom(A), C1 := dom(A),
and

Cn+1 :=
{

z ∈ Cn :
〈
Pλxn – z, J(xn – Pλxn)

〉 ≥ 0
}

;

xn+1 ∈ Cn+1 satisfies V (xn+1, u) ≤ V (Cn+1, u) + δn+1

for all n ≥ 1. Then the following statements are true:
(1) If dom(A) ⊂ Br for some r > 0, then lim supn ‖xn – Pλxn‖ ≤ g–1

r
(δ0), where g

r
is defined

by Lemma 10;
(2) If δ0 = 0, then xn → ΠZer(A)u.

4.2 Results for the resolvent Qλ

Corollary 26 Suppose that E is a uniformly smooth and uniformly convex Banach space
and that A ⊂ E × E∗ is a maximal monotone operator such that Zer(A) �= ∅. Suppose that
u ∈ E and λ ∈ (0,∞). Suppose that {δn} is a sequence of nonnegative real numbers such
that δ0 := lim supn δn. Construct a sequence {xn} ⊂ dom(A) as follows: x1 ∈ dom(A), C1 :=
dom(A), and

Cn+1 :=
{

z ∈ Cn : 〈Qλxn – z, Jxn – JQλxn〉 ≥ 0
}

xn+1 ∈ Cn+1 satisfies ‖xn+1 – u‖ ≤ d(u, Cn+1) + δn+1

for all n ≥ 1. Then the following statements are true:
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(1) If (dom(A) – u) ∪ dom(A) ⊂ Br for some r > 0, then
lim supn ‖xn – Qλxn‖ ≤ g–1

r
(gr(g–1

r
(δ0))), where g

r
and gr are defined by Lemma 10;

(2) If δ0 = 0, then xn → PZer(A)u.

Corollary 27 Suppose that E is a uniformly smooth and uniformly convex Banach space
and that A ⊂ E × E∗ is a maximal monotone operator such that Zer(A) �= ∅. Suppose that
u ∈ E and λ ∈ (0,∞). Suppose that {δn} is a sequence of nonnegative real numbers such
that δ0 := lim supn δn. Construct a sequence {xn} ⊂ dom(A) as follows: x1 ∈ dom(A), C1 :=
dom(A), and

Cn+1 :=
{

z ∈ Cn : 〈Qλxn – z, Jxn – JQλxn〉 ≥ 0
}

;

xn+1 ∈ Cn+1 satisfies V (xn+1, u) ≤ V (Cn+1, u) + δn+1

for all n ≥ 1. Then the following statements are true:
(1) If dom(A) ⊂ Br for some r > 0, then lim supn ‖xn – Qλxn‖ ≤ g–1

r
(gr(g–1

r
(δ0))), where g

r
and gr are defined by Lemma 10;

(2) If δ0 = 0, then xn → ΠZer(A)u.

4.3 Results for the resolvent Rλ

Corollary 28 Suppose that E is a uniformly smooth and uniformly convex Banach space
and B ⊂ E∗ ×E such that Zer(BJ) �= ∅. Suppose that u ∈ E and λ ∈ (0,∞). Suppose that {δn}
is a sequence of nonnegative real numbers such that δ0 := lim supn δn. Construct a sequence
{xn} ⊂ dom(BJ) as follows: x1 ∈ dom(BJ), C1 := dom(BJ), and

Cn+1 :=
{

z ∈ Cn : 〈JRλxn – Jz, xn – Rλxn〉 ≥ 0
}

;

xn+1 ∈ Cn+1 satisfies ‖Ju – Jxn+1‖2 ≤ d2(Ju, JCn+1) + δn+1

for all n ≥ 1. Then the following statements are true:
(1) If (Jdom(BJ) – Ju) ∪ Jdom(BJ) ⊂ B∗

r for some r > 0, then
lim supn ‖xn – Rλxn‖ ≤ g–1

r
(g∗

r (g∗
r

–1(δ0))), where g
r

is defined by Lemma 10 (as E is
uniformly convex) and g∗

r
and g∗

r are defined by Lemma 10 (as E∗ is uniformly convex
and uniformly smooth, respectively);

(2) If δ0 = 0, then xn → J–1P∗
J Zer(BJ)Ju, where P∗

J Zer(BJ) is a metric projection of E∗ onto
J Zer(BJ).

