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Abstract
In this paper, we introduce the notion of graphical cone metric spaces over Banach
algebra and prove some fixed point results for a particular type of contractive
mappings defined on such spaces. These results extend and generalize several results
from metric, graphical metric, and cone metric spaces. Some examples that
demonstrate the results proved herein are provided. An application of our results to
the existence of solution of a pair of initial value problems is provided.
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1 Introduction
The concept of metric spaces, which was of abstract nature and provided a tool to iden-
tify the distance between two points, was first initiated by Fréchet [7] in 1906. Banach [3]
proved his famous result known as “Banach contraction principle” in metric spaces. Sev-
eral generalizations of metric spaces and the results of Banach [3] have been considered so
far (see, e.g., [1, 2, 6, 8–11, 13, 15, 18, 21]). Huang and Zhang [11] introduced the concept
of cone metric spaces as a generalization of metric spaces. They showed that the class of
contractive mappings in such spaces is wider than that in metric spaces. Liu and Xu [16]
improved the notion of cone metric spaces and the fixed point results of Huang and Zhang
[11] by introducing the cone metric spaces over Banach algebra. The approach of Liu and
Xu [16] allows us to introduce the “contractive vectors” instead of “contractive scalars” in
the conditions imposed on mappings. The benefit of using a contractive vector instead of
a contractive scalar in contractive conditions is illustrated in [16]. Shukla et al. [24] worked
on the notion of graphical metric spaces and generalized the concept of metric over sets
involving a graphical structure. They proved a version of the Banach contraction princi-
ple in graphical metric spaces and showed that the fixed point results in graphical metric
spaces can be applied to a wider class of contraction mappings in comparison to the usual
metric case. They also showed the applicability of their results to the solution of integral
equations. In a graphical metric space, the triangular inequality is weakened with the help
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of the underlying graph structure. Some generalizations of fixed point results of Shukla et
al. [24] are considered in [22, 23]. In [22], some topological properties of graphical metric
spaces were considered, and it was established that the topologies induced by a graphical
metric are T1 but not necessarily T2 (i.e., Hausdorff), hence a graphical metric has a scope
in the situations where non-Hausdorff topologies are useful.

As the cone metric spaces and graphical metric spaces have their own advantages over
the usual metric spaces, in this paper, we initiate an amalgamation of these two concepts
possessing the advantages of both the spaces, called the graphical cone metric spaces over
Banach algebra. This notion generalizes and unifies the notions of metric, cone metric, and
graphical metric spaces. Hence this generalized approach distinguishes our notion from
both the notions of cone metric spaces and graphical metric spaces. Some fixed point
results, which generalize several known fixed point results in this new setting, are also
proved. The obtained fixed point results are applied to find the solution of a pair of initial
value problems.

2 Preliminaries
Let B be a real Banach algebra, i.e., B is a real Banach space in which an operation of
multiplication is defined, subject to the following properties (see [19]): for all x, y, z ∈ B,
a ∈R,

(1) x(yz) = (xy)z;
(2) x(y + z) = xy + xz and (x + y)z = xz + yz;
(3) a(xy) = (ax)y = x(ay);
(4) ‖xy‖ ≤ ‖x‖‖y‖.

Throughout the paper, we assume that B is a Banach algebra with a unit, i.e., a multiplica-
tive identity e such that ex = xe = x for all x ∈B. An element x ∈B is said to be invertible
if there is an inverse element y ∈ B such that xy = yx = e. The inverse of x ∈ B is denoted
by x–1. The spectral radius of an element x ∈B is denoted by ρ(x) and

ρ(x) = lim
n→∞

∥
∥xn∥∥

1
n = inf

n≥1

∥
∥xn∥∥

1
n .

Definition 1 (Liu and Xu [16]) Let B be a Banach algebra with a unit e and a zero el-
ement θ . A nonempty closed subset C of B is called a cone if the following conditions
hold:

(I) {θ , e} ⊂ C;
(II) if α1,α2 ∈ [0,∞), then α1C + α2C ⊆ C;

(III) C2 = CC ⊆ C;
(IV) C ∩ (–C) = {θ}.

A cone C is called a solid cone if C◦ �= ∅, where C◦ stands for the interior of C. We always
assume that the cone under consideration is solid. Every cone in a Banach algebra B in-
duces a partial order � on B defined by x � y if and only if y – x ∈ C for all x, y ∈B. Also,
we write x � y if and only if y – x ∈ C◦ for all x, y ∈ B.

Remark 1 (Jungck et al. [13]) Let C be a cone in a Banach space B, and a, b, c ∈ C.
(i) If a � b and b � c, then a � c.

(ii) If a � b and b � c, then a � c.
(iii) If θ � u � c for every c ∈ C◦, then u = θ .
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Definition 2 (Dordević et al. [4]) A sequence {un} in a cone C is said to be a c-sequence
if, for each c ∈B with θ � c, there exists n0 ∈ N such that un � c for all n > n0.

Lemma 1 (Huang and Radenović [10]) Let C be a solid cone in a Banach algebra B. Then:
(i) If the sequences {un} and {vn} are two c-sequences in B and α,β ∈ C are vectors,

then {αun + βvn} is a c-sequence in B.
(ii) If h ∈B, un = hn and ρ(h) < 1, then {un} is a c-sequence.

Definition 3 (Liu and Xu [16]) Let X be a nonempty set and B be a Banach algebra. A
mapping d : X × X →B is called a cone metric if it satisfies: for all x, y, z ∈ X,

(i) θ � d(x, y);
(ii) d(x, y) = θ if and only if x = y;

(iii) d(x, y) = d(y, x);
(iv) d(x, y) � d(x, z) + d(z, y).

In this case, the pair (X, d) is called a cone metric space over Banach algebra B.

We adapt some notions about graphs from Jachymski [12] and Shukla et al. [24].
If X is a nonempty set, then the diagonal of X ×X is denoted by � and � = {(x, x) : x ∈ X}.

We denote byG a directed graph such that its set of vertices is V (G) = X and the set of edges
E(G) contains no parallel edges and � ⊆ E(G). In this case we say that X is endowed with
the graph G . By G̃ we denote a symmetric graph defined by G̃ = E(G) ∪ E(G–1), where G–1

is defined by V (G–1) = X and E(G–1) = {(x, y) : (y, x) ∈ E(G)}.
Let x, y ∈ V (G). A sequence of vertices {xi}n

i=0 in V (G) is called a path of length n + 1 from
x to y if x0 = x, xn = y and (xi, xi+1) ∈ E(G) for i = 0, 1, . . . , n. The vertices x and y are called
connected if there is a path of some length from x to y. The graph G is called connected if
there is a path between any two vertices of G .

