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Abstract
We propose the concept of Riemann diamond-alpha integrals for time scales
interval-valued functions. We first give the definition and some properties of the
interval Riemann diamond-alpha integral that are naturally investigated as an
extension of interval Riemann nabla and delta integrals. With the help of the interval
Riemann diamond-alpha integral, we present interval variants of Jensen inequalities
for convex and concave interval-valued functions on an arbitrary time scale.
Moreover, diamond-alpha Hölder’s and Minkowski’s interval inequalities are proved.
Also, several numerical examples are provided in order to illustrate our main results.
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1 Introduction
The description of deterministic real-world phenomena using mathematical models or
computer models allows us to approach and study them effectively from a mathemati-
cal perspective. However, in some practical situations, modeled problems have appeared
with uncertainties or vaguenesses due to uncertain data, imprecise measurement, etc. De-
pending on the characteristics of problems and the types of uncertainties, the correspond-
ing modeled problems can be fuzzy, stochastic, or interval-valued. For instance, we can
utilize the tools of interval analysis in situations where the values of the input data are
uncertain, but we can determine or estimate the intervals to which these values belong.
Interval analysis was pioneered by Ramon Moore (see [27]) in 1966. After that, there have
been various studies on interval analysis in both theoretical and applied mathematics (see
[11, 17, 23, 28, 34] and the references given in there). More recently, some well-known inte-
gral inequalities were generalized to the interval-valued case, such as Jensen’s inequalities
(see [12, 35]), Minkowski’s inequality (see [30]), Chebyshev’s inequality (see [36]), Opial’s
inequalities (see [14, 37]), and Wirtinger’s inequalities (see [13]). These research works
have provided fundamental tools used in mathematics as well as applied and engineering
sciences.

Time scales were first introduced and studied by Stefan Hilger (1988) in his PhD thesis.
This study constitutes a powerful and practical approach in attempting to unify standard
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concepts in discrete and continuous mathematics. Time scales theory was previously ap-
plied to numerous problems in applied and pure mathematics (see [5, 7, 16, 18, 22]). In
2006, Qin Sheng et al. (see [33]) introduced and studied a combined so-called diamond-
alpha dynamic derivative as a linear combination of nabla and delta dynamic derivatives.
Also, diamond-alpha integrals and their applications were studied in [4, 10, 24, 25]. In
general, inequalities in classical calculus or time scales calculus play crucial roles in many
areas of mathematical analysis. Hence, there have been numerous works in attempting to
extend the classical inequalities to inequalities on time scales in some recent years, for in-
stance, Jensen-type inequalities (see [3, 6, 26]), Ostrowski-type inequalities (see [21, 29]),
and Hardy-type inequalities (see [2, 31]).

In recent decades, time scales calculus for interval or fuzzy contexts has been more and
more attractive with various research works. First, using the so-called Hukuhara differ-
ence, Shihuang Hong proposed the Hukuhara–Hilger derivative of time scales multivalued
functions to study multivalued dynamic equations on time scales (see [19]). Then, in or-
der to offer tools for the study of interval dynamic equations, Vasile Lupulescu introduced
generalized differentiability and Riemann delta integrability of dynamic interval-valued
functions (see [23]). In 2019, Dafang Zhao et al. (see [38]) provided several time scales
versions of interval integral inequalities. To do this, the authors proposed the concept
of interval Darboux delta integral and interval Riemann delta integral for interval-valued
functions. For further details about time scales calculus with uncertainties, we refer to
[20, 32, 37] and references therein.

Motivated by the above observations, this paper aims to propose a new concept of in-
terval Riemann diamond-α integral for a class of time scales interval-valued functions
defined as a linear combination of interval Riemann nabla and delta integrals. With the
help of this concept, we prove diamond-α Jensen’s interval inequalities for convex and
concave interval-valued functions. Also, interval versions of the diamond-α Hölder and
Minkowski inequalities are presented. The set up of this paper is as follows. In Sect. 2,
we first recall some basic properties from time scales calculus and interval analysis that
will be used in the rest of the paper. The definition of interval Riemann diamond-α in-
tegrals for interval-valued functions and some of its essential properties are contained in
Sect. 3. In Sect. 4, we present Jensen’s interval inequalities, Hölder’s interval inequality,
and Minkowski’s interval inequality for interval Riemann diamond-α integrals. Finally, in
Sect. 5, several numerical examples are offered in order to illustrate our main findings.

2 Preliminaries
Throughout this paper, we denote by R and Z the sets of real and integer numbers, re-
spectively.

2.1 Time scales and diamond-α integrals
Definition 2.1 (See [9]) Any closed ∅ �= T ⊂R is called a time scale.

Definition 2.2 (See [9]) The so-called forward and backward jump operators σ ,ρ : T → T

are given by

σ (t) = inf{s ∈ T|s > t} and ρ(t) = sup{s ∈ T|s < t},

where inf∅ = supT and sup∅ = infT.
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Definition 2.3 (See [9]) A point t ∈ T is called right-scattered, left-scattered, right-dense,
or left-dense if σ (t) > t, ρ(t) < t, σ (t) = t, or ρ(t) = t, respectively. A time scale is called
isolated if all of its elements are both left-scattered and right-scattered.

In the sequel, we denote by [a, b]T, [a, b)T, (a, b]T, and (a, b)T the intersection with T of
real intervals [a, b], [a, b), (a, b], and (a, b), respectively.

Definition 2.4 (See [9]) Let t ∈ T and δ > 0. A neighborhood of t is denoted by UT(t, δ)
and defined by UT(t, δ) = (t – δ, t + δ)T

Definition 2.5 Let {tn}n∈N ⊂ T and a ∈ T. We say that {tn}n∈N convergences to a, denoted
by tn → a, if for any ε > 0, there is N ∈N with tn ∈ UT(a, ε) for all n ≥ N .

Definition 2.6 (See [16]) φ : T →R is called ld-continuous (or rd-continuous) if it is con-
tinuous in left-dense (right-dense) points in T and its right-sided (left-sided) limits exist
as finite numbers in right-dense (left-dense) points of T. The sets of all ld-continuous, rd-
continuous, and continuous φ : T → R are denoted by Cld(T,R), Crd(T,R), and C(T,R),
respectively.

Definition 2.7 (See [24]) A partition of an interval [a, b]T is an arbitrary, in increasing
order arranged

P = {a = t0, t1, . . . , tn = b} ⊂ [a, b]T.

The set of all of such partitions is denoted by P = P((a, b)T).

Lemma 2.1 (See [8]) For each δ > 0, there is {t0, . . . , tn} = P ∈P with the property that, for
all i ∈ {1, 2, . . . , n}, either we have ti – ti–1 ≤ δ or otherwise ti – ti–1 > δ and σ (ti–1) = ti.

By Pδ = Pδ((a, b)T), we denote the collection of all partitions possessing the property
described in Lemma 2.1.

Definition 2.8 (See [24]) Assume 0 ≤ α ≤ 1. Let φ : [a, b]T → R be bounded, and let
{t0, . . . , tn} = P ∈P . For 1 ≤ i ≤ n, we pick ξi ∈ [ti–1, ti)T, ηi ∈ (ti–1, ti]T, and put

S =
n∑

i=1

(
αφ(ξi) + (1 – α)φ(ηi)

)
(ti – ti–1).

The sum S is said to be a Riemann ♦α-sum of φ that corresponds to P ∈ P . The function
φ is called Riemann ♦α-integrable on [a, b]T provided there is some R ∈R so that for each
ε > 0, there is δ > 0 with the property that P ∈ Pδ implies |S – R| < ε, independent of how
ξi, ηi for 1 ≤ i ≤ n are chosen. Then, R is said to be the Riemann ♦α-integral of φ on [a, b],
and it is denoted by

∫ b
a φ(s)♦αs.

The next result gives us a sufficient condition for the Riemann ♦α-integrability of a real-
valued function on a time scale.
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Theorem 2.1 Let a, b ∈ T, φ : T → R, and 0 ≤ α ≤ 1. Assume that φ is both Riemann

-integrable on [a, b)T and Riemann ∇-integrable on (a, b]T. Then, φ is Riemann ♦α-
integrable on [a, b]T and

∫ b

a
φ(s)♦αs = α

∫ b

a
φ(s)
s + (1 – α)

∫ b

a
φ(s)∇s.

Proof The proof can be found in [3]. �

Theorem 2.2 (See [24]) Let φ : [a, b]T → R be a real-valued function. If φ is continuous
on [a, b]T, then φ is Riemann ♦α-integrable on [a, b]T.

Proposition 2.1 (See [24]) Assume a, b, c ∈ T, a < c < b, λ1, λ2 ∈ R, and let φ,ψ : T → R

be continuous. Then, the following statements hold.
(i)

∫ b
a [λ1φ(s) + λ2ψ(s)]♦αs = λ1

∫ b
a φ(s)♦αs + λ2

∫ b
a ψ(s)♦αs.

(ii)
∫ b

a φ(s)♦αs =
∫ c

a φ(s)♦αs +
∫ b

c φ(s)♦αs.
(iii)

∫ b
a φ(s)♦αs ≥ 0 if φ(s) ≥ 0 for all s ∈ [a, b]T.

(iv)
∫ b

a φ(s)♦αs ≥ ∫ b
a ψ(s)♦αs if φ(s) ≥ ψ(s) for all s ∈ [a, b]T.

