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Abstract
In this paper, we introduce notable Jensen–Mercer inequality for a general class of
convex functions, namely uniformly convex functions. We explore some interesting
properties of such a class of functions along with some examples. As a result, we
establish Hermite–Jensen–Mercer inequalities pertaining uniformly convex functions
by considering the class of fractional integral operators. Moreover, we establish
Mercer–Ostrowski inequalities for conformable integral operator via differentiable
uniformly convex functions. Finally, we apply our inequalities to get estimations for
normal probability distributions (Gaussian distributions).
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1 Introduction
A number of mathematical areas demonstrate the importance of convex functions. This
theory offers a superb framework for initiating and creating numerical instruments to
take on and research challenging mathematical topics. They are magical, especially in op-
timization theory, because of a variety of useful qualities. The theory of mathematical in-
equalities and convex functions have a beautiful relationship. Convexity arises in several
related topics of basic optimization, namely information theory and inequalities theory.
Interested readers can refer to [1–3].

The idea of the derivative operator from integer order n to arbitrary order is added in
fractional calculus. Fractional integrals are effective tools for solving numerous issues from
many scientific and engineering sectors in applied mathematics. Numerous mathemati-
cians have been combining their efforts and developing fresh perspectives on fractional
analysis over the past few years to add a fresh perspective and new elements to the fields
of mathematical analysis and applied mathematics.

The following known fractional integrals are used throughout this paper (see, [4]).

β Jα
μ+F(y2) =

1
�(β)

∫ y2

μ

(
(y2 – μ)α – (γ – μ)α

α

)β–1
F(γ )

(γ – μ)1–α
dγ (1)
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and

β Jα
ν–F(y2) =

1
�(β)

∫ ν

y2

(
(ν – y2)α – (ν – γ )α

α

)β–1
F(γ )

(ν – γ )1–α
dγ . (2)

Note that if we choose α = 1 in (1) and (2) then it reduces to classical Riemann–Liouville
fractional integral operator. For some recent related results, see [5–7].

Integral inequalities have an important role in the expansion of all branches of math-
ematics. One of the most powerful of these integral inequalities is the Jensen–Mercer
inequality, obtained for convex functions as follows:

Theorem 1.1 [8] Let F : [μ,ν] →R be a convex mapping. Then the inequality

F

(
μ + ν –

n∑
j=1

pj yj

)
≤ F(μ) + F(ν) –

n∑
j=1

pjF(yj )

holds for all yj ∈ [μ,ν] and pj ∈ [0, 1] with
∑n

j=1 pj = 1.

In recent years, this Mercer variant of Jensen’s inequality has been of supreme inter-
est to many researchers. Many important extensions, refinements, improvements, and
generalizations of Jensen–Mercer inequality were revealed in [9–12] along with some re-
sults in information theory [13]. It is not easy to formulate fractional variants of integral
Jensen’s inequality as there is still no breakthrough in achieving it. However, the variant of
Hermite–Jensen–Mercer inequality introduced in [9] was recently presented by Sarikaya
et al. in [14] for Riemann–Liouville fractional integral operators. However, their weighted
fractional extensions and improvements were given by Íşcan in [15]. Caputo fractional
derivatives were given in [16, 17]. The conformable fractional integral operator was given
in [18]. However, for ψ-Hilfer–Operator (with respect to monotone function) was studied
in [19] and for Atangana–Baleanu fractional operator having non-singular kernel in [20].

We mentioned some Hermite–Jensen–Mercer inequalities and related results for con-
formable fractional integral operators of our interest as below:

Theorem 1.2 [18] Let α,β > 0 and F : [μ,ν] →R be a convex mapping. Then

F

(
μ + ν –

y1 + y2

2

)
≤ 2αβ–1αβ�(β + 1)

(y2 – y1)αβ
× JF(α,β , y1, y2)

≤ F(μ) + F(ν) –
(
F(y1) + F(y2)

2

)

for all y1, y2 ∈ [μ,ν], where

JF(α,β , y1, y2) := β Jα

(μ+ν– y1+y2
2 )+F(μ + ν – y1) + β Jα

(μ+ν– y1+y2
2 )–F(μ + ν – y2).

Lemma 1.3 [18, Lemma 1] Let α,β ∈ R, y1, y2 ∈ [μ,ν] and F : [μ,ν] −→ R be a differen-
tiable mapping such that F′ ∈ L[μ,ν]. Then

2αβ–1αβ�(β + 1)
(y2 – y1)αβ

JF(α,β , y1, y2) – F

(
μ + ν –

y1 + y2

2

)
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=
y2 – y1

4
αβ

∫ 1

0

(
1 – (1 – γ )α

α

)β

×
[
F

′
(

μ + ν –
(

2 – γ

2
y1 +

γ

2
y2

))
– F

′
(

μ + ν –
(

γ

2
y1 +

2 – γ

2
y2

))]
dγ .

The organization of this article is in such a way that we first study some examples and
important properties of uniformly convex functions. Then we introduce the variant of
Jensen–Mercer inequality for them. As a result, we introduce several new generalized frac-
tional variants of Hermite–Jensen–Mercer inequalities. Particular cases recapture several
known results. Finally, we also first time introduced fractional Ostrowski–Mercer inequal-
ity.

2 Some results for uniformly convex functions
In this section, we start with the following important class of convex function:

Definition 2.1 ([21]) Let F : [μ,ν] −→ R be a function. Then F is uniformly convex with
modulus ϕ : R+ −→ [0, +∞) if ϕ is increasing, vanishes only at 0, and

F
(
γ y1 + (1 – γ )y2

)
+ γ (1 – γ )ϕ

(|y1 – y2|
) ≤ γF(y1) + (1 – γ )F(y2)

for every γ ∈ [0, 1] and y1, y2 ∈ [μ,ν].

The uniformly convex function is stronger than a convex function. Almost all convex
functions on the finite interval [μ,ν] can be considered as a uniformly convex functions.
The algebraic properties of uniformly convex functions are given in the following refer-
ences; see Bauschke [21, Page 144] and Zalinescu [22, Sect. 4].

We point out a few examples below:
(i) Let F(y1) = y1

2. Since

(
γμ + (1 – γ )ν

)2 + γ (1 – γ )(ν – μ)2 = γμ2 + (1 – γ )ν2 ≤ γF(μ) + (1 – γ )F(ν)

for all μ,ν ∈R and all γ ∈ [0, 1], y1
2 : R→ R is uniformly convex with modulus

ϕ(y1) = y1
2.

(ii) ey1 : (0,∞) →R is uniformly convex with modulus ϕ(y1) = 1
2 y1

2;
(iii) 1/y1 : (μ,ν) →R is uniformly convex with modulus ϕ(y1) = 1

ν3 y1
2,μ > 0;

(iv) y1
4 : (μ,ν) →R is uniformly convex with modulus ϕ(y1) = 6μ2y1

2,μ > 0.

Lemma 2.2 Let F : I → R be a twice-differentiable function and

m := inf
{
F

′′(y1) : y1 ∈ I
}

> 0.

Then F is uniformly convex with modulus ϕ(r) = m
2 r2.

Proof It is obvious that ϕ is increasing and vanishes only at 0. We consider two fixed points
y1, y2 ∈ I and define

ϕ(α) := αF(y1) + (1 – α)F(y2) – F
(
αy1 + (1 – α)y2

)
–

mα(1 – α)
2

(y1 – y2)2
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for all α ∈ [0, 1]. Now, we show that ϕ(α) ≥ 0, for all α ∈ [0, 1]. Since ϕ(0) = ϕ(1) = 0 and

d2ϕ

dα2 = m(y1 – y2)2 – (y2 – y1)2
F

′′(αy1 + (1 – α)y2
) ≤ 0,

F(α) ≥ 0 for every y1, y2 ∈ [μ,ν] and α ∈ [0, 1]. Hence,

αF(y1) + (1 – α)F(y2) ≥ F
(
αy1 + (1 – α)y2

)
+

mα(1 – α)
2

(y1 – y2)2.

Therefore, the proof is complete. �

Definition 2.3 [23] Let F : [μ,ν] −→ R be a function. Then F is strongly convex with
modulus c > 0 if

F
(
γ y1 + (1 – γ )y2

)
+ cγ (1 – γ )(y1 – y2)2 ≤ γF(y1) + (1 – γ )F(y2)

for every γ ∈ [0, 1] and y1, y2 ∈ [μ,ν].

Lemma 2.4 Let F : I −→ R be a strongly convex function with modulus c > 0 on I , {yj }n
j=1 ⊆

[μ,ν] be a sequence and let π be a permutation on {1, . . . , n} such that yπ (1) ≤ yπ (2) ≤ · · · ≤
yπ (n). Then the inequality

F

( n∑
j=1

pj yj

)
≤

n∑
j=1

pjF(yj ) – c
n–1∑
j=1

pπ (j )pπ (j+1)(yπ (j+1) – yπ (j ))2 (3)

holds for every convex combination
∑n

j=0 pj yj of points yj ∈ I .

Proof The result follows from Theorem 2.4 of [24] with ϕ(r) = cr2. �

For the rest of the paper, we will use the following notations for classes of functions.

F ∈ U
(
ϕ; [μ,ν]

)
= F : [μ,ν] ⊂ (0,∞) →R

be an uniformly convex mapping with modulus ϕ

and

F ∈ S
(
c; [μ,ν]

)
= F : [μ,ν] ⊂ (0,∞) →R

be a strongly convex function with modulus c.

3 Jensen–Mercer inequalities for uniformly convex functions
Theorem 3.1 Let F ∈ U(ϕ; [μ,ν]) and μ < ς < ν . Then following inequality is valid

F(μ + ν – ς ) + F(ς ) +
2(ν – ς )(ς – μ)

(ν – μ)2 ϕ(ν – μ) ≤ F(μ) + F(ν). (4)

Proof Let ς ∈ [μ,ν] be arbitrary and ς = γμ + (1 – γ )ν . Then the following inequality for
uniformly convex function holds

F(μ + ν – ς ) = F
(
(1 – γ )μ + γ ν

) ≤ (1 – γ )F(μ) + γF(ν) – γ (1 – γ )ϕ(ν – μ)
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= F(μ) + F(ν) –
[
γF(μ) + (1 – γ )F(ν)

]
– γ (1 – γ )ϕ(ν – μ)

≤ F(μ) + F(ν) – F
(
γμ + (1 – γ )ν

)
– 2γ (1 – γ )ϕ(ν – μ)

= F(μ) + F(ν) – F(ς ) –
2(ν – ς )(ς – μ)

(ν – μ)2 ϕ(ν – μ).