Let us define [x]l
G = {y ∈ X : there is a path directing from x to y having length l} for l ∈

N and a relation P on X by: (xPy)G if and only if there is a directed path from x to y in G .
We write w ∈ (xPy)G if w is contained in some directed path from x to y in G . A sequence
{xn} in X is called G-termwise connected if for all n ∈N we have (xnPxn+1)G .

Definition 4 (Shukla et al. [24]) Let X be a nonempty set endowed with a graph G and
dG : X × X →R be a function satisfying the following conditions:

(GM1) dG(x, y) ≥ 0 for all x, y ∈ X ;
(GM2) dG(x, y) = 0 if and only if x = y;
(GM3) dG(x, y) = dG(y, x) for all x, y ∈ X ;
(GM4) (xPy)G , w ∈ (xPy)G implies dG(x, y) ≤ dG(x, w) + dG(w, y) for all x, y, w ∈ X .

Then the mapping dG is called a graphical metric on X, and the pair (X, dG) is called a
graphical metric space.

For examples and various interesting properties of a graphical metric space, the reader
is referred to Shukla et al. [24] and Shukla and Künzi [22].

We next introduce the notion of graphical cone metric spaces.

3 Graphical cone metric spaces
Definition 5 Let X be a nonempty set endowed with a graphG andB be a Banach algebra.
Suppose that a mapping dGc : X × X → B satisfies the following conditions:
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(GCM1) dGc (x, y) � θ for all x, y ∈ X ;
(GCM2) dGc (x, y) = θ if and only if x = y for all x, y ∈ X ;
(GCM3) dGc (x, y) = dGc (y, x) for all x, y ∈ X ;
(GCM4) (xPy)G , w ∈ (xPy)G implies dGc (x, y) � dGc (x, w) + dGc (w, y) for all x, y, w ∈ X .

Then the mapping dGc is called a graphical cone metric and the pair (X, dGc ) is called a
graphical cone metric space over Banach algebra B.

Example 1 Every cone metric space (X, d) is a graphical cone metric space (X, dGc ), where
dGc ≡ d and G = X × X is the universal graph.

Example 2 Let B = R
2 with the Euclidian norm and the coordinate-wise multiplication.

Define C = {(a, b) ∈ B : a, b ≥ 0}, then C is a solid cone in B. Let X = [0,∞) and G be
defined by V (G) = X and E(G) = �∪{(x, y) ∈ X ×X : 0 < y ≤ x}. Define a function dGc : X ×
X →R

2 by

dGc (x, y) =

⎧

⎪⎪⎨

⎪⎪⎩

(0, 0), if x = y;

min{x, y}(1, a), if x �= y and x, y ∈ X \ {0};
max{x, y}(1, b), otherwise,

where a, b > 0 are fixed numbers. Then (X, dGc ) is a graphical cone metric space over Ba-
nach algebra B. Obviously, (X, dGc ) is not a cone metric space.

Example 3 Let B = C1
R

[0, 1] with the norm ‖ · ‖ given by ‖f ‖ = ‖f ‖∞ + ‖f ′‖∞ for all f ∈
C1
R

[0, 1] and the multiplication be the point-wise multiplication. Define C = {f ∈B : f (t) ≥
0 for all t ∈ [0, 1]}, then C is a solid cone in B. Let X = [0,∞), G be a graph given by V (G) =
X and E(G) = {(x, y) ∈ X × X : x ≤ y} and define dGc : X × X →B by

dGc (x, y)(t) =

⎧

⎨

⎩

0, if x = y;

exyt , otherwise.

Then we show that (X, dGc ) is a graphical cone metric space over Banach algebra B. The
properties (GCM1), (GCM2), and (GCM3) are obvious. For (GCM4), suppose x, y, z ∈ X
and z ∈ (xPy)G , i.e., 0 ≤ x ≤ z ≤ y. Then we must have (xyt)n ≤ (xzt)n + (zyt)n for all n ∈N,
hence for all t ∈ [0, 1] we have

∞
∑

n=0

(xyt)n

n!
≤

∞
∑

n=0

(xzt)n + (yzt)n

n!
.

This shows that dGc (x, y) � dGc (x, z) + dGc (z, y), hence (GCM4) holds. On the other hand,
(X, dGc ) is not a cone metric space as dGc (1, 2) � dGc (1, 0) + dGc (0, 2).

We next give some propositions with the help of which one can construct several more
examples of graphical cone metric spaces.

Proposition 1 Let (X, dG) be a graphical metric space and B be a Banach algebra with
cone C. Then (X, dGc ) is a graphical cone metric space over Banach algebra B, where
dGc : X × X →B is defined by dGc (x, y) = dG(x, y) · p, where p ∈ C \ {θ} is a fixed vector.
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Proof It follows from the definition of cone C. �

Proposition 2 Let (X, dGc ) be a graphical cone metric space. Then (X, d′
Gc

) is a graphical
cone metric space, where d′

Gc
: X × X → B is defined by d′

Gc
(x, y) = dGc (x, y) · p, where p ∈

C \ {θ} is a fixed vector such that ρ(e – p) < 1.

Proof It follows from the fact that p is invertible and C2 ⊆ C. �

In the further discussion, unless specified otherwise, whenever we consider the Eu-
clidean Banach algebra R

2, it is assumed with cone C = {(a, b) ∈ R
2 : a, b ≥ 0}, the Eu-

clidean norm, and the coordinate-wise multiplication.
The proof of the following propositions can be established directly from the definitions.

Proposition 3 Let (A, dG1 ) and (B, dG2 ) be two graphical metric spaces. Then (X, dGc ) is a
graphical cone metric space over the Euclidean Banach algebra B = R

2, where X = A × B,
dGc : X × X →B is defined by

dGc

(

(a1, b1), (a2, b2)
)

=
(

dG1 (a1, a2), dG2 (b1, b2)
)

for all (a1, b1), (a2, b2) ∈ X,

and G is the graph defined by

V (G) = X, E(G) =
{(

(a1, b1), (a2, b2)
) ∈ X × X : (a1, a2) ∈ E(G1), (b1, b2) ∈ E(G2)

}

.

Proposition 4 Let (X, dG1 ) and (X, dG2 ) be two graphical metric spaces. Let B = R
2 be the

Euclidean Banach algebra. Define a graph G by V (G) = X and E(G) = E(G1) ∩ E(G2) and
the function dGc : X × X →B by

dGc (x, y) =
(

dG1 (x, y), dG2 (x, y)
)

for all x, y ∈ X.

Then (X, dGc ) is a graphical cone metric space over Banach algebra B.