Proposition 2.2 (See [24]) If t ∈ T and φ : T→R, then the following statements hold.
(i) φ is Riemann ♦α-integrable on [t,σ (t)]T and

∫ σ (t)

t
φ(s)♦αs = μ(t)

[
αφ(t) + (1 – α)φ

(
σ (t)

)]
,

where μ(t) := σ (t) – t for all t ∈ T.
(ii) φ is Riemann ♦α-integrable on [ρ(t), t]T and

∫ t

ρ(t)
φ(s)♦αs = ν(t)

[
αφ

(
ρ(t)

)
+ (1 – α)φ(t)

]
,

where ν(t) := t – ρ(t) for all t ∈ T.

For further details on the Riemann ♦α-integral of real-valued functions, we refer to [1,
3, 33] and the references therein.

2.2 Inequalities for diamond-α integrals
Next, we recall and prove the following results about diamond-α inequalities that play
important roles in our analysis.

Proposition 2.3 (See [1, Theorem 2.2.5]) Assume a, b ∈ T and c, d ∈ R. If � ∈ C([a, b]T,
(c, d)) and φ ∈ C((c, d),R) is convex, then

φ

(∫ b
a �(s)♦αs

b – a

)
≤ 1

b – a

∫ b

a
φ
(
�(s)

)
♦αs. (1)

If φ is strictly convex, then ≤ in (1) may be replaced by <. If φ is concave, then ≤ in (1) is
reversed.
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We call (1) the diamond-α Jensen inequality. The following proposition presents the
extended diamond-α Jensen inequality.

Proposition 2.4 (See [1, Theorem 2.2.6]) Assume a, b ∈ T and c, d ∈ R. If � ∈ C([a, b]T,
(c, d)), φ ∈ C((c, d),R) is convex, and θ ∈ C([a, b]T,R) satisfies

∫ b
a |θ (s)|♦αs > 0, then

φ

(∫ b
a |θ (s)|�(s)♦αs
∫ b

a |θ (s)|♦αs

)
≤

∫ b
a |θ (s)|φ(�(s))♦αs

∫ b
a |θ (s)|♦αs

. (2)

If φ is strictly convex, then ≤ in (2) may be replaced by <. If φ is concave, then ≤ in (2) is
reversed.

Proposition 2.5 (See [1, Theorem 2.3.11]) Let a, b ∈ T. Assume that θ ,φ,ψ ∈ C([a, b]T,R)
such that

∫ b
a θ (s)ψq(s)♦αs > 0. If 1

p + 1
q = 1 with p > 1, then

∫ b

a

∣∣θ (s)
∣∣∣∣φ(s)ψ(s)

∣∣♦αs ≤
(∫ b

a

∣∣θ (s)
∣∣∣∣φ(s)

∣∣p♦αs
) 1

p
(∫ b

a

∣∣θ (s)
∣∣∣∣ψ(s)

∣∣q♦αs
) 1

q
. (3)

The inequality (3) is known as a diamond-α Hölder inequality on time scales. For α = 0
and α = 1, the inequality (3) becomes the nabla and delta Hölder inequalities, respectively.
In the particular case θ (s) = 1 for all s ∈ [a, b]T and φ,ψ ∈ C([a, b]T,R+), the inequality (3)
of Proposition 2.5 can be rewritten as

∫ b

a
φ(s)ψ(s)♦αs ≤

(∫ b

a
φp(s)♦αs

) 1
p
(∫ b

a
ψq(s)♦αs

) 1
q

.

The following proposition gives us the reversed diamond-α Hölder inequality on time
scales.

Proposition 2.6 Let a, b ∈ T. Assume that φ,ψ ∈ C([a, b]T,R+) such that 0 < k ≤ φp/ψq ≤
K < ∞. If 1

p + 1
q = 1 with p > 1, then

(∫ b

a
φp(s)♦αs

) 1
p
(∫ b

a
ψq(s)♦αs

) 1
q

≤
(

K
k

) 1
pq

∫ b

a
φ(s)ψ(s)♦αs. (4)

Proof For p > 1, 1
p + 1

q = 1, from the fact 0 < k ≤ φp/ψq, we obtain φ ≥ k
1
p ψ

q
p for all φ,ψ ∈

C([a, b]T,R+). By applying Proposition 2.1(iv), we obtain

∫ b

a
φ(s)ψ(s)♦αs ≥ k

1
p

∫ b

a
ψ(s)ψ

q
p (s)♦αs = k

1
p

∫ b

a
ψq(s)♦αs,

which implies that

(∫ b

a
φ(s)ψ(s)♦αs

) 1
q

≥ k
1

pq

(∫ b

a
ψq(s)♦αs

) 1
q

. (5)
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Similarly, since φp/ψq ≤ K , we have φp = φφ
p
q ≤ K

1
q φψ . It follows from Proposition 2.1(iv)

that

(∫ b

a
φp(s)♦αs

) 1
p

≤ K
1

pq

(∫ b

a
φ(s)ψ(s)♦αs

) 1
p

. (6)

Combining the inequalities (5) and (6), we therefore derive

(∫ b

a
φp(s)♦αs

) 1
p
(∫ b

a
ψq(s)♦αs

) 1
q

≤
(

K
k

) 1
pq

∫ b

a
φ(s)ψ(s)♦αs.

The proof is finished. �

The next proposition provides the diamond-α Minkowski inequality.

Proposition 2.7 If a, b ∈ T, θ ,φ,ψ ∈ C([a, b]T,R), and p > 1, then

(∫ b

a

∣∣θ (s)
∣∣∣∣φ(s) + ψ(s)

∣∣p♦αs
) 1

p

≤
(∫ b

a

∣∣θ (s)
∣∣∣∣φ(s)

∣∣p♦αs
) 1

p
+

(∫ b

a

∣∣θ (s)
∣∣∣∣ψ(s)

∣∣p♦αs
) 1

p
. (7)

Proof For p > 1, from the triangle inequality, we get

∫ b

a

∣∣θ (s)
∣∣∣∣φ(s) + ψ(s)

∣∣p♦αs =
∫ b

a

∣∣θ (s)
∣∣∣∣φ(s) + ψ(s)

∣∣∣∣φ(s) + ψ(s)
∣∣p–1♦αs

≤
∫ b

a

∣∣θ (s)
∣∣∣∣φ(s)

∣∣∣∣φ(s) + ψ(s)
∣∣p–1♦αs

+
∫ b

a

∣∣θ (s)
∣∣∣∣ψ(s)

∣∣∣∣φ(s) + ψ(s)
∣∣p–1♦αs.

By Hölder’s inequality (3) in Proposition 2.5, we get

∫ b

a

∣∣θ (s)
∣∣∣∣φ(s)

∣∣∣∣φ(s) + ψ(s)
∣∣p–1♦αs

≤
(∫ b

a

∣∣θ (s)
∣∣∣∣φ(s)

∣∣p♦αs
) 1

p
(∫ b

a

∣∣θ (s)
∣∣(∣∣φ(s) + ψ(s)

∣∣p–1) p
p–1 ♦αs

)1– 1
p

and
∫ b

a

∣∣θ (s)
∣∣∣∣ψ(s)

∣∣∣∣φ(s) + ψ(s)
∣∣p–1♦αs

≤
(∫ b

a

∣∣θ (s)
∣∣∣∣ψ(s)

∣∣p♦αs
) 1

p
(∫ b

a

∣∣θ (s)
∣∣(∣∣φ(s) + ψ(s)

∣∣p–1) p
p–1 ♦αs

)1– 1
p

.

Therefore, we obtain

∫ b

a

∣∣θ (s)
∣∣∣∣φ(s) + ψ(s)

∣∣p♦αs
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≤
(∫ b

a

∣∣θ (s)
∣∣(∣∣φ(s) + ψ(s)

∣∣p–1) p
p–1 ♦αs

)1– 1
p

×
[(∫ b

a

∣∣θ (s)
∣∣∣∣φ(s)

∣∣p♦αs
) 1

p
+

(∫ b

a

∣∣θ (s)
∣∣∣∣ψ(s)

∣∣p♦αs
) 1

p
]

,

and hence we arrive at the inequality (7). The proof is finished. �

Proposition 2.8 Let a, b ∈ T. Assume that φ,ψ ∈ C([a, b]T,R+) such that 0 < k ≤ φ/ψ ≤
K < ∞. If p > 1, then

(∫ b

a
φp(s)♦αs

) 1
p

+
(∫ b

a
ψp(s)♦αs

) 1
p

≤
(

K
k

) p–1
p2

(∫ b

a

[
φ(s) + ψ(s)

]p♦αs
) 1

p
. (8)

Proof For p > 1, using Proposition 2.6, we have

∫ b

a
φ(s)

[
φ(s) + ψ(s)

]p–1♦αs

≥
(

k
K

) p–1
p2

(∫ b

a
φp(s)♦αs

) 1
p
(∫ b

a

([
φ(s) + ψ(s)

]p–1) p
p–1 ♦αs

)1– 1
p

and

∫ b

a
ψ(s)

[
φ(s) + ψ(s)

]p–1♦αs

≥
(

k
K

) p–1
p2

(∫ b

a
ψp(s)♦αs

) 1
p
(∫ b

a

([
φ(s) + ψ(s)

]p–1) p
p–1 ♦αs

)1– 1
p

.

