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1 Introduction
Researchers are totally aware of the importance of the theory of impulsive dynamic sys-
tems from a theoretical point of view, and their applications in control theory, dynamical
games, and also in optimal control and mathematical programming [1, 2]. Wang et al. in
[3], reviewed some recent developments in impulsive control theory. Lupulescu et al. [4]
have addressed some very recent exciting results.

Wang et al. [3], described an impulsive differential equation by three components: a
continuous-time differential equation, which governs the state of the system between im-
pulses; an impulse equation, which models an impulsive jump defined by a jump function
at the instant an impulse occurs; and a jump criterion, which represents a set of jump
events in which the impulse equation is active.

During the last decade of the last century, the time scale calculus was affirmed as a tool
for an explanation of a lot of new phenomena in electricity, mechanics, biology, economics,
etc. [5]. Time scale calculus confirmed a way to treat discrete versions of continuous scien-
tific problems [6]. There are many papers and books discussing the theory and applications
of time scales (see, for example, [6, 7]).

On the other hand, several stability results of impulsive systems on time scales were ob-
tained in recent years. We refer to [8, 9]. The models of impulsive control systems have
been constantly expended, including impulsive stochastic systems [10, 11], Impulsive neu-
ral networks [9, 12], impulsive chaotic systems [13] fractional order impulsive functional
systems [14], stability of impulsive switched systems [15]. Besides to the traditional asymp-
totic (exponential) stability analysis [16], the dynamical properties of impulsive dynamical
systems was also extended to the finite-time stability [17, 18], stability of two measures
[19], input-to-state stability [20, 21].
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1.1 Research gap and motivation
The impulsive dynamic systems can present a more accurate dynamical system compared
to the non-impulsive dynamic systems where the sense of disturbance in nature is in-
volved. On the other hand, dynamic systems on time scale calculus combine discrete and
continuous phenomena. So, the hybridization of two different phenomena, where the dis-
turbance in the mathematical model is concerned and the mixed domain (continuous and
discrete) in the related parameters, claims to merge the notions of impulsive dynamic sys-
tems and the time scale theory.

Matrix exponential and the fundamental matrix of homogenous dynamic systems play
a key role in the stability theory. However, as far as authors know, all these studies are
performed on Hilger’s exponential function. In the existing literature, we have noticed
some articles like [4, 22] that addressed different solution properties of impulsive dynamic
systems with Hilger’s approach.

Recently, Cieslinski [23] has proposed a new definition of the exponential function on
time scales, based on the Cayley transformation. Complex-valued Cayley transforma-
tion transforms the imaginary axis into the unit circle. Therefore, it is possible to define
trigonometric and hyperbolic complex-valued functions on time scales in a standard way.
The following functions maintain most of the qualitative properties of the analogous con-
tinuous functions. In special, Pythagorean trigonometric identities hold exactly on any
time scale. Dynamic equations satisfied by Cayley-type functions have a natural resem-
blance to the corresponding differential equations, Cayley h-difference equations [24], and
Cayley quantum equations [25]. The current work is an attempt to study the solution of
linear impulsive dynamic systems by means of a Cayley-type fundamental matrix.

1.2 Novelties of the work
Motivated by the recent studies [22, 23], the current article claims its novelty from the
following perspectives:

(i) We define fundamental matrices of linear impulsive dynamic systems on time
scales that are based on Cayley’s transformation. The impulsive transition matrix
and its properties are key for the stability theory.

(ii) We establish the existence and uniqueness of the solution of impulsive dynamic
systems.

(iii) Necessary and sufficient conditions for boundedness and exponential stability of
the proposed solution are established in this article.

1.3 Structure of the paper
The outline of the paper is as follows. In Sect. 2, we review the definitions and properties
of time-scale calculus and qualitative properties of dynamic systems on time scales. In
Sect. 3, we develop the fundamental concepts of homogeneous impulsive dynamic systems
on time scales. These properties are used to investigate linear nonhomogeneous dynamic
systems. In Sect. 4, we get variations of the constants formula for linear dynamic systems.
We investigate the stability and boundedness of solutions in Sect. 5. Finally, we conclude
the paper with some brief comments.

2 Preliminaries
LetX be a finite-dimensional Banach space with a norm ‖·‖. For simplicity, we shall denote
all norms by the same symbol ‖ · ‖, without danger of confusion. For M ∈ Mn(R), let us
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denote its conjugate by MT (its transpose). For an unbounded time scale T+ (a nonempty
subset of real-line), consider the following jump operators:

xσ = σ (x) := inf{s ∈ T : s > x};
xρ = ρ(x) := sup{s ∈ T : s < x},

and a real-valued function:

μ : T →R
+ : μ(x) := xσ – x.

From definitions of jump operators: for all x ∈ T, xσ ≥ x and xρ ≤ x, (see, e.g., [6]).
Throughout this paper, we always assume that supT = ∞ and for any τ ∈ T, let T(τ ) :=

[τ ,∞) ∩T and T+ := T(0).
A function f is said to be right-dense continuous (rd-continuous) if it is continuous at

right-dense points and left-hand limits exist at left-dense points. The �-derivative of a
function g is defined by

g�(x) = lim
s→x
s 	=xσ

g(xσ ) – g(s)
xσ – s

.