Suppose that x ∈ X and c ∈ C◦. Then the open ball with center x and radius c is denoted
by BG(x, c), and it is defined by

BG(x, c) =
{

y ∈ X : (xPy)G , dGc (x, y) � c
}

.

Since � ⊆ E(G), every open ball is nonempty. Moreover, we prove the following.

Theorem 2 Let (X, dGc ) be a graphical cone metric space over Banach algebra B, and let

U =
{

U ⊆ X : for all x ∈ U there is c ∈ C◦ such that BG(x, c) ⊆ U
}

.

Then U defines a topology on X.

Proof It is clear that X,∅ ∈ U, hence U �= ∅. Suppose U1, U2 ∈ U. Let x ∈ U1 ∩ U2, then
there exist c1, c2 ∈ C◦ such that BG(x, c1) ⊆ U1 and BG(x, c2) ⊆ U2. Since c1, c2 ∈ C◦, there
exists c ∈ C◦ such that c � c1 and c � c2, and so BG(x, c) ⊆ BG(x, c1) ∩ BG(x, c2) ⊆ U1 ∩ U2.
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Hence, U1 ∩ U2 ∈ U. Similarly, one can show that the union of any collection of elements
of U is again in U. �

It is easy to see that every open ball is an open set in the topology U and the collection
B = {BG(x, c) : x ∈ X, c ∈ C◦} is a basis for the topology defined by U. The topology defined
by U is called the topology induced by the graphical cone metric dGc .

We next show that the topology U is T1.

Proposition 5 Let (X, dGc ) be a graphical cone metric space over Banach algebra B. Then
the induced topology U is T1.

Proof We shall show that the set X \ {x} is open for all x ∈ X, i.e., X \ {x} ∈ U for all
x ∈ X. Then, let x ∈ X and y ∈ X \ {x}, then dGc (x, y) �= θ and dGc (x, y) ∈ C. Hence, there
exists c ∈ C◦ such that c–dGc (x,y)

n ∈ C◦ for all n ∈ N. Let cn = c–dGc (x,y)
n and consider the

open balls BG(y, cn), n ∈ N. We claim that there exists n0 ∈ N such that x /∈ BG(y, cn0 ). On
the contrary, suppose that x ∈ BG(y, cn) for all n ∈ N, Then we have dGc (x, y) � cn, i.e.,
c–dGc (x,y)

n – dGc (x, y) ∈ C◦ for all n ∈ N. Since C is closed, we obtain –dGc (x, y) ∈ C, and by
the definition of C we have dGc (x, y) = θ . This contradiction shows that there exists n0 ∈N

such that x /∈ BG(y, cn0 ), and so BG(y, cn0 ) ⊆ X \ {x}. This proves the result. �

In the next example, we show that in general the topology U is not T2.

Example 4 Let (X, dGc ) be the graphical cone metric space as we have considered in Ex-
ample 2. Consider the points x = 1, y = 2 in X. Note that BG(x, c1) ∩ BG(y, c2) �= ∅ for all
c1, c2 ∈ C◦. Hence, the induced topology U is not T2.

We now define the convergent and Cauchy sequences in a graphical cone metric space
and compare their properties in contrast with cone metric spaces.

Definition 6 Let (X, dGc ) be a graphical cone metric space over a Banach algebraB, x ∈ X,
and {xn} be a sequence in X. Then:

• The sequence {xn} is said to be convergent to x ∈ X with respect to dGc if for every
c ∈ C◦ there exists n0 ∈N such that dGc (xn, x) � c for all n > n0. In this case, x is called
a limit of {xn} with respect to dGc . We denote this fact by limn→∞ xn = x or xn → x as
n → ∞.

• The sequence {xn} is said to be convergent to x ∈ X with respect to the induced
topology U if for every c ∈ C◦ there exists n0 ∈N such that xn ∈ BG(x, c) for all n > n0.
In this case, x is called a limit of {xn} with respect to induced topology U.

• The sequence {xn} is said to be a Cauchy sequence if for every c ∈ C◦ there exists
n0 ∈N such that dGc (xn, xm) � c for all n, m > n0.

Example 5 Let (X, dGc ) be a graphical cone metric space as we have considered in Exam-
ple 2. Consider the sequence {xn} defined by xn = 1

n for all n ∈ N. Then, for every x ∈ X
and c ∈ C◦, we can obtain n0 ∈ N such that dGc (xn, x) � c for all n > n0. Therefore, {xn}
converges to x with respect to dGc for all x ∈ X.

Remark 2 In cone metric spaces, the limit of a convergent sequence is unique and the
convergence with respect to induced topology and the convergence with respect to cone
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metric are equivalent. The above example shows that in a graphical cone metric space
the limit of a convergent sequence may not be unique. In graphical cone metric spaces
the convergence with respect to U implies the convergence with respect to dGc , but the
above example shows that the convergence of a sequence with respect to dGc does not
imply the convergence with respect to U. Indeed, 0 ∈ X is a limit of the sequence {xn} with
respect to dGc , but it is not a limit of {xn} with respect to the induced topology U. Indeed,
BG(0, c) = {0} for all c ∈ C◦.

In the remaining part of the paper, since our aim is to generalize and utilize the graphical
cone metric analogue of metric fixed point results, we will consider only the convergence
with respect to dGc , and for the sake of convenience, we will write “convergence” instead
of “convergence with respect to dGc ”.

In cone metric spaces, every convergent sequence is a Cauchy sequence. But it is not the
case for graphical cone metric spaces.

Example 6 Let X = R and B = R
2 be the Euclidean Banach algebra. Let A = (–∞, 0), B =

(0,∞), and A = (–∞, 0], B = [0,∞). Define a graph G by V (G) = X and E(G) = (A × A) ∪
(B × B) and the function dGc : X × X →B by

dGc (x, y) =

⎧

⎪⎪⎨

⎪⎪⎩

(0, 0), if x = y;

|x – y|(1, 1), if (x, y) ∈ (A × A) ∪ (B × B);

(1, 1), otherwise.

Then (X, dGc ) is a graphical cone metric space over Banach algebra B. Consider the se-
quence {xn} in X defined by xn = (–1)n

n for all n ∈ N. Then it is easy to see that xn → 0 as
n → ∞. On the other hand, {xn} is not a Cauchy sequence. Indeed, dGc (xn, xn+1) = (1, 1)
for all n ∈N, and so it is not possible to choose n0 ∈N such that for every given c ∈ C◦ we
have dGc (xn, xn+1) � c for all n > n0.

Definition 7 Let (X, dGc ) be a graphical cone metric space over Banach algebra B. Then
X is called complete if every Cauchy sequence in X is convergent to some x ∈ X. Let H be
a graph such that V (H) ⊆ X. Then X is called H-complete if every H-termwise connected
Cauchy sequence in X is convergent to some x ∈ X.

