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Abstract
In this article, we introduce two new types of generalized contraction mappings in
double controlled metric type spaces:�-double controlled contraction mapping and
Ćirić-Reich-Rus-type-�-double controlled contraction mapping. For each contraction
mapping, we establish the existence and uniqueness of the fixed point theorems on
the complete double controlled metric type space and provide examples. We present
an application of our results and demonstrate how our results generalize several
existing fixed point theorems in the literature.
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1 Introduction
The fixed point theorem established the existence of a solution to an integral equation
and was known as the Banach contraction principle [1]. It rapidly developed into a typi-
cal device for solving several existing problems in various areas of mathematics, includ-
ing nonlinear analysis and its application. The fixed point theory advanced in two direc-
tions. One is to change the space under consideration, and the other is to change the
contraction condition. Banach’s original thesis dealt with the standard metric space [1].
Many researchers generalized the structure of the metric space by changing the space
under consideration; for example, b-metric space was introduced by Bakhtin [2] as an
extension of standard metric spaces. Later, Branciari [3] presented the notion of gen-
eralized metric (Branciari metric) spaces, where the triangle inequality is replaced with
d(a, b) ≤ d(a, u) + d(u, v) + d(v, b); for all distinct pairwise points a, b, u, v ∈ W , the map
d is called a Branciari distance. Numerous fixed point results were established on such
spaces [4, 5]. Subsequently, the notion of extended b-metric spaces appeared [6], and fixed
point results on these spaces were established in many articles [7, 8]. Later, a more general
concept of controlled metric-type spaces was introduced [9]. A further generalization re-
sulted in the concepts of double controlled metric type spaces [10] and double controlled
metric-like spaces [11, 12]. Several authors have studied various generalizations of the Ba-
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nach contraction mapping principle. One of the prominent generalizations of the Banach
contraction was presented by Kannan [13], who introduced a new contraction now known
as the Kannan contraction. By utilizing the Kannan contraction, fixed point results have
been established on b-metric spaces [14] and extended b-metric spaces [15].

Some researchers weakened the contraction property of the operator using many other
contraction mappings (e.g., [16–25]); for example, Ćirić [18] and Reich [20] independently
proved the existence and uniqueness theorem on complete metric space, when the op-
erator has a certain contraction property. The contraction mapping was later known as
a Ćirić-Reich-Rus-type contraction. Jleli et al. ([26, 27]) introduced the concept of �-
contraction to establish a generalization of the Banach fixed point theorem in the situ-
ation of Branciari metric spaces. Recently, Abdeljawad et al. [28] proposed the notion of
�-Branciari contraction to establish a fixed point theorem in the extended Branciari b-
distance space using the Ćirić-Reich-Rus-type contraction mapping.

In this article, by focusing on two contraction mappings, Ćirić-Reich-Rus-type and �-
contraction, we introduce them on double controlled metric type spaces. Hence, we de-
note the first contraction mapping by �-double controlled contraction mapping, while
the second is denoted by the Ćirić-Reich-Rus-type �-double controlled contraction map-
ping. Furthermore, we establish the existence and uniqueness of the fixed point theorems
on complete double-controlled metric type spaces. We also present examples and demon-
strate how our result generalizes many existing fixed point theorems. We end the article
with an application of our results.

2 Preliminaries
Kamran et al. [6] defined the concept of extended b-metric spaces, and their work gener-
alized many results [29–32].

Definition 2.1 ([6]) Consider a mapping ω : S × S → [1,∞), where S �= ∅. The function
dω : S × S → [0,∞), is called an extended b-metric if for all x̂, ŷ, ẑ ∈ S ,

1. dω(x̂, ẑ) = 0 iff x̂ = ẑ;
2. dω(x̂, ẑ) = dω(ẑ, x̂), symmetric;
3. dω(x̂, ẑ) ≤ ω(x̂, ẑ)[dω(x̂, ŷ) + dω(ŷ, ẑ)],

The pair (S , dω) is called an extended b-metric space.

Branciari introduced the concept of generalized metric spaces [3], while the extended
Branciari b-distance space was introduced in [28] and defined as follows.

Definition 2.2 ([28]) Let S be a non-empty set, and let ω : S × S → [1,∞) be a mapping.
The function d : S ×S → [0,∞), is called an extended Branciari b-distance if for all x, y ∈ S
and all u, v ∈ S distinct from x, y, this holds:

1. d(x, y) = 0 iff x = y;
2. d(x, y) = d(y, x), symmetric;
3. d(x, y) ≤ ω(x, y)[d(x, u) + d(u, v) + d(v, y)],

The pair (S, d) is called an extended Branciari b-distance space.

An extension of the b-metric space into a controlled metric type space was introduced
by Mlaiki et al. [9].
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Definition 2.3 Let β : Zβ × Zβ → [1,∞) be a mapping, where Zβ �= ∅. The function
dβ : Zβ × Zβ → [0,∞), is called a controlled metric if, for all x̂, ŷ, ẑ ∈ Zβ , the following
conditions hold:

(d1) dβ (x̂, ẑ) = 0 iff x̂ = ẑ;
(d2) dβ (x̂, ẑ) = dβ (ẑ, x̂), symmetric;
(d3) dβ (x̂, ẑ) ≤ β(x̂, ŷ)dβ (x̂, ŷ) + β(ŷ, ẑ)dβ (ŷ, ẑ),
then, the pair (Zβ , dβ ) is called a controlled metric type space.

Then a more general concept of a b-metric type space called a double controlled metric
type space was introduced in [10] as follows.

Definition 2.4 ([10]) Consider two noncomparable functions β ,μ : Z × Z → [1,∞), de-
fined on a non-empty set Z. The mapping dβ ,μ : Z × Z → [0,∞) is called a double con-
trolled metric type space by β and μ if, for all z1, z2, z3 ∈ Z, the following conditions hold:

(Q1) dβ ,μ(z1, z2) = 0 iff z1 = z2;
(Q2) dβ ,μ(z1, z2) = dβ ,μ(z2, z1), symmetric;
(Q3) dβ ,μ(z1, z2) ≤ β(z1, z3)dβ ,μ(z1, z3) + μ(z3, z2)dβ ,μ(z3, z2).
The pair (Z, dβ ,μ) is called a double controlled metric type space.

