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Abstract
This paper aims to establish distribution-free concentration inequalities for the
log-likelihood function of Bernoulli variables, which means that the tail bounds are
independent of the parameters. Moreover, Bernstein’s and Bennett’s inequalities with
optimal constants are obtained. The simulation study shows significant
improvements over the previous results.
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1 Introduction
Concentration inequality has been applied in a variety of scenarios, including statistical
inference, information theory, machine learning, etc., see [1, 6, 8, 9]. Let X1, X2, . . . , Xn be
independent Bernoulli random variables with parameters pi, respectively. For simplicity,
denote Xi ∼ Ber(pi). Inspired by theoretical studies of likelihood-based methods for binary
data, in particular for community detection in networks (see [3, 5, 12] for details), it is of
significance to investigate the concentration behavior of the joint likelihood function of
X1, X2, . . . , Xn, say, Ln =

∏n
i=1 pXi

i (1 – pi)1–Xi .
Consider a simple case that p1 = p2 = · · · = pn = p ∈ [0, 1]. The asymptotic equipartition

property (AEP), one of the most classical results in information theory [7], asserts that

n–1 log Ln =
1
n

n∑

i=1

(
Xi log p + (1 – Xi) log(1 – p)

) P→ p log p + (1 – p) log(1 – p),

which can be obtained by the law of large numbers. Indeed, this relation implies that the
sample averaged Shannon entropy (scaled log-likelihood function n–1 log Ln) converges to
the population Shannon entropy in probability. To get a clearer perspective of the AEP,
this paper aims to derive a nonasymptotic concentration inequality for the tail probabil-
ity. Zhao [10] demonstrated a novel Bernstein-type inequality for

∑n
i=1 Xi log pi (a part of
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log Ln), which asserts that, for all ε > 0,

P

(∣
∣
∣
∣
∣

n∑

i=1

Xi log pi –
n∑

i=1

pi log pi

∣
∣
∣
∣
∣
≥ nε

)

≤ 2 exp

(

–
nε2

2(1 + ε)

)

(1)

by providing an upper bound, independent of the parameter pi, for the moment generating
function (MGF) of (Xi – pi) log pi.

Invoke the definition of sub-gamma variable (see [1, 8] for more details), which states
that a random variable X is sub-gamma with the variance factor v > 0 and the scale pa-
rameter b > 0 (denoted as sub�(v, b)) if its MGF satisfies, for all |λ| < b–1,

E
(
eλ(X–EX)) ≤ exp

(
vλ2

2(1 – b|λ|)
)

.

Indeed, Theorem 2 of [10] shows that the random variable Xi log pi is sub�(1, 1). As
pointed out by Remark 2 of [10], the scale factor b = 1 on the denominator is optimal,
while the variance factor v = 1 is not sharp. A natural question is whether we can improve
the variance factor as well as the Bernstein-type inequality (1). Moreover, moving back
to the joint log-likelihood function, can we derive a sharp Bernstein-type inequality for
log Ln?

In this paper, we are interested in studying optimal distribution-free (independent of
parameters pi) concentration bounds for

∑n
i=1(Xi – pi) log pi and log Ln =

∏n
i=1(Xi log pi +

(1 – Xi) log(1 – pi)) with independent Xi ∼ Ber(pi) for pi ∈ [0, 1]. Those results, which can-
not be derived by classical Hoeffding’s inequality (see [4, 10]), will be particularly useful
in cases where the assumptions for pi are not convenient to be made. In addition, the
improvements by optimal uniform constants are nonnegligible in the sense of nonasymp-
totic, especially in the case of small sample datasets.

The rest of this paper is organized as follows. Section 2 establishes the Bernstein-type
inequalities for

∑n
i=1(Xi – pi) log pi and the log-likelihood function of the Bernoulli vari-

able, which both enjoy the optimal variance factors and scale factors. Inspired by Bennett’s
inequality for the bounded random variable, we use Bennett’s inequality to improve the
tail bounds on the right tail in Sect. 3. Some extensions are illustrated in Sect. 4. The im-
provements by the optimal constants are demonstrated by various simulation studies in
Sect. 5. Finally, Sect. 6 concludes the article with a discussion.