Obviously,H-completeness is a weaker assumption than the completeness of a graphical
cone metric space.

In the next section, we state some fixed point results for a self-mapping of a graphical
cone metric space satisfying some particular conditions.

4 Fixed point theorems
We first introduce the notion of (G, Ĝ)-graphical contractions on graphical cone metric
spaces.

Definition 8 Let (X, dGc ) be a graphical cone metric space over Banach algebra B,
T : X → X be a mapping, and Ĝ be a subgraph of G such that E(Ĝ) ⊇ �. Then T is called
a (G, Ĝ)-graphical contraction with contractive vector α if:
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(GCC1) T preserves the edges of Ĝ , i.e., for all (z1, z2) ∈ E(Ĝ), we have (Tz1, Tz2) ∈ E(Ĝ);
(GCC2) There exists α ∈ C such that ρ(α) < 1 and dGc (Tz1, Tz2) � αdGc (z1, z2) for all

z1, z2 ∈ X with (z1, z2) ∈ E(Ĝ).

The vector α is called the contractive vector of T . Note that we can treat Ĝ as a weighted
graph with vector weight, and the corresponding vector weight of each edge (z1, z2) in
E(Ĝ) is given by dGc (z1, z2). Therefore, condition (GCC2) shows that a (G, Ĝ)-graphical
contraction reduces the vector weight in the sense that ρ(α) < 1. A sequence {zn} is said to
be a T-Picard sequence (or Picard sequence generated by T ) with the initial value z0 ∈ X
if zn = Tzn–1 for all n ∈N.

In the rest of this paper, we assume Ĝ to be a subgraph of G such that E(Ĝ) ⊇ �.

Example 7 Since E(Ĝ) ⊇ �, the constant mapping on any arbitrary graphical cone metric
space is a (G, Ĝ)-graphical contraction with contractive vector α ∈ C such that ρ(α) < 1.

Example 8 The identity mapping on any arbitrary graphical cone metric space can be
converted into a (G, Ĝ)-graphical contraction by assuming E(Ĝ) = � and the contractive
vector α ∈ C such that ρ(α) < 1. Indeed, this fact is true for any arbitrary mapping defined
on a graphical cone metric space.

The above example shows that any arbitrary mapping on a graphical cone metric space
over Banach algebra B can be converted into a (G, Ĝ)-graphical contraction. Obviously,
the Picard sequences generated by such a mapping T may not converge to any point in
space. As the convergence of T-Picard sequence is an important issue in existence theo-
rems, in the next theorem, we ensure the convergence of T-Picard sequences generated
by a (G, Ĝ)-graphical contraction under some particular conditions.

Theorem 3 Let (X, dGc ) be a Ĝ-complete graphical cone metric space over Banach algebra
B and T : X → X be a (G, Ĝ)-graphical contraction. Suppose that the following conditions
hold:

(A) There exists z0 ∈ X such that Tz0 ∈ [z0]l
Ĝ for some l ∈N;

(B) If a Ĝ-termwise connected T-Picard sequence {zn} converges in X , then there exist a
limit w ∈ X of {zn} and n0 ∈N such that (zn, w) ∈ E(Ĝ) or (w, zn) ∈ E(Ĝ) for all n > n0.

Then there exists z∗ ∈ X such that the T-Picard sequence {zn} with the initial value z0 ∈ X
is Ĝ-termwise connected and converges to both z∗ and Tz∗.

Proof Assume that z0 ∈ X is such that Tz0 ∈ [z0]l
Ĝ for some l ∈ N, and {zn} is the T-

Picard sequence with the initial value z0. Then there is a path {yk}l
k=0 such that z0 = y0,

z1 = Tz0 = yl , and (yk–1, yk) ∈ E(Ĝ) for k = 1, 2, 3, . . . , l. As T is a (G, Ĝ)-graphical contrac-
tion, it preserves the edges, and we have (Tyk–1, Tyk) ∈ E(Ĝ) for k = 1, 2, 3, . . . , l. This yields
a path {Tyk}l

k=0 from Ty0 = Tz0 = z1 to Tyl = T(Tz0) = T2z0 = z2 having length l, and so
z2 ∈ [z1]l

Ĝ . Continuation of this process yields a path {Tnyk}l
k=0 from Tny0 = Tnz0 = zn to

Tnyl = TnTz0 = zn+1 of length l, and hence zn+1 ∈ [zn]l
Ĝ for all n ∈ N. Thus, we obtain that

{zn} is a Ĝ-termwise connected sequence. Since (Tnyk–1, Tnyk) ∈ E(Ĝ) for k = 1, 2, 3, . . . , l
and for all n ∈ N, by contractive condition (GCC2) we have

dGc

(

Tnyk–1, Tnyk
) � αdGc

(

Tn–1yk–1, Tn–1yk
) � · · · � αndGc (yk–1, yk). (1)
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Since Ĝ is a subgraph of G and (Tnyk–1, Tnyk) ∈ E(Ĝ) for k = 1, 2, 3, . . . , l, for all n ∈ N, using
(1) and (GCM4) we obtain

dGc (zn, zn+1) = dGc

(

Tnz0, Tn+1z0
)

= dGc

(

Tny0, Tnyl
)

�
l

∑

k=1

dGc

(

Tnyk–1, Tnyk
)

�
l

∑

k=1

αndGc (yk–1, yk)

= αnδl,

where δl =
∑l

k=1 dGc (yk–1, yk). As the sequence {zn} is a Ĝ-termwise connected sequence,
for any pair n, m of positive integers with m > n we obtain

dGc (zn, zm) �
m–1
∑

k=n

dGc (zk , zk+1)

=
m–1
∑

k=n

αkδl

= αn

[m–1
∑

k=n

αk–n

]

δl

� αn(e – α)–1δl.

Since ρ(α) < 1, by Lemma 1 the sequence {αn(e – α)–1δl} is a c-sequence. Hence, using
the above inequality, for every c ∈B with θ � c there exists n0 ∈N such that

dGc (zn, zm) � αn(e – α)–1δl � c for all n > n0.

Therefore, {zn} is a Cauchy sequence in X. Since X is Ĝ-complete, the sequence {zn}
converges in X, and from condition (B) there exists z∗ ∈ X, n1 ∈N such that (zn, z∗) ∈ E(Ĝ)
or (z∗, zn) ∈ E(Ĝ) for all n > n1 and zn → z∗ as n → ∞.