Remark 2.5 The class of double controlled metric type spaces is larger than that of con-
trolled metric type spaces, which, in turn, is larger than the class of extended b-metric
spaces. Moreover, the class of extended b-metric spaces is larger than that of b-metric
spaces. All these classes are larger than the class of standard metric spaces. Every extended
b-metric space is a controlled metric type space and double controlled metric type space,
but the converse is invalid. Also, every controlled metric type space is, in fact, a double
controlled metric type space, but the converse is invalid (Fig. 1).

The following example shows a controlled metric type space that is not an extended
b-metric space [9].

Figure 1 This figure displays the relation between different metric type spaces
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Example 2.6 Let Z = N, define dα : Z × Z → [0,∞), by

dα(u, v) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, iff u = v,
1
u , if u is even and, v is odd,
1
v if v is even and, u is odd,

1 else.

Then, (Z, dα) is a controlled metric type space, with α : Z × Z → [1,∞), defined by

α(u, v) =

⎧
⎪⎪⎨

⎪⎪⎩

u if u is even and, v is odd,

v if v is even and, u is odd,

1 else.

The next example illustrates a double controlled metric type space, which is not a con-
trolled metric type space [10].

Example 2.7 ([10]) Let Z = [0, +∞), define the mapping dβ ,μ : Z × Z → [0, +∞) by

dβ ,μ(u, v) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 iff u = v,
1
u if u ≥ 1 and v ∈ [0, 1),
1
v if v ≥ 1 and u ∈ [0, 1),

1 otherwise.

Let β ,μ : Z × Z → [1, +∞) be two functions defined by

β(u, v) =

⎧
⎨

⎩

u if u, v ≥ 1,

1 otherwise,

and

μ(u, v) =

⎧
⎨

⎩

1 if u, v ∈ [0, 1),

max{u, v} otherwise.

To see (Z, dβ ,μ) is a double controlled metric type space. Observe that conditions (Q1)
and (Q2) hold. To illustrate condition (Q3) holds, note that if either z = u or z = v, then
(Q3) holds. Thus, suppose u �= v, which means u �= v �= z. We consider cases:

Case 1: if u ≥ 1 and v ∈ [0, 1), or v ≥ 1 and u ∈ [0, 1), then for any z, clearly condition
(Q3) is satisfied.

Case 2: if u, v > 1, and z ≥ 1, then one can easily observe that

dβ ,μ(u, v) = 1 ≤ u(1) + max{v, z}(1).

While, if z ∈ [0, 1), then we obtain

dβ ,μ(u, v) = 1 ≤ 1
u

+ v
1
v

, hence (Q3) holds.
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Case 3: if u, v < 1, and z ≥ 1, we obtain

dβ ,μ(u, v) = 1 ≤ 1
z

+ z
1
z

.

While, if z ∈ [0, 1), then easily condition (Q3) holds. Therefore, (Z, dβ ,μ) is a double con-
trolled metric type space, which is not a controlled metric type space, by taking β = μ,
note

dβ

(

0,
1
2

)

= 1 >
1
2

=
1
4

+
1
4

= β(0, 4)dβ (0, 4) + β

(

4,
1
2

)

dβ

(

4,
1
2

)

.

Definition 2.8 Let (Z, dβ ,μ) be a double controlled metric type space, where Z �= ∅, given
any ε > 0, the open ball B(y, ε) is defined as

B(y, ε) =
{

w ∈ Z, dβ ,μ(y, w) < ε
}

.

Let {yn}n≥0 be any sequence in Z. Then
(1) {yn} converges to some w in Z if for every ε > 0, there exists N ∈ N, such that

dβ ,μ(yn, w) < ε for all n ≥ N , i.e. limn→∞ dβ ,μ(yn, w) = 0.
(2) {yn} is a Cauchy sequence if for every ε > 0, there exists N ∈N such that dβ ,μ(ym, yn) <

ε, for all m, n ≥ N .
(3) The space (Z, dβ ,μ) is called a complete double controlled metric type space if every

Cauchy sequence in Z is convergent.
(4) A mapping T : Z → Z is said to be continuous at y ∈ Z if for all ε > 0, there exists

δ > 0, such that T(B(y, δ)) ⊆ B(Ty, ε). Thus if {yn}n≥0 is any sequence which converges to
u, i.e., limn→∞ dβ ,μ(yn, u) = 0, then limn→∞ dβ ,μ(Tyn, Tu) = 0.

Let (X, d) be a metric space, and let T : X → X be a mapping, then T is called a contrac-
tion [1] if there exists r ∈ [0, 1) such that this holds for all x, y ∈ X,

d(Tx, Ty) ≤ rd(x, y).

Kannan [13] generalized the Banach contraction by introducing a new contraction on
a metric space now known as the Kannan contraction. Thus, the mapping T : X → X is
called the Kannan contraction if there exists r ∈ [0, 1/2) such that

d(Tx, Ty) ≤ r
[
d(x, Tx) + d(y, Ty)

]
,

for all x, y ∈ X. When (X, d) is complete, then every contraction and every Kannan con-
traction have a unique fixed point; see [1, 13]. Later many authors utilized Kannan-type
contraction and established fixed point results on b-metric spaces [14], extended b-metric
spaces [15], and more recently into double controlled dislocated quasi-metric type spaces
[24].

The concept of �-contraction was proposed in [26] to extend some results on the fixed
point theorem in the framework of the Branciari distance space. We recall the definition
of the � set of functions.
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Definition 2.9 ([26]) Let � be the set of all functions θ : (0,∞) → (1,∞) obeying the
following conditions:

(I) θ is nondecreasing;
(II) for each sequence {tm} of positive real numbers, this holds

lim
m→∞ tm = 0+ ⇐⇒ lim

m→∞ θ (tm) = 1;

(III) there exist k, with 0 < k < 1, and M ∈ (0,∞], such that this holds

lim
t→0+

θ (t) – 1
tk = M.

It should be observed that � contains a large class of functions, for example, the func-
tions θi : (0,∞) → (1,∞), defined by θ1(t) = e

√
t , and θ2(t) = e

√
tet belongs to �.

3 Main results
Our work focuses on two types of contraction mappings: Ćirić-Reich-Rus-type and �-
contraction. Following are two subsections for each type of contraction mappings on com-
plete double controlled metric type spaces.

3.1 �-double controlled contraction mapping and fixed point theorems
With � as in Definition 2.9 and inspired by [26], we present the notion of �-double con-
trolled contraction mapping and establish a fixed point theorem on complete double con-
trolled metric type spaces.