It follows that

∫ b

a

[
φ(s) + ψ(s)

]p♦αs

=
∫ b

a
φ(s)

[
φ(s) + ψ(s)

]p–1♦αs +
∫ b

a
ψ(s)

[
φ(s) + ψ(s)

]p–1♦αs

≥
(

k
K

) p–1
p2

(∫ b

a

([
φ(s) + ψ(s)

]p–1) p
p–1 ♦αs

)1– 1
p

×
[(∫ b

a
φp(s)♦αs

) 1
p

+
(∫ b

a
ψp(s)♦αs

) 1
p
]

.

Therefore,

(∫ b

a

[
φ(s) + ψ(s)

]p♦αs
) 1

p
≥

(
k
K

) p–1
p2

[(∫ b

a
φp(s)♦αs

) 1
p

+
(∫ b

a
ψp(s)♦αs

) 1
p
]

.

The proof is finished. �
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2.3 Interval arithmetic and interval-valued functions on time scales
Further, we denote by I = {I = [I, I]|I, I ∈ R and I ≤ I} the class of all non-empty compact
intervals of real numbers. The interval I ∈ I is said to be positive (or negative) if I > 0 (or
I < 0). The set of all positive intervals and negative intervals are denoted by I+ and I–,
respectively.

The next definition gives us some arithmetic operations in I used in the rest of this
paper.

Definition 2.9 (See [27]) Let I = [I, I], J = [J , J] ∈ I and λ ∈R. We define
(i) Addition: I ⊕ J = [I + J , I + J].

(ii) Scalar multiplication:

λ · I =

⎧
⎨

⎩
[λI,λI], if λ ≥ 0,

[λI,λI], if λ < 0.

(iii) Multiplication: I · J = [min{IJ , IJ , IJ , IJ}, max{IJ , IJ , IJ , IJ}].
(iv) Power:

In =

⎧
⎪⎪⎨

⎪⎪⎩

[In, In], if I ∈ I+ or n is odd,

[In, In], if I ∈ I– or n is even,

[0, |I|n], if 0 ∈ I or n is even.

(v) Inclusion: I ⊆ J if and only if J ≤ I and I ≤ J .

Definition 2.10 (See [34]) Let I = [I, I], J = [J , J] be intervals in I . The generalized
Hukuhara difference (gH-difference for short) of I and J is defined by

I gH J =
[
min{I – J , I – J}, max{I – J , I – J}].

The gH-difference is also represented by the form

I gH J =

⎧
⎨

⎩
[I – J , I – J] if �(I) ≥ �(J),

[I – J , I – J] if �(I) < �(J),

where �(I) = I – I is said to be the length of I = [I, I] ∈ I .
In addition to the mentioned algebraic operations, the set of intervals I is also a com-

plete metric space with the Hausdorff distance D defined by D : I × I →R
+ ∪ {0} with

D(I, J) = max
{|I – J|, |I – J|}.

We collect some well-known and important properties of the Hausdorff metric.

Proposition 2.9 (See [34]) Let I, J , M, N ∈ I and λ ∈R. Then, the following assertions are
true.

(i) D(I ⊕ M, J ⊕ M) = D(I, J),
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(ii) D(λ · I,λ · J) = |λ|D(I, J),
(iii) D(I ⊕ J , M ⊕ N) ≤ D(I, M) + D(J , N).

In order to establish continuity of time scales interval-valued functions, we now give the
following definition.

Definition 2.11 Let � : T → I be an interval-valued function on a time scale T, and let
t0 ∈ T. An interval � is called the T-limit of � as t tends to t0, denoted by limt→t0 �(t) = �,
if, for any {tn}n∈N ⊂ T \ {σ (t0),ρ(t0)} with tn → t0, we have limn→∞ D(�(tn),�) = 0.

Definition 2.12 Assume � : T → I and t0 ∈ T. An interval � is called the left-sided (or
right-sided) T-limit of � as t tends to t0, denoted by limt→t–

0
�(t) = � (or limt→t+

0
�(t) =

�), if, for any {tn}n∈N ⊂ T \ {σ (t0),ρ(t0)}, tn ≤ t0 (or tn ≥ t0) with tn → t0, we have
limn→∞ D(�(tn),�) = 0.

If � : T → I and � ∈ I , then clearly limt→t0 �(t) = � iff limt→t–
0
�(t) = limt→t+

0
�(t) = �.

Theorem 2.3 Let � : T→ I , and let t0 ∈ T. The limit of � as t → t0, if it exists, is unique.

Proof The proof can be obtained easily from the definition of T-limit and the properties
of the distance D. �

Theorem 2.4 Let � : T → I be an interval-valued function such that �(t) = [�(t),�(t)]
for all t ∈ T, and let t0 ∈ T. Then, existence of limt→t0 �(t) implies existence of both limits
limt→t0 �(t) and limt→t0 �(t). Moreover,

lim
t→t0

�(t) =
[

lim
t→t0

�(t), lim
t→t0

�(t)
]
.

Proof Let {tn}n∈N ⊂ T \ {σ (t0),ρ(t0)} be such that tn → t0. Assuming limt→t0 �(t) = � =
[�1,�2] ∈ I , we obtain limn→∞ D(�(tn),�) = 0. From the way the Hausdorff distance is
defined, we get

lim
n→∞

∣∣�(tn) – �1
∣∣ = lim

n→∞
∣∣�(tn) – �2

∣∣ = 0.

Therefore, limt→t0 �(t) = �1 and limt→t0 �(t) = �2. This shows the result. �

Definition 2.13 An interval-valued function � : T → I is called continuous at t0 ∈ T if
limt→t0 �(t) exists and limt→t0 �(t) = �(t0). The function � is said to be ld-continuous (or
rd-continuous) if it is continuous at left-dense (or right-dense) points in T and its right-
sided (or left-sided) limits exist (and are finite) at right-dense (or left-dense) points in
T. The set of all ld-continuous, rd-continuous, and continuous functions � : T → I are
denoted by Cld(T,I), Crd(T,I), and C(T,I), respectively.

The following remark gives us the relationship between the continuity, ld-continuity,
and rd-continuity of an interval-valued function.

Remark 2.1 Let [�,�] = � : T → I and t0 ∈ T. Then � is continuous (ld-continuous or
rd-continuous) at t0 iff the real-valued functions � and � are continuous (ld-continuous
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or rd-continuous) at t0. In addition, from [9, Theorem 1.60], it follows that if the real-
valued functions � and � are continuous, then they are both ld-continuous and rd-
continuous. Hence, C(T,I) ⊂ Cld(T,I) ∩ Crd(T,I).

3 Interval Riemann diamond-α integral for interval-valued functions
Our principal goal in this section is to propose a new integral definition for time scales
interval-valued functions, called interval Riemann diamond-α integral. Moreover, some
essential characteristics of this integral also are investigated. In what follows, we always as-
sume α ∈ [0, 1] unless we explicitly state some exceptions. First, we start with the concepts
of interval Riemann nabla and delta integrals.

Definition 3.1 Let � : (a, b]T → I be bounded and P = {t0, t1, . . . , tn} ∈P . Choosing arbi-
trary points ηi ∈ (ti–1, ti]T, for 1 ≤ i ≤ n, the sum

RS∇ =
n∑

i=1

(ti – ti–1) · �(ηi)

is said to be the interval Riemann ∇-sum of � corresponding to P. Then � is called interval
Riemann ∇-integrable on the region (a, b]T if there is I∇ ∈ I so that for every ε > 0, there
is δ > 0 satisfying

D(RS∇ , I∇ ) < ε

for each interval Riemann ∇-sum of � that corresponds to P ∈ Pδ , independent of the
way ηi ∈ (ti–1, ti]T, for 1 ≤ i ≤ n, is chosen. I∇ is said to be the interval Riemann ∇-integral
of � on (a, b]T, and we write I∇ =

∫ b
a �(s)∇s.

Analogously, the interval Riemann delta integral of a time scales interval-valued func-
tion can be defined as follows.

Definition 3.2 (See [23]) Let � : [a, b)T → I be bounded and P = {t0, t1, . . . , tn} ∈ P .
Choosing arbitrary points ξi ∈ [ti–1, ti)T, for 1 ≤ i ≤ n, the sum

RS
 =
n∑

i=1

(ti – ti–1) · �(ξi)

is said to be the interval Riemann 
-sum of � corresponding to P. Then � is called in-
terval Riemann 
-integrable on the region [a, b)T if there is I
 ∈ I so that for every ε > 0,
there is δ > 0 satisfying

D(RS
, I
) < ε

for each Riemann 
-sum of � that corresponds to P ∈ Pδ , independent of the way ξi ∈
[ti–1, ti)T, for 1 ≤ i ≤ n, is chosen. I
 is said to be the interval Riemann 
-integral of � on
[a, b)T, and we write I
 =

∫ b
a �(s)
s.
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Theorem 3.1 Let [�,�] = � : T→ I . Then, � is interval Riemann ∇-integrable on (a, b]T
iff � and � are Riemann ∇-integrable on (a, b]T. In addition,

∫ b

a
�(s)∇s =

[∫ b

a
�(s)∇s,

∫ b

a
�(s)∇s

]
.

Proof The proof can be obtained easily using the technique from the proof of [23, Theo-
rem 6]. �

More details about the interval Riemann 
-integral can be found in [23].