So, the proof is complete. �

Corollary 3.2 Let F ∈ S(c; [μ,ν]) and μ < ς < ν . Then following inequality holds

F(μ + ν – ς ) + F(ς ) + 2c(ν – ς )(ς – μ) ≤ F(μ) + F(ν). (5)

Proof The result follows from Theorem 3.1 with ϕ(r) = cr2. �

Theorem 3.3 Let F ∈ U(ϕ; [μ,ν]). Then Jensen–Mercer inequality for uniformly convex
function holds

F
(
μ + ν –

(
γ y1 + (1 – γ )y2

))

≤ F(μ) + F(ν) – γF(y1) – (1 – γ )F(y2)

– γ (1 – γ )ϕ
(|y1 – y2|

)

–
2ϕ(ν – μ)
(ν – μ)2

(
γ (ν – y1)(y1 – μ) + (1 – γ )(ν – y2)(y2 – μ)

)
. (6)

Proof Let y1, y2 ∈ [μ,ν].

F
(
μ + ν –

(
γ y1 + (1 – γ )y2

))

= F
(
γ (μ + ν – y1) + (1 – γ )(μ + ν – y2)

)

≤ γF(μ + ν – y1) + (1 – γ )F(μ + ν – y2) – γ (1 – γ )ϕ
(|y1 – y2|

)
. (7)

With the use of Theorem 3.1, we have

γF(μ + ν – y1) + (1 – γ )F(μ + ν – y2)

≤ γ

(
F(μ) + F(ν) – F(y1) –

2(ν – y1)(y1 – μ)
(ν – μ)2 ϕ(ν – μ)

)

+ (1 – γ )
(
F(μ) + F(ν) – F(y2) –

2(ν – y2)(y2 – μ)
(ν – μ)2 ϕ(ν – μ)

)

= F(μ) + F(ν) – γF(y1) – (1 – γ )F(y2)

–
2ϕ(ν – μ)
(ν – μ)2

(
γ (ν – y1)(y1 – μ) + (1 – γ )(ν – y2)(y2 – μ)

)
. (8)

A combination of (7) and (8), we have (6). �

Corollary 3.4 Let F ∈ S(c; [μ,ν]). Then, Jensen–Mercer inequality for strongly convex
function holds

F
(
μ + ν –

(
γ y1 + (1 – γ )y2

))
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≤ F(μ) + F(ν) – γF(y1) – (1 – γ )F(y2)

– cγ (1 – γ )(y1 – y2)2 – 2c
(
γ (ν – y1)(y1 – μ) + (1 – γ )(ν – y2)(y2 – μ)

)
(9)

for all y1, y2 ∈ [μ,ν].

Proof The result follows from Theorem 3.3 with ϕ(r) = cr2. �

Corollary 3.5 Let F ∈ U(ϕ; [μ,ν]). Then we have

1
ν – μ

∫ ν

μ

F(x) dx ≤ F(μ) + F(ν)
2

–
1
6
ϕ(ν – μ).

Proof Replacing y1 by μ and y2 by ν in Theorem 3.3, we get

F
(
μ + ν –

(
γμ + (1 – γ )ν

))

≤ F(μ) + F(ν) – γF(μ) – (1 – γ )F(ν) – γ (1 – γ )ϕ(ν – μ)

for every γ ∈ [μ,ν]. Now, by integrating the above inequality w.r.t. γ over [0, 1], we obtain

∫ 1

0
F
(
μ + ν –

(
γμ + (1 – γ )ν

))
dγ ≤ F(μ) + F(ν) –

F(μ) + F(ν)
2

–
1
6
ϕ(ν – μ),

which completes the proof. �

4 New fractional Hermite–Jensen–Mercer type inequalities
Theorem 4.1 Let F ∈ U(ϕ; [μ,ν]). Then midpoint Hermite–Jensen–Mercer type inequal-
ity for uniformly convex function

F

(
μ + ν –

y1 + y2

2

)
+ D1ϕ(α,β , y1, y2)

≤ 2αβ–1αβ�(β + 1)
(y2 – y1)αβ

× JF(α,β , y1, y2)

≤ F(μ) + F(ν) –
(
F(y1) + F(y2)

2

)
– K1ϕ(α,β , y1, y2)

holds for all y1, y2 ∈ [μ,ν] where B is beta-function and,

D1ϕ(α,β , y1, y2) :=
1

8β

∫ 1

0
uβ–1ϕ

(
(1 – u)

1
α |y1 – y2|

)
du

and

K1ϕ(α,β , y1, y2) :=
2α–βϕ(ν – μ)

β(ν – μ)2

(
(ν – y1)(y1 – μ) + (ν – y2)(y2 – μ)

)

+
(

1
2βαβ

–
1

2αβ
B
(

β ,
2
α

+ 1
))

ϕ
(|y1 – y2|

)
.
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Proof Since F is uniformly convex with modulus ϕ,

F

(
μ + ν –

x1 + x2

2

)
= F

(
2μ + 2ν – x1 – x2

2

)

≤ 1
2
F(μ + ν – x1) +

1
2
F(μ + ν – x2) –

1
4
ϕ
(|x2 – x1|

)

for all x1, x2 ∈ [μ,ν].
Now, by using the change of variables x1 = γ

2 y1 + (1 – γ

2 )y2 and x2 = γ

2 y2 + (1 – γ

2 )y1 for
y1, y2 ∈ [μ,ν] and γ ∈ [0, 1], we obtain

2F
(

μ + ν –
y1 + y2

2

)

≤ F

(
μ + ν –

(
γ

2
y1 +

(
1 –

γ

2

)
y2

))

+ F

(
μ + ν –

((
1 –

γ

2

)
y1 +

γ

2
y2

))
–

1
4
ϕ
(
(1 – γ )|y1 – y2|

)
(10)

Multiplying (10) by ( 1–(1–γ )α
α

)β–1(1 – γ )α–1 := �α,β (γ ), integrating w.r.t. γ over [0, 1], and
then combining the resulting inequality gives

2F
(

μ + ν –
y1 + y2

2

)(
1 – (1 – γ )α

α

)β–1

(1 – γ )α–1

≤
(

1 – (1 – γ )α

α

)β–1

(1 – γ )α–1 ×
[
F

(
μ + ν –

(
γ

2
y1 +

(
1 –

γ

2

)
y2

))

+ F

(
μ + ν –

((
1 –

γ

2

)
y1 +

γ

2
y2

))
–

1
4
ϕ
(
(1 – γ )|y1 – y2|

)]
. (11)

On the other hand, we have

∫ 1

0
�α,β (γ )F

(
μ + ν –

(
γ

2
y1 +

(
1 –

γ

2

)
y2

))
dγ

=
(

2
y2 – y1

)αβ

�(β)β Jα

(μ+ν– y1+y2
2 )–F(μ + ν – y2), (12)

∫ 1

0
�α,β (γ )F

(
μ + ν –

((
1 –

γ

2

)
y1 +

γ

2
y2

))
dγ

=
(

2
y2 – y1

)αβ

�(β)β Jα

(μ+ν– y1+y2
2 )+F(μ + ν – y1), (13)

∫ 1

0
�α,β (γ ) dγ =

1
β

α–β (14)

and
∫ 1

0
�α,β (γ )ϕ

(
(1 – γ )|y1 – y2|

)
dγ = α–β

∫ 1

0
uβ–1ϕ

(
(1 – u)

1
α |y1 – y2|

)
du, (15)

where u = 1 – (1 – γ )α . The first inequality follows from (11), (12), (13) and (15).
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To prove the second inequality, by (6),

F

(
μ + ν –

(
γ

2
y1 +

(
1 –

γ

2

)
y2

))

≤ F(μ) + F(ν) –
γ

2
F(y1) –

(
1 –

γ

2

)
F(y2)

–
γ

2

(
1 –

γ

2

)
ϕ
(|y1 – y2|

)

–
2ϕ(ν – μ)
(ν – μ)2

(
γ

2
(ν – y1)(y1 – μ) +

(
1 –

γ

2

)
(ν – y2)(y2 – μ)

)
. (16)

and

F

(
μ + ν –

((
1 –

γ

2

)
y1 +

γ

2
y2

))

≤ F(μ) + F(ν) –
(

1 –
γ

2

)
F(y1) –

γ

2
F(y2)

–
γ

2

(
1 –

γ

2

)
ϕ
(|y1 – y2|

)

–
2ϕ(ν – μ)
(ν – μ)2

((
1 –

γ

2

)
(ν – y1)(y1 – μ) +

γ

2
(ν – y2)(y2 – μ)

)
. (17)

Upon adding (16) and (17), we obtain

F

(
μ + ν –

(
γ

2
y1 +

(
1 –

γ

2

)
y2

))
+ F

(
μ + ν –

((
1 –

γ

2

)
y1 +

γ

2
y2

))

≤ 2
[
F(μ) + F(ν)

]
–

[
F(y1) + F(y2)

]
– γ

(
1 –

γ

2

)
ϕ
(|y1 – y2|

)

–
2ϕ(ν – μ)
(ν – μ)2

(
(ν – y1)(y1 – μ) + (ν – y2)(y2 – μ)

)
. (18)

Multiplying (18) by �α,β (γ ) and integrating the obtained inequality w.r.t. γ over [0, 1], we
get

∫ 1

0
�α,β (γ )

{
F

(
μ + ν –

(
γ

2
y1 +

(
1 –

γ

2

)
y2

))

+ F

(
μ + ν –

((
1 –

γ

2

)
y1 +

γ

2
y2

))}
dγ ≤

{
2
[
F(μ) + F(ν)

]
–

[
F(y1) + F(y2)

]

–
2ϕ(ν – μ)
(ν – μ)2

(
(ν – y1)(y1 – μ) + (ν – y2)(y2 – μ)

)} ×
∫ 1

0
�α,β (γ ) dγ

– ϕ
(|y1 – y2|

)∫ 1

0
γ

(
1 –

γ

2

)(
1 – (1 – γ )α

α

)β–1

(1 – γ )α–1 dγ . (19)

Furthermore,

∫ 1

0
γ

(
1 –

γ

2

)(
1 – (1 – γ )α

α

)β–1

(1 – γ )α–1 dγ =
1

2αβ

∫ 1

0

(
1 – t

2
α
)
(1 – t)β–1 dt
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=
1

2βαβ
–

1
2αβ

B
(

β ,
2
α

+ 1
)

, (20)

where t = (1 – γ )α . The second inequality follows from (12), (13), (15), (19) and (20). �

Corollary 4.2 If we set α = 1 in Theorem 4.1, we get

F

(
μ + ν –

y1 + y2

2

)
+

1
8β

∫ 1

0
uβ–1ϕ

(
(1 – u)|y1 – y2|

)
du

≤ 2β–1�(β + 1)
(y2 – y1)β

{
Jβ

(μ+ν– y1+y2
2 )+F(μ + ν – y1) + Jβ

(μ+ν– y1+y2
2 )–F(μ + ν – y2)

}

≤ F(μ) + F(ν) –
(
F(y1) + F(y2)

2

)
– Dϕ(1,β , y1, y2).