Let us state the following basic spaces:
• Crd(T(τ ),X) := {g : T(τ ) →X : g is rd-continuous}.
• C1

rd(T(τ ),X) := {g : T(τ ) →X : g �-derivative is in Crd(T(τ ),X)}.
• R(T(τ ),X) := {g ∈ Crd(T(τ ),X) : (IX + μ(x)g(x))–1 exists for all x ∈ T(τ )}.
• R+(T(τ ),R) := {g ∈R(T(τ ),R) : IX + μ(x)g(x) > 0 for all x ∈ T(τ )}.
Here X can be R,C,Rn,Cn or Mn(R).
For g ∈R(T+,C), Hilger defined the exponential function as follows:

eg(x, s) = exp

(∫ x

s

Log(1 + μ(r)g(r))
μ(r)

�r
)

,

where Log is the principal logarithm function.
If g, f ∈R(T+,C), then the following properties hold:
• ef (xσ , s) = (1 + μ(x)f (x))ef (x, s),
• (ef (x, s))–1 = e
μf (x, s), where 
μf := –f

1+μf ,
• ef (x, s)ef (s, r) = ef (x, s),
• eg(x, s)ef (x, s) = ef ⊕μg(x, s), where f ⊕μ g := f + g + μfg .
For each regressive matrix M, eM(t, s) is the only solution of IVP:

X� = MX, X(s) = IMn(R)

and x(t) = eM(t, s)x0, t ≥ s, is the only solution of IVP:

x� = Mx, x(s) = a0

and x(t) = e
MT (t, s)x0, t ≥ s is the only solution of the adjoint IVP:

x� = –MT xσ , x(s) = x0.
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3 Exponential function
3.1 Scalar case
Cieslinski [23], introduced an improved exponential function (or the Cayley-exponential
function). To formulate a new definition, we need a new regressivity notion:

The function f : T→C is called regressive (Cieslinski definition) if μ(x)f (x) 	= ±2 for
any x ∈ T

k . The set of all regressive functions f : T→C is denoted by RC(T+,C).
For f ∈RC(T+,C), the Cayley-exponential function is defined by

Ef (x, s) := exp

(∫ x

s

1
μ(r)

Log

(1 + 1
2μ(r)f (r)

1 – 1
2μ(r)f (r)

)
�r

)
, μ(r) > 0.

If f , g ∈RC(T+,C), then the following properties hold:
• Ef (xσ , s) = ( 1+ 1

2 μ(x)f (x)
1– 1

2 μ(x)f (x)
)Ef (x, s),

• (Ef (x, s))–1 = E–f (x, s),
• (Ef (x, s)) = Ef̄ (x, s),
• Ef (x, s)Ef (s, r) = Ef (x, s),
• Ef (x, s)Eg(x, s) = Ef ⊕g(x, s), where f ⊕ g := f +g

1+ 1
4 μ2fg

.

The function f : T→R is called positively regressive if for all x ∈ T
k we have |f (x)μ(x)| <

2. The set of all positively regressive function f : T →R is denoted by RC
+ (T+,C).

RC
+ (T+,C) is a commutative group under ⊕. However, the set RC(T+,C) is not closed

under ⊕.
It is known that [23, Theorem 3.2], for real-valued function a on time scale T+, we have

a�(t) = β(t)a(t) ⇐⇒ a�(t) = α(t)
〈
a(t)

〉
,

where β(t) = α(t)
1– 1

2 μ(t)α(t)
and 〈a(t)〉 := a(t)+a(σ (t))

2 .

3.2 Matrix case
Definition 3.1 (Regressivity) An n × n matrix-valued function M on a time scale T+ is
called regressive, if

I ± μ(x)M(x)
2

are invertible for all x ∈ T
k . (1)

The class of all such regressive and rd-continuous matrix-valued functions is denoted
by RC(T+, Mn(R)).

In this part, we generalized Cayley exponential function for the following dynamic sys-
tems:

a�(t) = M(t)
〈
a(t)

〉
, (2)

where M ∈RC(T+, Mn(R)). Nonhomogenous system is stated as:

a�(t) = M(t)
〈
a(t)

〉
+ h(t) (3)

with h ∈ Crd(T+, (Rn)).
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An element φ of C1
rd(T+, (Rn)) is called a solution of IVP (3) on T+ such that φ�(t) =

M(t)〈φ(t)〉 + h(t) for all t ∈ T+.
Let us denote the transition matrix EM(x, τ ) of (2) at initial time τ ∈ T+, and is the unique

solution of the following matrix IVP:

A�(t) = M(t)
〈
A(t)

〉
, A(τ ) = I

and a(t) = EM(t, τ )η, t ≥ τ , satisfied:

a�(t) = M(t)
〈
a(t)

〉
, a(τ ) = η.

Definition 3.2 Assume M and N ∈ RC(T+, Mn(R)). Then we define circle addition ⊕ of
M and N by

(M ⊕ N)(x) := (M + N)
(

I +
1
4
μ2MN

)–1

for all x ∈ T
k .

Example 3.3 Assume M ∈ RC(T+, Mn(R)) is constant n × n-matrix. If T = R, then
EM(x, x0) = eM(x–x0).