Definition 3.3 Let � be a bounded interval-valued function on [a, b]T, and let {t0, . . . , tn} =
P ∈P . For 1 ≤ i ≤ n, we pick ξi ∈ [ti–1, ti)T, ηi ∈ (ti–1, ti]T, and put

RS♦α =
n∑

i=1

(ti – ti–1) · [α · �(ξi) ⊕ (1 – α) · �(ηi)
]
.

The sum RS♦α is called the interval Riemann ♦α-sum of � that corresponds to P ∈ P .
Then � is called interval Riemann ♦α-integrable on [a, b]T if there is I♦α ∈ I so that for
each ε > 0, there is δ > 0 satisfying

D(RS♦α , I♦α ) < ε

for each interval Riemann ♦α-sum of � that corresponds to P ∈ Pδ independent of the
way to pick ξi ∈ [ti–1, ti)T and ηi ∈ (ti–1, ti]T, for 1 ≤ i ≤ n. I♦α is said to be the interval
Riemann ♦α-integral of � from a to b, and we write

∫ b
a �(s)♦αs.

The next theorem presents a sufficient condition for the interval Riemann ♦α-
integrability of an interval-valued function.

Theorem 3.2 If � : T → I is interval Riemann ∇-integrable on (a, b]T and interval Rie-
mann 
-integrable on [a, b)T, then � is interval Riemann ♦α-integrable on [a, b]T. More-
over,

∫ b

a
�(s)♦αs = α ·

∫ b

a
�(s)
s ⊕ (1 – α) ·

∫ b

a
�(s)∇s.

Proof The proof is classical and directly follows from Definitions 3.1, 3.2, and 3.3. �

Theorem 3.3 Assume � : T → I is such that �(s) = [�(s),�(s)] for all s ∈ T. Then, � is
interval Riemann♦α-integrable on [a, b]T if � and � are Riemann♦α-integrable on [a, b]T.
Moreover,

∫ b

a
�(s)♦αs =

[∫ b

a
�(s)♦αs,

∫ b

a
�(s)♦αs

]
.

Proof The proof is classical and follows straightforward from Definition 3.3 and the defi-
nition of the Hausdorff distance. �
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Corollary 3.1 Let T be a time scale and a, b ∈ T, a < b. Assume that � ∈ C([a, b]T,I) such
that �(s) = [�(s),�(s)] for all s ∈ T. Then, the following statements hold.

(i) If T = R, then

∫ b

a
�(s)♦αs =

∫ b

a
�(s)
s =

∫ b

a
�(s)∇s =

∫ b

a
�(s)ds,

where
∫ b

a �(s)ds is the classical interval Riemann integral and∫ b
a �(s)ds = [

∫ b
a �(s)ds,

∫ b
a �(s)ds].

(ii) If T = hZ with h > 0, then

∫ b

a
�(s)♦αs =

[
h

b
h –1∑

k= a
h +1

�(kh) + α�(a)h + (1 – α)�(b)h,

h

b
h –1∑

k= a
h +1

�(kh) + α�(a)h + (1 – α)�(b)h

]
.

(iii) If T = {ti|ti < ti+1} for i ∈ N0, and m < n, then

∫ tn

tm

�(s)♦αs =

[ n–1∑

i=m

(ti+1 – ti)
[
α�(ti) + (1 – α)�(ti+1)

]
,

n–1∑

i=m

(ti+1 – ti)
[
α�(ti) + (1 – α)�(ti+1)

]
]

.

Example 3.1 Let us consider � ∈ I and � : T → I such that �(s) = � for all s ∈ T. Then,
we have

∫ b
a �(s)♦αs = (b – a) · �.

Example 3.2 Let T = hZ, h ∈ (0, 1), and let � : [0, 2]hZ → I be given by �(s) = [s2 + s, es + 1]
for all s ∈ [0, 2]hZ. Then, from Corollary 3.1(ii), we have

∫ 2

0
�(s)♦αs =

[
h

2
h –1∑

k=1

(
k2h2 + kh

)
+ 6(1 – α)h, h

2
h –1∑

k=1

(
ekh + 1

)
+ 2αh +

(
e2 + 1

)
(1 – α)h

]

=
[

1
3
(
14 + h2 + 9h – 18αh

)
, 2 +

(
e2 – 1

)
(1 – α)h +

e2 – 1
eh – 1

h
]

.

Theorem 3.4 Let � : T → I be such that �(s) = [�(s),�(s)] for all s ∈ T. Then, for t ∈ T,
� is interval Riemann ♦α-integrable on [ρ(t), t]T, and

∫ t

ρ(t)
�(s)♦αs = ν(t) · (α · �(

ρ(t)
) ⊕ (1 – α) · �(t)

)
.

Proof Suppose that � : T→ I is such that �(s) = [�(s),�(s)] for all s ∈ T. Then, �(ρ(t)) =
[�(ρ(t)),�(ρ(t))]. According to Proposition 2.2, it follows that � and � are Riemann ♦α-
integrable on [ρ(t), t]T and

∫ t

ρ(t)
�(s)♦αs = ν(t)

(
α�

(
ρ(t)

)
+ (1 – α)�(t)

)



Bohner et al. Journal of Inequalities and Applications         (2023) 2023:86 Page 13 of 30

and

∫ t

ρ(t)
�(s)♦αs = ν(t)

(
α�

(
ρ(t)

)
+ (1 – α)�(t)

)
.

From Theorem 3.3, we obtain

∫ t

ρ(t)
�(s)♦αs =

[∫ t

ρ(t)
�(s)♦αs,

∫ t

ρ(t)
�(s)♦αs

]

=
[
ν(t)

(
α�

(
ρ(t)

)
+ (1 – α)�(t)

)
,ν(t)

(
α�

(
ρ(t)

)
+ (1 – α)�(t)

)]

= ν(t) · (α · [�(
ρ(t)

)
,�

(
ρ(t)

)] ⊕ (1 – α) · [�(t),�(t)
])

,

and hence
∫ t
ρ(t) �(s)♦αs = ν(t) · (α · �(ρ(t)) ⊕ (1 – α) · �(t)). The proof is finished. �

The following theorem provides us the linearity of the interval Riemann diamond-α
integral with addition and scalar product.

Theorem 3.5 Assume that �,� : T → I are interval Riemann ♦α-integrable on [a, b]T.
Then, the following assertions hold.

(i) λ · � is interval Riemann ♦α-integrable on [a, b]T and

∫ b

a
λ · �(s)♦αs = λ ·

∫ b

a
�(s)♦αs.

(ii) � ⊕ � is interval Riemann ♦α-integrable on [a, b]T and

∫ b

a

[
�(s) ⊕ �(s)

]
♦αs =

∫ b

a
�(s)♦αs ⊕

∫ b

a
�(s)♦αs.

Proof The proof is classical and immediately follows from Definition 3.3. �

Theorem 3.6 If �,� : T→ I are interval Riemann♦α-integrable on [a, b]T, then �gH �

is interval Riemann ♦α-integrable on [a, b]T and, moreover,

∫ b

a
�(s)♦αs gH

∫ b

a
�(s)♦αs ⊆

∫ b

a

[
�(s) gH �(s)

]
♦αs.

Proof By Theorem 3.3, � gH � is interval Riemann ♦α-integrable on [a, b]T. Put ϒ =
� – � and ϒ = � – � . From the inequalities

∫ b

a
min

{
ϒ(s),ϒ(s)

}
♦αs ≤ min

{∫ b

a
ϒ(s)♦αs,

∫ b

a
ϒ(s)♦αs

}

≤ max

{∫ b

a
ϒ(s)♦αs,

∫ b

a
ϒ(s)♦αs

}

≤
∫ b

a
max

{
ϒ(s),ϒ(s)

}
♦αs,
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it follows that

[
min

{∫ b

a
ϒ(s)♦αs,

∫ b

a
ϒ(s)♦αs

}
, max

{∫ b

a
ϒ(s)♦αs,

∫ b

a
ϒ(s)♦αs

}]

⊆
[∫ b

a
min

{
ϒ(s),ϒ(s)

}
♦αs,

∫ b

a
max

{
ϒ(s),ϒ(s)

}
♦αs

]
.

Therefore, we have

∫ b

a
�(s)♦αs gH

∫ b

a
�(s)♦αs

=
[∫ b

a
�(s)♦αs,

∫ b

a
�(s)♦αs

]
gH

[∫ b

a
�(s)♦αs,

∫ b

a
�(s)♦αs

]

=
[

min

{∫ b

a
ϒ(s)♦αs,

∫ b

a
ϒ(s)♦αs

}
, max

{∫ b

a
ϒ(s)♦αs,

∫ b

a
ϒ(s)♦αs

}]

⊆
[∫ b

a
min

{
ϒ(s),ϒ(s)

}
♦αs,

∫ b

a
max

{
ϒ(s),ϒ(s)

}
♦αs

]

=
∫ b

a

[
�(s) gH �(s)

]
♦αs.

The proof is finished. �

Remark 3.1 With the assumptions as in Theorem 3.6 and adding the condition that
�(�(s)) – �(�(s)) possesses a constant sign on [a, b]T, we have

∫ b

a
�(s)♦αs gH

∫ b

a
�(s)♦αs =

∫ b

a

[
�(s) gH �(s)

]
♦αs. (9)

Indeed, if �(�(s)) – �(�(s)) ≥ 0 on [a, b]T, then � – � ≤ � – � on [a, b]T and � gH � =
[ϒ ,ϒ]. Thus,

∫ b

a

[
�(s) – �(s)

]
♦αs ≤

∫ b

a

[
�(s) – �(s)

]
♦αs.