Definition 3.1 Let (Z, dβ ,μ) be a double controlled metric type space. Let T : Z → Z be
a self mapping. Then T is said to be �-double controlled contraction mapping if there
exists a function θ ∈ � and an r ∈ (0, 1) such that the following holds:

z, w ∈ Z, dβ ,μ(Tz, Tw) �= 0 ⇒ θ
(
dβ ,μ(Tz, Tw)

) ≤ [
θ
(
dβ ,μ(z, w)

)]r . (3.1)

Lemma 3.2 Let (Z, dβ ,μ) be a double controlled metric type space, and let T : Z → Z be a
�-double controlled contraction mapping. Then T is continuous.

Proof As T is �-double controlled contraction mapping, hence this holds

θ
(
dβ ,μ(Tx, Ty)

) ≤ [
θ
(
dβ ,μ(x, y)

)]r . (3.2)

for some θ ∈ � and r ∈ (0, 1), and for any x, y ∈ Z with Tx �= Ty. Applying ln on both sides
of equation (3.2), we obtain

ln
[
θ
(
dβ ,μ(Tx, Ty)

)] ≤ r ln
[
θ
(
dβ ,μ(x, y)

)] ≤ ln
[
θ
(
dβ ,μ(x, y)

)]
. (3.3)

As θ is nondecreasing, we obtain

dβ ,μ(Tx, Ty) ≤ dβ ,μ(x, y), ∀x, y ∈ Z. (3.4)

Hence T is continuous. �
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Our first main result of the fixed point theorem.

Theorem 3.3 Let (Z, dβ ,μ) be a complete double controlled metric type space with β ,μ :
Z × Z → [1,∞) two noncomparable functions, defined on a non-empty set Z, and let T :
Z → Z be a �-double controlled contraction self mapping satisfying the following:

(1)

sup
m≥1

lim
n→∞β(zn+1, zn+2)μ(zn+1, zm) < 1/p,

for some p ∈ (0, 1), and
(2) For any z ∈ Z, both limn→∞ β(z, zn) and limn→∞ μ(zn, z) exist and are finite, where

the sequence {zn} is defined as zn = Tnz0 for some z0 ∈ Z.
Then T has a unique fixed point in Z.

Proof Let z0 be any arbitrary point in Z, then we have a sequence {zn}n≥0, with Tnz0 = zn,
for all n ∈N.

If for some m ∈ N, Tmz0 = Tm+1z0, then this implies that Tmz0 is a fixed point of
the mapping T . Thus, without loss of generality, we may assume that zn �= zn+1, i.e.,
dβ ,μ(Tnz0, Tn+1z0) > 0, for all n ∈N.

Applying (3.1) recursively, we obtain

θ
(
dβ ,μ(zn, zn+1)

)
= θ

(
dβ ,μ(Tzn–1, Tzn)

)

≤ [
θ
(
dβ ,μ(zn–1, zn)

)]r

≤ [
θ
(
dβ ,μ(zn–2, zn–1)

)]r2

≤ [
θ
(
dβ ,μ(zn–3, zn–2)

)]r3 ≤ · · · ≤ [
θ
(
dβ ,μ(z0, z1)

)]rn
. (3.5)

As θ (t) > 1, we have

1 < θ
(
dβ ,μ(zn, zn+1)

) ≤ [
θ
(
dβ ,μ(z0, z1)

)]rn
. (3.6)

Since 0 < r < 1, hence letting n tends to infinity in (3.6), we get

lim
n→∞ θ

(
dβ ,μ(zn, zn+1)

)
= 1.

Employing property (II) in Definition 2.9, we obtain

lim
n→∞ dβ ,μ(zn, zn+1) = 0. (3.7)

In a similar method, one can show that

lim
n→∞ dβ ,μ(zn, zn+2) = 0. (3.8)

By (III) of Definition 2.9, there exists k ∈ (0, 1) and M ∈ (0,∞] such that

lim
n→∞

θ (dβ ,μ(zn, zn+1)) – 1
[dβ ,μ(zn, zn+1)]k = M. (3.9)
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Case 1: Let 0 < M < ∞, and define L = M
2 , from equation (3.9), there exists some n0 ∈N,

such that for all n ≥ n0 we obtain
∣
∣
∣
∣
θ (dβ ,μ(zn, zn+1)) – 1

[dβ ,μ(zn, zn+1)]k – M
∣
∣
∣
∣ ≤ L,

which implies that

L = M – L ≤ θ (dβ ,μ(zn, zn+1)) – 1
[dβ ,μ(zn, zn+1)]k , ∀n ≥ n0.

Hence, for all n ≥ n0, we have

n
[
dβ ,μ(zn, zn+1)

]k ≤ n
[

θ (dβ ,μ(zn, zn+1)) – 1
L

]

.

By employing (3.5), we obtain

n
[
dβ ,μ(zn, zn+1)

]k ≤ n
[

[θ (dβ ,μ(z0, z1))]rn – 1
L

]

.

Letting n → ∞, in the above inequality, we get

lim
n→∞ n

[
dβ ,μ(zn, zn+1)

]k = 0. (3.10)

Case 2: M = ∞, in this case, let L > 0 be any arbitrary number. Thus, by the definition of
the limit, we can find some n1 ∈N such that

θ (dβ ,μ(zn, zn+1)) – 1
[dβ ,μ(zn, zn+1)]k ≥ L, ∀n ≥ n1,

which gives

n
[
dβ ,μ(zn, zn+1)

]k ≤ n
[

θ (dβ ,μ(zn, zn+1)) – 1
L

]

.

Again employing (3.5) in the above inequality and then letting n → ∞, we obtain

lim
n→∞ n

[
dβ ,μ(zn, zn+1)

]k = 0. (3.11)

Thus, from equations (3.10) and (3.11), we deduce that for any M ∈ (0,∞] and 0 < k < 1,
there exists some N̂ ∈N, where N̂ = max{n0, n1} such that

dβ ,μ(zn, zn+1) ≤ 1
n1/k , ∀n ≥ N̂ , (3.12)

Next, we prove that T has a fixed point; we consider two cases.
Case 1: Suppose Tnz0 = zn = zm = Tmz0 for some m �= n ∈ N. Assume m > n, we obtain

Tm–n(zn) = zn. Denote zn by x, and q = m – n, then we have Tqx = x, which means x is a
periodic point of T . Hence

dβ ,μ(x, Tx) = dβ ,μ
(
Tqx, Tq+1x

)
.
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Following the above argument, one can easily show that dβ ,μ(x, Tx) = 0, i.e., Tx = x, im-
plying that x is a fixed point of T .