Now, if (zn, z∗) ∈ E(Ĝ) for all n > n1, using (GCC2) we obtain

dGc

(

zn+1, Tz∗) = dGc

(

Tzn, Tz∗)

� αdGc

(

zn, z∗)

for all n > n1. Since zn → z∗ as n → ∞, the sequence {dGc (zn, z∗)} is a c-sequence,
and by Lemma 1 the sequence {αdGc (zn, z∗)} is a c-sequence. By Remark 1 we obtain
{dGc (zn+1, Tz∗)} is a c-sequence, i.e., zn → Tz∗ as n → ∞. If (z∗, zn) ∈ E(Ĝ), then a simi-
lar result holds.

Thus, the sequence {zn} converges to both z∗ and Tz∗. �

We have established the convergence of a Picard sequence generated by a (G, Ĝ)-
graphical contraction under the conditions of the above theorem. Apart from the cone
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metric case, the limit of this convergent Picard sequence may not be a fixed point of (G, Ĝ)-
graphical contraction, as shown in the following example.

Example 9 Let B = R
2 with the Euclidian norm and the coordinate-wise multiplication.

Define C = {(a, b) ∈ B : a, b ≥ 0}, then C is a solid cone in B. Let X = R, G and Ĝ be the
graphs defined by G = Ĝ and V (G) = X, and E(G) = {(x, y) ∈ (X \Q)× (X \Q) : 0 < y < x}∪�

and the function dGc : X × X →B by

dGc (x, y) =

⎧

⎪⎪⎨

⎪⎪⎩

(0, 0), if x = y;

min{|x|, |y|}(1, 1), if x, y ∈ X \ {0}, x �= y;

max{|x|, |y|}(1, 1), otherwise.

Then dGc is a graphical cone metric on X and (X, dGc ) is a Ĝ-complete graphical cone
metric space over Banach algebra B. Define a mapping T : X → X by

Tx =

⎧

⎨

⎩

1 + x, if x ∈ Q;
x
2 , if x ∈ X \Q.

Then T is a (G, Ĝ)-graphical contraction with α = ( 1
2 , 1

2 ) and ρ(α) = 1
2 . Also, for each

z0 ∈ X \Q, we have (z0, Tz0) ∈ E(Ĝ), i.e., Tz0 ∈ [z0]1
Ĝ . Any Ĝ-termwise connected T-Picard

sequence in X is a positive decreasing sequence that converges to 0 with respect to the
usual metric of R, therefore, has at least one limit w ∈ X such that condition (B) of Theo-
rem 3 holds true (indeed, every x > 0 is a limit of such a sequence with respect to dGc ). Note
that, for each positive z0 ∈ X \ Q, the Picard sequence with the initial value z0 converges
to some z∗ as well as to Tz∗ although T has no fixed point.

To ensure the existence of a fixed point of a (G, Ĝ)-graphical contraction, we introduce
the following condition.

Definition 9 Let (X, dGc ) be a graphical cone metric space over Banach algebra B and
T : X → X be a mapping. We say that the quadruple (X, dGc , Ĝ, T) has property (N) if:

whenever a Ĝ-termwise connected T-Picard sequence {zn} has two limits z∗ and y∗,

where z∗ ∈ X, y∗ ∈ T(X), then z∗ = y∗. (N)

The set of all fixed points of T will be denoted by F (T). We use the notation

XĜ
T =

{

z ∈ X : (z, Tz) ∈ E(Ĝ)
}

.

Theorem 4 If all the conditions of Theorem 3 are satisfied and, in addition, if the quadru-
ple (X, dGc , Ĝ, T) has property (N), then T has a fixed point in X.

Proof Theorem 3 ensures that the T-Picard sequence {zn} with the initial value z0 con-
verges to both z∗ and Tz∗. Since z∗ ∈ X and Tz∗ ∈ T(X), by property (N), we must have
Tz∗ = z∗. Thus, z∗ is a fixed point of T . �
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Example 10 Let B = R
2 with the norm ‖(x1, x2)‖ = |x1|+ |x2|, and multiplication is defined

by (x1, x2).(y1, y2) = (x1y1, x1y2 +x2y1). Define C = {(x1, x2) : x1, x2 ≥ 0}, then C is a solid cone
in B. Let X = [0, 1] × [0, 1], G and Ĝ be the graphs defined by G = Ĝ and V (G) = X, and
E(G) = {((x1, x2), (y1, y2)) : x1 ≤ y1, x2 ≤ y2, and x1, x2, y1, y2 ∈ (0, 1]} ∪ � and the function
dGc : X × X →B by dGc ((x1, x2), (y1, y2)) = (d̂(x1, y1), d̂(x2, y2)) and

d̂(x1, x2) =

⎧

⎪⎪⎨

⎪⎪⎩

0, if x1 = x2;

ln{ 1
x1x2

}, if x1, x2 ∈ (0, 1], x1 �= x2;

1, otherwise.

Then dGc is a graphical cone metric on X and (X, dGc ) is a Ĝ-complete graphical cone
metric space. Define a mapping T : X → X by

T(x1, x2) =
(

xa
1, xb

2
)

with a, b < 1.

Then T is a (G, Ĝ)-graphical contraction with α = (α1,α2), where a ≤ α1 < 1 and b ≤ α1.
Therefore all the conditions of Theorem 4 are satisfied, and so T must have at least one
fixed point in X. Indeed, F (T) = {(0, 0), (0, 1), (1, 0), (1, 1)}.

Remark 3 The importance of condition (N) in Theorem 4 can be justified by Example 9.
Indeed, except condition (N), all the conditions of Theorem 4 are satisfied in Example 9,
but T has no fixed point, and so, for the existence of a fixed point, condition (N) plays a
crucial role.

Theorem 5 Suppose that all the conditions of Theorem 4 are satisfied. In addition, suppose
that XĜ

T is connected (as a subgraph of Ĝ), then T has a unique fixed point.

Proof The existence of a fixed point z∗ of T follows from Theorem 4. Suppose that y∗ �= z∗

is another fixed point of T . Since E(Ĝ) contains all the loops, F (T) ⊆ XĜ
T , i.e., z∗, y∗ ∈ XĜ

T .
Since XĜ

T is connected, there must be a path from z∗ to y∗, i.e., (z∗Py∗)Ĝ . Hence,
there exists a sequence {zk}r

k=0, where z0 = z∗ and zr = y∗ with (zk , zk+1) ∈ E(Ĝ) for k =
0, 1, 2, . . . , r – 1.

Since T is a (G, Ĝ)-graphical contraction, by successive use of (GCC1) we have

(

Tnzk , Tnzk+1
) ∈ E(Ĝ) for k = 0, 1, 2, . . . , r – 1 and for all n ∈N.