Theorem 3.4 If M ∈RC(T+, Mn(R)) is a matrix-valued functions on T+, then

1. E0(x, s) ≡ I and EM(x, x) ≡ I
2. EM(σ (x), s) = (I – μM

2 )–1(I + μM
2 )EM(x, s);

3. EM(x, s) = E–1
M (s, x);

4. E–1
M (x, s) = E–M∗ (x, s);

5. EM(x, s)EM(s, r) = EM(x, r).

Theorem 3.5 Let M ∈RC(T+, Mn(R)) and suppose that f : T+ →R
n is rd-continuous. Let

x0 ∈ T+ and a0 ∈R
n. Then the IVP

a�(x) = M
〈
a(x)

〉
+
(

I –
M
2

μ(x)
)

f (x),

a(x0) = a0

(4)

has a unique solution, given by

a(x) = EM(x, x0)a0 +
∫ x

x0

EM
(
x,σ (τ )

)
f (τ )�τ . (5)

Proof First, a given by (5) is well defined and can be rewritten as

a(·) = EM(·, x0)
{

a0 +
∫ ·

x0

EM
(
x0,σ (τ )

)
f (τ )�τ

}
.
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We use the product rule to differentiate a:

a�(·) = M(·)〈EM(·, t0)
〉{

a0 +
∫ ·

x0

EM
(
x0,

(
τσ

))
f (τ )�τ

}

+ EM
(·σ , x0

)
EM

(
x0, ·σ )f (·)

= M(·)〈EM(·, x0)
〉{

a0 +
∫ ·

x0

EM
(
x0, τσ

)
f (τ )�τ

}
+ f (·)

= M(·)
(

EM(·, x0) + EM(·σ , x0)
2

)

×
{

a0 +
∫ ·

x0

EM
(
x0, τσ

)
f (τ )�τ

}
+ f (·)

=
M(·)

2

[
EM(·, x0)a0 +

∫ ·

x0

EM
(·, τσ

)
f (τ )�τ

]

+
M(·)

2

[
EM

(·σ , x0
)
a0 +

∫ ·

x0

EM(·σ ,
(
τσ

)
f (τ )�τ

]
+ f (·).

(6)

We know that
∫ xσ

x f (t)�t = μ(x)f (x). Therefore, we have

∫ xσ

x
EM

(
xσ , τσ

)
f (τ )�τ = μ(x)EM

(
xσ , xσ

)
f (x) = μ(x)f (x).

It implies that

a�(x) =
M(x)

2

[
EM(x, x0)a0 +

∫ x

x0

EM
(
x0, τσ

)
f (τ )�τ

]

+
M(x)

2

[
EM

(
xσ , x0

)
a0 +

∫ x

x0

EM
(
xσ , τσ

)
f (τ )�τ

]

+ f (x) +
M
2

μ(x)f (x) –
M
2

μ(x)f (x),

we have

a�(x) =
M(x)

2
a(x)

+
M(x)

2

[
EM

(
xσ , x0

)
a0 +

∫ x

x0

EM
(
xσ , τσ

)
f (τ )�τ

]

+ f (x) +
M(x)

2
μ(x)f (x) –

M(x)
2

μ(x)f (x)

=
M(x)

2
(
a(x)

)
+

M(x)
2

a
(
xσ
)

+
(

I –
M(x)

2
μ(x)

)
f (x)

= M(x)
〈
a(x)

〉
+
(

I –
M(x)

2
μ(x)

)
f (x).
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Hence

a�(x) = M(x)
〈
a(x)

〉
+
(

I –
M(x)

2
μ(x)

)
f (x),

a(x0) = a0. �

Theorem 3.6 (Putzer Algorithm) Let M ∈ RC(T+, Mn(R)) be a constant n × n-matrix.
Suppose x0 ∈ T+. If λ1,λ2, . . .λn are the eigenvalues of M, then

EM(x, x0) =
n–1∑
i=0

ri+1(x)Pi, (7)

where r(x) := (r1(x), r2(x), . . . , rn(x))T is the solution of IVP

r� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 0 0 · · · 0

1 λ2 0
. . .

...

0 1 λ3
. . .

...
...

. . . . . . . . . 0
0 · · · 0 1 λn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

〈r〉, r(x0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(8)

and the P matrices P0, P1, . . . , Pn are recursively defined by P0 = I and

Pk+1 = (M – λk+1I)Pk for 0 ≤ k ≤ n – 1.

Example 3.7 Let us consider the following dynamic system:

a�(x) = M
〈
a(x)

〉
, where M =

(
a 0
0 b

)
such that b > a > 0 (9)

on time scales T+ with step size function μ. We find the matrix exponential EM(x, x0). M
is regressive for μ 	= 2

a , 2
b that is det

(( 1 0
0 1

)
+ μ

2
( a 0

0 b

))
= 1

2 aμ + 1
2 bμ + 1

4 abμ2 + 1 = 1
4 (bμ +

2)(aμ + 2) 	= 0.
Since by definition μ ≥ 0, therefore det

(( 1 0
0 1

)
+ μ

2
( a 0

0 b

)) 	= 0 and det
(( 1 0

0 1

)
– μ

2
( a 0

0 b

))
=

1
4 abμ2 – 1

2 bμ – 1
2 aμ + 1 = 1

4 (bμ – 2)(aμ – 2) 	= 0 for μ 	= 2
a , 2

b .
Equation (9) is equivalently written as

a�(x) =
(

I –
μ

2
M
)–1

Ma(x).

It is easy to see that

EM(x, x0) =

⎛
⎝e 2a

2–aμ
(x, x0) 0

0 e 2b
2–bμ

(x, x0)

⎞
⎠
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and

a(x) =

⎛
⎝e 2a

2–aμ
(x, x0) 0

0 e 2b
2–bμ

(x, x0)

⎞
⎠a0.

4 Impulsive exponential matrix
In this section, we assume the following IDS:

⎧⎨
⎩

a�(x) = M(x)〈a(x)〉, x ∈ T+, x 	= xk ,

a(x+
k ) = (I + Bk)a(xk), k = 1, 2, . . . .

(10)

and

⎧⎪⎪⎨
⎪⎪⎩

a�(x) = M(x)〈a(x)〉, x ∈ T(τ ), x 	= xk ,

a(x+
k ) = (I + Bk)a(xk), k = 1, 2, . . . ,

a(τ+) = η, τ ≥ 0.