Corollary 4.3 If we set μ = y1, ν = y2 and α = 1 in Theorem 4.1, we get

F

(
y1 + y2

2

)
+

1
8β

∫ 1

0
uβ–1ϕ

(
(1 – u)|y1 – y2|

)
du

≤ 2β–1�(β + 1)
(y2 – y1)β

{
Jβ

( y1+y2
2 )+F(y2) + Jβ

( y1+y2
2 )–F(y1)

}

≤ F(y1) + F(y2)
2

–
(

1
2β

–
1
2

B(β , 3)
)

ϕ
(|y1 – y2|

)

Corollary 4.4 If we set μ = y1, ν = y2 and α = β = 1 in Theorem 4.1, we get

F

(
y1 + y2

2

)
+

1
8

∫ 1

0
ϕ
(
(1 – u)|y1 – y2|

)
du

≤ 1
(y2 – y1)

∫ y

x
F(u) du

≤ F(y1) + F(y2)
2

–
1
3
ϕ
(|y1 – y2|

)
.

Remark 4.5 If we set ϕ = 0 in Theorem 4.1, we get Theorem 2 of [18].

Theorem 4.6 Let F ∈ U(ϕ; [μ,ν]). Then, conformable Hermite–Jensen–Mercer type in-
equality for uniformly convex function

F

(
μ + ν –

y1 + y2

2

)
+ D2ϕ(α,β , y1, y2)

≤ F(μ) + F(ν) –
αβ�(β + 1)
2(y2 – y1)αβ

{
β Jα

y1+F(y2) + β Jα
y2–F(y1)

}

≤ F(μ) + F(ν) – F

(
y1 + y2

2

)
– K2ϕ(α,β , y1, y2).

holds for all y1, y2 ∈ [μ,ν], where

K2ϕ(α,β , y1, y2) := βαβ

∫ 1

0
�α,β (γ )ϕ

(|2γ – 1|.|y1 – y2|
)

dγ
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and

D2ϕ(α,β , y1, y2)

:=
2ϕ(ν – μ)
β(ν – μ)2 α–β

(
(μ + ν)(y1 + y2) – 2μν

)

+
1
8
αβ

∫ 1

0

∫ 1

0
�α,β (γ )uβ–1ϕ

(
(1 – u)

1
α |2γ – 1||y1 – y2|

)
�α,β (γ ) du dγ

+
2(y1

2 + y2
2)ϕ(ν – μ)

αββ(ν – μ)2

(
4
α

B
(

β + 1,
2
α

)
–

6
α

B
(

β + 1,
1
α

)
+ 1

)

+
(

1
2

–
β

2
B
(

β ,
2
α

+ 1
))∫ 1

0
�α,β (γ )ϕ

(|2γ – 1||y1 – y2|
)

dγ .

Proof It follows from Theorem 4.1 that

F

(
μ + ν –

x1 + x2

2

)
+

1
8β

∫ 1

0
uβ–1ϕ

(
(1 – u)

1
α |x1 – x2|

)
du

≤ F(μ) + F(ν) –
(
F(x1) + F(x2)

2

)

–
2α–βϕ(ν – μ)

β(ν – μ)2

(
(ν – x1)(x1 – μ) + (ν – x2)(x2 – μ)

)

–
(

1
2βαβ

–
1

2αβ
B
(

β ,
2
α

+ 1
))

ϕ
(|x2 – x1|

)
. (21)

for all x1, x2 ∈ [μ,ν].
By changing the variables x1 = γ y1 + (1 – γ )y2 and x2 = (1 – γ )y1 + γ y2 for y1, y2 ∈ [μ,ν]

and γ ∈ [0, 1] in (21), multiplying by �α,β (γ ) and then by using integration w.r.t. γ over
[0, 1] leads to the conclusion that

F

(
μ + ν –

y1 + y2

2

)∫ 1

0
�α,β (γ ) dγ

+
1

8β

∫ 1

0

∫ 1

0
�α,β (γ )uβ–1ϕ

(
(1 – u)

1
α |2γ – 1||y1 – y2|

)
du dγ

≤ [
F(μ) + F(ν)

] ∫ 1

0
�α,β (γ ) dγ

–
∫ 1

0
�α,β (γ )

(
F(γ y1 + (1 – γ )y2) + F((1 – γ )y1 + γ y2)

2

)
dγ

–
2α–βϕ(ν – μ)

β(ν – μ)2

(
(μ + ν)(y1 + y2) – 2μν

)∫ 1

0
�α,β (γ )

–
2α–βϕ(ν – μ)

β(ν – μ)2

∫ 1

0
�α,β (γ )

((
y1

2 + y2
2)(2γ 2 – 2γ + 1

)
– 4γ (1 – γ )y1y2

)
dγ

–
(

1
2βαβ

–
1

2αβ
B
(

β ,
2
α

+ 1
))∫ 1

0
�α,β (γ )ϕ

(|2γ – 1||y1 – y2|
)

dγ .
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Hence,

F

(
μ + ν –

y1 + y2

2

)
1
β

α–β

+
1

8β

∫ 1

0

∫ 1

0
�α,β (γ )uβ–1ϕ

(
(1 – u)

1
α |2γ – 1||y1 – y2|

)
du dγ

≤ [
F(μ) + F(ν)

] 1
β

α–β

–
∫ 1

0
�α,β (γ )

(
F(γ y1 + (1 – γ )y2) + F((1 – γ )y1 + γ y2)

2

)
dγ

–
2α–βϕ(ν – μ)

β(ν – μ)2

(
(μ + ν)(y1 + y2) – 2μν

) 1
β

α–β

–
2α–βϕ(ν – μ)

β(ν – μ)2

∫ 1

0
�α,β (γ )

((
y1

2 + y2
2)(2γ 2 – 2γ + 1

)
– 4γ (1 – γ )y1y2

)
dγ

–
(

1
2βαβ

–
1

2αβ
B
(

β ,
2
α

+ 1
))∫ 1

0
�α,β (γ )ϕ

(|2γ – 1||y1 – y2|
)

dγ ,

and thus,

F

(
μ + ν –

y1 + y2

2

)
+

1
8
αβ

∫ 1

0

∫ 1

0
�α,β (γ )uβ–1ϕ

(
(1 – u)

1
α |2γ – 1||y1 – y2|

)
du dγ

≤ F(μ) + F(ν) – βαβ

∫ 1

0
�α,β (γ )

(
F(γ y1 + (1 – γ )y2) + F((1 – γ )y1 + γ y2)

2

)
dγ

–
2ϕ(ν – μ)
β(ν – μ)2 α–β

(
(μ + ν)(y1 + y2) – 2μν

)

–
2ϕ(ν – μ)
(ν – μ)2

∫ 1

0
�α,β (γ )

((
y1

2 + y2
2)(2γ 2 – 2γ + 1

)
– 4γ (1 – γ )y1y2

)
dγ

–
(

1
2

–
β

2
B
(

β ,
2
α

+ 1
))∫ 1

0
�α,β (γ )ϕ

(|2γ – 1||y1 – y2|
)

dγ .

That is,

F

(
μ + ν –

y1 + y2

2

)

+
1
8
αβ

∫ 1

0

∫ 1

0
�α,β (γ )uβ–1ϕ

(
(1 – u)

1
α |2γ – 1||y1 – y2|

)
du dγ

≤ F(μ) + F(ν) –
αβ�(β + 1)
2(y2 – y1)αβ

{
β Jα

y1+F(y2) + β Jα
y2–F(y1)

}

–
2ϕ(ν – μ)
β(ν – μ)2 α–β

(
(μ + ν)(y1 + y2) – 2μν

)

–
2ϕ(ν – μ)
(ν – μ)2

∫ 1

0
�α,β (γ )

((
y1

2 + y2
2)(2γ 2 – 2γ + 1

)
– 4γ (1 – γ )y1y2

)
dγ

–
(

1
2

–
β

2
B
(

β ,
2
α

+ 1
))∫ 1

0
�α,β (γ )ϕ

(|2γ – 1||y1 – y2|
)

dγ . (22)
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Also, we have

∫ 1

0

(
1 – (1 – γ )α

)β–1(1 – γ )α–1 dγ =
1

αβ
,

∫ 1

0
γ
(
1 – (1 – γ )α

)β–1(1 – γ )α–1 dγ = –
1

α2β
B
(
β + 1,α–1),

∫ 1

0
γ 2(1 – (1 – γ )α

)β–1(1 – γ )α–1 dγ = –
2

α2β

[
B
(
β + 1,α–1) – B

(
β + 1, 2α–1)],

∫ 1

0
�α,β (γ )

((
y1

2 + y2
2)(2γ 2 – 2γ + 1

)
– 4γ (1 – γ )y1y2

)
dγ

=
y1

2 + y2
2

αββ

(
–

4
α

[
B
(

β + 1,
1
α

)
– B

(
β + 1,

2
α

)]
–

2
α

B
(

β + 1,
1
α

)
+ 1

)

=
y1

2 + y2
2

αββ

(
4
α

B
(

β + 1,
2
α

)
–

6
α

B
(

β + 1,
1
α

)
+ 1

)
,

which completes the proof of the first inequality.
To prove the second inequality, from the uniformly convex of F, for γ ∈ [0, 1] we obtain

F

(
y1 + y2

2

)
= F

(
γ y1 + (1 – γ )y1 + γ y2 + (1 – γ )y2

2

)