Case 2: Suppose that zn = Tnz0 �= Tmz0 = zm for all m, n ∈N and assume m > n.
Claim: {zn} is a Cauchy sequence in Z.
For all m, n ∈ N̂ with m > n, and by (Q3) of Definition 2.4, we have:

dβ ,μ(zn, zm) ≤ β(zn, zn+1)dβ ,μ(zn, zn+1) + μ(zn+1, zm)dβ ,μ(zn+1, zm)

≤ β(zn, zn+1)dβ ,μ(zn, zn+1) + μ(zn+1, zm)
[
β(zn+1, zn+2)dβ ,μ(zn+1, zn+2)

+ μ(zn+2, zm)dβ ,μ(zn+2, zm)
]

= β(zn, zn+1)dβ ,μ(zn, zn+1) + μ(zn+1, zm)β(zn+1, zn+2)dβ ,μ(zn+1, zn+2)

+ μ(zn+1, zm)μ(zn+2, zm)dβ ,μ(zn+2, zm)

≤ β(zn, zn+1)dβ ,μ(zn, zn+1) + μ(zn+1, zm)β(zn+1, zn+2)dβ ,μ(zn+1, zn+2)

+ μ(zn+1, zm)μ(zn+2, zm)
[
β(zn+2, zn+3)dβ ,μ(zn+2, zn+3)

+ μ(zn+3, zm)dβ ,μ(zn+3, zm)
]

...

dβ ,μ(zn, zm) ≤ β(zn, zn+1)dβ ,μ(zn, zn+1) +
m–2∑

i=n+1

( i∏

j=n+1

μ(zj, zm)

)

β(zi, zi+1)dβ ,μ(zi, zi+1)

+
m–1∏

l=n+1

μ(zl, zm)dβ ,μ(zm–1, zm),

dβ ,μ(zn, zm) ≤ β(zn, zn+1)dβ ,μ(zn, zn+1) +
m–2∑

i=n+1

( i∏

j=n+1

μ(zj, zm)

)

β(zi, zi+1)dβ ,μ(zi, zi+1)

+
m–1∏

l=n+1

μ(zl, zm)β(zm–1, zm)dβ ,μ(zm–1, zm),

dβ ,μ(zn, zm) ≤ β(zn, zn+1)dβ ,μ(zn, zn+1) +
m–1∑

i=n+1

( i∏

j=n+1

μ(zj, zm)

)

β(zi, zi+1)dβ ,μ(zi, zi+1).

Hence

dβ ,μ(zn, zm) ≤
m–1∑

i=n

dβ ,μ(zi, zi+1)

[ i∏

j=1

μ(zj, zm)

]

β(zi, zi+1). (3.13)

Note that the series

∞∑

n=1

dβ ,μ(zn, zn+1)

[ n∏

i=1

μ(zi, zm)

]

β(zn, zn+1),

converges, by employing (3.12) and using conditions (1) and (2), we obtain

∞∑

n=1

dβ ,μ(zn, zn+1)

[ n∏

i=1

μ(zi, zm)

]

β(zn, zn+1) ≤
∞∑

n=1

1
n1/k

n∏

i=1

μ(zi, zm)β(zn, zn+1)



Azmi Journal of Inequalities and Applications         (2023) 2023:87 Page 10 of 21

<
1
p

∞∑

n=1

1
n1/k ,

which is convergent as 1
k > 1. Let S and Sn be defined as

S =
∞∑

n=1

dβ ,μ(zn, zn+1)

[ n∏

i=1

μ(zi, zm)

]

β(zn, zn+1)

and

Sn =
n∑

j=1

dβ ,μ(zj, zj+1)

[ j∏

i=1

μ(zi, zm)

]

β(zj, zj+1).

Therefore, (3.13) can be written as

dβ ,μ(zn, zm) ≤ Sm–1 – Sn–1

letting n, m → ∞, and by incorporating equations (3.7) and (3.8), and the fact the above
series is convergent, we obtain

lim
n,m→∞ dβ ,μ(zn, zm) = 0. (3.14)

Thus, {zn} is a Cauchy sequence in a complete double controlled metric type space
(Z, dβ ,μ); therefore, it converges to some x̂ ∈ Z, i.e., limn→∞ dβ ,μ(zn, x̂) = 0.

Next, we show x̂ is a fixed point of T , i.e., Tx̂ = x̂. By Lemma 3.2, T is continuous; thus,
limn→∞ dβ ,μ(Tzn, Tx̂) = 0, hence we have Tzn = zn+1 → Tx̂. Using the triangular property
of Definition 2.4, we have

dβ ,μ(x̂, Tx̂) ≤ β(x̂, zn)dβ ,μ(x̂, zn) + μ(zn, Tx̂)dβ ,μ(zn, Tx̂). (3.15)

Taking the limit as n tends to infinity in the above inequality and using condition (2), we
obtain dβ ,μ(x̂, Tx̂) = 0; that is, Tx̂ = x̂.

To prove the uniqueness of the fixed point, assume that T has two fixed points x̂, ŷ such
that x̂ �= ŷ,

θ
(
dβ ,μ(x̂, ŷ)

)
= θ

(
dβ ,μ(Tx̂, Tŷ)

)

≤ [
θ
(
dβ ,μ(x̂, ŷ)

)]r

< θ
(
dβ ,μ(x̂, ŷ)

)
,

which is a contradiction, hence x̂ = ŷ, so T has a unique fixed point. �

Next, we illustrate Theorem 3.3 by the following example.

Example 3.4 Let Z = {0, 1, 2}. Consider the symmetric metric dβ ,μ : Z × Z → [0,∞), de-
fined by

dβ ,μ(2, 2) = dβ ,μ(1, 1) = dβ ,μ(0, 0) = 0,



Azmi Journal of Inequalities and Applications         (2023) 2023:87 Page 11 of 21

and

dβ ,μ(0, 1) = 1, dβ ,μ(0, 2) =
4
5

, dβ ,μ(1, 2) =
6

25
.