Corollary 29 Suppose that E is a uniformly smooth and uniformly convex Banach space
and B ⊂ E∗ ×E such that Zer(BJ) �= ∅. Suppose that u ∈ E and λ ∈ (0,∞). Suppose that {δn}
is a sequence of nonnegative real numbers such that δ0 := lim supn δn. Construct a sequence
{xn} ⊂ dom(BJ) as follows: x1 ∈ dom(BJ), C1 := dom(BJ), and

Cn+1 :=
{

z ∈ Cn : 〈JRλxn – Jz, xn – Rλxn〉 ≥ 0
}

;

xn+1 ∈ Cn+1 satisfies V (u, xn+1) ≤ V (u, Cn+1) + δn+1

for all n ≥ 1. Then the following statements are true:
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(1) If dom(BJ) ⊂ Br for some r > 0, then lim supn ‖xn – Rλxn‖ ≤ g–1
r

(g∗
r (g∗

r
–1(δ0))), where

g
r

is defined by Lemma 10 (as E is uniformly convex) and g∗
r

and g∗
r are defined by

Lemma 10 (as E∗ is uniformly convex and uniformly smooth, respectively);
(2) If δ0 = 0, then xn → RZer(BJ)u.

4.4 Applications to convex minimization problems
We discuss the convex minimization problem in a Banach space. This problem is to find a
minimizer of a proper lower semicontinuous convex function in a Banach space. Suppose
that E is a reflexive, smooth, and strictly convex Banach space with its dual E∗ and f :
E → (–∞,∞] and f ∗ : E∗ → (–∞,∞] are proper lower semicontinuous convex functions.
Then the subdifferentials of f and f ∗ are defined as follows:

∂f (x) =
{

x∗ ∈ E∗ : f (x) +
〈
y – x, x∗〉 ≤ f (y), ∀y ∈ E

}
(∀x ∈ E),

∂f ∗(x∗) =
{

x ∈ E : f ∗(x∗) +
〈
x, y∗ – x∗〉 ≤ f ∗(y∗), ∀y∗ ∈ E∗} (∀x∗ ∈ E∗).

By Rockafellar’s theorem [20, 21], the subdifferentials ∂f ⊂ E × E∗ and ∂f ∗ ⊂ E∗ × E are
maximal monotone. It is easy to see that Zer(∂f ) = argmin{f (x) : x ∈ E} and Zer(∂f ∗) =
argmin{f ∗(x∗) : x∗ ∈ E∗}.

Fix λ > 0 and z ∈ E. Let Pλ and Qλ be the resolvent of ∂f , and let Rλ be the resolvent of
∂f ∗, then we know that

Pλz =
(
I + λJ–1∂f

)–1 = argmin
y∈E

{
f (y) +

1
2λ

‖y – z‖2
}

,

Qλz = (J + λ∂f )–1J = argmin
y∈E

{
f (y) +

1
2λ

‖y‖2 –
1
λ

〈y, Jz〉
}

,

Rλz =
(
I + λ∂f ∗)–1 = J–1 argmin

y∗∈E∗

{
f ∗(y∗) +

1
2λ

∥∥y∗∥∥2 –
1
λ

〈
z, y∗〉

}
.

See, for instance, [8, 10, 22]. As a direct consequence of our theorems, we can show the
following applications.