Notation: Throughout this paper, set 0 log 0 = 0 for convention. All logarithms and ex-
ponentials are in the natural base.

2 Bernstein’s inequality
Based on the classical Chernoff method (see [1, 8, 10]), this section illustrates the optimal
Bernstein-type inequalities for

∑n
i=1(Xi – pi) log pi and log Ln.

Theorem 1 Let Xi be independent Ber(pi) for i = 1, . . . , n, where pi ∈ [0, 1]. Then, for all
ε > 0,

P

(∣
∣
∣
∣
∣

n∑

i=1

(Xi – pi) log pi

∣
∣
∣
∣
∣
≥ nε

)

≤ 2 exp

(

–nγ h
(

ε

γ

))

, (2)

where h(u) = 1 + u –
√

1 + 2u for u > 0 and γ := max0≤x≤1 x(1 – x)(log x)2.
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Proof Denote Yi := (Xi – pi) log pi, where Xi ∼ Ber(pi). It follows that EYi = 0 and Var(Yi) =
pi(1 – pi)(log pi)2. Note γ = max0≤x≤1 x(1 – x)(log x)2, which is approximately 0.477365 at
x0 ≈ 0.104058. Hence, Var(Yi) ≤ γ with the equality if and only if pi = x0. Now, we claim
that the moments of Yi satisfy the Bernstein condition (i.e. see Theorem 1 of [10] or The-
orem 2.10 of [1]) as follows:

∣
∣E(Yi)k∣∣ ≤ 1

2
k!γ for all k ≥ 2. (3)

By the power series expansion of the exponential function and Fubini’s theorem, it follows
that, for all |λ| < 1,

E(expλYi) = 1 +
λ2

2
Var(Yi) +

∞∑

k=3

λk E(Yi)k

k!

≤ 1 +
λ2γ

2
+

∞∑

k=3

|λ|kγ
2

= 1 +
γ λ2

2
1

1 – |λ|

≤ exp

(
γ λ2

2(1 – |λ|)
)

,

where γ is defined as above, and the last inequality uses 1 + x ≤ exp(x) for x ∈ R. There-
fore, the random variable Yi is sub-gamma (γ , 1), which is independent of pi. To this end,
applying the standard Chernoff method (cf. Theorem 2.10 of [1]) gives, for any ε > 0,

P

(∣
∣
∣
∣
∣

n∑

i=1

Yi

∣
∣
∣
∣
∣
≥ ε

)

≤ 2 exp

(

–nγ h
(

ε

γ

))

,

where h(u) = 1 + u –
√

1 + 2u for u > 0 and γ is defined as above.
It remains to show claim (3). The case of k = 2 follows trivially. Similar to Theorem 1 of

[10], for k ≥ 3,

∣
∣E(Yi)k∣∣ =

∣
∣pi(1 – pi)k(log pi)k + (1 – pi)(–pi log pi)k∣∣

≤ ∣
∣pi(log pi)k∣∣ +

∣
∣(–pi log pi)k∣∣

≤
(

k
e

)k

+ exp(–k),

where the first inequality follows from pi ∈ [0, 1] and the last inequality is implied by the
fact that the function f (x) := xr(log x)k for x ∈ (0, 1) achieves its optimum at x = e–k/r for
any r > 0 and integer k ≥ 1. Now we prove the claim by induction. The case of k = 3 follows
from simple computations, that is, 28 exp(–3) ≈ 1.394038 < 3γ . Suppose for some k ≥ 3,
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(kk + 1) exp(–k) ≤ k!γ /2. For the case of k + 1, it follows that

(k + 1)k+1 + 1
exp(k + 1)

≤ k!γ
2

(k + 1)k+1 + 1
e(kk + 1)

<
k!γ
2e

(k + 1)k+1

kk

=
k!γ
2e

(k + 1)
(

1 +
1
k

)k

≤ (k + 1)!γ
2

,

which completes the induction and finishes the proof of this proposition. �

Remark 1 The constant γ is optimal because Yi, being sub-gamma (v, b), satisfies Var(Yi) ≤
v by the property of sub-gamma variables. Indeed, one can choose pi = x0, which achieves
Var(Yi) = γ , thus γ ≤ v, implying its optimality. As pointed out by Remarks 1 and 2 of [10],
the constant b = 1 is optimal since E(Yi)k can achieve c(k/e)k for some constant 0 < c < 1
at pi = exp(–k) and the Stirling approximation

c(k/e)k > c
k!