Hence, we obtain

∫ b

a
�(s)♦αs gH

∫ b

a
�(s)♦αs

=
[∫ b

a
�(s)♦αs,

∫ b

a
�(s)♦αs

]
gH

[∫ b

a
�(s)♦αs,

∫ b

a
�(s)♦αs

]

=
[

min

{∫ b

a
ϒ(s)♦αs,

∫ b

a
ϒ(s)♦αs

}
, max

{∫ b

a
ϒ(s)♦αs,

∫ b

a
ϒ(s)♦αs

}]

=
[∫ b

a
ϒ(s)♦αs,

∫ b

a
ϒ(s)♦αs

]

=
∫ b

a

[
�(s) gH �(s)

]
♦αs,
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so (9) holds. For the second case, i.e., �(�(s)) – �(�(s)) < 0 on [a, b]T, using a similar argu-
ment, we can also obtain equality (9).

To illustrate Remark 3.1, let us consider the following example.

Example 3.3 Let T = 2N0 and �,� : T → I be such that

�(s) =
[
s, s2 + 1

]
and �(s) = [1, 2] · s for all s ∈ T.

We remark that �(�(s)) – �(�(s)) = (s – 1)2 has a constant sign on [1, 4]T. We have

�(s) gH �(s) =
[
0, s2 – 2s + 1

]
for all s ∈ [1, 4]T

and

∫ 4

1

[
�(s) gH �(s)

]
♦αs =

∫ 4

1

[
0, s2 – 2s + 1

]
♦αs = [0, 19 – 17α].

Moreover, we have

∫ 4

1
�(s)♦αs =

∫ 4

1

[
s, s2 + 1

]
♦αs = [10 – 5α, 39 – 27α]

and

∫ 4

1
�(s)♦αs =

∫ 4

1
[1, 2] · s♦αs = [1, 2] · (10 – 5α).

Since

�

(∫ 4

1
�(s)♦αs

)
= 29 – 22α > 10 – 5α = �

(∫ 4

1
�(s)♦αs

)

for all α ∈ [0, 1], we obtain

∫ 4

1
�(s)♦αs gH

∫ 4

1
�(s)♦αs = [0, 19 – 17α],

and hence

∫ 4

1
�(s)♦αs gH

∫ 4

1
�(s)♦αs =

∫ 4

1

[
�(s) gH �(s)

]
♦αs.

Theorem 3.7 Suppose �,� : T → I satisfy � ⊆ � on [a, b]T. If � and � are interval
Riemann ♦α-integrable on [a, b]T, then

∫ b

a
�(s)♦αs ⊆

∫ b

a
�(s)♦αs.
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Proof Suppose that �(s) = [�(s),�(s)] and �(s) = [�(s),�(s)] for all s ∈ T. From the as-
sumption � ⊆ � on [a, b]T, Definition 2.9 gives

�(s) ≤ �(s) and �(s) ≤ �(s) for all s ∈ [a, b]T.

This yields

∫ b

a
�(s)♦αs ≤

∫ b

a
�(s)♦αs and

∫ b

a
�(s)♦αs ≤

∫ b

a
�(s)♦αs.

Thus, [
∫ b

a �(s)♦αs,
∫ b

a �(s)♦αs] ⊆ [
∫ b

a �(s)♦αs,
∫ b

a �(s)♦αs]. By Theorem 3.3, we get

∫ b

a
�(s)♦αs ⊆

∫ b

a
�(s)♦αs.

This finishes the proof. �

The next example illustrates Theorem 3.7. All numbers in the following example are
rounded to three decimal digits.

Example 3.4 Let h = 0.02. We consider interval-valued functions �,� : [1, 2]hZ → I such
that �(s) = (s – 1) · [1, 2] and �(s) = [1 – 2s + s2, 2

√
s – 1] for all s ∈ [1, 2]hZ. It is easy to see

that 1–2s+s2 ≤ s–1 and 2s–2 ≤ 2
√

s – 1 for all s ∈ [1, 2]hZ. Therefore, by Definition 2.9(v),
we get �(s) ⊆ �(s) for all s ∈ [1, 2]hZ. Moreover, by Corollary 3.1(ii), we have

∫ 2

1
�(s)♦αs =

∫ 2

1
[s – 1, 2s – 2]♦αs

=

[ 2
h –1∑

k= 1
h +1

(
kh2 – h

)
+ (1 – α)h,

2
h –1∑

k= 1
h +1

(
2kh2 – 2h

)
+ 2(1 – α)h

]

=
[
0.49 + 0.02(1 – α), 0.98 + 0.04(1 – α)

]

and
∫ 2

1
�(s)♦αs =

∫ 2

1

[
1 – 2s + s2, 2

√
s – 1

]
♦αs

=

[ 2
h –1∑

k= 1
h +1

(
h – 2kh2 + k2h3) + (1 – α)h, 2h

2
h –1∑

k= 1
h +1

√
kh – 1 + 2(1 – α)h

]

=
[
0.323 + 0.02(1 – α), 1.312 + 0.04(1 – α)

]
.

It is obvious that

[
0.49 + 0.02(1 – α), 0.98 + 0.04(1 – α)

] ⊆ [
0.323 + 0.02(1 – α), 1.312 + 0.04(1 – α)

]

for all α ∈ [0, 1]. Thus, we can conclude that

∫ 2

1
�(s)♦αs ⊆

∫ 2

1
�(s)♦αs.
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4 Diamond-α inequalities for interval-valued functions
In this section, we prove some Jensen-type inequalities for the class of convex and concave
time scales interval-valued functions by using the interval Riemann diamond-α integral.
Moreover, diamond-α Hölder-type and Minkowski-type inequalities for interval-valued
functions are proved. To obtain the interval versions of the diamond-α Jensen inequalities,
we need the concepts of convexity and concavity of interval-valued functions on time
scales as follows.

A real-valued function φ : [a, b]T → R is said to be convex on [a, b]T if for all s, t ∈ [a, b]T,
λ ∈ [0, 1] such that λs + (1 – λ)t ∈ [a, b]T, we have

φ
(
λs + (1 – λ)t

) ≤ λφ(s) + (1 – λ)φ(t),

while φ : [a, b]T →R is called concave on [a, b]T if

φ
(
λs + (1 – λ)t

) ≥ λφ(s) + (1 – λ)φ(t)

for all s, t ∈ [a, b]T, λ ∈ [0, 1] such that λs + (1 – λ)t ∈ [a, b]T. Note that if a real-valued
function φ : [a, b]T →R is convex (concave) on [a, b]T, then it is continuous on (a, b)T (see
[15]).

Definition 4.1 (See [38]) An � : [a, b]T → I is said to be I-convex on [a, b]T if

λ · �(s) ⊕ (1 – λ) · �(t) ⊆ �
(
λs + (1 – λ)t

)

for all s, t ∈ [a, b]T, λ ∈ [0, 1] such that λs + (1 – λ)t ∈ [a, b]T.

Definition 4.2 (See [38]) An � : [a, b]T → I is said to be I-concave on [a, b]T if

�
(
λs + (1 – λ)t

) ⊆ λ · �(s) ⊕ (1 – λ) · �(t)

for all s, t ∈ [a, b]T, λ ∈ [0, 1] such that λs + (1 – λ)t ∈ [a, b]T.

The following theorem gives us the connection between I-convexity (concavity) of an
interval-valued function and classical convexity (concavity) of corresponding real-valued
functions on time scales.

Theorem 4.1 (See [38]) Let [�,�] = � : [a, b]T → I . Then, the following assertions hold.
(i) � is I-convex on [a, b]T if and only if � is convex on [a, b]T and � is concave on

[a, b]T.
(ii) � is I-concave on [a, b]T if and only if � is concave on [a, b]T and � is convex on

[a, b]T.

Theorem 4.2 Let � : [a, b]T → I be such that �(s) = [�(s),�(s)] for all s ∈ [a, b]T. Assume
that � is I-convex or I-concave on [a, b]T. Then, � is interval Riemann ♦α-integrable on
[a, b]T.
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Proof Suppose that [�,�] = � : [a, b]T → I and � is I-convex or I-concave on [a, b]T.
Then, Theorem 4.1 implies that � and � are continuous. According to Theorem 2.2 and
Theorem 3.3, we conclude the interval Riemann diamond-α integrability of � on [a, b]T.�

Now, we present the diamond-α Jensen interval inequality on time scales via interval
Riemann ♦α-integral.

Theorem 4.3 Let a, b ∈ T and c, d ∈ R. Assume that � ∈ C([a, b]T, (c, d)) and � ∈
C((c, d),I) such that �(s) = [�(s),�(s)]. If � is an I-convex interval-valued function, then

1
b – a

·
∫ b

a
�

(
�(s)

)
♦αs ⊆ �

(∫ b
a �(s)♦αs

b – a

)
. (10)

Proof Suppose that � ∈ C([a, b]T, (c, d)) and � ∈ C((c, d),I) such that �(s) = [�(s),�(s)].
Then, it follows that � ◦ � ∈ C([a, b]T,I), and hence � ◦ � is interval Riemann ♦α-
integrable on [a, b]T. From Theorem 3.3, it follows that

∫ b

a
�

(
�(s)

)
♦αs =

[∫ b

a
�

(
�(s)

)
♦αs,

∫ b

a
�

(
�(s)

)
♦αs

]
.