The two symmetric functions β ,μ : Z × Z → [1,∞), are given by

β(2, 2) = β(1, 1) = β(0, 0) = 1, β(1, 2) =
8
5

, β(0, 1) =
6
5

, β(0, 2) =
151
100

and

μ(2, 2) = μ(1, 1) = μ(0, 0) = 1, μ(1, 2) =
30
20

, μ(0, 1) =
6
5

, μ(0, 2) =
7
5

.

One can easily show that (dβ ,μ, Z) is a complete double controlled metric type space.
Consider the self mapping T : Z → Z, defined by T(0) = 2, and T(1) = T(2) = 1, also let

θ : (0,∞) → (1,∞) be given by θ (t) = e
√

t , then θ satisfies the properties in Definition 2.9,
with k = 1/2.

First, we show that T is �-double controlled contraction mapping as in Definition 3.1
with r = 3

5 ∈ (0, 1).
For any z, w ∈ Z, such that dβ ,μ(Tz, Tw) �= 0, we investigate if θ (dβ ,μ(Tz, Tw)) ≤

[θ (dβ ,μ(z, w))]3/5. It is enough to explore these:

(i) θ
(
dβ ,μ(T0, T1)

)
= θ

(
dβ ,μ(2, 1)

)
= θ

(
6

25

)

= e
√

6/25 ≤ e3/5 =
[
θ
(
dβ ,μ(0, 1)

)]3/5,

(ii) θ
(
dβ ,μ(T0, T2)

)
= θ

(
dβ ,μ(2, 1)

)

= θ

(
6

25

)

= e
√

6/25 ≤ (
e
√

4/5)3/5 =
[
θ
(
dβ ,μ(0, 2)

)]3/5.

Next, we explore if conditions (1) and (2) of Theorem 3.3 are satisfied with p = 1/3 ∈
(0, 1). To show (1) holds, i.e.,

sup
m≥1

lim
n→∞β(zn+1, zn+2)μ(zn+1, zm) < 1/p = 3, for any z ∈ Z,

take, for example, z0 = 0, then z1 = T(0) = 2 and z2 = T(2) = 1, z3 = T(1) = 1, zj = 1 for j > 3,
hence

(a) β(z0, z1)μ(z0, z) = β(0, 2)μ(0, z) =

⎧
⎪⎪⎨

⎪⎪⎩

1.50 < 3, if z = 0,

1.81 < 3, if z = 1,

2.11 < 3 if z = 2,

(b) β(z1, z2)μ(z1, z) = β(2, 1)μ(2, z) =

⎧
⎪⎪⎨

⎪⎪⎩

2.24 < 3, if z = 0,

2.40 < 3, if z = 1,

1.60 < 3 if z = 2,

(c) β(z2, z3)μ(z2, z) = β(1, 1)μ(1, z) =

⎧
⎪⎪⎨

⎪⎪⎩

1.2 < 3, if z = 0,

1.0 < 3, if z = 1,

1.5 < 3 if z = 2,
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(d) β(z3, z4)μ(z3, z) = β(1, 1)μ(1, z) =

⎧
⎪⎪⎨

⎪⎪⎩

1.2 < 5/3, if z = 0,

1.0 < 5/3, if z = 1,

1.5 < 5/3 if z = 2.

As zj = 1 for j > 3, then β(z3, z4)μ(z3, z) reduces to case (c). If we take 0 �= z0, then sim-
ilarly we get supm≥1 limn→∞ β(zn+1, zn+2)μ(zn+1, zm) < 3. Therefore, T is �-double con-
trolled contraction mapping, satisfying conditions (1) and (2) of Theorem 3.3, so it has
a unique fixed point z = 1.

By taking β(z, w) = μ(z, w) in Theorem 3.3 and modifying the two conditions (1) and
(2) accordingly, we deduce the following corollary for the case of controlled metric type
space.

Corollary 3.5 Let (Z, dβ ) be a complete controlled metric type space, and let T : Z → Z be
a �-contraction self mapping. Then T has a unique fixed point in Z.

In case β(z, w) = μ(z, w) = 1, we get the following corollary.

Corollary 3.6 Let (Z, d) be a complete metric space, and let T : Z → Z be a self mapping.
Suppose there exists a function θ ∈ � and an r ∈ (0, 1), such that the following holds:

z, w ∈ Z, dβ ,μ(Tz, Tw) �= 0 ⇒ θ
(
dβ ,μ(Tz, Tw)

) ≤ [
θ
(
dβ ,μ(z, w)

)]r .

Then T has a unique fixed point.

3.2 Ćirić-Reich-Rus-type �-double controlled contraction mapping and fixed
point theorem

In 1971, Ćirić [18] generalized Banach’s contraction principle theorem to a more general
contraction. Then in 1974, Ćirić [19] generalized his own result [18] by introducing the
quasi-contraction and obtained the fixed point theorem under the below condition.

Definition 3.7 ([19]) Let (Z, d) be a metric space. If T : Z → Z satisfies the quasi-
contraction condition

d(Tx, Ty) ≤ p max
{

d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)
}

for all x, y ∈ Z, and for some p ∈ [0, 1), then T has a unique fixed point in Z.

During the same time, Reich [20] stated the following result.

Definition 3.8 Let (Z,ρ) be a complete metric space. If T : Z → Z satisfies:

ρ(Tx, Ty) ≤ λ
[
ρ(x, y) + ρ(x, Tx) + ρ(y, Ty)

]
.

For all x, y ∈ Z and λ ∈ [0, 1/3), then T has a unique fixed point.
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It should be noted that Ćirić and Reich proved the result independently. That is why in
the literature it is referred to as a Ćirić-Reich-Rus-type contraction. In [28], Abdeljawad
et al. gave the following definition of the Ćirić-Reich-Rus-type contraction mapping, and
they used it to prove the existence and uniqueness of the fixed point when the extended
Branciari b-distance space is complete.

Definition 3.9 ([28]) Let (Z, d) be an extended Branciari b-distance space, then a mapping
T : Z → Z, is called a Ćirić-Reich-Rus-type contraction mapping, if there exists a function
θ ∈ �, and p ∈ (0, 1), such that

θ
(
d(Tx, Ty)

) ≤ [
θ
(
M(x, y)

)]p, for all x, y ∈ Z,

where

M(x, y) = max
{

d(x, y), d(x, Tx), d(y, Ty)
}

with lim supn,m→∞ ω(xn, xm) < 1/p, here xn = Tnx0 for some x0 ∈ Z.