2
√

2πk
>

k!γ
2

bk–2

for large enough k and any 0 < b < 1. Hence, both the variance factor and the scale factor
in Theorem 1 are optimal.

Remark 2 To give a nice form of (2), by the elementary inequality (Exercise 2.8 of [1])

h(u) ≥ u2

2(1 + u)
for u > 0,

we have, for any ε > 0,

P

(∣
∣
∣
∣
∣

n∑

i=1

(Xi – pi) log pi

∣
∣
∣
∣
∣
≥ nε

)

≤ 2 exp

(

–
nε2

2(γ + ε)

)

, (4)

where γ is defined as Theorem 1. Compared to equation (3) of [10], we improved the
constant σ 2 = 1 to γ ≈ 0.477, which is optimal. Furthermore, one can generalize 1 to the
multinoulli variables and the grouped observation, analogously to Corollary 1 and Theo-
rem 2 of [10].

Analogously, Theorem 2 provides the optimal Bernstein inequality of log Ln.

Theorem 2 Let Xi be independent Ber(pi) for i = 1, . . . , n, where pi ∈ [0, 1]. Then, for all
ε > 0,

P
(∣
∣log Ln – E(log Ln)

∣
∣ ≥ nε

) ≤ 2 exp

(

–nγ0h
(

ε

γ0

))

, (5)

where h(u) = 1 + u –
√

1 + 2u for u > 0 and γ0 := max0≤x≤1 x(1 – x)(log x
1–x )2.
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Proof Similar to the proof of 1, denote Zi := Xi log pi + (1 – Xi) log(1 – pi) – pi log pi – (1 –
pi) log(1 – pi). It follows that log Ln –E(log Ln) =

∑n
i=1 Zi. One can easily verify that P(Zi =

(1 – pi) log(pi/(1 – pi))) = pi and P(Zi = –pi log(pi/(1 – pi))) = 1 – pi for pi ∈ (0, 1). It follows
that E(Zi) = 0 and

Var(Zi) = pi(1 – pi)
[
log

(
pi/(1 – pi)

)]2 ≤ γ0

by the definition of γ0 = max0≤x≤1 x(1 – x)(log x
1–x )2, which is approximately 0.439229 at

x0 ≈ 0.083222 and 1 – x0 ≈ 0.916778. In what follows, we shall show that the moments of
Zi are well bounded, satisfying the Bernstein condition as

∣
∣E(Zi)k∣∣ ≤ 1

2
k!γ0 for all k ≥ 2, (6)

which implies the desired results by the same arguments of Theorem 1. To this end, the
case of k = 2 follows trivially by E(Zi)2 = Var(Zi) ≤ γ0. For k ≥ 3 and all pi ∈ [0, 1], we have

∣
∣E(Zi)k∣∣ =

∣
∣
∣
∣pi(1 – pi)k

(

log
pi

1 – pi

)k

+ (1 – pi)(pi)k
(

– log
pi

1 – pi

)k∣∣
∣
∣,

which is symmetric about pi = 1/2. It suffices to consider pi ∈ [0, 1/2]. Indeed, it follows
that, for 0 ≤ pi ≤ 1/2,

∣
∣E(Zi)k∣∣ ≤

∣
∣
∣
∣pi(1 – pi)k

(

log
pi

1 – pi

)k∣∣
∣
∣ +

∣
∣
∣
∣(1 – pi)(pi)k

(

– log
pi

1 – pi

)k∣∣
∣
∣

≤ ∣
∣pi

(
log pi – log(1 – pi)