(11)

with the following assumption:
(H): Assume Bk ∈ Mn(R), k = 1, 2, . . . , M ∈ RC(T+, Mn(R)), 0 = x0 < x1 < x2 < · · · < xk <

· · · , with limk→∞ xk = ∞, and xσ
k = xk .

For solution of (11), let us define:

� :=

{
a : T+ →R

n; a ∈ C(
(
xk , xk+1,Rn), k = 0, 1, 2, . . . , a

(
x+

k
)

and a
(
x–

k
)

exists with a
(
x–

k
)

= a(xk), k = 1, 2, . . . ,

}

and

�1 :=
{

a ∈ �; a ∈ C1((xk , xk+1), Rn), k = 0, 1, 2, . . .
}

.

A function a ∈ �1 is called the solution of (10), if it satisfies a�(x) = M(x)〈a(x)〉 every-
where on T(τ ) \ {τ , xk(τ ), xk(τ )+1, . . .} such that k(τ ) := min{ k = 0, 1, 2, . . . ; τ < xk} and for each
i = k(τ ), k(τ ) + 1, . . . satisfies the initial a(τ+) = η and impulsive a(x+

i ) = a(xi) + Bia(xi) con-
ditions.

Theorem 4.1 If (H) holds, then any solution of the IVP (10) satisfies

a(x) = a(τ ) +
∫ x

τ

M(s)
〈
a(s)

〉
�s +

∑
τ<xj<x

Bja(xj), x ∈ T+, (12)

and vice versa.

Proof By a similar discussion as in the proof of [26, Theorem 3.1], we can obtain this
result. �

By using [26, Lemma 3.1] and [27, Lemma 3.1], we can obtain the following impulsive
dynamic inequality:



Younus et al. Journal of Inequalities and Applications         (2023) 2023:80 Page 9 of 21

Lemma 4.2 Let τ ∈ T+, a ∈R(T+,R), p ∈RC
+ (T+,R), and ci, di ∈R+, i = 1, 2, . . . . If

⎧⎨
⎩

a�(x) ≤ p(x)〈a(x)〉 + b(x), x ∈ T(τ ), x 	= xi,

a(x+
i ) ≤ cia(xi) + di, i = 1, 2, . . . ,

then

a(x) ≤ a(τ )
∏

τ<xi<x
ciEp(x, τ ) +

∑
τ<xi<x

( ∏
xi<xj<x

cjEp(x, xi)
)

di

+
∫ x

τ

∏
s<xi<x

ci
〈
E–p(s, x)

〉
b(s)�s.

Lemma 4.3 Let τ ∈ T+, a, b ∈RC(T+,R), p ∈RC
+ (T+,R) and c, bi ∈R+, i = 1, 2, 3, . . . . If

a(x) ≤ c +
∫ x

τ

p(s)
〈
a(s)

〉
�s +

∑
τ<xi<x

bia(xi), x ∈ T(τ ) (13)

then

a(x) ≤ c
∏

τ<xi<x
(1 + bi)Ep(x, τ ), x ≥ τ . (14)

Proof Let

v(x) := c +
∫ x

τ

p(s)
〈
a(s)

〉
�s +

∑
τ<xi<x

bia(xi), x ≥ τ

then
⎧⎨
⎩

v�(x) = p(x)〈a(x)〉, x 	= xi, v(τ ) = c,

v(x+
i ) = v(xi) + bia(xi), i = 1, 2, 3, . . . .

Since 〈a(x)〉 ≤ 〈v(x)〉, x ≥ τ , we then have
⎧⎨
⎩

v�(x) ≤ p(x)〈v(x)〉, x 	= xi, v(τ ) = c,

v(x+
i ) = v(xi) + biv(xi), i = 1, 2, 3, . . . .

Lemma 4.2 yields

v(x) ≤ c
∏

τ<xk <x
(1 + bk)Ep(x, τ ), x ≥ τ ,

which implies (14). �

Theorem 4.4 If (H) holds, then any solution of (11) satisfies the following estimate

∥∥a(x)
∥∥≤ ∥∥a(τ )

∥∥ ∏
τ<xk≤x

(
1 + ‖Bk‖

)
exp

(∫ x

τ

‖M(s)‖
1 – μ(s)‖M(s)‖

2

�s
)

, μ(s) > 0 (15)

for τ , x ∈ T+ with x ≥ τ .
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Proof From (12), we obtain that

∥∥a(x)
∥∥≤ ∥∥a(τ )

∥∥ +
∫ x

τ

∥∥M(s)
∥∥〈∥∥a(s)

∥∥〉�s

+
∑

τ<xj≤x
‖Bj‖

∥∥a(xj)
∥∥, x ≥ τ .

Lemma 4.3, yields

∥∥a(x)
∥∥≤ ∥∥a(τ )

∥∥ ∏
τ<xk≤x

(
1 + ‖Bk‖

)
E‖M(·)‖(x, τ ), x ≥ τ .

Since for any a ≥ 0,

lim
u→μ(s)

ln( 1+ au
2

1– au
2

)

u
=

⎧⎪⎪⎨
⎪⎪⎩

a if μ(s) = 0,

ln(
1+ aμ(s)

2
1– aμ(s)

2
)

μ(s) ≤ a
1– aμ(s)

2
if μ(s) > 0,

then

E‖M(·)‖(x, τ ) = exp

(∫ x

τ

lim
u→μ(s)

ln( 1+ ‖M(s)‖μ(s)
2

1– ‖M(s)‖μ(s)
2

)

μ(s)
�s

)

≤ exp

(∫ x

τ

‖M(s)‖
1 – μ(s)‖M(s)‖

2

�s�s
)

, x ≥ τ .