In the following, inspired by Definition 3.9, we generalize the Ćirić-Reich-Rus-type con-
traction mapping in the setting of a double controlled metric type space. Therefore, we
introduce the concept of Ćirić-Reich-Rus-type �-double controlled contraction mapping
(for short CRR-�-double controlled contraction), with � as in Definition 2.9, and we es-
tablish the fixed point theorem.

Definition 3.10 Let (Z, dβ ,μ) be a double controlled metric type space, and let T : Z → Z
be a self mapping. Then T is a CRR-�-double controlled contraction mapping, if there
exists a function θ ∈ � such that θ is continuous, and r ∈ (0, 1), so that the following holds:

θ
(
dβ ,μ(Tz, Tw)

) ≤ [
θ
(
M(z, w)

)]r , (3.16)

for all z, w ∈ Z, such that dβ ,μ(Tz, Tw) �= 0, where

M(z, w) = max
{

dβ ,μ(z, w), dβ ,μ(z, Tz), dβ ,μ(w, Tw)
}

.

Next, our second main result of the fixed point theorem.

Theorem 3.11 Let (Z, dβ ,μ) be a complete double controlled metric type space, and let
β ,μ : Z × Z → [1,∞) be two noncomparable functions, defined on a non-empty set Z. Let
T : Z → Z be a CRR-�-double controlled contraction self mapping satisfying the following:

(M1)

sup
m≥1

lim
n→∞β(zn+1, zn+2)μ(zn+1, zm) < 1/p,

for some p ∈ (0, 1), and
(M2) For any z ∈ Z, both limn→∞ β(z, zn) and limn→∞ μ(zn, z) exist and are finite, where

the sequence {zn} is defined as zn = Tnz0 for some z0 ∈ Z.
Then T has a unique fixed point in Z.
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Proof Let z0 be any arbitrary point in Z, then we have a sequence {zn}n≥0, with Tnz0 = zn,
for all n ∈N.

If for some q ∈ N, Tqz0 = Tq+1z0, then this implies that Tqz0 is a fixed point of
the mapping T . Thus, without loss of generality, we may assume that dβ ,μ(zn, zn+1) =
dβ ,μ(Tnz0, Tn+1z0) > 0, for all n ∈N.

By Definition 3.10, we obtain

θ
(
dβ ,μ(zn+1, zn)

) ≤ [
θ
(
M(zn, zn–1)

)]r , (3.17)

where

M(zn, zn–1) = max
{

dβ ,μ(zn, zn–1), dβ ,μ(zn, Tzn), dβ ,μ(zn–1, Tzn–1)
}

= max
{

dβ ,μ(zn, zn–1), dβ ,μ(zn, zn+1), dβ ,μ(zn–1, zn)
}

≤ max
{

dβ ,μ(zn, zn–1), dβ ,μ(zn, zn+1)
}

.

In case M(zn, zn–1) = dβ ,μ(zn, zn+1), then the inequality in (3.17) turns into

θ
(
dβ ,μ(zn+1, zn)

) ≤ [
θ
(
dβ ,μ(zn, zn+1)

)]r ,

which is a contradiction, since 0 < r < 1. Therefore, we have

M(zn, zn–1) = dβ ,μ(zn, zn–1), (3.18)

using (3.18), the inequality in (3.17) becomes

θ
(
dβ ,μ(zn+1, zn)

) ≤ [
θ
(
dβ ,μ(zn, zn–1)

)]r

≤ [
θ
(
dβ ,μ(zn–1, zn–2)

)]r2 ≤ · · ·
≤ [

θ
(
dβ ,μ(z0, z1)

)]rn
. (3.19)

That is the same inequality as (3.5) in Theorem 3.3. Consequently, following the same
steps of proof in Theorem 3.3 and utilizing conditions (M1) and (M2), we conclude that
{zn} is a Cauchy sequence in a complete double controlled metric type space (Z, dβ ,μ).
Therefore, it converges to some ẑ ∈ Z, i.e.,

lim
n→∞ dβ ,μ(zn, ẑ) = 0. (3.20)

We claim that T(ẑ) = ẑ. First, note that if there exists an integer N such that zN = ẑ, then
ẑ is a fixed point since by (3.17), we have

θ
(
dβ ,μ(TzN , zN )

) ≤ [
θ
(
M(zN , zN–1)

)]r .

Utilizing (3.18) and then repeating the steps as in (3.19), we obtain θ (dβ ,μ(TzN , zN )) ≤
[θ (dβ ,μ(z0, z1))]rN ; applying the steps as in (3.6) and then taking the limit as N tends to
infinity as in (3.7), we obtain dβ ,μ(TzN , zN ) = 0, i.e., ẑ = zN = TzN is a fixed point. Thus,
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without loss of generality assume that zn �= ẑ for all n, to show ẑ is a fixed point, observe
that continuity of T together with (3.20) implies

lim
n→∞ dβ ,μ(zn+1, Tẑ) = lim

n→∞ dβ ,μ(Tzn, Tẑ) = 0. (3.21)

Utilizing (3.20), we obtain

lim
n→∞ dβ ,μ(ẑ, zn+1) = lim

n+1→∞ dβ ,μ(ẑ, zn+1) = 0. (3.22)

By (Q3) of Definition 2.4, we deduce

dβ ,μ(ẑ, Tẑ) ≤ β(ẑ, zn+1)dβ ,μ(ẑ, zn+1) + μ(zn+1, Tẑ)dβ ,μ(zn+1, Tẑ).

Upon taking the limit as n tends to infinity and using (3.21), (3.22), and (M2), we reach
dβ ,μ(ẑ, Tẑ) = 0, hence Tẑ = ẑ, proving ẑ is a fixed point.

Next, we show the uniqueness of the fixed point. Assume that T has two fixed points ẑ,
ŵ such that ẑ �= ŵ, thus dβ ,μ(ẑ, ŵ) = dβ ,μ(Tẑ, Tŵ) > 0. Utilizing (3.16), we obtain

θ
(
dβ ,μ(ẑ, ŵ)

)
= θ

(
dβ ,μ(Tẑ, Tŵ)

)

≤ [
θ
(
M(ẑ, ŵ)

)]r

≤ [
θ
(
dβ ,μ(ẑ, ŵ)

)]r <
[
θ
(
dβ ,μ(ẑ, ŵ)

)]

which is a contradiction, hence ẑ = ŵ, so T has a unique fixed point. �

Next, we present a supporting example for Theorem 3.11 and also refer to [28].