Since � is I-convex, from Theorem 4.1, we get that � is convex, and � is concave. Ac-
cording to Proposition 2.3, we have

�

(∫ b
a �(s)♦αs

b – a

)
≤ 1

b – a

∫ b

a
�

(
�(s)

)
♦αs

and

1
b – a

∫ b

a
�

(
�(s)

)
♦αs ≤ �

(∫ b
a �(s)♦αs

b – a

)
.

Therefore, it follows from Definition 2.9(v) that

[
1

b – a

∫ b

a
�

(
�(s)

)
♦αs,

1
b – a

∫ b

a
�

(
�(s)

)
♦αs

]

⊆
[
�

(∫ b
a �(s)♦αs

b – a

)
,�

(∫ b
a �(s)♦αs

b – a

)]

holds, i.e.,

1
b – a

·
∫ b

a
�

(
�(s)

)
♦αs ⊆ �

(∫ b
a �(s)♦αs

b – a

)
.

The proof is finished. �

In the following theorem, we present the generalized diamond-α Jensen interval in-
equality on time scales.
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Theorem 4.4 Assume a, b ∈ T and c, d ∈ R. Assume � ∈ C([a, b]T, (c, d)), � ∈ C((c, d),I)
is so that �(s) = [�(s),�(s)], and θ ∈ C([a, b]T,R) satisfies

∫ b

a

∣∣θ (s)
∣∣♦αs > 0.

If � is an I-convex interval-valued function, then

∫ b
a |θ (s)|�(�(s))♦αs

∫ b
a |θ (s)|♦αs

⊆ �

(∫ b
a |θ (s)|�(s)♦αs
∫ b

a |θ (s)|♦αs

)
. (11)

Proof Suppose that � ∈ C([a, b]T, (c, d)) and � ∈ C((c, d),I) such that �(s) = [�(s),�(s)].
Then, it follows that � ◦ � ∈ C([a, b]T,I), and hence � ◦ � and � ◦ � are Riemann ♦α-
integrable on [a, b]T. Since θ ∈ C([a, b]T,R), θ is Riemann ♦α-integrable on [a, b]T, which
yields that |θ |(�◦�) and |θ |(�◦�) are Riemann ♦α-integrable on [a, b]T. By Theorem 3.3,
we get that |θ |(� ◦ �) is interval Riemann ♦α-integrable on [a, b]T and

∫ b

a

∣∣θ (s)
∣∣�

(
�(s)

)
♦αs =

[∫ b

a

∣∣θ (s)
∣∣�

(
�(s)

)
♦αs,

∫ b

a

∣∣θ (s)
∣∣�

(
�(s)

)
♦αs

]
.

Since � is I-convex, it implies from Theorem 4.1 that � is convex and � is concave.
According to Proposition 2.4, we obtain

�

(∫ b
a |θ (s)|�(s)♦αs
∫ b

a |θ (s)|♦αs

)
≤

∫ b
a |θ (s)|�(�(s))♦αs

∫ b
a |θ (s)|♦αs

and

∫ b
a |θ (s)|�(�(s))♦αs

∫ b
a |θ (s)|♦αs

≤ �

(∫ b
a |θ (s)|�(s)♦αs
∫ b

a |θ (s)|♦αs

)
.

From Definition 2.9(v), we derive

[∫ b
a |θ (s)|�(�(s))♦αs

∫ b
a |θ (s)|♦αs

,
∫ b

a |θ (s)|�(�(s))♦αs
∫ b

a |θ (s)|♦αs

]

⊆
[
�

(∫ b
a |θ (s)|�(s)♦αs
∫ b

a |θ (s)|♦αs

)
,�

(∫ b
a |θ (s)|�(s)♦αs
∫ b

a |θ (s)|♦αs

)]
,

i.e.,

∫ b
a |θ (s)|�(�(s))♦αs

∫ b
a |θ (s)|♦αs

⊆ �

(∫ b
a |θ (s)|�(s)♦αs
∫ b

a |θ (s)|♦αs

)
.

The proof is finished. �

Remark 4.1 Note that if α = 0, then the result in Theorem 4.4 provides us a nabla version
for the generalized Jensen interval inequality. Moreover, if α = 1, then we obtain a result
similar to the one proved in [38, Theorem 9].
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Next we present the reversed diamond-α Jensen interval inequality.

Theorem 4.5 Let a, b ∈ T and c, d ∈ R. Assume that � ∈ C([a, b]T, (c, d)), � ∈ C((c, d),I)
such that �(s) = [�(s),�(s)], and θ ∈ C([a, b]T,R) such that

∫ b

a

∣∣θ (s)
∣∣♦αs > 0.

If � is an I-concave interval-valued function, then

�

(∫ b
a |θ (s)|�(s)♦αs
∫ b

a |θ (s)|♦αs

)
⊆

∫ b
a |θ (s)|�(�(s))♦αs

∫ b
a |θ (s)|♦αs

. (12)

Proof Suppose that � ∈ C([a, b]T, (c, d)) and � ∈ C((c, d),I) such that �(s) = [�(s),�(s)].
Then, it follows that � ◦ � ∈ C([a, b]T,I), and hence � ◦ � and � ◦ � are Riemann ♦α-
integrable on [a, b]T. Since θ ∈ C([a, b]T,R), θ is Riemann ♦α-integrable on [a, b]T, which
yields that |θ |(�◦�) and |θ |(�◦�) are Riemann ♦α-integrable on [a, b]T. By Theorem 3.3,
this implies that |θ |(� ◦ �) is interval Riemann ♦α-integrable on [a, b]T and

∫ b

a

∣∣θ (s)
∣∣�

(
�(s)

)
♦αs =

[∫ b

a

∣∣θ (s)
∣∣�

(
�(s)

)
♦αs,

∫ b

a

∣∣θ (s)
∣∣�

(
�(s)

)
♦αs

]
.

Since � is I-concave, Theorem 4.1 implies that � is concave and � is convex. According
to Proposition 2.4, we obtain

∫ b
a |θ (s)|�(�(s))♦αs

∫ b
a |θ (s)|♦αs

≤ �

(∫ b
a |θ (s)|�(s)♦αs
∫ b

a |θ (s)|♦αs

)

and

�

(∫ b
a |θ (s)|�(s)♦αs
∫ b

a |θ (s)|♦αs

)
≤

∫ b
a |θ (s)|�(�(s))♦αs

∫ b
a |θ (s)|♦αs

.

From Definition 2.9(v), we derive

[
�

(∫ b
a |θ (s)|�(s)♦αs
∫ b

a |θ (s)|♦αs

)
,�

(∫ b
a |θ (s)|�(s)♦αs
∫ b

a |θ (s)|♦αs

)]

⊆
[∫ b

a |θ (s)|�(�(s))♦αs
∫ b

a |θ (s)|♦αs
,
∫ b

a |θ (s)|�(�(s))♦αs
∫ b

a |θ (s)|♦αs

]
,

i.e.,

�

(∫ b
a |θ (s)|�(s)♦αs
∫ b

a |θ (s)|♦αs

)
⊆

∫ b
a |θ (s)|�(�(s))♦αs

∫ b
a |θ (s)|♦αs

.

The proof is finished. �
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Corollary 4.1 Let a, b ∈ T and c, d ∈ R. Assume that � ∈ C([a, b]T, (c, d)), � ∈ C((c, d),I)
such that �(s) = [�(s),�(s)], and θ ∈ C([a, b]T,R) such that

∫ b

a

∣∣θ (s)
∣∣♦αs > 0.

If � is both I-convex and I-concave, then

�

(∫ b
a |θ (s)|�(s)♦αs
∫ b

a |θ (s)|♦αs

)
=

∫ b
a |θ (s)|�(�(s))♦αs

∫ b
a |θ (s)|♦αs

. (13)

Proof The proof follows directly from combining Theorem 4.4 and Theorem 4.5. �

The following result gives us a version of the diamond-α Hölder interval inequality.

Theorem 4.6 Let a, b ∈ T. Assume that �,� ∈ C([a, b]T,I+) are such that �(s) =
[�(s),�(s)] and �(s) = [�(s),�(s)] for all s ∈ [a, b]T. If 1

p + 1
q = 1 with p > 1 and 0 < k ≤

�p/�q ≤ K < ∞, then

∫ b

a
�(s) · �(s)♦αs ⊆

[(
k
K

) 1
pq

, 1
]

·
(∫ b

a
�p(s)♦αs

) 1
p

·
(∫ b

a
�q(s)♦αs

) 1
q

. (14)

Proof From Definition 2.9(iii), we have

�(s) · �(s) = [minS , maxS], (15)

where S = {�(s)�(s),�(s)�(s),�(s)�(s),�(s)�(s)}. Since � and � are positive interval-
valued functions, it follows from (15) that

�(s) · �(s) =
[
�(s)�(s),�(s)�(s)

]
.

Therefore, we have

∫ b

a
�(s) · �(s)♦αs =

[∫ b

a
�(s)�(s)♦αs,

∫ b

a
�(s)�(s)♦αs

]
.