Therefore, by (GCC2) we obtain

dGc

(

Tnzk , Tnzk+1
) � αdGc

(

Tn–1zk , Tn–1zk+1
) � · · · � αndGc (zk , zk+1)

for k = 0, 1, 2, . . . , r – 1 and for all n ∈N.
Using the above inequality and (GCM4), we have

dGc

(

z∗, y∗) = dGc

(

Tnz∗, Tny∗) �
r–1
∑

k=0

dGc

(

Tnzk , Tnzk+1
) � αn

r–1
∑

k=0

dGc (zk , zk+1).
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Since ρ(α) < 1, by Lemma 1 the sequence {αn ∑r–1
k=0 dGc (zk , zk+1)} is a c-sequence. Hence,

using Remark 1 in the above inequality, we get dGc (z∗, y∗) = θ , i.e., z∗ = y∗. Thus, the fixed
point of T is unique. �

Remark 4 In the above theorem, by replacing the condition “XĜ
T is connected” with the

condition “F (T) is connected” the conclusion remains the same, i.e., the mapping T pos-
sesses a unique fixed point.

In the next example, we compute a fixed point of the mapping by iteration produced by
the T-Picard sequence and illustrate its convergence behavior with different initial values.

Example 11 Let (X, dGc ), a, b, and α be the same as we have considered in Example 10.
Suppose that the mapping T : X → X is defined by

T(x1, x2) =

⎧

⎨

⎩

(xa
1, xb

2), if (x1, x2) ∈ (0, 1] × (0, 1];

(1, 1), otherwise.

Then, by Theorem 5 and Remark 4, the mapping has a unique fixed point, namely, F (T) =
{(1, 1)}. In the Tables 1, 2, 3 and 4 the convergence behavior of the iteration produced by a
T-Picard sequence with various initial values and two sets of values of a and b is shown.
The Figures 1 and 2 below show the magnitude of errors decreasing in successive iterations
(‖ · ‖E denotes the Euclidean norm on R

2).

We now state some consequences of our main results.

Table 1 Iteration of zn for a = b = 0.2 with (x)� = (x, x)

a = b = 0.2 z0 = (0.75)� z0 = (0.8)� z0 = (0.85)� z0 = (0.9)�

z0 (0.75000)� (0.80000)� (0.85000)� (0.90000)�
z1 (0.94409)� (0.95635)� (0.96802)� (0.97915)�
z2 (0.98856)� (0.99111)� (0.99352)� (0.99579)�
z3 (0.99770)� (0.99822)� (0.99870)� (0.99916)�
z4 (0.99954)� (0.99964)� (0.99974)� (0.99983)�
z5 (0.99991)� (0.99993)� (0.99995)� (0.99997)�
z6 (0.99998)� (0.99999)� (0.99999)� (0.99999)�
z7 (1.00000)� (1.00000)� (1.00000)� (1.00000)�
z8 (1.00000)� (1.00000)� (1.00000)� (1.00000)�

Table 2 Euclidean magnitude Mzi = ‖ei‖E of error ei = dGc ((1)� , zi) for a = b = 0.2

a = b = 0.2 z0 = (0.75)� z0 = (0.8)� z0 = (0.85)� z0 = (0.9)�

Mz0 0.40684 0.31557 0.22984 0.14900
Mz1 0.08137 0.06311 0.04597 0.02980
Mz2 0.01627 0.01262 0.00919 0.00596
Mz3 0.00325 0.00252 0.00184 0.00119
Mz4 0.00065 0.00050 0.00037 0.00024
Mz5 0.00013 0.00010 0.00007 0.00005
Mz6 0.00003 0.00002 0.00001 0.00001
Mz7 0.00001 0.00000 0.00000 0.00000
Mz8 0.00000 0.00000 0.00000 0.00000
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Figure 1 Convergence behavior of zn for a = b = 0.2

Table 3 Iteration of zn for a = b = 0.1 with (x)� = (x, x)

a = b = 0.1 z0 = (0.75)� z0 = (0.8)� z0 = (0.85)� z0 = (0.9)�

z0 (0.75000)� (0.80000)� (0.85000)� (0.90000)�
z1 (0.97164)� (0.97793)� (0.98388)� (0.98952)�
z2 (0.99713)� (0.99777)� (0.99838)� (0.99895)�
z3 (0.99971)� (0.99978)� (0.99984)� (0.99989)�
z4 (0.99997)� (0.99998)� (0.99998)� (0.99999)�
z5 (1.00000)� (1.00000)� (1.00000)� (1.00000)�

Table 4 Euclidean magnitude Mzi = ‖ei‖E of error ei = dGc ((1)� , zi) for a = b = 0.1

a = b = 0.1 z0 = (0.75)� z0 = (0.8)� z0 = (0.85)� z0 = (0.9)�

Mz0 0.40684 0.31557 0.22984 0.14900
Mz1 0.04068 0.03156 0.02298 0.01490
Mz2 0.00407 0.00316 0.00230 0.00149
Mz3 0.00041 0.00032 0.00023 0.00015
Mz4 0.00004 0.00003 0.00002 0.00001
Mz5 0.00000 0.00000 0.00000 0.00000

Remark 5 With B = R (with absolute value norm and ordinary multiplication) and C =
[0,∞), all the results proved above reduce to the corresponding results of Shukla et al.
[24].

Corollary 6 (Cone metric version of the Banach contraction principle) Let (X, d) be a
complete cone metric space over Banach algebra B and T : X → X be a mapping. Suppose
that there exists α ∈ C such that ρ(α) < 1 and d(Tx, Ty) � αd(x, y) for all x, y ∈ X. Then T
has a unique fixed point in X.

Proof Let G = Ĝ and E(G) = X × X, then the result follows from Theorem 5. �

We next give an improved cone metric version of the result of Ran and Reurings [17].
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Figure 2 Convergence behavior of zn for a = b = 0.1

Corollary 7 Let (X,�) be a partially ordered set and d be a cone metric on X such that
(X, d) is a complete cone metric space over Banach algebra B. Let T : X → X be a nonde-
creasing mapping with respect to � and the following conditions hold:

(a) There exists α ∈ C such that ρ(α) < 1 and

d(Tx, Ty) � αd(x, y) for all x, y ∈ X with x � y;

(b) There exists x0 ∈ X such that x0 � Tx0;
(c) If {zn} is a sequence in X such that zn � zn+1 for all n ∈N and converges to z ∈ X , then

there is n0 ∈N such that zn � z or z � zn for all n > n0.
Then T has a fixed point in X. Furthermore, if the set {x : x � Tx} is well ordered, then the
fixed point of T is unique.