)k∣∣ +
∣
∣
∣
∣(1 – pi)k+1

(

–
pi

1 – pi
log

pi

1 – pi

)k∣∣
∣
∣

≤ pi| log pi|k + max
0≤t≤1

(–t log t)k

≤ (
kk + 1

)
exp(–k),

where the first inequality uses |a + b| ≤ |a| + |b|, the second inequality follows from
(1 – pi)k ≤ 1 for pi ∈ [0, 1], the third inequality uses the fact that |(log pi – log(1 – pi))k| ≤
| log pi|k and 0 ≤ pi/(1 – pi) ≤ 1 for 0 ≤ pi ≤ 1/2, and the last inequality is implied by that
the function f (x) := xr(log x)k for x ∈ (0, 1) achieves its optimum at x = e–k/r for any r > 0
and integer k ≥ 1. Note that the case of k = 3 follows from simple computations, that is,

∣
∣E(Zi)3∣∣ =

∣
∣
∣
∣pi(1 – pi)(1 – 2pi)

(

log
pi

1 – pi

)3∣∣
∣
∣

≤ max
0≤t≤1/2

t(1 – t)(2t – 1)
(

log
t

1 – t

)3

≈ 1.14929 < 3γ0

by γ0 > 2/5. While for k ≥ 4, we shall prove (6) by induction with the bound |E(Zi)k| ≤
(kk + 1) exp(–k). The case of k = 4 can be verified by

∣
∣E(Zi)4∣∣ ≤ (

44 + 1
)

exp(–4) ≈ 4.707119 <
1
2

4!γ0,
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where γ0 > 2/5. Suppose for some k ≥ 4, (kk + 1) exp(–k) ≤ k!γ0/2. For the case of k + 1, it
follows that

(k + 1)k+1 + 1
exp(k + 1)

≤ k!γ0

2
(k + 1)k+1 + 1

e(kk + 1)

<
k!γ0

2e
(k + 1)k+1

kk

=
k!γ0

2e
(k + 1)

(

1 +
1
k

)k

≤ (k + 1)!γ0

2

by (1 + 1/k)k ≤ e for all k > 4, which completes the induction and finishes the proof of this
proposition. �

Remark 3 Similar to Remark 1, the constants γ0 and b = 1 are optimal for Bernstein-type
inequality (5). One can also obtain a friendly form of (5) as

P
(∣
∣log Ln – E(log Ln)

∣
∣ ≥ nε

) ≤ 2 exp

(

–
nε2

2(γ0 + ε)

)

, (7)

in which γ0 is defined as Theorem 2.

3 Bennett’s inequality
The Bernstein-type inequalities in Sect. 2 are useful on both left and right tails, while one
may be more interested in the right tail in practice. A natural question to ask at this point
is whether we can derive a tighter bound on right tails for the log-likelihood function of
binary data. Thanks to the definition of the Bernoulli variables, the components of the
log-likelihood function are well upper-bounded, which inspires us to use the Bennett in-
equality to derive a more informative upper bound on the right tail, see [1, 8] for more
details on Bennett’s inequality.

Theorem 3 Under the condition of Theorem 1, for all ε > 0, we have

P

( n∑

i=1

(Xi – pi) log pi ≥ nε

)

≤ exp

(

–e2nγ g
(

ε

eγ

))

, (8)

where g(u) = (1 + u) log(1 + u) – u for u > 0 and γ := max0≤x≤1 x(1 – x)(log x)2.

Proof Consider Yi := (Xi – pi) log pi and S =
∑n

i=1 Yi. It is not hard to verify that Yi ≤
–pi log pi ≤ 1/e for all pi ∈ [0, 1]. Following the classical method of Bennett’s inequality,
let φ(u) := eu – u – 1 for all u ∈ R. By u–2φ(u) is a nondecreasing function of u ∈R (where
at 0 we continuously extend the function). Hence, for all λ > 0, eλYi – λYi – 1 ≤ e2Y 2

i φ(λ/e),
implying that E(eλYi ) ≤ 1 + e2

E(Y 2
i )φ(λ/e) by E(Yi) = 0. Since Yi’s are independent, it fol-

lows that

E
(
eλS) =

n∏

i=1

E
(
eλYi

) ≤
n∏

i=1

(
1 + e2

E
(
Y 2

i
)
φ(λ/e)