From the fact that � and � are positive and for p > 1 with 1
p + 1

q = 1 and 0 < k ≤ �p/�q ≤
K < ∞, we derive from Proposition 2.6 that

(∫ b

a
�p(s)♦αs

) 1
p
(∫ b

a
�q(s)♦αs

) 1
q

≤
(

K
k

) 1
pq

∫ b

a
�(s)�(s)♦αs. (16)

Applying Proposition 2.5 for the two positive real-valued functions �(s), �(s), we obtain

∫ b

a
�(s)�(s)♦αs ≤

(∫ b

a
�

p(s)♦αs
) 1

p
(∫ b

a
�

q(s)♦αs
) 1

q
. (17)
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Combining (17) and (16) with Definition 2.9(v), we get

[∫ b

a
�(s)�(s)♦αs,

∫ b

a
�(s)�(s)♦αs

]

⊆
[(

k
K

) 1
pq

(∫ b

a
�p(s)♦αs

) 1
p
(∫ b

a
�q(s)♦αs

) 1
q

,

(∫ b

a
�

p(s)♦αs
) 1

p
(∫ b

a
�

q(s)♦αs
) 1

q
]

=
[(

k
K

) 1
pq

, 1
]

·
[(∫ b

a
�p(s)♦αs

) 1
p
(∫ b

a
�q(s)♦αs

) 1
q

,
(∫ b

a
�

p(s)♦αs
) 1

p
(∫ b

a
�

q(s)♦αs
) 1

q
]

=
[(

k
K

) 1
pq

, 1
]

·
[(∫ b

a
�p(s)♦αs

) 1
p

,
(∫ b

a
�

p(s)♦αs
) 1

p
]

·
[(∫ b

a
�q(s)♦αs

) 1
q

,
(∫ b

a
�

q(s)♦αs
) 1

q
]

,

and hence

∫ b

a
�(s) · �(s)♦αs

⊆
[(

k
K

) 1
pq

, 1
]

·
[∫ b

a
�p(s)♦αs,

∫ b

a
�

p(s)♦αs
] 1

p
·
[∫ b

a
�q(s)♦αs,

∫ b

a
�

q(s)♦αs
] 1

q
.

On the other hand, from Definition 2.9(iv), it follows that

�p(s) =
[
�p(s),�p(s)

]
and �q(s) =

[
�q(s),�q(s)

]
.

Therefore,

∫ b

a
�(s) · �(s)♦αs ⊆

[(
k
K

) 1
pq

, 1
]

·
(∫ b

a
�p(s)♦αs

) 1
p

·
(∫ b

a
�q(s)♦αs

) 1
q

.

The proof is finished. �

If the assumptions in Theorem 4.6 hold for the special case p = q = 2, then we get the
diamond-α Cauchy–Schwarz interval inequality on time scales.

Corollary 4.2 Let a, b ∈ T. Assume that �,� ∈ C([a, b]T,I+) are such that �(s) =
[�(s),�(s)] and �(s) = [�(s),�(s)] for all s ∈ [a, b]T. Then, we have

∫ b

a
�(s) · �(s)♦αs ⊆

[(
k
K

) 1
4

, 1
]

·
(∫ b

a
�2(s)♦αs

) 1
2 ·

(∫ b

a
�2(s)♦αs

) 1
2

,

where
√

k ≤ �/� ≤ √
K < ∞.
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The last theorem in this section is to represent the Minkowski interval inequality via
Riemann ♦α-integral. The theorem is stated as follows.

Theorem 4.7 Let a, b ∈ T. Assume that �,� ∈ C([a, b]T,I+) are such that �(s) =
[�(s),�(s)] and �(s) = [�(s),�(s)] for all s ∈ [a, b]T and 0 < k ≤ �/� ≤ K < ∞. If p > 1,
then

(∫ b

a
�p(s)♦αs

) 1
p

⊕
(∫ b

a
�p(s)♦αs

) 1
p

⊆
[

1,
(

K
k

) p–1
p2

]
·
(∫ b

a

(
�(s) ⊕ �(s)

)p♦αs
) 1

p
. (18)

Proof Since � = [�,�] and � = [� ,�], it follows from Definition 2.9(iv) that

(
�(s) ⊕ �(s)

)p =
[(

�(s) + �(s)
)p,

(
�(s) + �(s)

)p].

According to Proposition 2.7, we have

(∫ b

a

(
�(s) + �(s)

)p♦αs
) 1

p
≤

(∫ b

a
�p(s)♦αs

) 1
p

+
(∫ b

a
�p(s)♦αs

) 1
p

. (19)

For p > 1 with 0 < k ≤ �/� ≤ K < ∞, Proposition 2.8 yields

(∫ b

a
�

p(s)♦αs
) 1

p
+

(∫ b

a
�

p(s)♦αs
) 1

p
≤

(
K
k

) p–1
p2

(∫ b

a

(
�(s) + �(s)

)p♦αs
) 1

p
. (20)

Moreover, we have

(∫ b

a
�p(s)♦αs

) 1
p

⊕
(∫ b

a
�p(s)♦αs

) 1
p

=
[∫ b

a
�p(s)♦αs,

∫ b

a
�

p(s)♦αs
] 1

p
⊕

[∫ b

a
�p(s)♦αs,

∫ b

a
�

p(s)♦αs
] 1

p

=
[(∫ b

a
�p(s)♦αs

) 1
p

+
(∫ b

a
�p(s)♦αs

) 1
p

,
(∫ b

a
�

p(s)♦αs
) 1

p
+

(∫ b

a
�

p(s)♦αs
) 1

p
]

.

Combining Definition 2.9(v) with (20) and (19), we derive

[(∫ b

a
�p(s)♦αs

) 1
p

+
(∫ b

a
�p(s)♦αs

) 1
p

,
(∫ b

a
�

p(s)♦αs
) 1

p
+

(∫ b

a
�

p(s)♦αs
) 1

p
]

⊆
[(∫ b

a

(
�(s) + �(s)

)p♦αs
) 1

p
,
(

K
k

) p–1
p2

(∫ b

a

(
�(s) + �(s)

)p♦αs
) 1

p
]

=
[

1,
(

K
k

) p–1
p2

]
·
[(∫ b

a

(
�(s) + �(s)

)p♦αs
) 1

p
,
(∫ b

a

(
�(s) + �(s)

)p♦αs
) 1

p
]

=
[

1,
(

K
k

) p–1
p2

]
·
(∫ b

a

(
�(s) ⊕ �(s)

)p♦αs
) 1

p
.
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Therefore,

(∫ b

a
�p(s)♦αs

) 1
p

⊕
(∫ b

a
�p(s)♦αs

) 1
p

⊆
[

1,
(

K
k

) p–1
p2

]
·
(∫ b

a

(
�(s) ⊕ �(s)

)p♦αs
) 1

p
.

The proof is finished. �

5 Illustrative computations
In this section, we analyze some examples to illustrate the main results presented in Sect. 4.
First, we consider an example to illustrate Theorem 4.5 for the class of I-concave interval-
valued functions. Note that all numbers in this section are rounded to three decimal digits.

Example 5.1 Let h = 0.01 and �, θ : [0, 1]hZ → R be real-valued functions given by �(s) =
ln(s+1) and θ (s) = 1+2s2. We consider � : [0, ln 2] → I such that �(s) = [�(s),�(s)], where
�(s) = cos s and �(s) = es (Fig. 1a). Since � is concave and � is convex for all s ∈ [0, ln 2],
from Theorem 4.1, it follows that � is I-concave on [0, ln 2]. According to Theorem 4.5,
we have

�

(∫ 1
0 |θ (s)|�(s)♦αs
∫ 1

0 |θ (s)|♦αs

)
⊆

∫ 1
0 |θ (s)|�(�(s))♦αs

∫ 1
0 |θ (s)|♦αs

. (21)

Now we compute the integrals

∫ 1

0

∣∣θ (s)
∣∣♦αs =

∫ 1

0

(
1 + 2s2)♦αs =

99∑

k=1

h
(
2k2h2 + 1

)
+ αh + 3(1 – α)h = 1.677 – 0.02α

and
∫ 1

0

∣∣θ (s)
∣∣�(s)♦αs =

∫ 1

0

(
1 + 2s2) ln(s + 1)♦αs

=
99∑

k=1

h
(
1 + 2k2h2) ln(kh + 1) + 3h(1 – α) ln 2 = 0.765 – 0.021α.

Figure 1 (a) Graph of �(s) (blue and red curves represent � and �, respectively). (b) Illustration of
Example 5.1 with different values of α (blue and red curves represent RJα and RJ

α
, respectively, and green

and pink dotted curves are LJα and LJ
α
, respectively)
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Therefore, we obtain

�

(∫ 1
0 |θ (s)|�(s)♦αs
∫ b

a |θ (s)|♦αs

)
=

[
cos

(
0.765 – 0.021α

1.677 – 0.02α

)
, exp

(
0.765 – 0.021α

1.677 – 0.02α

)]
.

Moreover,

∫ 1

0

∣∣θ (s)
∣∣�

(
�(s)

)
♦αs =

∫ 1

0

(
1 + 2s2)[cos

(
ln(s + 1)

)
, s + 1

]
♦αs

= [1.478 – 0.020α, 2.692 – 0.05α].