Corollary 30 Suppose that E is a smooth and uniformly convex Banach space and f : E →
(–∞,∞] is a proper lower semicontinuous convex function such that Zer(∂f ) �= ∅. Suppose
that u ∈ E and λ ∈ (0,∞). Suppose that {δn} is a nonnegative real sequence such that δ0 :=
lim supn δn. Construct a sequence {xn} ⊂ dom(∂f ) as follows: x1 ∈ dom(∂f ), C1 = dom(∂f ),
and

yn := argmin
y∈E

{
f (y) +

1
2λ

‖y – xn‖2
}

,

Cn+1 :=
{

z ∈ Cn :
〈
yn – z, J(xn – yn)

〉 ≥ 0
}

,

xn+1 ∈ Cn+1 satisfies ‖xn+1 – u‖2 ≤ d(u, Cn+1)2 + δn+1

for all n ≥ 1. Then the following statements are true:
(1) If dom(∂f ) – u ⊂ Br for some r > 0, then lim supn ‖xn – yn‖ ≤ g–1

r
(δ0), where g

r
is

defined by Lemma 10;
(2) If δ0 = 0, then xn → PZer(∂f )u.
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Corollary 31 Suppose that E is a smooth and uniformly convex Banach space and f : E →
(–∞,∞] is a proper lower semicontinuous convex function such that Zer(∂f ) �= ∅. Suppose
that u ∈ E and λ ∈ (0,∞). Suppose that {δn} is a nonnegative real sequence such that δ0 :=
lim supn δn. Construct a sequence {xn} ⊂ dom(∂f ) as follows: x1 ∈ dom(∂f ), C1 = dom(∂f ),
and

yn := argmin
y∈E

{
f (y) +

1
2λ

‖y – xn‖2
}

,

Cn+1 :=
{

z ∈ Cn :
〈
yn – z, J(xn – yn)

〉 ≥ 0
}

,

xn+1 ∈ Cn+1 satisfies V (xn+1, u) ≤ V (Cn+1, u) + δn+1

for all n ≥ 1. Then the following statements are true:
(1) If dom(∂f ) ⊂ Br for some r > 0, then lim supn ‖xn – yn‖ ≤ g–1

r
(δ0), where g

r
is defined

by Lemma 10;
(2) If δ0 = 0, then xn → ΠZer(∂f )u.

Corollary 32 Suppose that E is a uniformly smooth and uniformly convex Banach space
and f : E → (–∞,∞] is a proper lower semicontinuous convex function such that Zer(∂f ) �=
∅. Suppose that u ∈ E and λ ∈ (0,∞). Suppose that {δn} is a nonnegative real sequence
such that δ0 := lim supn δn. Construct a sequence {xn} ⊂ dom(∂f ) as follows: x1 ∈ dom(∂f ),
C1 = dom(∂f ), and

yn := argmin
y∈E

{
f (y) +

1
2λ

‖y‖2 –
1
λ

〈y, Jxn〉
}

,

Cn+1 :=
{

z ∈ Cn : 〈yn – z, Jxn – Jyn〉 ≥ 0
}

,

xn+1 ∈ Cn+1 satisfies ‖xn+1 – u‖2 ≤ d(u, Cn+1)2 + δn+1

for all n ≥ 1. Then the following statements are true:
(1) If (dom(∂f ) – u) ∪ dom(∂f ) ⊂ Br for some r > 0, then

lim supn ‖xn – yn‖ ≤ g–1
r

(gr(g–1
r

(δ0))), where g
r

and gr are defined by Lemma 10;
(2) If δ0 = 0, then xn → PZer(∂f )u.

Corollary 33 Suppose that E is a uniformly smooth and uniformly convex Banach space
and f : E → (–∞,∞] is a proper lower semicontinuous convex function such that Zer(∂f ) �=
∅. Suppose that u ∈ E and λ ∈ (0,∞). Suppose that {δn} is a nonnegative real sequence
such that δ0 := lim supn δn. Construct a sequence {xn} ⊂ dom(∂f ) as follows: x1 ∈ dom(∂f ),
C1 = dom(∂f ), and

yn := argmin
y∈E

{
f (y) +

1
2λ

‖y‖2 –
1
λ

〈y, Jxn〉
}

,

Cn+1 :=
{

z ∈ Cn : 〈yn – z, Jxn – Jyn〉 ≥ 0
}

,

xn+1 ∈ Cn+1 satisfies V (xn+1, u) ≤ V (Cn+1, u) + δn+1

for all n ≥ 1. Then the following statements are true:
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(1) If dom(∂f ) ⊂ Br for some r > 0, then lim supn ‖xn – yn‖ ≤ g–1
r

(gr(g–1
r

(δ0))), where g
r

and gr are defined by Lemma 10;
(2) If δ0 = 0, then xn → ΠZer(∂f )u.