) ≤ exp

(

e2φ(λ/e)
n∑

i=1

E
(
Y 2

i
)
)

(9)
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by log(1 + u) ≤ u for all u ≥ 0. Note E(Y 2
i ) = pi(1 – pi)(log pi)2 ≤ γ , where γ is defined

as in Theorem 3, which implies logE(eλS) ≤ e2nγφ(λ/e) for all λ > 0. Then the Cramér
transform of S is bounded by that of a corresponding Poisson random variable (see Chap. 2
of [1]), that is,

P(S ≥ nε) ≤ exp

(

–e2nγ g
(

ε

eγ

))

,

in which γ is defined as above and g(u) = (1 + u) log(1 + u) – u for u > 0, completing the
proof of (8). �

Analogously, we can obtain Bennett’s inequality for the joint log-likelihood function
log Ln.

Theorem 4 Under the condition of Theorem 2, for all ε > 0, we have

P

( n∑

i=1

(Xi – pi) log

(
pi

1 – pi

)

≥ nε

)

≤ exp

(

–
nγ0

β2 g
(

βε

γ0

))

, (10)

where g(u) = (1 + u) log(1 + u) – u for u > 0, β := max0<x<1(1 – x) log(x/(1 – x)) and γ0 :=
max0≤x≤1 x(1 – x)(log x

1–x )2.

Proof The proof follows similar arguments of Theorem 3. Indeed, set Zi := Xi log pi + (1 –
Xi) log(1 – pi) – pi log pi – (1 – pi) log(1 – pi), which satisfies E(Zi) = 0 and E(Z2

i ) ≤ γ0 by
Theorem 2. To this end, we have Zi ≤ max0≤t≤1(1 – t) log t

1–t = β for all 1 ≤ i ≤ n. Hence,
by similar arguments as those of Theorem 3, for all ε > 0,

P

( n∑

i=1

(Xi – pi) log

(
pi

1 – pi

)

≥ nε

)

≤ exp

(

–
nγ0

β2 g
(

βε

γ0

))

,

where β , g(u) are defined in Theorem 4 and γ0 is defined as in Theorem 2. �

Remark 4 To get a nice form of (8), one can verify that

g(u) ≥ u2

2(1 + u/3)
,

which delivers that, under the condition of Theorem 3,

P

( n∑

i=1

(Xi – pi) log pi ≥ nε

)

≤ exp

(

–
nε2

2(γ + ε/(3e))

)

, (11)

improving upon the Bernstein-type inequality by a factor of 3e on the right tail (compared
with (4) in Remark 2). One can also obtain that

P

( n∑

i=1

(Xi – pi) log

(
pi

1 – pi

)

≥ nε

)

≤ exp

(

–
nε2

2(γ0 + βε/3)

)

, (12)

improving upon the Bernstein-type inequality by a factor of 3/β on the right tail (com-
pared with (7) in Remark 3).



Ren Journal of Inequalities and Applications         (2023) 2023:81 Page 8 of 11

4 Extensions
The results in Sects. 2 and 3 are distribution-free, it is of interest to investigate some ex-
tensions of the concentration inequalities. In this section, we point out a possible direction
that generalizes the results above.

As illustrated in Sect. 3, the improved upper tail relies on (9), which uses an elemental
inequality 1 + x ≤ exp(x) for all x ∈ R. In addition to the distribution-free concentration,
it is also valuable to obtain some concentration inequalities dependent on parameters,
which might be better than that when faced with specific problems. Inspired by the refined
Bennett inequality provided by [13], we can sharpen Theorems 3 and 4 by equipping the
arithmetic-geometric (AG) mean inequality. Under the condition of Theorem 3, we have

n∏

i=1

E
(
eλYi

) ≤
n∏

i=1

(
1 + E

(
Y 2

i
)
φ(λ/e)

) ≤ (
1 + s̄φ(λ/e)

)n,

where s̄ :=
∑n

i=1 E(Y 2
i )/n by

∏n
k=1 xk ≤ (x̄)n for xk ≥ 0 with x̄ =

∑n
i=1 xk/n. Then we can

deduce a similar Bennett inequality by the classical Chernoff method. Moreover, following
the arguments in Sect. 3 of [13], we can obtain refined Bennett inequalities by applying a
refined AG mean inequality, introduced by [2], which improves the upper bound of the
MGF of S by extracting the difference between the parameters pis.

