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Abstract
Hawkes process is a class of self-exciting point processes with clustering effect whose
jump rate relies on their entire past history. This process is usually defined as a
continuous-time setting and has been widely applied in several fields, including
insurance, finance, queueing theory, and statistics. The Hawkes model is generally
non-Markovian because the future development of a self-exciting point process is
determined by the timing of past events. However, it can be Markovian in special
cases such as when the exciting function is an exponential function or a sum of
exponential functions. Difficulty arises when the exciting function is not an
exponential function or a sum of exponentials, in which case the process can be
non-Markovian. The inverse Markovian case for Hawkes processes was introduced by
Seol (Stat. Probab. Lett. 155:108580, 2019) who studied some asymptotic behaviors.
An extended version of the inverse Markovian Hawkes process was also studied by
Seol (J. Korean Math. Soc. 58(4):819–833, 2021). In the current work, we propose a
class of Markovian self-exciting processes that interpolates between the Hawkes
process and the inverse Hawkes process. We derived limit theorems for the newly
considered class of Markovian self-exciting processes. In particular, we established
both the law of large numbers (LLN) and central limit theorems (CLT) with some key
results.
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1 Introduction
Hawkes processes [15] are the most popular and useful models of simple point processes
and are self-exciting with clustering effect. The intensity process for a point process is
composed of the summation of the baseline intensity plus other terms that depend upon
the history of whole past of the point process in comparison with a standard Poisson
process. In applications, the Hawkes process is typically used as an expressive model for
temporal phenomena of a stochastic process which evolve in continuous time, such as in
modeling high-frequency trading. The Hawkes process is a natural generalization of the
Poisson process and captures both the self-exciting property and the clustering effect. This
process is a very variable model that is amenable to statistical analysis. Therefore, it has
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wide applications in insurance, social networks, neuroscience, criminology, seismology,
DNA modeling, and finance. Typically, the self-exciting and clustering properties make
the Hawkes process highly desirable for computations in financial applications [6], such
as in modeling the associated defaults and evaluating the derivatives of credit in finance
[5, 7]. There are many situations that require time-dependent frameworks when it comes
to model adjustment. The Hawkes process generally can be categorized by linear and non-
linear cases of Hawkes processes based on the intensity. Hawkes [15] introduced the linear
process that can be studied via immigration-birth representation [16]. The stability [20],
the law of large numbers (LLN) [4], the Bartlett spectrum [22], the central limit theo-
rem (CLT) [1], and large deviation principles (LDP) [2] have all been studied and under-
stood very well. Most applications for the Hawkes process consider exclusively the linear
case. The nonlinear Hawkes process is much less studied mainly due to the deficiency of
immigration-birth representation and computational tractability, although some efforts
in this direction have been made. The first nonlinear case was studied by Brémaud and
Massoulié [3]. Recently, Zhu [34–37, 39] investigated several results for both linear and
nonlinear models. The central limit theorem for the nonlinear model was investigated by
Zhu [34], and the large deviation principles were obtained by Zhu [37]. Jaisson and Rosen-
baum [18, 19] studied some limit theorems and rough fractional diffusions as scaling limits
of nearly unstable Hawkes processes. Some variations and extensions of the Hawkes pro-
cess were studied by Dassios and Zhao [5], Ferro, Leiva, and Møller [8], Karabash and Zhu
[21], Mehrdad and Zhu [24], and Zhu [38]. Seol [26] considered the arrival time τn, in-
verse of the Hawkes process, and studied the limit theorems for τn. Recently, data-driven
models have gained attention due to the development of storage technology. In contrast
to the continuous-time scheme, in real world, events are often recorded in a discrete-time
scheme. It is more important that the data are collected in a fixed phase or that the data
only show the aggregate results. For example, continuous-time Hawkes models can be
spaced unevenly in time, whereas a discrete-time Hawkes model can be spaced evenly in
time, and so a discrete-time Hawkes process has wide applications in many fields. Usu-
ally, the Hawkes process is considered as a continuous-time scheme. However, data are
often recorded in a discrete-time scheme. Seol [25] proposed a 0-1 discrete Hawkes pro-
cess starting from empty history and proved some limit behaviors such as the law of large
numbers (LLN), the invariance principles, and the central limit theorem (CLT). Recently,
Wang [31, 32] studied limit behaviors of a discrete-time Hawkes process with random
marks and proved large and moderate deviations for a discrete-time Hawkes process with
marks. Seol [27, 28] studied the moderate deviation principle of marked Hawkes processes
and also studied asymptotic behaviors for the compensator processes of Hawkes models.
Furthermore, Gao and Zhu [10, 12–14] made some progress in the direction of limit be-
haviors other than the large time scale limits. Studies have also been reported on modify-
ing and extending the classical Hawkes process. First of all, the intensity of the baseline was
given by time-inhomogeneous (see [11]). As the second case, the immigrants can arrive
by a Cox process with shot noise intensity, which was known as the dynamic contagion
model (see [5]). As the third case, the immigrants can arrive by a conditioned on renewal
process instead of the Poisson process, which generalizes the classical Hawkes process.
That is known as the renewal Hawkes process (see [33]). Recently, Seol [29] introduced
the inverse case of Markovian Hawkes processes represented as several existing models of
self-exciting point processes and proved some asymptotic behaviors of the inverse Marko-