Thus, we obtain (15). �

Remark 4.5 Estimate (15) is μ dependent. However, in Hilger’s exponential case, it is in-
dependent of μ, see, for example, [22, Theorem 3.2].

Let us define generalized exponential matrix GM(x, y), 0 ≤ y ≤ x, for impulsive effects
{Bi, xi}∞i=1:

GM(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

EM(x, x+
i )[

∏
y<xk≤x(I + Bk)EM(xk , x+

k–1)](I + Bj)EM(xj, y),

for xj–1 ≤ y < xj < · · · < xi < x < xi+1;

EM(x, x+
i )(I + Bi)EM(xi, y), for xi–1 ≤ y ≤ xi < x < xi+1;

EM(x, y), for xi–1 ≤ y ≤ x ≤ xi.

(16)

Remark 4.6 By definition, we can obtain the following equality:

GM(x, y) = EM
(
x, x+

k
)
(I + Bk)EM

(
xk , x+

k–1
)

×
[ ∏

s<xj<xk

(I + Bj)EM
(
xj, x+

j–1
)]

(I + Bi)EM(xi, y).

It follows that

GM(x, y) = EM
(
x, x+

k
)
(I + Bk)GM(xk , y)
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for xi–1 ≤ y < xi < · · · < xk ≤ x < xk+1.

For the following result, let us set XM(t) := GM(t, 0), t ∈ T+.

Theorem 4.7 If (H) holds, then GM(t, y) has the following properties:

1. GM(t, y) = XM(t)X–1
M (y), 0 ≤ y ≤ t;

2. GM(t, t) = I , t ≥ 0;
3. If (I + Bi)–1 exists for each i, then GM(t, y) = G–1

M (y, t), 0 ≤ y ≤ t;
4. GM(σ (x), s) = (I – μ

2 M)–1(I + μ

2 M)GM(x, s), 0 ≤ s ≤ x;
5. GM(t, y)GM(y, r) = GM(t, r), 0 ≤ r ≤ y ≤ t.

Proof
1. Let

Y (t) := XM(t)X–1
M (y), 0 ≤ y ≤ t.

Then we have

Y �(t) = X�
M(t)X–1

M (y)

= M(t)
〈
XM(t)

〉
X–1

M (y)

= M(t)
〈
XM(t)X–1

M (y)
〉

= M(t)
〈
Y (t)

〉
, t 	= xk .

Also

Y (y) = XM(y)X–1
M (y) = I,

and

Y
(
x+

k
)

– Y (xk) = XM
(
x+

k
)
X–1

M (y) – XM(xk)X–1
M (y)

=
[
XM

(
x+

k
)

– XM(xk)
]
X–1

M (y)

= BkXM(xk)X–1
M (y)

= BkY (xk) for each xk ≥ y.

Therefore, Y (t) = XM(t)X–1
M (y) solves the IVP (19), which has exactly one solution.

Therefore,

GM(t, y) = XM(t)X–1
M (y), 0 ≤ y ≤ t.

2. From part 1: GM(t, t) = XM(t)X–1
M (t) = I .

3. By using part 1, we have GM(t, y) = XM(t)X–1
M (y) = (XM(y)X–1

M (t))–1 = G–1
M (y, t).
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4. Well-known relation implies that

GM
(
σ (t), y

)
= GM(t, y) + μ(t)G�

M(t, y)

= GM(t, y) + μ(t)M(t)
〈
GM(t, y)

〉
.

It follows that

GM
(
σ (t), y

)
= GM(t, y) + μ(t)M(t)

〈
GM(t, y)

〉
;

= GM(t, y) + μ(t)M(t)
(

GM(t, y) + GM(σ (t), y)
2

)

= GM(t, y) +
μ(t)M(t)GM(t, y)

2
+

μ(t)M(t)GM(σ (t), y)
2

;

= GM
(
σ (t), y

)
–

μ(t)M(t)GM(σ (t), y)
2

–
(

I +
μ

2
M
)

GM(t, y).

Therefore, we have

(
I –

μ

2
M
)

GM
(
σ (t), y

)
=
(

I +
μ

2
M
)

GM(t, y).

Since M ∈RC(T+, Mn(R)), it implies that

GM
(
σ (t), y

)
=
(

I –
μ

2
M
)–1(

I +
μ

2
M
)

GM(t, y).

5. Now let Y (t) = GM(t, y)GM(y, r+), 0 ≤ r ≤ y ≤ t. It follows that:

Y �(t) = G�
M(t, y)GM

(
y, r+)

= M(t)
〈
GM(t, y)

〉
GM

(
y, r+)

= M(t)
〈
GM(t, y)GM

(
y, r+)〉

= M(t)
〈
Y (t)

〉
for t 	= xk .

Also

Y
(
r+) = GM

(
r+, y

)
GM

(
y, r+) = GM

(
r+, y

)
G–1

M
(
y, r+) = I.

and

Y
(
x+

k
)

= GM
(
x+

k , y
)
GM

(
y, r+) = (I + Bk)Y (xk)

(∀) xk ≥ y. Uniqueness result implies that GM(t, r) = GM(t, y)GM(y, r), 0 ≤ r ≤ y ≤ t. �

Theorem 4.8 If (H) holds, then

∂

�s
GM(x, s) = –GM

(
x,σ (s)

)
M(s)

〈
GM(s, x)

〉
G–1

M (s, x), s 	= xk .
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Proof By [4, Theorem A.2], we have

∂

�s
GM(x, s) =

∂

�s
G–1

M (s, x)

= –G–1
M
(
s,σ (x)

) ∂

�s
GM(s, x)G–1

M (s, x)

= –G–1
M
(
s,σ (x)

)
M(x)

〈
GM(s, x)

〉
G–1

M (s, x).