≤ F(γ y1 + (1 – γ )y2) + F((1 – γ )y1 + γ y2)
2

–
1
4
ϕ
(|2γ – 1||y1 – y2|

)
. (23)

Multiplying (23) by �α,β (γ ) and then by integrating the resulting inequality w.r.t. γ over
[0, 1] gives

F

(
y1 + y2

2

)∫ 1

0
�α,β (γ ) dγ

≤
∫ 1

0
�α,β (γ )

{
F(γ y1 + (1 – γ )y2) + F((1 – γ )y1 + γ y2)

2

}
dγ

–
1
4

∫ 1

0
�α,β (γ )ϕ

(|2γ – 1|.|y1 – y2|
)

dγ ,

that is,

F

(
y1 + y2

2

)
≤ αβ�(β + 1)

2(y2 – y1)αβ

{
β Jα

y1+F(y2) + β Jα
y2–F(y1)

}

– βαβ

∫ 1

0
�α,β (γ )ϕ

(|2γ – 1|.|y1 – y2|
)

dγ . (24)

Therefore,

F(μ) + F(ν) – F

(
y1 + y2

2

)

≥ F(μ) + F(ν) –
αβ�(β + 1)
2(y2 – y1)αβ

{
β Jα

y1+F(y2) + β Jα
y2–F(y1)

}
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+ βαβ

∫ 1

0
�α,β (γ )ϕ

(|2γ – 1|.|y1 – y2|
)

dγ , (25)

which completes the proof of the second inequality. �

Remark 4.7 If we set ϕ(y1) = 0 in Theorem 4.6, we get inequality (2.7) in Theorem 3 of
[18].

Theorem 4.8 Let F ∈ U(ϕ; [μ,ν]). Then, Hemite–Jensen–Mercer type inequality for uni-
formly convex function

F

(
μ + ν –

y1 + y2

2

)
+

β

4

∫ 1

0
uβ–1ϕ

((
1 + (1 – u)

1
α
)|y1 – y2|

)
du

≤ αβ�(β + 1)
2(y2 – y1)αβ

{
β Jα

(μ+ν–y1)–F(μ + ν – y2) + β Jα
(μ+ν–y2)+F(μ + ν – y1)

}

≤ F(μ) + F(ν) –
F(y1) + F(y2)

2
– βϕ

(|y1 – y2|
)[

B
(

1
α

+ 1,β
)

– B
(

2
α

+ 1,β
)]

–
[
(ν – y1)(y1 – μ) + (ν – y2)(y2 – μ)

]ϕ(ν – μ)
(ν – μ)2 , (26)

holds for all y1, y2 ∈ [μ,ν].

Proof To prove the inequality, we use the uniformly convex of F to get

F

(
μ + ν –

x1 + x2

2

)
= F

(
2μ + 2ν – x1 – x2

2

)

≤ 1
2
F(μ + ν – x1) +

1
2
F(μ + ν – x2) –

1
4
ϕ
(|x2 – x1|

)
(27)

for all x1, x2 ∈ [μ,ν].
Let x1 = γ y1 + (1 – γ )y2 and x2 = γ y2 + (1 – γ )y1. Then (27) leads to

F

(
μ + ν –

y1 + y2

2

)
≤ 1

2
F
(
μ + ν –

(
γ y1 + (1 – γ )y2

))

+
1
2
F
(
μ + ν –

(
(1 – γ )y1 + γ y2

))
–

1
4
ϕ
(|2γ – 1|.|y1 – y2|

)
. (28)

Multiplying both sides of (28) by �α,β (γ ) and integrating the obtained inequality w.r.t.
γ on [0, 1], we have

F

(
μ + ν –

y1 + y2

2

)∫ 1

0
�α,β (γ ) dγ

≤ 1
2

∫ 1

0
�α,β (γ )

{
F
(
μ + ν –

(
γ y1 + (1 – γ )y2

))
+ F

(
μ + ν –

(
(1 – γ )y1 + γ y2

))}
dγ

–
1
4

∫ 1

0
ϕ
(|2γ – 1|.|y1 – y2|

)
�α,β (γ ) dγ . (29)
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Also,

∫ 1

0
�α,β (γ )F

(
μ + ν –

(
γ y1 + (1 – γ )y2

))
dγ

=
1

β(y2 – y1)αβ
�(β + 1)β Jα

(μ+ν–y1)–F(μ + ν – y2), (30)

∫ 1

0
�α,β (γ )F

(
μ + ν –

(
(1 – γ )y1 + γ y2

))
dγ

=
1

β(y2 – y1)αβ
�(β + 1)β Jα

(μ+ν–y2)+F(μ + ν – y1), (31)

∫ 1

0
�α,β (γ ) dγ =

1
β

α–β (32)

and

∫ 1

0
�α,β (γ )ϕ

((|1 – 2γ |)|y1 – y2|
)

dγ

= α–β

∫ 1

0
uβ–1ϕ

((
1 + (1 – u)

1
α
)|y1 – y2|

)
du, (33)

where u = 1 – (1 – γ )α . By the use of (29), (30), (31) and (33), we get

F

(
μ + ν –

y1 + y2

2

)
+

β

4

∫ 1

0
uβ–1ϕ

((
1 + (1 – u)

1
α
)|y1 – y2|

)
du

≤ αβ�(β + 1)
2(y2 – y1)αβ

{
β Jα

(μ+ν–y1)–F(μ + ν – y2) + β Jα
(μ+ν–y2)+F(μ + ν – y1)

}
. (34)

It follows from the uniformly convexity of F that

F
(
γ (μ + ν – y1) + (1 – γ )(μ + ν – y2)

)

≤ γF(μ + ν – y1) + (1 – γ )F(μ + ν – y2) – γ (1 – γ )ϕ
(|y1 – y2|

)
.

and

F
(
(1 – γ )(μ + ν – y1) + γ (μ + ν – y2)

)

≤ (1 – γ )F(μ + ν – y1) + γF(μ + ν – y2) – γ (1 – γ )ϕ
(|y1 – y2|

)
.

Adding the above two inequalities and using Theorem 3.1 gives

F
(
γ (μ + ν – y1) + (1 – γ )(μ + ν – y2)

)

+ F
(
(1 – γ )(μ + ν – y1) + γ (μ + ν – y2)

)

≤ F(μ + ν – y1) + F(μ + ν – y2) – 2γ (1 – γ )ϕ
(|y1 – y2|

)

≤ 2
(
F(μ) + F(ν)

)
–

(
F(y1) + F(y2)

)
– 2γ (1 – γ )ϕ

(|y1 – y2|
)

–
2(ν – y1)(y1 – μ)

(ν – μ)2 ϕ(ν – μ) –
2(ν – y2)(y2 – μ)

(ν – μ)2 ϕ(ν – μ). (35)
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Multiplying (35) by �α,β (γ ) and then by using integration w.r.t. γ over [0, 1], we have

{
F
(
γ (μ + ν – y1) + (1 – γ )(μ + ν – y2)

)

+ F
(
(1 – γ )(μ + ν – y1) + γ (μ + ν – y2)

)}∫ 1

0
�α,β (γ ) dγ

≤ (
2
(
F(μ) + F(ν)

)
–

(
F(y1) + F(y2)

))∫ 1

0
�α,β (γ ) dγ

– 2ϕ
(|y1 – y2|

)∫ 1

0
�α,β (γ ) dγ

–
2ϕ(ν – μ)
(ν – μ)2

[
(ν – y1)(y1 – μ) + (ν – y2)(y2 – μ)

] ∫ 1

0
�α,β (γ ) dγ .

Since

∫ 1

0
γ�α,β (γ ) dγ = α–β+1

∫ 1

0
γ
(
1 – (1 – γ )α

)β–1(1 – γ )α dγ

= α–β+1
∫ 1

0

(
1 – (1 – γ )α

)β–1(1 – γ )α dγ

– α–β+1
∫ 1

0

(
1 – (1 – γ )α

)β–1(1 – γ )α+1 dγ

= α–β

∫ 1

0
t

1
α (1 – t)β–1 dγ – α–β

∫ 1

0
t

2
α (1 – t)β–1 dγ

= α–β

[
B
(

1
α

+ 1,β
)

– B
(

2
α

+ 1,β
)]

,

where t = (1 – γ )α and B is beta-function,

αβ�(β + 1)
2(y2 – y1)αβ

{
β Jα

(μ+ν–y1)–F(μ + ν – y2) + β Jα
(μ+ν–y2)+F(μ + ν – y1)

}

≤ F(μ) + F(ν) –
F(y1) + F(y2)

2
– βϕ

(|y1 – y2|
)[

B
(

1
α

+ 1,β
)

– B
(

2
α

+ 1,β
)]

–
[
(ν – y1)(y1 – μ) + (ν – y2)(y2 – μ)

]ϕ(ν – μ)
(ν – μ)2 . (36)

Combining (34) and (36) leads to (26). �

Remark 4.9 If we set ϕ(y1) = 0 in Theorem 4.8, we get inequality (2.8) in Theorem 3 of
[18].

5 New inequalities via differentiable uniformly convex function
Throughout this section, I is defined by

I :=
∣∣∣∣2αβ–1αβ�(β + 1)

(y2 – y1)αβ
× JF(α,β , y1, y2) – F

(
μ + ν –

y1 + y2

2

)∣∣∣∣,

and Bn = B(β + 1, n
α

) for n = 1, 2, 3.
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Theorem 5.1 Let α,β > 0, y1 < y2 and F : [μ,ν] → R be a differentiable mapping such that
F

′ ∈ L[μ,ν] and |F′| is an uniformly convex mapping with modulus ϕ. Then the inequality

I ≤ y2 – y1

4α

[
2
(|F′(μ)| +

∣∣F′(ν)
∣∣)B1 +

∣∣F′(y2)
∣∣B2 –

∣∣F′(y1)
∣∣B1 –

ϕ(y2 – y1)
2

(B1 – B3)

–
2ϕ(ν – μ)
(ν – μ)2

(
(ν – y1)(y1 – μ) + (ν – y2)(y2 – μ)

)
B1

]

holds for all y1, y2 ∈ [μ,ν].

Proof It follows from Lemma 1.3 that

I =
∣∣∣∣y2 – y1

4
αβ

∫ 1

0

(
1 – (1 – γ )α

α

)β

×
[
F

′
(

μ + ν –
(

2 – γ

2
y1 +

γ

2
y2

))
– F

′
(

μ + ν –
(

γ

2
y1 +

2 – γ

2
y2

))]
dγ

∣∣∣∣.