Proof Let the graph G and a subgraph Ĝ be defined by V (G) = V (Ĝ) = X, E(G) = X × X,
E(Ĝ) = {(x, y) ∈ X × X : x � y}, then the result follows from Theorem 5. �

Let (X, d) be a cone metric space over Banach algebra B. Let M and N be two nonempty
closed subsets of X, and let a mapping T : M∪N → M∪N satisfy the following conditions:

(a) T(M) ⊆ N and T(N) ⊆ M;
(b) d(Tx, Ty) � μd(x, y) for all x ∈ M, y ∈ N , where μ ∈ C is such that ρ(μ) < 1.

Then T is called a cyclic contraction (for cyclic contraction defined on metric spaces, see
Kirk et al. [14]).

The following corollary is a cone metric version of the result of Kirk et al. [14].

Corollary 8 Let (X, d) be a cone metric space over Banach algebra B, M and N be two
nonempty closed subsets of X, and suppose that T : M ∪N → M ∪N is a cyclic contraction.
Then T has a unique fixed point in M ∩ N .
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Proof Define the graph G and a subgraph Ĝ by V (G) = X, V (Ĝ) = M ∪ N , E(G) = X × X,
and E(Ĝ) = � ∪ {(x, y) : (x, y) ∈ [M × T(M)] ∪ [N × T(N)]}. Then the result follows from
Theorem 5 (see also Shukla and Abbas [20] and Shukla et al. [24]). �

We define the cone metric analogue of ε-chainable metric spaces (see Edelstein [5]). Let
(X, d) be a cone metric space over Banach algebra B and c ∈ C with θ � c. Then (X, d)
is called c-chainable if, given x, y ∈ X, there exist k ∈ N and a sequence {xi}k

i=0 such that
x0 = x, xk = y and d(xi, xi–1) � c for i = 1, 2, . . . , k.

The following corollary is a cone metric version of the result of Edelstein [5].

Corollary 9 Let (X, d) be a complete c-chainable cone metric space over Banach algebra
B, and suppose that T : X → X is a mapping such that there exists α ∈ C with ρ(α) < 1
and

d(Tx, Ty) � αd(x, y) for all x, y ∈ X with d(x, y) � c.

Then T has a unique fixed point in X.

Proof Define the graph G and a subgraph Ĝ by V (G) = V (Ĝ) = X and E(G) = X × X, E(Ĝ) =
{(x, y) ∈ X × X : dGc (x, y) � c}. Then the result follows from Theorem 5. �

In the next section, we state an application of our results to a system of initial value
problems.

5 Application to a system of initial value problems
In this section, we consider a pair of initial value problems, and by applying the fixed point
results of the previous section, we show that the existence of a lower (or upper) solution
of the pair of initial value problems ensures the existence of solution of the pair.

Let a > 0, I = [0, a] and X = CR(I)×CR(I), where CR(I) is the space of all continuous real-
valued functions defined over the interval I . Let us consider the following pair of Cauchy
initial value problems.

Suppose that K1, K2 : I ×R×R →R, N : I →R are three continuous functions. We seek
two differentiable functions u1, u2 on I that satisfy

dui

dt
= N(t)Ki

(

t, ui(t), uj(t)
)

; ui(0) = 0, i, j = 1, 2, i �= j. (2)

For x(t) = (x1(t), x2(t)), y(t) = (y1(t), y2(t)) ∈ X, we write x(t) � y(t) if xi(t) ≤ yi(t), t ∈ I ,
i = 1, 2. For simplicity, we write x instead of x(t) for x(t) ∈ X. Define B ⊂ X by B = {(x1, x2) ∈
X : 0 ≤ xi(t) ≤ 1, t ∈ I, i = 1, 2}. For 	 > 0, define D : CR(I) × CR(I) →R by

D(x1, x2) =

⎧

⎪⎪⎨

⎪⎪⎩

0, if x1 = x2;

supt∈I |x2(t) – x1(t)|, if (x1, x2) ∈ B, t ∈ I;

	, otherwise.

Define two graphs G and Ĝ by G = Ĝ , V (G) = X and

E(G) = � ∪ {

(x, y) ∈ X × X : x, y ∈ B, x � y
}
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and dGc : X × X → R
2 by dGc (x, y) = (D(x1, y1), D(x2, y2)) for all x = (x1, x2), y = (y1,

y2) ∈ X.
Then (X, dGc ) is a Ĝ-complete graphical cone metric space over Banach algebra B =

R
2 with the norm ‖(u1, u2)‖ = |u1| + |u2|, the multiplication (u1, u2).(v1, v2) = (u1v1, u1v2 +

u2v1), and the cone C = {(u1, u2) ∈ R
2 : u1, u2 ≥ 0}.

Clearly system (2) is equivalent to the following system:

ui(t) =
∫ t

0
N(s)Ki

(

s, ui(s), uj(s)
)

ds, i, j = 1, 2, i �= j. (3)

A pair (α1,α2) ∈ X is a lower solution of (3) if

αi(t) ≤
∫ t

0
N(s)Ki

(

s,αi(s),αj(s)
)

ds for i, j = 1, 2, i �= j and t ∈ I.

Obviously, an upper solution of (2) satisfies the reverse inequality. We will show that the
existence of lower solution of (3) ensures the existence of a solution of (2).

We consider the operator T : X → X such that

T(u1, u2) =
(∫ t

0
N(s)K1(s, u1, u2) ds,

∫ t

0
N(s)K2(s, u2, u1) ds

)

and give sufficient conditions for the existence of a fixed point of T in X, i.e., a solution of
system (2).

Theorem 10 Suppose that the following conditions are satisfied:
(a) If s1, s2, s3, s4 ∈ [0, 1], s1 ≤ s3, s2 ≤ s4, then 0 ≤ Ki(t, s1, s2) ≤ Ki(t, s3, s4) and 0 ≤ N(t)

for t ∈ I ;
(b) There exists λ ∈ (0, 1) such that for all x, y ∈ X with (x, y) ∈ E(G) we have for every

t ∈ I

Ki(t, yi, yj) – Ki(t, xi, xj) ≤ yi(t) – xi(t), i �= j, i, j = 1, 2,

and

∫ t

0
N(s) ds ≤ λ for every t ∈ I;

(c) Ki(t, 1, 1) ≤ 1/λ for i = 1, 2, t ∈ I .
Then the existence of a lower solution of (3) in B ensures the existence of a solution of (2).