Therefore, ∂
�t GM(x, s) = –GM(x,σ (s))M(s)〈GM(s, x)〉G–1

M (s, x) for all s ∈ T+, s 	= xk , k =
1, 2 · · · . �

Let l∞(Rn) := {c := {ck}∞k=1, ck ∈ R
n k = 1, 2, . . . , such that supk≥1 ‖ck‖ < ∞}. Then l∞(Rn)

is a complete normed space with the norm ‖c‖ := supk≥1 ‖ck‖.
Consider the following nonhomogeneous IVP

⎧⎪⎪⎨
⎪⎪⎩

a�(x) = M(x)〈a(x)〉 + (I – μ(x)
2 M(x))f (x), x ∈ T(τ ), x 	= xk ;

a(x+
k ) = a(xk) + Bka(xk) + ck , k = 1, 2, 3, . . . ;

a(τ+) = η, τ ≥ 0,

(17)

with a given vector-valued function f .

Theorem 4.9 If (H) holds, c := {ck}∞k=1 ∈ l∞(Rn). For regressive vector-valued function f ,
the IVP (17) has only one solution:

a(x) = GM(x, τ )η +
∫ x

τ

GM
(
x,σ (s)

)
f (s)�s

+
∑

τ<xj<x
GM

(
x, x+

j
)
cj, x ≥ τ .

(18)

Proof Let (τ ,η) ∈ T+ × Rn. Then there exists i ∈ {1, 2, . . .} such that τ ∈ [xi–1, xi). Theorem
3.5 implies the unique solution of (17) on [τ , xi):

a(x) = EM(x, τ )η +
∫ x

τ

EM
(
x,σ (s)

)
f (s)�s

= GM(x, τ )η +
∫ x

τ

GM
(
x,σ (s)

)
f (s)�s, x ∈ [τ , xi).

For x ∈ [xi, xi+1) the Cauchy problem

⎧⎨
⎩

a� = M(x)〈a(x)〉 + (I – μ

2 M)f (x), x ∈ (xi, xi+1),

a(x+
i ) = a(xi) + Bia(xi) + ci,

has unique solution

a(x) = EM
(
x, x+

i
)
a
(
x+

i
)

+
∫ x

xi

EM
(
x,σ (s)

)
f (s)�s, x ∈ [xi, xi+1).
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It follows that

a(x) = EM
(
x, x+

i
)[

(I + Bi)a(xi) + ci
]

+
∫ x

xi

EM
(
x,σ (s)

)
f (s)�s

= EM
(
x, x+

i
)
(I + Bi)EM(xi, τ )η

+
∫ xi

τ

GM
(
xi,σ (s)

)
f (s)�s] + EM

(
x, x+

i
)
ci

+
∫ x

xi

EM
(
x,σ (s)

)
f (s)�s

= EM
(
x, x+

i
)
(I + Bi)EM(xi, τ )η

+
∫ xi

τ

EM
(
x, x+

i
)
(I + Bi)EM

(
xi,σ (s)

)
f (s)�s + EM

(
x, x+

i
)
ci

+
∫ x

xi

EM
(
x,σ (s)

)
f (s)�s.

Using (16), we get that

a(x) = GM(x, τ )η +
∫ xk

τ

GM
(
x,σ (s)

)
f (s)�s

+
∫ x

xk

GM
(
x,σ (s)

)
f (s)�s + GM

(
x, x+

i
)
ci,

and so

a(x) = GM(x, τ )η +
∫ x

τ

GM
(
x,σ (s)

)
f (s)�s

+ GM
(
x, x+

i
)
ci, x ∈ (xi, xi+1].

Assume for k > i + 2, (17) has a solution on an interval [xk–1, xk):

a(x) = GM(x, τ )η +
∫ x

τ

GM
(
x,σ (s)

)
f (s)�s

+
∑

τ<xj<xk

GM
(
x, x+

j
)
cj, x ∈ [xk , xk+1).

Then

a(x) = EM
(
x, x+

k
)
a
(
x+

k
)

+
∫ x

xk

EM
(
x,σ (s)M(s)f (s)�s, x ∈ [xk , xk+1

)
.

is the solution of the following IVP:

⎧⎨
⎩

a� = M(x)〈a(x)〉 + (I – μ

2 M)f (x), x ∈ (xk , xk+1)

a(x+
k ) = a(xk) + Bka(xk) + ck .
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More explicitly, we have

a(x) = EM
(
x, x+

k
)[

(I + Bk)a(xk) + ck
]

+
∫ x

xk

EM
(
x,σ (s)

)
f (s)�s

= EM
(
x, x+

k
)
(I + Bk)GM(xk , τ )η +

∫ xk

τ

GM
(
xk ,σ (s)

)
f (s)�s

+
∑

τ<xj<xk

GM
(
xk , x+

j
)
cj + EM

(
x, x+

k
)
ck

+
∫ x

xk

EM
(
x,σ (s)

)
f (s)�s,

Hence, using Remark 4.6, we get

a(x) = GM(x, τ )η +
∫ xk

τ

GM
(
x,σ (s)

)
f (s)�s

+
∫ x

xk

GM
(
x,σ (s)

)
f (s)�s +

∑
τ<xj<xk

GM
(
x, x+

j
)
cj,

and so

a(x) = GM(x, τ )η +
∫ x

τ

GM
(
x,σ (s)

)
f (s)�s +

∑
τ<xj<xk

GM
(
x, x+

j
)
cj. �

For ck = 0, for each k

a(x) = GM(x, τ )η +
∫ x

τ

GM
(
x,σ (s)

)
f (s)�s, x ∈ T(τ )

is the only solution for the following IVP:

Corollary 4.10 If (H) holds, then the IVP (11) has at most one solution, given by

a(x) = GM(x, τ )η, x ≥ τ , for each (τ ,η) ∈ T+ ×R
n.