Hence,

I ≤ y2 – y1

4
αβ

∫ 1

0

(
1 – (1 – γ )α

α

)β

×
[∣∣∣∣F′

(
μ + ν –

(
2 – γ

2
y1 +

γ

2
y2

))
– F

′
(

μ + ν –
(

γ

2
y1 +

2 – γ

2
y2

))∣∣∣∣
]

dγ

≤ y2 – y1

4
αβ

{∫ 1

0

(
1 – (1 – γ )α

α

)β ∣∣∣∣F′
(

μ + ν –
(

2 – γ

2
y1 +

γ

2
y2

))∣∣∣∣dγ

+
∫ 1

0

(
1 – (1 – γ )α

α

)β ∣∣∣∣F′
(

μ + ν –
(

γ

2
y1 +

2 – γ

2
y2

))∣∣∣∣dγ

}
.

Since |F′| is uniformly convex with modulus ϕ, Theorem 3.3 asserts that

I ≤ y2 – y1

4
αβ

{∫ 1

0

(
1 – (1 – γ )α

α

)β{∣∣F′(μ)
∣∣ +

∣∣F′(ν)
∣∣ –

2 – γ

2
∣∣F′(y1)

∣∣ –
γ

2
∣∣F′(y2)

∣∣

–
2ϕ(ν – μ)
(ν – μ)2

(
2 – γ

2
(ν – y1)(y1 – μ) +

γ

2
(ν – y2)(y2 – μ)

)

–
γ (2 – γ )

4
ϕ(y2 – y1)

}
dγ +

∫ 1

0

(
1 – (1 – γ )α

α

)β{∣∣F′(μ)
∣∣ +

∣∣F′(ν)
∣∣ –

γ

2
∣∣F′(y1)

∣∣

–
2 – γ

2
∣∣F′(y2)

∣∣ –
2ϕ(ν – μ)
(ν – μ)2

(
γ

2
(ν – y1)(y1 – μ) +

2 – γ

2
(ν – y2)(y2 – μ)

)

–
γ (2 – γ )

4
ϕ(y2 – y1)

}
dγ

}
.

After some calculations, we get

I ≤ y2 – y1

4
αβ

{∫ 1

0

(
1 – (1 – γ )α

α

)β

×
{∣∣F′(μ)

∣∣ +
∣∣F′(ν)

∣∣ –
2 – γ

2
∣∣F′(y1)

∣∣ –
γ

2
∣∣F′(y2)

∣∣
}

dγ
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+
∫ 1

0

(
1 – (1 – γ )α

α

)β{∣∣F′(μ)
∣∣ +

∣∣F′(ν)
∣∣ –

γ

2
∣∣F′(y1)

∣∣ –
2 – γ

2
∣∣F′(y2)

∣∣
}

dγ

}

–
y2 – y1

4
αβ

{∫ 1

0

(
1 – (1 – γ )α

α

)β{
γ (2 – γ )

2
ϕ(y2 – y1)

+
2ϕ(ν – μ)
(ν – μ)2

(
(ν – y1)(y1 – μ) + (ν – y2)(y2 – μ)

)}
dγ

}
.

Therefore,

I ≤ y2 – y1

4α

[
2
(∣∣F′(μ)

∣∣ +
∣∣F′(ν)

∣∣)B
(

β + 1,
1
α

)

+
∣∣F′(y2)

∣∣B
(

β + 1,
2
α

)
–

∣∣F′(y1)
∣∣B

(
β + 1,

1
α

)

–
ϕ(y2 – y1)

2

(
B
(

β + 1,
1
α

)
– B

(
β + 1,

3
α

))

–
2ϕ(ν – μ)
(ν – μ)2

(
(ν – y1)(y1 – μ) + (ν – y2)(y2 – μ)

)
B
(

β + 1,
1
α

)]
,

where we have used the facts that

α

∫ 1

0

(
1 – (1 – γ )α

)β dγ = B
(
β + 1,α–1),

α

∫ 1

0
γ
(
1 – (1 – γ )α

)β dγ = B
(
β + 1,α–1) – B

(
β + 1, 2α–1)

and

α

∫ 1

0
γ (2 – γ )

(
1 – (1 – γ )α

)β dγ = B
(
β + 1,α–1) – B

(
β + 1, 3α–1). �

Theorem 5.2 Let α,β > 0, y1 < y2, q > 1, p = q
1–q and F : [μ,ν] → R be a differentiable

mapping such that F′ ∈ L[μ,ν] and |F′|q is an uniformly convex mapping with modulus ϕ.
Then the inequality

I ≤ y2 – y1

4
αβ

(
B1

αβ+1

) 1
p

×
[{( |F′|q(μ) + |F′|q(ν)

αβ+1 B1

)
–

|F′|q(y1)
2αβ+1 (B1 + B2)

–
|F′|q(y2)

2αβ+1 (B1 – B2) –
(ν – y1)(y1 – μ)

(ν – μ)2αβ+1 ϕ(ν – μ)(B1 + B2)

–
(ν – y2)(y2 – μ)

(ν – μ)2αβ+1 ϕ(ν – μ)(B1 – B2)

–
ϕ(ν – μ)
2(ν – μ)2 ϕ(y2 – y1)

(
1

αβ+1 B1 –
1

αβ+1 B3

)} 1
q

+
{( |F′|q(μ) + |F′|q(ν)

αβ+1 B1

)
–

|F′|q(y2)
2αβ+1 (B1 + B2)

–
|F′|q(y1)

2αβ+1 (B1 – B2) –
(ν – y2)(y2 – μ)

(ν – μ)2αβ+1 ϕ(ν – μ)(B1 + B2)
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–
(ν – y1)(y1 – μ)

(ν – μ)2αβ+1 ϕ(ν – μ)(B1 – B2)

–
ϕ(ν – μ)
2(ν – μ)2 ϕ(y2 – y1)

(
1

αβ+1 B1 –
1

αβ+1 B3

)} 1
q
]

,

holds for all y1, y2 ∈ [μ,ν].

Proof Let p = q
1–q . It follows from Lemma 1.3 that

I ≤ y2 – y1

4
αβ

∫ 1

0

(
1 – (1 – γ )α

α

)β

×
[∣∣∣∣F′

(
μ + ν –

(
2 – γ

2
y1 +

γ

2
y2

))
– F

′
(

μ + ν –
(

γ

2
y1 +

2 – γ

2
y2

))∣∣∣∣
]

dγ

≤ y2 – y1

4
αβ

(∫ 1

0

(
1 – (1 – γ )α

α

)β

dγ

) 1
p

×
(∫ 1

0

(
1 – (1 – γ )α

α

)β ∣∣∣∣F′
(

μ + ν –
(

γ

2
y1 +

2 – γ

2
y2

))∣∣∣∣
q

dγ

) 1
q

+
y2 – y1

4
αβ

(∫ 1

0

(
1 – (1 – γ )α

α

)β

dγ

) 1
p

×
(∫ 1

0

(
1 – (1 – γ )α

α

)β ∣∣∣∣F′
(

μ + ν –
(

2 – γ

2
y1 +

γ

2
y2

))∣∣∣∣
q

dγ

) 1
q

Since |F′|q is uniformly convex with modulus ϕ, Theorem 3.3 asserts that

I ≤ y2 – y1

4
αβ

(∫ 1

0

(
1 – (1 – γ )α

α

)β

dγ

) 1
p

×
[(∫ 1

0

(
1 – (1 – γ )α

α

)β[∣∣F′∣∣q(μ) +
∣∣F′∣∣q(ν)

–
2 – γ

2
∣∣F′∣∣q(y1) –

γ

2
∣∣F′∣∣q(y2) –

2ϕ(ν – μ)
(ν – μ)2

(
2 – γ

2

)
(ν – y1)(y1 – μ)

+
γ

2
(ν – y2)(y2 – μ)

)
–

γ (2 – γ )
4

ϕ(y2 – y1)
]

dγ )
1
q

+
(∫ 1

0

(
1 – (1 – γ )α

α

)β[∣∣F′∣∣q(μ) +
∣∣F′∣∣q(ν) –

γ

2
∣∣F′∣∣q(y1) –

2 – γ

2
∣∣F′∣∣q(y2)

–
2ϕ(ν – μ)
(ν – μ)2

(
γ

2
(ν – y1)(y1 – μ) +

2 – γ

2
(ν – y2)(y2 – μ)

)

–
γ (2 – γ )

4
ϕ(y2 – y1)

]
dγ

) 1
q
]

After some calculations, we get our desired result. �

Remark 5.3 Under the assumption of Theorem 5.2, we can conclude that:
(i) If we set ϕ(y1) = 0 in Theorem 5.2, we get Theorem 5 of [18].
(ii) If we set ϕ(y1) = 0, μ = y1 and ν = y2 in Theorem 5.2, we get Theorem 3 of [25].
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(iii) If we set ϕ(y1) = 0, β = 1 μ = y1 and ν = y2 in Theorem 5.2, we get Theorem 5 of
[26].

Theorem 5.4 Let α,β > 0, y1 < y2, q > 1 and F : [μ,ν] → R be a differentiable mapping
such that F′ ∈ L[μ,ν] and |F′|q is a uniformly convex mapping with modulus ϕ. Then the
inequality

I ≤ y2 – y1

4
αβ

(
1

αβp+1 B
(

βp + 1,
1
α

)) 1
p

×
[(∣∣F′(μ)

∣∣q +
∣∣F′(ν)

∣∣q –
3
4
∣∣F′(y1)

∣∣q

–
1
4
∣∣F′(y2)

∣∣q –
2ϕ(ν – μ)
(ν – μ)2

(
3
4

(ν – y1)(y1 – μ) +
1
4

(ν – y2)(y2 – μ)
)

–
1
6
ϕ(y2 – y1)

) 1
q

+
(∣∣F′(μ)

∣∣q +
∣∣F′(ν)

∣∣q –
1
4
∣∣F′(y1)

∣∣q –
3
4
∣∣F′(y2)

∣∣q –
1
6
ϕ(y2 – y1)

–
2ϕ(ν – μ)
(ν – μ)2

(
1
4

(ν – y1)(y1 – μ) +
3
4

(ν – y2)(y2 – μ)
)) 1

q
]

.