Corollary 34 Suppose that E is a uniformly smooth and uniformly convex Banach space
and f ∗ : E∗ → (–∞,∞] is a proper lower semicontinuous convex function such that
Zer(∂f ∗) �= ∅. Suppose that u ∈ E and λ ∈ (0,∞). Suppose that {δn} is a nonnegative real
sequence such that δ0 := lim supn δn. Construct a sequence {xn} ⊂ dom(∂f ∗J) as follows:
x1 ∈ dom(∂f ∗J), C1 = dom(∂f ∗J), and

yn := J–1 argmin
y∗∈E∗

{
f ∗(y∗) +

1
2λ

∥∥y∗∥∥2 –
1
λ

〈
xn, y∗〉

}
,

Cn+1 :=
{

z ∈ Cn : 〈Jyn – Jz, xn – yn〉 ≥ 0
}

,

xn+1 ∈ Cn+1 satisfies ‖Ju – Jxn+1‖2 ≤ d(u, Cn+1)2 + δn+1

for all n ≥ 1. Then the following statements are true:
(1) If (Jdom(∂f ∗J) – Ju) ∪ Jdom(∂f ∗J) ⊂ B∗

r for some r > 0, then
lim supn ‖xn – yn‖ ≤ g–1

r
(g∗

r (g∗
r

–1(δ0))), where g
r

is defined by Lemma 10 (as E is
uniformly convex) and; g∗

r
and g∗

r are defined by Lemma 10 (as E∗ is uniformly
convex and uniformly smooth, respectively);

(2) If δ0 = 0, then xn → J–1P∗
J Zer(∂f ∗J)Ju, where P∗

J Zer(∂f ∗J) is a metric projection of E∗ onto
J Zer(∂f ∗J).

Corollary 35 Suppose that E is a uniformly smooth and uniformly convex Banach space
and f ∗ : E∗ → (–∞,∞] is a proper lower semicontinuous convex function such that
Zer(∂f ∗) �= ∅. Suppose that u ∈ E and λ ∈ (0,∞). Suppose that {δn} is a nonnegative real
sequence such that δ0 := lim supn δn. Construct a sequence {xn} ⊂ dom(∂f ∗J) as follows:
x1 ∈ dom(∂f ∗J), C1 = dom(∂f ∗J), and

yn := J–1 argmin
y∗∈E∗

{
f ∗(y∗) +

1
2λ

∥∥y∗∥∥2 –
1
λ

〈
xn, y∗〉

}
,

Cn+1 :=
{

z ∈ Cn : 〈Jyn – Jz, xn – yn〉 ≥ 0
}

,

xn+1 ∈ Cn+1 satisfies V (u, xn+1) ≤ V (u, Cn+1) + δn+1

for all n ≥ 1. Then the following statements are true:
(1) If dom(∂f ∗J) ⊂ Br for some r > 0, then lim supn ‖xn – yn‖ ≤ g–1

r
(g∗

r (g∗
r

–1(δ0))), where g
r

is defined by Lemma 10 (as E is uniformly convex) and; g∗
r

and g∗
r are defined by

Lemma 10 (as E∗ is uniformly convex and uniformly smooth, respectively);
(2) If δ0 = 0, then xn → RZer(∂f ∗J)u.

5 Conclusions
In this paper, we prove two key inequalities for metric projections and generalized pro-
jections in a certain Banach space. Using them, we obtain some asymptotic behavior of
a sequence generated by the shrinking projection method introduced by Takahashi et al.
[24] for cutter mappings of types (P), (Q), and (R). The mappings studied in this paper are
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more general than the ones in [8, 10]. In particular, the results in [8, 10] are both extended
and supplemented. Finally, we discuss our results for finding a zero of maximal mono-
tone operator and a minimizer of convex function defined on a Banach space. It would be
interesting to extend our work to the class of quasinonexpansive mappings of Bregman
type.
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