Thus,

∫ 1
0 |θ (s)|�(�(s))♦αs

∫ 1
0 |θ (s)|♦αs

=
[

1.478 – 0.02α

1.677 – 0.02α
,

2.692 – 0.05α

1.677 – 0.02α

]
.

It is easy to see that

[
cos

(
0.765 – 0.021α

1.677 – 0.02α

)
, exp

(
0.765 – 0.021α

1.677 – 0.02α

)]

⊆
[

1.478 – 0.02α

1.677 – 0.02α
,

2.692 – 0.05α

1.677 – 0.02α

]

for all α ∈ [0, 1]. Hence inequality (21) holds. For brevity, we denote the values of the ex-
pressions on the left-hand side of (21) and the right-hand side of (21) corresponding to
each α ∈ [0, 1] by LJα and RJα , respectively. Figure 1b shows inequality (21) with different
values of α ∈ [0, 1].

The following example illustrates Corollary 4.1.

Example 5.2 Let h > 0 and �, θ : [0, 1]hZ → R be real-valued functions given by �(s) = s3

and θ (s) = 1 + 2s2. We consider an interval-valued function � : [0, 1] → I given by �(s) =
[2 – s, s + 3] for all s ∈ [0, 1]. It is clear that � is both I-convex and I-concave on [0, 1].
According to Corollary 4.1, we have

∫ 1
0 |θ (s)|�(�(s))♦αs

∫ 1
0 |θ (s)|♦αs

= �

(∫ 1
0 |θ (s)|�(s)♦αs
∫ 1

0 |θ (s)|♦αs

)
.

Indeed, for all α ∈ [0, 1], we have

∫ 1

0

∣∣θ (s)
∣∣♦αs =

∫ 1

0

(
1 + 2s2)♦αs =

1
3
(
–6hα + h2 + 3h + 5

)

and

∫ 1

0

∣∣θ (s)
∣∣�(s)♦αs =

∫ 1

0
s3(1 + 2s2)♦αs = –

1
12

(h – 1)2(2h2 + 4h – 7
)

+ 3h(1 – α).
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It follows that

�

(∫ 1
0 |θ (s)|�(s)♦αs
∫ 1

0 |θ (s)|♦αs

)

= �

(
36hα + 2h4 – 13h2 – 18h – 7

4(6hα – h2 – 3h – 5)

)

=
[

12hα – 2h4 + 5h2 – 6h – 33
4(6hα – h2 – 3h – 5)

,
108hα + 2h4 – 25h2 – 54h – 67

4(6hα – h2 – 3h – 5)

]
.

On the other hand, we have

∫ 1

0

∣∣θ (s)
∣∣�

(
�(s)

)
♦αs

=
∫ 1

0

(
1 + 2s2)[2 – s3, s3 + 3

]
♦αs

=
1

12
[
–12hα + 2h4 – 5h2 + 6h + 33, –108hα – 2h4 + 25h2 + 54h + 67

]

=
[

1
12

(
2h4 – 5h2 – 30h + 33

)
+ 2hα + 3h(1 – α),

1
12

(
–2h4 + 25h2 – 90h + 67

)
+ 3hα + 12h(1 – α)

]
,

which yields

∫ 1
0 |θ (s)|�(�(s))♦αs

∫ 1
0 |θ (s)|♦αs

=
[

12hα – 2h4 + 5h2 – 6h – 33
4(6hα – h2 – 3h – 5)

,
108hα + 2h4 – 25h2 – 54h – 67

4(6hα – h2 – 3h – 5)

]

= �

(∫ 1
0 |θ (s)|�(s)♦αs
∫ 1

0 |θ (s)|♦αs

)
.

The last two examples are presented to illustrate Theorem 4.6 and Theorem 4.7, respec-
tively.

Example 5.3 Let α = 0.5 and T = {t0, t1, . . . , t8} = {1, 21
20 , 10

9 , 56
45 , 3

2 , 79
45 , 17

9 , 39
20 , 2}. Assume that

�,� ∈ C([1, 2]T,I+) are such that �(s) = [�(s),�(s)] and �(s) = [�(s),�(s)], where �(s) =
s, �(s) = s + 2, �(s) =

√
s, �(s) = exp( s

5 ) + s for all s ∈ T. It is clear that 1 ≤ �p/�q ≤ 4√29,
with p = 3 and 1

p + 1
q = 1. According to Theorem 4.6, we have

∫ 2

1
�(s) · �(s)♦αs ⊆

[
1√
2

, 1
]

·
(∫ 2

1
�3(s)♦αs

) 1
3 ·

(∫ 2

1
�

3
2 (s)♦αs

) 2
3

. (22)

Indeed, we have

∫ 2

1
�(s) · �(s)♦αs =

∫ 2

1

[
�(s)�(s),�(s)�(s)

]
♦αs
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=

[ 7∑

i=0

(si+1 – si)
[
α�(si)�(si) + (1 – α)�(si+1)�(si+1)

]
,

7∑

i=0

(si+1 – si)
[
α�(si)�(si) + (1 – α)�(si+1)�(si+1)

]
]

= [2.028 – 0.327α, 10.749 – 1.304α]

and

∫ 2

1
�3(s)♦αs =

∫ 2

1

[
�3(s),�3(s)

]
♦αs

= [4.396 – 1.233α, 47.114 – 6.592α].

Analogously, we obtain
∫ 2

1 �
3
2 (s)♦αs = [1.411 – 0.122α, 5.137 – 0.575α]. Then, we have

(∫ 2

1
�3(s)♦αs

) 1
3

=
[ 3√4.396 – 1.233α, 3√47.114 – 6.592α

]

and

(∫ 2

1
�

3
2 (s)♦αs

) 2
3

=
[ 3
√

(1.411 – 0.122α)2, 3
√

(5.137 – 0.575α)2
]
.

Therefore, we have

∫ 2

1
�(s) · �(s)♦αs = [2.028 – 0.327α, 10.749 – 1.304α]

⊆
[

3

√
1√
2

(4.396 – 1.233α)(1.411 – 0.122α)2,

3
√

(47.114 – 6.592α)(5.137 – 0.575α)2
]

=
[

1√
2

, 1
]

·
(∫ 2

1
�3(s)♦αs

) 1
3 ·

(∫ 2

1
�

3
2 (s)♦αs

) 2
3

.

We also denote the values of the expressions on the left-hand side of (22) and the right-
hand side of (22) corresponding to each α ∈ [0, 1] by LHα and RHα , respectively. Then,
inequality (22) with different values of α ∈ [0, 1] is shown in Fig. 2.

Example 5.4 Let h = 0.02 and �,� : [0, 2]hZ → I+ be so that �(s) = [�(s),�(s)] and �(s) =
[�(s),�(s)], with �(s) =

√
1 + s, �(s) = s + 2

s+1 , �(s) =
√

2s + 1, and �(s) = s + 2 for all s ∈
[0, 2]hZ. It is clear that 2

3 ≤ �(s)/�(s) ≤ 1 for all s ∈ [0, 2]hZ. According to Theorem 4.7, we
have

(∫ 2

0
�2(s)♦αs

) 1
2 ⊕

(∫ 2

0
�2(s)♦αs

) 1
2 ⊆

[
1, 4

√
3
2

]
·
(∫ 2

0

(
�(s) ⊕ �(s)

)2♦αs
) 1

2
. (23)
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Figure 2 Illustration of Example 5.3 with different values of α (blue and red curves represent RHα and RH
α
,

respectively, and green and pink dotted curves are LHα and LH
α
, respectively)

Indeed, we have

∫ 2

0

(
�(s) ⊕ �(s)

)2♦αs =
∫ 2

0

[
(
√

1 + s +
√

2s + 1)2,
(

2s + 2 +
2

s + 1

)2]

= [19.901 – 0.235α, 53.619 – 0.569α].

Hence, (
∫ 2

0 (�(s) ⊕ �(s))2♦αs) 1
2 = [

√
19.901 – 0.235α,

√
53.619 – 0.569α]. On the other

hand, we have

∫ 2

0
�2(s)♦αs =

∫ 2

0

[
1 + s,

(
s +

2
s + 1

)2]
♦αs = [4.02 – 0.04α, 8.97 – 0.062α]

and

∫ 2

0
�2(s)♦αs =

∫ 2

0

[
2s + 1, (s + 2)2]♦αs = [6.04 – 0.08α, 18.787 – 0.24α].

Then, we have

(∫ 2

0
�2(s)♦αs

) 1
2 ⊕

(∫ 2

0
�2(s)♦αs

) 1
2

= [
√

4.02 – 0.04α +
√

6.04 – 0.08α,
√

8.97 – 0.062α +
√

18.787 – 0.24α]

⊆
[

1, 4

√
3
2

]
· [

√
19.901 – 0.235α,

√
53.619 – 0.569α]

=
[

1, 4

√
3
2

]
·
(∫ 2

0

(
�(s) ⊕ �(s)

)2♦αs
) 1

2
.
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Figure 3 Illustration of Example 5.4 with different values of α (blue and red curves represent RMα and RM
α
,

respectively, and green and pink dotted curves are LMα and LM
α
, respectively)

We also denote the values of the expressions on the left-hand side of (23) and the right-
hand side of (23) corresponding to each α ∈ [0, 1] by LMα and RMα , respectively. Then,
the inequality (23) with different values of α ∈ [0, 1] is shown in Fig. 3.
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