Corollary 4.11 If (H) holds, then generalized transition matrix GM(x, y), 0 ≤ y ≤ x,
uniquely satisfied IVP:

⎧⎪⎪⎨
⎪⎪⎩

Y �(x) = M(x)〈Y (x)〉, x ∈ T(+), x 	= xk ,

Y (x+
k ) = (I + Bk)Y (xk), k = 1, 2, . . . ,

Y (y+) = I, y ≥ 0.

(19)

Moreover, the following properties hold:

1. GM(x+
i , s) = (I + Bi)GM(xi, s), xi ≥ s, i = 1, 2, 3, . . . ;

2. If (I + Bi)–1 exists for each i, then GM(x, x+
i ) = GM(x, xi)(I + Bi)–1, xi ≤ x, i = 1, 2, 3, . . . ;

3. GM(x, x+
i )GM(x+

i , y) = GM(x, y), 0 ≤ y ≤ xi ≤ x, i = 1, 2, 3, . . . .
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Corollary 4.12 If (H) holds, then we have the following estimate

∥∥GM(x, τ )
∥∥≤

∏
τ<xk≤x

(
I + ‖Bk‖

)
exp

(∫ x

τ

‖M(s)‖
1 – μ(s)‖M(s)‖

2

�s
)

, μ(s) > 0, (20)

for τ , x ∈ T+ with x ≥ τ .

Remark 4.13 From inequality (20), it is easy to see that GM is a bounded operator.

5 Boundedness and exponential stability
Lemma 5.1 For any constant p > 0, such that p ∈RC

+ (T+,R). Then

1 + p(x – s) ≤ Ep(x, s) for all x ≥ s.

Proof Let a(x) = p(x – s), then it implies that 〈a(x)〉 = p
2 (xσ + x – 2s). Since x ≥ s, it follows

that xσ + x – 2s ≥ 0. Furthermore

p
〈
a(x)

〉
+ p =

p2

2
(
xσ + x – 2s

)
+ p ≥ p = a�(x)

or

a�(x) ≤ p
〈
a(x)

〉
+ p.

By applying [26, Lemma 3.1], we have

a(x) ≤ a(s)Ep(x, s) +
∫ x

s
p
〈
E–p(r, x)

〉
�r.

As a(s) = 0 and
∫ x

s p〈E–p(r, x)〉�r = E–p(r, x) – 1. After simplification, we obtain

1 + p(x – s) ≤ Ep(x, s). �

Lemma 5.2 For any constant p > 0, such that –p ∈RC
+ (T+,R). Then we have

E–p(x, s) ≤ e
–p
2 (x–s) for all x ≥ s.

Theorem 5.3 Let (H) holds and ∃ θ > 0 such that xi+1 – xi < θ , i = 1, 2, 3, . . . . If the solution
of IVP

⎧⎪⎪⎨
⎪⎪⎩

a�(x) = M(x)〈a(x)〉, x ∈ T(τ ), x 	= xk ,

a(x+
k ) = (I + Bk)a(xk) + ck , k = 1, 2, . . . ,

a(τ+) = 0, τ ≥ 0,

(21)

is bounded for every c ∈ l∞(R)n, then ∃ N = N(τ ) ≥ 1 with –λ ∈RC
+ (T+,R) such that

∥∥GM(x, τ )
∥∥≤ NE–λ(x, τ ) for all x ∈ T(τ ).
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Proof Theorem 4.9, yields

a(x) =
∑

τ<xj<x
GM

(
x, x+

j
)
cj, x ∈ T(τ ).

By using similar estimation as given in [22, Theorem 5.1], we can obtain:

∥∥GM(x, τ )
∥∥≤ K4

(K – 1)2
βi

(
1 –

1
K

) 1
θ

(x–τ )

for x ∈ [xi+j, xi+j+1).

Let us consider the positive function λ(x), with –λ(x) ∈R+, as the solution of inequality

E–λ(x, τ ) ≥
(

1 –
1
k

) 1
θ

(x–τ )

, for x ∈ [xi+j, xi+j+1),

where E–λ(x, τ ) is a Cayley exponential function. Set

N = max

{
K4

(K – 1)2
βi, sup

τ<x<xi

‖GM(x, τ )‖
E–λ(x, τ )

}
.

Then for all x, τ ∈ T+, we have

∥∥GM(x, τ )
∥∥≤ NE–λ(x, τ ),

and so the theorem is proved. �

Corollary 5.4 Let (H) holds and ∃ θ > 0 such that xi+1 – xi < θ , i = 1, 2, 3, . . . . Then the
boundedness of (21), for every c := {ck}∞k=1,∈ l∞(R)n, implies the exponentially stability of
(11).

Proof Theorem 5.3 implies that (∃) N = N(τ ) ≥ 1, λ with –λ ∈ R
+ such that

∥∥GM(x, τ )a(τ )
∥∥≤ NE–λ(x, τ ) for all x ∈ T(τ ).