Proof Let p = q
q–1 . By using Lemma 1.3 and familiar Hölder integral inequality, we can

write

I ≤ y2 – y1

4
αβ

(∫ 1

0

(
1 – (1 – γ )α

α

)βp

dγ

) 1
p

×
{(∫ 1

0

∣∣∣∣F′
(

μ + ν –
(

2 – γ

2
y1 +

γ

2
y2

))∣∣∣∣
q

dγ

) 1
q

+
(∫ 1

0

∣∣∣∣F′
(

μ + ν –
(

γ

2
y1 +

2 – γ

2
y2

))∣∣∣∣
q

dγ

) 1
q
}

. (37)

By applying the uniform convexity of |F′|q and Theorem 3.3, we have

∣∣∣∣F′
(

μ + ν –
(

γ

2
y1 +

2 – γ

2
y2

))∣∣∣∣
q

≤ ∣∣F′(μ)
∣∣q +

∣∣F′(ν)
∣∣q –

γ

2
∣∣F′(y1)

∣∣q –
2 – γ

2
∣∣F′(y2)

∣∣q

–
2ϕ(ν – μ)
(ν – μ)2

(
γ

2
(ν – y1)(y1 – μ) +

2 – γ

2
(ν – y2)(y2 – μ)

)

–
γ (2 – γ )

4
ϕ(y2 – y1). (38)

It follows from (37) and (38) that

I ≤ y2 – y1

4
αβ

(∫ 1

0

(
1 – (1 – γ )α

α

)βp

dγ

) 1
p

×
[(∫ 1

0

(∣∣F′(μ)
∣∣q +

∣∣F′(ν)
∣∣q –

γ

2
∣∣F′(y2)

∣∣q

–
2 – γ

2
∣∣F′(y1)

∣∣q –
2ϕ(ν – μ)
(ν – μ)2

(
2 – γ

2
(ν – y1)(y1 – μ) +

γ

2
(ν – y2)(y2 – μ)

)
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–
γ (2 – γ )

4
ϕ(y2 – y1)

)
dγ

) 1
q

+
(∫ 1

0

(∣∣F′(μ)
∣∣q +

∣∣F′(ν)
∣∣q –

γ

2
∣∣F′(y1)

∣∣q –
2 – γ

2
∣∣F′(y2)

∣∣q

–
2ϕ(ν – μ)
(ν – μ)2

(
γ

2
(ν – y1)(y1 – μ) +

2 – γ

2
(ν – y2)(y2 – μ)

)

–
γ (2 – γ )

4
ϕ(y2 – y1)

)
dγ

) 1
q
]

=
y2 – y1

4
αβ

(
1

αβp+1 B
(

βp + 1,
1
α

)) 1
p

×
[(∣∣F′(μ)

∣∣q +
∣∣F′(ν)

∣∣q –
3
4
∣∣F′(y1)

∣∣q

–
1
4
∣∣F′(y2)

∣∣q –
2ϕ(ν – μ)
(ν – μ)2

(
3
4

(ν – y1)(y1 – μ) +
1
4

(ν – y2)(y2 – μ)
)

–
1
6
ϕ(y2 – y1)

) 1
q

+
(∣∣F′(μ)

∣∣q +
∣∣F′(ν)

∣∣q –
1
4
∣∣F′(y1)

∣∣q –
3
4
∣∣F′(y2)

∣∣q

–
2ϕ(ν – μ)
(ν – μ)2

(
1
4

(ν – y1)(y1 – μ) +
3
4

(ν – y2)(y2 – μ)
)

–
1
6
ϕ(y2 – y1)

) 1
q
]

. �

Corollary 5.5 If we set α = β = 1, μ = y1 and ν = y2 in Theorem 5.4, we get

∣∣∣∣ 1
(y2 – y1)

∫ y

x
F(u) du – F

(
y1 + y2

2

)∣∣∣∣ ≤ y2 – y1

4

(
1

p + 1

) 1
p

×
[( |F′(y1)|q + 3|F′(y2)|q

4
–

1
6
ϕ(y2 – y1)

) 1
q

+
(

3|F′(y1)|q + |F′(y2)|q
4

–
1
6
ϕ(y2 – y1)

) 1
q
]

Remark 5.6 If we set ϕ(y1) = 0 in Theorem 5.4, we get Theorem 6 of [18].

Remark 5.7 If we set ϕ(y1) = 0 and β = 1 in Theorem 5.4, we get Corollary 2 of [18].

Theorem 5.8 Let α,β > 0, y1 < y2, q > 1 and F : [μ,ν] → R be a differentiable mapping
such that F′ ∈ L[μ,ν] and |F′|q is a uniformly convex mapping with modulus ϕ. Then the
inequality

I ≤ y2 – y1

4α

[(∣∣F′(μ)
∣∣q +

∣∣F′(ν)
∣∣q)B1 –

|F′(y1)|q
2

(B1 + B2)

–
|F′(y2)|q

2
(B1 – B2) –

(ν – y1)(y1 – μ)
(ν – μ)2 ϕ(ν – μ)(B1 + B2)

–
(ν – y2)(y2 – μ)

(ν – μ)2 ϕ(ν – μ)(B1 – B2) +
ϕ(ν – μ)
2(ν – μ)2 ϕ(y2 – y1)(B1 – B3)

] 1
q

+
y2 – y1

4
αβ

[(∣∣F′(μ)
∣∣q +

∣∣F′(ν)
∣∣q)B1 –

|F′(y2)|q
2

(B1 + B2)
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–
|F′(y1)|q

2
(B1 – B2) –

(ν – y2)(y2 – μ)
(ν – μ)2 ϕ(ν – μ)(B1 + B2)

–
(ν – y1)(y1 – μ)

(ν – μ)2 ϕ(ν – μ)(B1 – B2) +
ϕ(ν – μ)
2(ν – μ)2 ϕ(y2 – y1)(B1 – B3)

] 1
q

.

Proof Let p = q
q–1 . Following similar step like in the proof of the previous theorem, by

using (38) and Lemma 1.3, we get

I ≤ y2 – y1

4
αβ

{(∫ 1

0
1 dγ

) 1
p
(∫ 1

0

(
1 – (1 – γ )α

α

)β

×
∣∣∣∣F′

(
μ + ν –

(
2 – γ

2
y1 +

γ

2
y2

))∣∣∣∣
q

dγ

) 1
q

+
(∫ 1

0
1 dγ

) 1
p
(∫ 1

0

(
1 – (1 – γ )α

α

)β ∣∣∣∣F′
(

μ + ν –
(

γ

2
y1 +

2 – γ

2
y2

))∣∣∣∣
q

dγ

) 1
q
}

≤ y2 – y1

4
αβ

{(∫ 1

0

(
1 – (1 – γ )α

α

)β

×
(∣∣F′(μ)

∣∣q +
∣∣F′(ν)

∣∣q –
2 – γ

2
∣∣F′(y1)

∣∣q –
γ

2
∣∣F′(y2)

∣∣q

–
2ϕ(ν – μ)
(ν – μ)2

(
2 – γ

2
(ν – y1)(y1 – μ) +

γ

2
(ν – y2)(y2 – μ)

)

–
γ (2 – γ )

4
ϕ(y2 – y1)

)
dγ

) 1
q

+
(∫ 1

0

(
1 – (1 – γ )α

α

)β(∣∣F′(μ)
∣∣q +

∣∣F′(ν)
∣∣q –

γ

2
∣∣F′(y1)

∣∣q –
2 – γ

2
∣∣F′(y2)

∣∣q

–
2ϕ(ν – μ)
(ν – μ)2

(
γ

2
(ν – y1)(y1 – μ) +

2 – γ

2
(ν – y2)(y2 – μ)

)

–
γ (2 – γ )

4
ϕ(y2 – y1)|q

)
dγ

) 1
q
}

.

After some calculations, we get our desired result. �

Corollary 5.9 If we set α = β = 1, μ = y1 and ν = y2 in Theorem 5.8, we get

∣∣∣∣ 1
(y2 – y1)

∫ y2

y1

F(u) du – F

(
y1 + y2

2

)∣∣∣∣

≤ y2 – y1

4

( |F′(y1)|q
6

+
|F′(y2)|q

3
+

(5ϕ(y2 – y1))2

24(y2 – y1)2

) 1
q

+
y2 – y1

4

( |F′(y2)|q
6

+
|F′(y1)|q

3
+

5(ϕ(y2 – y1))2

24(y2 – y1)2

) 1
q

.

Remark 5.10 If we set ϕ(y1) = 0 in Theorem 5.8, we get Theorem 7 of [18].
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6 New Ostrowski–Mercer type inequalities for uniformly convex functions
Let F : [0,∞) → R be a differentiable mapping on I◦, the interior of the interval I , such
that F′ ∈ L[a, b], where a, b ∈ I with a < b. If |F′(y1)| ≤ M, then the following inequality
(see [27], page 468):

∣∣∣∣F(y1) –
1

b – a

∫ b

a
F(y2) dy2

∣∣∣∣ ≤ M
b – a

[
(y1 – a)2 + (b – y1)2

2

]
(39)

holds. This result is known in the literature as the Ostrowski inequality. For recent re-
sults and generalizations concerning Ostrowski inequality, see [28, 29] and the references
therein.

In this section, Mercer–Ostrowski inequalities for the conformable integral operator are
obtained for uniformly convex functions. For this purpose, we give a new conformable in-
tegral operator identity that will serve as an auxiliary result to produce subsequent results
for improvements.