Example 3.12 Let Z = {Sn : n ∈N}, where

Sn =
n(n + 1)(n + 2)

3
.

Define the mapping dβ ,μ : Z ×Z → [0, +∞) by dβ ,μ(x, y) = |x – y|2, and let β ,μ : Z ×Z →
[1, +∞) be defined by

β(x, y) =

⎧
⎨

⎩

y
x if y > x,
x
y otherwise,

and μ(x, y) = 1
y + 1. Then (Z, dβ ,μ) is a complete double controlled metric type space. The

mapping T : Z → Z is given by

T(Sn) =

⎧
⎨

⎩

S1 if n = 1,

Sn–1 if n ≥ 2.

To show T is CRR-�-double controlled contraction mapping with θ (t) = et , we need to
show (3.16) holds, i.e.,

θ
(
dβ ,μ(Tx, Ty)

) ≤ [
θ
(
M(x, y)

)]r , for some r ∈ (0, 1).
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Note that if the above equation holds, it yields, edβ ,μ(Tx,Ty) ≤ [eθ (M(x,y))]r . Applying ln on
both sides, we get

dβ ,μ(Tx, Ty) ≤ rM(x, y), (3.23)

where M(x, y) = max{dβ ,μ(x, y), dβ ,μ(x, Tx), dβ ,μ(y, Ty)}.
Hence to show T is CRR-�-double controlled contraction mapping, it is enough to show

that (3.23) holds.
Case 1: n = 1 and m > 2, then

dβ ,μ(TS1, TSm) = dβ ,μ(S1, Sm–1) =
∣
∣
∣
∣
m(m – 1)(m + 1) – 6

3

∣
∣
∣
∣

2

.

Observe that

M(S1, Sm) = max
{

dβ ,μ(S1, Sm), dβ ,μ(S1, S1), dβ ,μ(Sm, Sm–1)
}

= dβ ,μ(S1, Sm).

Since

dβ ,μ(S1, Sm) =
∣
∣
∣
∣
m(m + 1)(m + 2) – 6

3

∣
∣
∣
∣

2

> dβ ,μ(Sm, Sm–1) =
∣
∣
∣
∣
m(m + 1)3

3

∣
∣
∣
∣

2

.

Thus,

dβ ,μ(TS1, TSm)
M(S1, Sm)

=
dβ ,μ(TS1, TSm)

dβ ,μ(S1, Sm)

=
∣
∣
∣
∣
m(m – 1)(m + 1) – 6
m(m + 1)(m + 2) – 6

∣
∣
∣
∣

2

< r.

Case 2: For m > n > 1, we have

dβ ,μ(TSn, TSm) = dβ ,μ(Sn–1, Sm–1)

=
∣
∣
∣
∣
n(n – 1)(n + 1) – m(m – 1)(m + 1)

3

∣
∣
∣
∣

2

=
∣
∣
∣
∣
(n – m)(n2 + nm + m2 – 1)

3

∣
∣
∣
∣

2

.

While

M(Sn, Sm) = max
{

dβ ,μ(Sn, Sm), dβ ,μ(Sn, Sn–1), dβ ,μ(Sm, Sm–1)
}

= dβ ,μ(Sn, Sm).

Since

dβ ,μ(Sn, Sm) =
∣
∣
∣
∣
n(n + 1)(n + 2) – m(m + 1)(m + 2)

3

∣
∣
∣
∣

2
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=
∣
∣
∣
∣
(n – m)[(n2 + nm + m2) + 3(n + m) + 2]

3

∣
∣
∣
∣

2

,

and

dβ ,μ(Sn, Sn–1) =
∣
∣
∣
∣
n(n + 1)3

3

∣
∣
∣
∣

2

, dβ ,μ(Sm, Sm–1) =
∣
∣
∣
∣
m(m + 1)3

3

∣
∣
∣
∣

2

.

Hence

dβ ,μ(TSn, TSm)
M(Sn, Sm)

=
∣
∣
∣
∣

(n – m)(n2 + nm + m2 – 1)
(n – m)[(n2 + nm + m2) + 3(n + m) + 2]

∣
∣
∣
∣

2

=
∣
∣
∣
∣

n2 + nm + m2 – 1
n2 + nm + m2 + 3(n + m) + 2

∣
∣
∣
∣

2

< r, where r ∈ (0, 1).

Thus, we have shown T is CRR-�-double controlled contraction mapping. Next, we show
that conditions (M1) and (M2) of Theorem 3.11 hold. We form a sequence {zn} by taking
z0 = Sn, with n > 2. As T(Sn) = Sn–1, thus z1 = Sn–1, z2 = Sn–2, so zj = Sn–j. Note that

β(Sn+1, Sn) =
Sn+1

Sn
=

(n + 1)(n + 2)(n + 3)
n(n + 1)(n + 2)

=
n + 3

n

and

μ(Sn+1, Sm) =
1

Sm
+ 1 =

3
m(m + 1)(m + 2)

+ 1.

Then,

sup
m≥1

lim
n→∞β(Sn+1, Sn)μ(Sn+1, Sm) = sup

m≥1
lim

n→∞

(
n + 3

n

)(
3

m(m + 1)(m + 2)
+ 1

)

< 4 = 1/p,

take p = 1/4 ∈ (0, 1). Clearly for any x ∈ Z, then limn→∞ β(x, Sn) and limn→∞ μ(Sn, x) exist
and are finite. Therefore, T satisfies the properties of Theorem 3.11, hence T has a unique
fixed point S1.

By taking β = μ in Theorem 3.11 and modifying the conditions (M1) and (M2) accord-
ingly, we obtain the following immediate result for the case of controlled metric type space.

Corollary 3.13 Let (Z, dβ ) be a complete controlled metric type space, and let T : Z → Z
be a CRR- �-double controlled contraction self mapping satisfying the following:

(C1)

sup
m≥1

lim
n→∞β(zn+1, zn+2)β(zn+1, zm) < 1/p,

for some p ∈ (0, 1), and
(C2) For any z ∈ Z, then limn→∞ β(z, zn) and limn→∞ β(zn, z) exist and are finite, where

the sequence {zn} is defined as zn = Tnz0 for some z0 ∈ Z.
Then T has a unique fixed point in Z.
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In case β(z, w) = μ(z, w) = 1 in Theorem 3.11, we get the following corollary.