For any τ ∈ T+, the solution of (11) satisfies

∥∥a(x)
∥∥ =

∥∥GM(x, τ )a(τ )
∥∥≤ ∥∥GM(x, τ )

∥∥.
∥∥a(τ )

∥∥≤ N
∥∥a(τ )

∥∥E–λ(x, τ )

for all x ∈ T(τ ). �

Lemma 5.5 If ∃ θ > 0 such that xi+1 – xi < θ , ∀ i = 1, 2, 3, . . . , then for every positive number
λ with θ < 1

λ
, we have –λ ∈RC

+ .

Proof Since xσ
i = xi ∀i = 1, 2, 3, . . . , then for x ∈ [xi, xi+1], we have that xi ≤ x ≤ σ (x) ≤ xi+1.

It follows that μ(x) = σ (x) – x ≤ xi+1 – xi < θ for x ∈ [xi, xi+1]. Therefore, μ(x) < θ for
x ∈ T+. If θ < 1

λ
, then we have that

2 – λμ(x) > 2 – 1
θ
μ(x) > 0 and thus –λ ∈RC

+ . �
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Theorem 5.6 Let (H) holds and ∃ θ > 0 such that xi+1 – xi < θ , i = 1, 2, 3, . . . , and

sup
i≥1

‖Bi‖ ≤ b,
∫ xi+1

xi

‖M(s)‖
1 – μ(s)‖M(s)‖

2

�s ≤ M, i = 1, 2, . . . . (22)

Then the IVP (21) is bounded for any c ∈ l∞(R)n, implies that ∃ N > 0, λ > 0 with –λ ∈RC
+ :

∥∥GM(x, τ )
∥∥≤ NE–λ(x, τ ) for all x ∈ T(τ ).

Proof By using Lemma 5.1, Lemma 5.5, and [22, Theorem 5.2], we can obtain

∥∥GM(x, τ )
∥∥≤ NE–λ(x, τ ) for all x ∈ T(τ ). �

Example 5.7 Let us consider the following linear Cayley-type dynamic system on the time
scale P1,1 :=

⋃∞
k=0[2k, 2k + 1]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a�(x) =

⎛
⎝–α 0

0 –β

⎞
⎠ 〈a(x)〉 +

⎛
⎝(1 + μα

2 )E–α(xσ , τ )

(1 + μβ

2 )E–β(xσ , τ )

⎞
⎠ , x 	= xk ;

a((2k)+) =

⎛
⎝a2k 0

0 b2k

⎞
⎠a(2k), k = 1, 2, . . . ;

a(τ ) = η, τ ≥ 0

(23)

with β > α > 0, and (a2k)k≥1 and (b2k)k≥1 such that aij :=
∏j

l=1 a2(i+l) < a, bij :=
∏j

l=1 a2(i+l) < b
for each fixed i ≥ 1, and j = 1, 2, . . . .

Since (H) holds, then the generalized exponential matrix GM(x, τ ), 0 ≤ τ ≤ x, for impul-
sive effects {Bi, xi}∞i=1 is given by

GM(x, τ ) =

(
aijE–α(x, τ ) 0

0 bijE–β (x, τ )

)
,

where Ep(x, τ ) = e 2p
2+μp

(x, τ ) = (1+ 2p
2+μp )je

2p(x–τ )
2+μp e– 2pj

2+μp , for τ ∈ [2i, 2i+2) and x ∈ [2(i+ j), 2(i+
j + 1)]. It follows that

∥∥GM(x, τ )
∥∥≤ KE–α(x, τ ),

where K := max{a, b}.
The solution of (23) is given by

a(x) =

(
aijE–α(x, τ ) 0

0 bijE–β (x, τ )

)
η

+
∫ x

τ

(
aijE–α(x, sσ ) 0

0 bijE–β(x, sσ )

)(
E–α(sσ , τ )
E–β (sσ , τ )

)
�s

=

(
aijE–α(x, τ ) 0

0 bijE–β (x, τ )

)
η +

(
E–α(x, τ )

∫ x
τ

aij�s
E–β (x, τ )

∫ x
τ

bij�s

)
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=

(
aijE–α(x, τ )(η1 + (x – τ ))
bijE–β (x, τ )(η2 + (x – τ ))

)
.

In particular, if we consider the following system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a�(x) =

⎛
⎝–α 0

0 –β

⎞
⎠ 〈a(x)〉, x 	= xk ;

a((2k)+) =

⎛
⎝a2k 0

0 b2k

⎞
⎠a(2k) + c2k , k = 1, 2, . . . ;

a(τ ) = 0, τ ≥ 0,

(24)

then the solution is

a(x) =
j∑

l=1

GM
(
x,
(
2(i + l)

)+)c2(i+l).

Moreover, it is easy to see that the solution of (24) is bounded for any c = {ck}∞k=1 ∈ l∞(Rn).
Consequently, the following impulsive dynamic system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a�(x) =

⎛
⎝–α 0

0 –β

⎞
⎠ 〈a(x)〉, x 	= xk ;

a((2k)+) =

⎛
⎝a2k 0

0 b2k

⎞
⎠a(2k), k = 1, 2, . . . ;

a(τ ) = η, τ ≥ 0,

is uniformly exponentially stable.

6 Conclusions and future directions
We proposed the solution of a linear time-varying Cayley impulsive dynamic system on
time scales. We have introduced Cayley regressive matrices. We proved the basic proper-
ties of the transition matrix and the impulsive transition matrix. We have also given some
estimates for the solution of the Cayley impulsive dynamic systems. We have established
the necessary and sufficient conditions for exponential stability and boundedness.

Moreover, these results will be very useful for the analysis and synthesis of impulsive
control systems on time scales. The discussion of stability and Hyers–Ulam stability for
Cayley impulsive dynamic systems is possible. We can use the results for the study of the
transfer function for linear Cayley dynamic systems.
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