Lemma 6.1 Suppose that the mapping F : I = [a, b] → � is differentiable on (a, b) with
b > a. If F′ ∈ L1[a, b] then for all y1,μ,ν2 ∈ [a, b] and α,β > 0, the following identity

αβ (y1 – μ)2
∫ 1

0

(
1 – (1 – γ )α

α

)β

F
′(y1 + a –

(
γμ + (1 – γ )y1

))
dγ

– αβ (ν – y1)2
∫ 1

0

(
1 – (1 – γ )α

α

)β

F
′(y1 + b –

(
γ ν + (1 – γ )y1

))
dγ

= (y1 – μ)F(y1 + a – μ) + (ν – y1)F(y1 + b – ν)

–
αβ�(β + 1)
(ν – y1)αβ–1

{
β Jα

(y1+a–μ)–F(a) + β Jα
(y1+b–ν)+F(b)

}
:= L (40)

Proof Let

I = αβ (y1 – μ)2I1 – αβ (ν – y1)2I2, (41)

I1 =
∫ 1

0

(
1 – (1 – γ )α

α

)β

F
′(y1 + a –

(
γμ + (1 – γ )y1

))
dγ

=
F(y1 + a – μ)

αβ

–
β

(y1 – μ)

∫ 1

0

(
1 – (1 – γ )α

α

)β–1

(1 – γ )α–1
F
(
y1 + a –

(
γμ + (1 – γ )y1

))
dγ

=
F(y1 + a – μ)
αβ (y1 – μ)

–
γ (β + 1)

(y1 – μ)αβ+1
bβJα

(y1+a–μ)–F(a)

Similarly,

I2 =
∫ 1

0

(
1 – (1 – γ )α

α

)β

F
′(y1 + b –

(
γ ν + (1 – γ )y1

))
dγ

=
F(y1 + b – ν)
αβ(ν – μ)

–
�(β + 1)

(ν – y1)αβ+1
β Jα

(y1+b–ν)+F(b)

Substitute the values of I1 and I2 in (41), we get the required result. �
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Corollary 6.2 If we set α = 1 in lemma 6.1

(y1 – μ)2
∫ 1

0
γ β

F
′(y1 + a –

(
γμ + (1 – γ )y1

))
dγ

– (ν – y1)2
∫ 1

0
γ β

F
′(y1 + b –

(
γ ν + (1 – γ )y1

))
dγ

= (y1 – μ)F(y1 + a – μ) + (ν – y1)F(y1 + b – ν)

–
�(β + 1)

(ν – y1)β–1

{
β J(y1+a–μ)–F(a) + β J(y1+b–ν)+F(b)

}

Remark 6.3 If we set μ = a, ν = b and α = β = 1 in Lemma 6.1, then it reduces to Lemma 1
in [28].

Theorem 6.4 Let α,β > 0, a < b and F : [μ,ν] → R be a differentiable mapping such that
F

′ ∈ L[a, b] and |F′| is a uniformly convex mapping with modulus ϕ. Then the inequality
holds

|L| ≤ (y1 – μ)2

α

{[∣∣F′(y1)
∣∣ +

∣∣F′(a)
∣∣]B1 –

∣∣F′(μ)
∣∣[B1 – B2] –

∣∣F′(y1)
∣∣B2

– ϕ(y1 – μ)[B2 – B3] –
2ϕ(a – y1)
(a – y1)2 (a – μ)(μ – y1)[B1 – B2]

}

+
(ν – y1)2

α

{[∣∣F′(y1)
∣∣ +

∣∣F′(b)
∣∣]B1 –

∣∣F′(ν)
∣∣[B1 – B2] –

∣∣F′(y1)
∣∣B2

– ϕ(y1 – ν)[B2 – B3] –
2ϕ(b – y1)
(b – y1)2 (b – ν)(ν – y1)[B1 – B2]

}
.

Proof It follows from Lemma 6.1 that

|L| =
∣∣∣∣(y1 – μ)2αβ

∫ 1

0

(
1 – (1 – γ )α

α

)β

F
′(y1 + a –

(
γμ + (1 – γ )y1

))
dγ

– (ν – y1)2αβ

∫ 1

0

(
1 – (1 – γ )α

α

)β

F
′(y1 + b –

(
γ ν + (1 – γ )y1

))
dγ

∣∣∣∣

≤ (y1 – μ)2αβ

∫ 1

0

(
1 – (1 – γ )α

α

)β ∣∣F′(y1 + a –
(
γμ + (1 – γ )y1

))∣∣dγ

– (ν – y1)2αβ

∫ 1

0

(
1 – (1 – γ )α

α

)β ∣∣F′(y1 + b –
(
γ ν + (1 – γ )y1

))∣∣dγ

Since |F′| is uniformly convex with modulus ϕ,

|L| ≤ (y1 – μ)2αβ

∫ 1

0

(
1 – (1 – γ )α

α

)β{∣∣F′(y1)
∣∣ +

∣∣F′(a)
∣∣ – γ

∣∣F′(μ)
∣∣ – (1 – γ )

∣∣F′(y1)
∣∣

–
2ϕ(a – y1)
(a – y1)2

(
γ (a – μ)(μ – y1) + (1 – γ )(a – y1)(y1 – y1)

)

– γ (1 – γ )ϕ(y1 – μ)
}

dγ
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+ (ν – y1)2αβ

∫ 1

0

(
1 – (1 – γ )α

α

)β{∣∣F′(y1)
∣∣ +

∣∣F′(b)
∣∣ – γ

∣∣F′(ν)
∣∣ – (1 – γ )

∣∣F′(y1)
∣∣

–
2ϕ(b – y1)
(b – y1)2

(
γ (b – ν)(ν – y1) + (1 – γ )(b – y1)(y1 – y1)

)

– γ (1 – γ )ϕ(y1 – ν)
}

dγ .

After some calculations, we get our desired result. �

Corollary 6.5 Let α,β > 0, a < b and F : [μ,ν] →R be a differentiable mapping such that
F

′ ∈ L[μ,ν] and |F′| is a strongly convex mapping with modulus c. Then the inequality
holds

|L| ≤ (y1 – μ)2

α

{[∣∣F′(y1)
∣∣ +

∣∣F′(a)
∣∣]B1 –

∣∣F′(μ)
∣∣[B1 – B2] –

∣∣F′(y1)
∣∣B2

– c(y1 – μ)2[B2 – B3] – 2c(a – μ)(μ – y1)[B1 – B2]
}

+
(ν – y1)2

α

{[∣∣F′(y1)
∣∣ +

∣∣F′(b)
∣∣]B1

–
∣∣F′(ν)

∣∣[B1 – B2] –
∣∣F′(y1)

∣∣B2 – c(y1 – ν)2[B2 – B3]

– 2c(b – ν)(ν – y1)[B1 – B2]
}

.

Proof The result follows from Theorem 6.4 with ϕ(r) = cr2. �

Theorem 6.6 Let α,β , k > 0, a < b andF : [μ,ν] →R be a differentiable mapping such that
F

′ ∈ L[a, b] and |F′| is a uniformly convex mapping with modulus ϕ. Then the inequality
holds

|L| ≤
(

B1

αβ+1

) 1
p (y1 – μ)2

α

{[∣∣F′(y1)
∣∣q +

∣∣F′(a)
∣∣q]B1 –

∣∣F′(μ)
∣∣q[B1 – B2] –

∣∣F′(y1)
∣∣qB2

– ϕ(y1 – μ)[B2 – B3] –
2ϕ(a – y1)
(a – y1)2 (a – μ)(μ – y1)[B1 – B2]

} 1
q

+
(

B1

αβ+1

) 1
p (ν – y1)2

α

{[∣∣F′(y1)
∣∣q +

∣∣F′(b)
∣∣q]B1 –

∣∣F′(ν)
∣∣q[B1 – B2] –

∣∣F′(y1)
∣∣qB2

– ϕ(y1 – ν)[B2 – B3] –
2ϕ(b – y1)
(b – y1)2 (b – ν)(ν – y1)[B1 – B2]

} 1
q

.

Proof It follows from Lemma 6.1 that

|L| =
∣∣∣∣(y1 – μ)2αβ

∫ 1

0

(
1 – (1 – γ )α

α

)β

F
′(y1 + a –

(
γμ + (1 – γ )y1

))
dγ

– (ν – y1)2αβ

∫ 1

0

(
1 – (1 – γ )α

α

)β

F
′(y1 + b –

(
γ ν + (1 – γ )y1

))
dγ

∣∣∣∣

≤ (y1 – μ)2αβ

(∫ 1

0

(
1 – (1 – γ )α

α

)β

dγ

) 1
p
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×
[∫ 1

0

(
1 – (1 – γ )α

α

)β ∣∣F′(y1 + a –
(
γμ + (1 – γ )y1

))∣∣q dγ

] 1
q

+ (ν – y1)2αβ

(∫ 1

0

(
1 – (1 – γ )α

α

)β) 1
p

×
[∫ 1

0

(
1 – (1 – γ )α

α

)β ∣∣F′(y1 + b –
(
γ ν + (1 – γ )y1

))∣∣q dγ

] 1
q

Since |F′| is uniformly convex with modulus ϕ,

|L| ≤ (y1 – μ)2αβ

(∫ 1

0

(
1 – (1 – γ )α

α

)β) 1
p

×
[∫ 1

0

(
1 – (1 – γ )α

α

)β{∣∣F′(y1)
∣∣q +

∣∣F′(a)
∣∣q – γ

∣∣F′(μ)
∣∣q – (1 – γ )

∣∣F′(y1)
∣∣q

–
2ϕ(a – y1)
(a – y1)2

(
γ (a – μ)(μ – y1) + (1 – γ )(a – y1)(y1 – y1)

)

– γ (1 – γ )ϕ(y1 – μ)
}

dγ

] 1
q

+ (ν – y1)2αβ

(∫ 1

0

(
1 – (1 – γ )α

α

)β) 1
p

×
[∫ 1

0

(
1 – (1 – γ )α

α

)β{∣∣F′(y1)
∣∣q +

∣∣F′(b)
∣∣ – γ

∣∣F′(ν)
∣∣q – (1 – γ )

∣∣F′(y1)
∣∣q

–
2ϕ(b – y1)
(b – y1)2

(
γ (b – ν)(ν – y1) + (1 – γ )(b – y1)(y1 – y1)

)

– γ (1 – γ )ϕ(y1 – ν)
}

dγ

] 1
q

.