Corollary 3.14 Let (Z, d) be a complete metric space, let T : Z → Z be a self mapping.
Suppose there exists a continuous function θ ∈ � and an r ∈ (0, 1), such that the following
holds:

θ
(
dβ ,μ(Tz, Tw)

) ≤ [
θ
(
M(z, w)

)]r ,

for all z, w ∈ Z, such that dβ ,μ(Tz, Tw) �= 0, where

M(z, w) = max
{

dβ ,μ(z, w), dβ ,μ(z, Tz), dβ ,μ(w, Tw)
}

.

Then T has a unique fixed point.

Corollary 3.15 Let (Z, dβ ,μ) be a complete double controlled metric type space, and let
T : Z → Z be a self mapping. Suppose there exists γ ∈ (0, 1) such that the following holds:

(S1)

dβ ,μ(Tz, Tw) ≤ γ max
{

dβ ,μ(z, w), dβ ,μ(z, Tz), dβ ,μ(w, Tw)
}

, for all z, w ∈ Z.

(S2)

sup
m≥1

lim
n→∞β(zn+1, zn+2)μ(zn+1, zm) < 1/p,

for some p ∈ (0, 1), and
(S3) For any z ∈ Z, then limn→∞ β(z, zn) and limn→∞ μ(zn, z) exist and are finite, where

the sequence {zn} is defined as zn = Tnz0 for some z0 ∈ Z.
Then T has a unique fixed point in Z.

Proof Let θ : (0,∞) → (1,∞) be defined by θ (t) = e
√

t , then θ ∈ � as in Definition 2.9, and
it is continuous. Property (S1) implies

θ
(
dβ ,μ(Tz, Tw)

)
= e

√
dβ ,μ(Tz,Tw)

≤ [
e
√

max{dβ ,μ(z,w),dβ ,μ(z,Tz),dβ ,μ(w,Tw)}]√
γ

=
[
θ
(
M(z, w)

)]√
γ .

Let r = √
γ ∈ (0, 1) Therefore, the existence and uniqueness of the fixed point follow from

Theorem 3.11. �

4 Application
In the closing, we would like to illustrate the importance of our Theorem 3.3 in finding
a unique real solution for an mth degree polynomial. There are many other methods for
root finding problems, such as numerical methods, but utilizing the fixed point results, it
becomes quite easy, as it is presented below.
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Theorem 4.1 For any natural number m ≥ 3, the equation

ξm –
(
m4 – 1

)
ξm+1 – m4ξ + 1 = 0 (4.1)

has a unique real solution in the interval [–1, 1].

Proof If |ξ | > 1, then equation (4.1) does not have a solution, and therefore |ξ | ≤ 1. Let
Z = [–1, 1], then for any ξ ,ν ∈ Z, let the metric be defined by dβ ,μ(ξ ,ν) = |ξ – ν|.

The two functions β ,μ : Z × Z → [1,∞) are defined by

β(ξ ,ν) = max{ξ ,ν} + 2, and μ(ξ ,ν) = max{ξ ,ν} + 1.

One can easily show that (Z, dβ ,μ) is a complete double controlled metric type space. Let
T : Z → Z be a mapping defined by

Tξ =
ξm + 1

(m4 – 1)ξm + m4 , (4.2)

and let θ : (0,∞) → (1,∞) be defined by θ (t) = e
√

t , then θ ∈ �.
We will show that T is �-double controlled contraction mapping.
As m ≥ 3, we can conclude that m4 ≥ 81. Therefore,

dβ ,μ(Tξ , Tν) =
∣
∣
∣
∣

ξm + 1
(m4 – 1)ξm + m4 –

νm + 1
(m4 – 1)νm + m4

∣
∣
∣
∣

=
∣
∣
∣
∣

ξm – νm

((m4 – 1)ξm + m4)((m4 – 1)νm + m4)

∣
∣
∣
∣

≤ |ξ – ν|
m4

≤ |ξ – ν|
81

=
1

81
dβ ,μ(ξ ,ν)

≤ e–τ dβ ,μ(ξ ,ν), for some, 3 < τ ≤ 5.

This yields

e
√

dβ ,μ(Tξ ,Tν) ≤ e
√

e–τ dβ ,μ(ξ ,ν) =
(
e
√

dβ ,μ(ξ ,ν))
√

e–τ

=
(
e
√

dβ ,μ(ξ ,ν))r ,

where r =
√

e–τ ∈ (0, 1), since 3 < τ ≤ 5. Hence

θ
(
dβ ,μ(Tξ , Tν)

) ≤ [
θ (dβ ,μ(ξ ,ν)

]r , for ξ ,ν ∈ Z, with dβ ,μ(Tξ , Tν) �= 0.

Next, we show conditions (1) and (2) of Theorem 3.3 hold by taking p = 1/4 ∈ (0, 1). Hence
for any z0 ∈ Z, we define the sequence {zn} ∈ Z by

zn = Tnz0 ≤ 2
m4 , for any n. (4.3)
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Using the definitions of β , μ, and (4.3), we obtain

sup
m≥1

lim
n→∞β(zn+1, zn+2)μ(zn+1, zm) ≤ 10

m4 + 2 < 4.

Also, both limn→∞ β(z, zn) and limn→∞ μ(zn, z) exist and are finite. Thus, all the conditions
of Theorem 3.3 are satisfied, and therefore T has a unique fixed point in Z, which is a
unique real solution of equation (4.1). �

5 Conclusion
Our space was a double controlled metric type space; there, we introduced two new types
of generalized contraction mappings. In the first one, inspired by the work [26], we in-
troduced �-double controlled contraction mapping, while in the second one, inspired
by the work [28], we introduced a Ćirić-Reich-Rus-type �-double controlled contraction
mapping. Under these mappings, we established the existence and uniqueness of the fixed
point theorems on complete double controlled metric type spaces and presented some
examples.

Karapinar introduced the notion of an interpolative Kannan-type contraction in [33].
Recently, Aydi et al. initiated the concept of ω-interpolative Ćirić-Reich-Rus-type contrac-
tions and established fixed point results [34, 35]. We propose some suggestions for future
research directions, such as utilizing ω-interpolative Ćirić-Reich-Rus-type contractions
on complete double controlled metric type space and exploring fixed point results.
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