Proof Notice that the operator T is well defined. Suppose that x = (x1, x2), y = (y1, y2) ∈ X
with (x, y) ∈ E(G), then we have x, y ∈ B and 0 ≤ xi(t) ≤ yi(t) ≤ 1, t ∈ I , i = 1, 2, and by
conditions (a), (b), and (c), we get

(0, 0) � T(x1, x2)

=
(∫ t

0
N(s)K1(s, x1, x2) ds,

∫ t

0
N(s)K2(s, x2, x1) ds

)
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�
(∫ t

0
N(s)K1(s, 1, 1) ds,

∫ t

0
N(s)K2(s, 1, 1) ds

)

�
(

1
λ

∫ t

0
N(s) ds,

1
λ

∫ t

0
N(s) ds

)

� (1, 1)

and

(0, 0) � T(x1, x2)

=
(∫ t

0
N(s)K1(s, x1, x2) ds,

∫ t

0
N(s)K2(s, x2, x1) ds

)

�
(∫ t

0
N(s)K1(s, y1, y2) ds,

∫ t

0
N(s)K2(s, y2, y1) ds

)

= T(y1, y2).

And for x = (x1, x2), y = (y1, y2) ∈ X with (x, y) ∈ E(G) and t ∈ I , we obtain

dGc

(

T(x1, x2), T(y1, y2)
)

= dGc

((∫ t

0
N(s)K1(s, x1, x2) ds,

∫ t

0
N(s)K2(s, x2, x1) ds

)

,

(∫ t

0
N(s)K1(s, y1, y2) ds,

∫ t

0
N(s)K2(s, y2, y1) ds

))

=
(

D
(∫ t

0
N(s)K1(s, x1, x2) ds,

∫ t

0
N(s)K1(s, y1, y2) ds

)

,

D
(∫ t

0
N(s)K2(s, x2, x1) ds,

∫ t

0
N(s)K2(s, y2, y1) ds

))

.

Therefore, the definition of D yields

dGc

(

T(x1, x2), T(y1, y2)
)

=
(

sup
t∈I

[∫ t

0
N(s)K1(s, y1, y2) ds –

∫ t

0
N(s)K1(s, x1, x2) ds

]

,

sup
t∈I

[∫ t

0
N(s)K2(s, y2, y1) ds –

∫ t

0
N(s)K2(s, x2, x1) ds

])

=
(

sup
t∈I

∫ t

0
N(s)

[

K1(s, y1, y2) – K1(s, x1, x2)
]

ds,

sup
t∈I

∫ t

0
N(s)

[

K2(s, y2, y1) – K2(s, x2, x1)
]

ds
)

.

Using condition (b) in the above equality, we obtain

dGc

(

T(x1, x2), T(y1, y2)
)

�
(

sup
t∈I

∫ t

0
N(s)

[

y1(s) – x1(s)
]

ds, sup
t∈I

∫ t

0
N(s)

[

y2(s) – x2(s)
]

ds
)

� (

λD
(

x1(t), y1(t)
)

,λD
(

x2(t), y2(t)
))

�
(

λD(x1, y1),λD(x2, y2) +
1
2

D(x1, y1)
)
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=
(

λ,
1
2

)
(

D(x1, y1), D(x2, y2)
)

=
(

λ,
1
2

)

dGc

(

(x1, x2), (y1, y2)
)

.

Note that ρ(λ, 1
2 ) = λ < 1. Consequently, T is a (G, Ĝ)-graphical contraction and the exis-

tence of a lower solution of (3) in B, say (α1,α2), implies that property (A) of Theorem 3
holds true, that is, T(α1,α2) ∈ [(α1,α2)]1

Ĝ . It is easy to see that property (B) of Theorem 3
holds true and the quadruple (X, dGc , Ĝ, T) has property (N). Thus all the conditions of
Theorem 4 are satisfied, and hence there exists a fixed point of T that is a solution of
system (2). �

Remark 6 One can establish Theorem 10 in the case of existence of an upper solution by
considering the following graph:

E(G) = � ∪ {

(x, y) ∈ X × X : x, y ∈ B, y � x; t ∈ I
}

retaining the rest as above.

Next, we present a simple example that illustrates Theorem 10.

Example 12 Consider the following system of initial value problems: for x, y ∈ C1
R

[0, 1]
and t ∈ I = [0, 1],

dx
dt

= tx + t, x(0) = 0;

dy
dt

= ty +
t
2

, y(0) = 0.

⎫

⎪⎪⎬

⎪⎪⎭

(4)

Define the functions N : I → R, K1, K2 : I ×R×R → R by N(t) = t and K1(t, x, y) = x + 1,
K2(t, y, x) = y + 1/2 for all t ∈ I , x, y ∈ R. Consider X = CR(I) × CR(I) and the operator
T : X → X such that

T(x, y) =
(∫ t

0
N(s)K1(s, x, y) ds,

∫ t

0
N(s)K2(s, y, x) ds

)

=
(∫ t

0

(

sx(s) + s
)

ds,
∫ t

0

(

sy(s) +
s
2

)

ds
)

.

We observe that z0 = (0, 0) ∈ X is a lower solution of (4) lying in B, and N , K1, K2 satisfy
all the conditions of Theorem 10 with a = 1 and λ = 1

2 . Hence, by Theorem 10 system (4)
has a solution. Furthermore, the T-Picard sequence {zn} = {Tnz0} is given by

zn =

( n
∑

i=1

1
i!

t2i

2i ,
n

∑

i=1

1
2(i!)

t2i

2i

)

, n ∈N,

and converges to the fixed point (et2/2 – 1, et2/2

2 – 1) ∈ X of T and is the solution of system
(4).
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6 Conclusions
In this paper, we have unified the concepts of cone metric and graphical metric by in-
troducing the notion of graphical cone metric, which yields a generalization of the usual
metric. The topology induced by graphical cone metric is T1 but not necessarily T2, and
this is the limitation of the topology induced by a graphical cone metric. Nevertheless,
graphical cone metric spaces may have potential applications in the fields where non-T2

spaces play a role, e.g., in the domain theory and in the foundation of semantics of com-
puter languages. On the other hand, the fixed point theory for contraction mappings in
graphical cone metric spaces, which generalizes the usual theory of fixed point, has been
introduced. It is shown that the fixed point theory in this new setting has a wider scope
and can be applied in finding the solutions of a particular type of a system of a pair of initial
value problems. This approach can be generalized to the systems consisting of more than
two initial value problems. Furthermore, this approach can be applied to the existence and
uniqueness of solutions of systems of integral equations.
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10. Huang, H., Radenović, S.: Some fixed point results of generalized Lipschitz mappings on cone b-metric spaces over

Banach algebras. J. Comput. Anal. Appl. 20(3), 566–583 (2016)



Shukla et al. Journal of Inequalities and Applications         (2023) 2023:91 Page 20 of 20

11. Huang, L.G., Zhang, X.: Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl.
332(2), 1468–1476 (2007)

12. Jachymski, J.: The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 136,
1359–1373 (2008)
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