After some calculations, we get the required result. �

Theorem 6.7 Let α,β > 0, a < b and F : [μ,ν] → R be a differentiable mapping such that
F

′ ∈ L[a, b] and |F′| is a uniformly convex mapping with modulus ϕ. Then the inequality
holds

|L| ≤
(B(pβ + 1, 1

α
)

αpβ+1

) 1
p (y1 – μ)2

α

{∣∣F′(y1)
∣∣q +

∣∣F′(a)
∣∣q

–
|F′(μ)|q – |F′(y1)|q

2
–

ϕ(y1 – μ)
6

–
ϕ(a – y1)
(a – y1)2 (a – μ)(μ – y1)

} 1
q

+
(B(pβ + 1, 1

α
)

αpβ+1

) 1
p (ν – y1)2

α

{∣∣F′(y1)
∣∣q +

∣∣F′(b)
∣∣q

–
|F′(ν)|q – |F′(y1)|q

2
–

ϕ(y1 – ν)
6

–
ϕ(b – y1)
(b – y1)2 (b – ν)(ν – y1)

} 1
q

.
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Proof From Lemma 6.1 and applying Hölder inequality, we have

|L| =
∣∣∣∣(y1 – μ)2αβ

∫ 1

0

(
1 – (1 – γ )α

α

)β

F
′(y1 + a –

(
γμ + (1 – γ )y1

))
dγ

– (ν – y1)2αβ

∫ 1

0

(
1 – (1 – γ )α

α

)β

F
′(y1 + b –

(
γ ν + (1 – γ )y1

))
dγ

∣∣∣∣

≤ (y1 – μ)2αβ

(∫ 1

0

(
1 – (1 – γ )α

α

)pβ

dγ

) 1
p (∣∣F′(y1 + a –

(
γμ + (1 – γ )y1

))∣∣q dγ
) 1

q

+ (ν – y1)2αβ

(∫ 1

0

(
1 – (1 – γ )α

α

)β) 1
p [∣∣F′(y1 + b –

(
γ ν + (1 – γ )y1

))∣∣q dγ
] 1

q

Since |F′| is uniformly convex with modulus ϕ,

I ≤ (y1 – μ)2αβ

(∫ 1

0

(
1 – (1 – γ )α

α

)pβ) 1
p
[∫ 1

0

{∣∣F′(y1)
∣∣q +

∣∣F′(a)
∣∣q – γ

∣∣F′(μ)
∣∣q

– (1 – γ )
∣∣F′(y1)

∣∣q –
2ϕ(a – y1)
(a – y1)2

(
γ (a – μ)(μ – y1) + (1 – γ )(a – y1)(y1 – y1)

)

– γ (1 – γ )ϕ(y1 – μ)
}

dγ

] 1
q

+ (ν – y1)2αβ

(∫ 1

0

(
1 – (1 – γ )α

α

)pβ) 1
p

×
[∫ 1

0

{∣∣F′(y1)
∣∣q +

∣∣F′(b)
∣∣ – γ

∣∣F′(ν)
∣∣q – (1 – γ )

∣∣F′(y1)
∣∣q – γ (1 – γ )ϕ(y1 – ν)

–
2ϕ(b – y1)
(b – y1)2

(
γ (b – ν)(ν – y1) + (1 – γ )(b – y1)(y1 – y1)

)}
dγ

] 1
q

.

After some calculations, we get the required result. �

7 Applications
A random variable X is said to have a normal distribution [30], with σ (the standard devi-
ation) and then translated by μ (the mean value): F(y1) = 1

σ
√

2π
exp{– 1

2 ( y1–μ

σ
)2}, –∞ < y1 <

∞. A random variable X normal-distributed with parameters μ and σ will be denoted by
X ∼ N(μ,σ ).

The normal distribution, often known as the Gaussian distribution, is a symmetric prob-
ability distribution about the mean. This shows that data near to the mean occur more fre-
quently than data distant from the mean. Like every probability distribution, the normal
distribution describes the distribution of values of a variable. It is the most important prob-
ability distribution in statistics because it properly captures the distribution of values for
numerous natural events. Commonly, traits that are the result of several different unique
processes are described using normal distributions. For instance, the normal distribution
may be shown for IQ scores, blood pressure, heights, and measurement inaccuracy.

In this section, we try to estimate the normal probability distribution with the help of
inequalities.

Proposition 7.1 Let ν > μ > 0 and X has normal distribution with X ∼ N( μ+ν

2 , ν√
2 ). Then

p(μ ≤ X ≤ ν) ≤ ν – μ

6μν2√π
exp

(
–
(

ν – μ

2ν

)2)(
μ2 + ν2 + 4μν

)
.
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Proof By the use of (Lemma 2.1 in [24]) the function F(x) = – log(x) ∈ U( 1
2ν2 (.)2; [μ,ν]).

Set F(x) = – log(x) and ϕ(r) = 1
2ν2 r2 in Theorem 3.1, we have

(ν – γ )(γ – μ)
ν2 ≤ log

(
γ (μ + ν – γ )

μν

)

for all γ ∈ [μ,ν]. Therefore,

exp

(
(ν – γ )(γ – μ)

ν2

)
≤ γ (μ + ν – γ )

μν

or

exp

(
–

1
2

(
γ – μ+ν

2
1√
2ν

)2)
≤ γ (μ + ν – γ )

μν
× exp

(
μ

ν
–

(μ + ν)2

4ν2

)
(42)

for all γ ∈ [μ,ν]. Multiplying (42) by 1
ν
√

π
and integrating the obtained inequality w.r.t. γ

over [μ,ν], we get

p(μ ≤ X ≤ ν) ≤ ν – μ

6μν2√π
exp

(
–(ν – μ)2

4ν2

)(
μ2 + ν2 + 4μν

)
. �

Proposition 7.2 Let μ > 0, k ≥ 1 and X has normal distribution with X ∼ N( k+1
2 μ, kμ√

2 ).
Then

p(μ ≤ X ≤ kμ) ≤ (k – 1)(5k2 + 1)
6k2√π

exp

(
–

(k – 1)2

4k2

)
.

Proof Setting k := ν
μ

in Proposition 7.1. �

Proposition 7.3 Let
√

2
2 ≤ a < b. Then the inequality

(b – a)e–( a+b
2 )2

+
(2a2 – 1)(b – a)3

24
e–b2 ≤

∫ b

a
e–u2

du

≤ e–a2 + e–b2

2
(b – a) –

(2a2 – 1)(b – a)3

3
e–b2

holds.

Proof Applying Lemma 2.2 and Corollary 4.4 with F(u) = e–u2 , y1 = x = a, y2 = y = b and
ϕ(r) = (2a2 – 1)e–b2 r2. �

8 Conclusion
This paper is devoted to the study of inequalities for uniformly convex functions along
with their properties. We give some examples of such convexity and gave the new con-
cept of Jensen–Mercer inequality for it in a classical sense. In the later part, we employed
our main inequality to get new fractional inequalities for uniformly convex functions. We
used generalized conformable fractional integrals and configure Hermite–Jensen–Mercer
inequalities for them. Some new extensions of fractional Hermite–Mercer type inequali-
ties for differentiable uniformly convex functions are also presented. Finally, we employed
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our newly obtained results to explore new fractional variants of Ostrowski–Mercer type
inequalities. It is pertinent to mention that by special substitution, we got all such inequal-
ities for strongly convex functions. Also, we pointed out some particular cases of fractional
integral inequalities.
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15. Íşcan, Í.: Weighted Hermite–Hadamard–Mercer type inequalities for convex functions. Numer. Methods Partial Differ.

Equ. 37(1), 118–130 (2021). https://doi.org/10.1002/num.22521
16. Zhao, J., Butt, S.I., Nasir, J., Wang, Z., Tlili, I.: Hermite–Jensen–Mercer type inequalities for Caputo fractional derivatives.

J. Funct. Spaces 2020, Article ID 7061549 (2020). https://doi.org/10.1155/2020/7061549
17. Vivas-Cortez, M., Saleem, M.S., Sajid, S., Zahoor, M.S., Kashuri, A.: Hermite–Jensen–Mercer-type inequalities via

Caputo–Fabrizio fractional integral for h-convex function. Fractal Fract. 5(4), 1–17 (2021).
https://doi.org/10.3390/fractalfract5040269

18. Butt, S.I., Akdemir, A.O., Nasir, J., Jarad, F.: Some Hermite–Jensen–Mercer like inequalities for convex functions through
a certain generalized fractional integrals and related results. Miskolc Math. Notes 21(2), 689–715 (2020).
https://doi.org/10.18514/MMN.2020.3339

19. Butt, S.I., Umar, M., Khan, K.A., Kashuri, A., Emadifar, H.: Fractional Hermite–Jensen–Mercer integral inequalities with
respect to another function and application. Complexity 2021, Article ID 9260828 (2021).
https://doi.org/10.1155/2021/9260828

https://doi.org/10.1007/978-981-13-3013-1
https://doi.org/10.1007/0-387-31077-0
https://doi.org/10.1186/s13662-017-1306-z
https://doi.org/10.1186/s13660-019-2170-z
https://doi.org/10.3934/math.2019.3.343
https://doi.org/10.1186/s13662-020-03093-y
https://doi.org/10.13001/1081-3810.1684
https://doi.org/10.1016/j.na.2009.01.120
https://doi.org/10.7153/jmi-2020-14-24
https://doi.org/10.7153/mia-2021-24-76
https://doi.org/10.1155/2020/8928691
https://doi.org/10.2298/FIL2107425O
https://doi.org/10.1002/num.22521
https://doi.org/10.1155/2020/7061549
https://doi.org/10.3390/fractalfract5040269
https://doi.org/10.18514/MMN.2020.3339
https://doi.org/10.1155/2021/9260828


Butt et al. Journal of Inequalities and Applications         (2023) 2023:89 Page 29 of 29

20. Liu, J.B., Butt, S.I., Nasir, J., Aslam, A., Fahad, A., Soontharanon, J.: Jensen–Mercer variant of Hermite–Hadamard type
inequalities via Atangana–Baleanu fractional operator. AIMS Math. 7(2), 2123–2141 (2021).
https://doi.org/10.3934/math.2022121

21. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 1st edn. Springer,
New York (2011). https://doi.org/10.1007/978-1-4419-9467-7

22. Zalinescu, C.: On uniformly convex functions. J. Math. Anal. Appl. 95, 344–374 (1983).
https://doi.org/10.1016/0022-247X(83)90112-9

23. Polyak, B.T.: Existence theorems and convergence of minimizing sequences in extremum problems with restrictions.
Sov. Math. Dokl. 7, 72–75 (1966)

24. Sayyari, Y.: New entropy bounds via uniformly convex functions. Chaos Solitons Fractals 141(1), 1–5 (2020).
https://doi.org/10.1016/j.chaos.2020.110360

25. Gözpinar, A.: Some Hermite–Hadamard type inequalities for convex functions via new fractional conformable
integrals and related inequalities. AIP Conf. Proc. 1991(1), 1–6 (2018). https://doi.org/10.1063/1.5047879

26. Sarikaya, M.Z., Yildirim, H.: On Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals. Miskolc
Math. Notes 17(2), 1049–1059 (2016). https://doi.org/10.18514/MMN.2017.1197
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