5 Simulation study
In this section, we are going to show some simulation studies to express the improvements
in our results. Because of the distribution-free property of the tail bounds, we shall ignore
the parameters pis and compare the logarithmic tail probabilities for various sample sizes
n and the error rates ε. Both the two-sides tail and the right-side tail are illustrated with
different n and ε.

At first, consider the improvement of the concentration bound for
∑n

i=1(Xi – pi) log pi.
The sample size takes four values with n = 100, 200, 500, and 1000. For each n, the error
rate varies from 0.1 to 1. For each fixed (n, ε), the two-sides Bernstein-type tail probability
bounds (2) and (4) with optimal constants and the result due to [10] (see (1)) are compared,
which can be found in Fig. 1. The sharp Bernstein-type inequalities (Theorem 1) improve
the previous result (1) significantly for various cases.

For the joint log-likelihood function, the result provided by [11] asserts that (see Theo-
rem 1 of [11] with K = 2), for small ε > 0,

P

(∣
∣
∣
∣
∣

n∑

i=1

(Xi – pi) log

(
pi

1 – pi

)∣
∣
∣
∣
∣
≥ nε

)

≤ 2 exp

(

–
nε2

4(max{log K , log 5})2

)

. (13)

Similar to the first example above, the sample size n = 100, 200, 500, and 1000. For each
n, the error rate varies from 0.1 to 1. The tail probabilities (5), (7), and (13) are demon-
strated. From Fig. 2, our results perform better than (13) over different n and small ε, which
are interesting cases in practice. Moreover, the right-tail concentration results (Theo-
rems 3 and 4) are also compared. To this end, let the sample size take the values from
{100, 300, 1000, 2000}, and the error rate varies from 0.1 to 1. The one-side tail bounds
(1), (2), and (8) can be found in Fig. 3, where the factor 2 in (1) and (2) is removed for the
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Figure 1 The logarithmic tail probabilities for (1), (2), and (4) with different n (upper left n = 100, upper right
n = 200, bottom left n = 500, and bottom right n = 1000) and ε

Figure 2 The logarithmic tail probabilities for (5), (7), and (13) with different n (upper left n = 100, upper right
n = 200, bottom left n = 500, and bottom right n = 1000) and ε

right-tail case. Similarly, the right-tail bounds (5), (10), and (13) can be found in Fig. 4 in
which the factor 2 in (5) and (13) is removed for the right-tail case. The sharp Bennett
inequalities improve the right-tail bounds significantly when the error rate increases.
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Figure 3 The logarithmic right-tail probabilities for (1), (2), and (8) with different n (upper left n = 100, upper
right n = 300, bottom left n = 1000, and bottom right n = 2000) and ε

Figure 4 The logarithmic right-tail probabilities for (5), (10), and (13) with different n (upper left n = 100,
upper right n = 300, bottom left n = 1000, and bottom right n = 2000) and ε
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6 Conclusion
We study the distribution-free concentration inequalities for the log-likelihood function
of Bernoulli variables. Indeed, we established the optimal Bernstein-type inequalities with
the best constants of variance factor and scale factor in the sense of sub-gamma random
variable. Moreover, Bennett’s inequalities with sharp constants are also illustrated, which
improves the scale factors of Bernstein-type inequalities on the right tails.

There are some limitations of this study. First, it is more interesting to consider the con-
centration with multiple discrete distributions, see [11] for more details. Secondly, we fo-
cus on the distribution-free concentration, while it is also valuable to obtain some concen-
tration inequalities dependent on parameters, which might be better than that when faced
with specific problems. Furthermore, one can consider the concentration of the likelihood
ratio statistics, which is an interesting direction for further study.
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