Seol Journal of Inequalities and Applications         (2023) 2023:79 Page 3 of 12

vian Hawkes processes. Seol [30] further studied an extended version of the inverse case
of Markovian Hawkes model.

In the current paper, we consider a class of Markovian self-exciting processes, which
combines a general Markovian Hawkes process and an inverse Markovian Hawkes process
and has remarkable properties to be more active and useful models. We also study the limit
theorems of a class of Markovian self-exciting processes. This paper has been organized
into mainly two parts. The general review of the Hawkes process and the statement of main
theorems are reported in Sect. 1. The proofs of the main theorems with some auxiliary
results are provided in Sect. 2.

1.1 The general Hawkes process
In this section, we formally introduce the general Hawkes process that was introduced by
Brémaud and Massoulié [3].

Let ϒ–∞
t := σ (N(C), C ⊂ (–∞, t], C ∈ B(R)) be an increasing function of the family of σ -

algebras with N being a simple point process on R. Any nonnegative ϒ–∞
t -progressively

measurable process λt with

E
[
N(a, b

]|ϒ–∞
a ] = E

[∫ b

a
λs ds

∣
∣∣ϒ–∞

a

]

a.s. for all interval (a, b] is called an ϒ–∞
t -intensity of N. We use the notation Nt := N(0, t]

to present the number of points in the interval (0, t]. The general definition of Hawkes
process is a simple point process N admitting an ϒ–∞

t -intensity

λt := λ

(∫ t

–∞
h(t – s)N(ds)

)
,

where λ(·) : R+ → R
+ is left continuous and locally integrable, h(·) : R+ → R

+ with the
condition ‖h‖L1 =

∫ ∞
0 h(t) dt < ∞. In the literature, λ(·) and h(·) are usually referred to as

a rate function and an exciting function, respectively. Assumption for local integrability
of λ(·) makes sure that the process is nonexplosive, while the left continuity assumption
makes sure that λt is ϒt-predictable. The Hawkes process is generally non-Markovian be-
cause the future development of a self-exciting point process is determined by timing of
the past events, whereas it is Markovian as a special case. If the exciting function h is an ex-
ponential function or a sum of exponential functions, then the process is Markovian with
a generator of the process. However, the difficulty arises when h is neither an exponential
function nor a sum of exponentials, in which case the process becomes non-Markovian.
When h(t) = pe–qt , the structure of the Hawkes process is Markovian in the manner that
Zt =

∫ t–
–∞ pe–q(t–s) dNs is Markovian satisfying the dynamics

dZt = –qZt dt + p dNt , (1)

where Nt has the intensity ν + Zt– at time t and Zt has the infinitesimal generator

�f (z) = –qzf ′(z) + (ν + z)
[
f (z + p) – f (z)

]
. (2)
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It is well known (see [14]) that

1
t

∫ t

0
Zs ds → ν

q – p
, (3)

and

1√
t

[∫ t

0
Zs ds –

ν

q – p
· t

]
→ N

(
0,

p2νq
(q – p)3

)
(4)

in distribution as t → ∞.
The Hawkes process generally can be classified as linear and nonlinear case models

based on the intensity λ(·). When λ(·) is linear, we call the process linear Hawkes process;
furthermore, for λ(l) = ν + l, for some ν > 0 and ‖h‖L1 < 1, we can use a useful method
immigration-birth representation, also known as Galton–Watson theory. The limit re-
sults are well understood and more explicitly represented. The limit behaviors of the linear
Hawkes processes with marks were reported by Karabash and Zhu [21]. Daley and Vere-
Jones [4] investigated the law of large numbers (LLN) of the linear case model as shown
in equation (5).

Nt

t
→ ν

1 – ‖h‖L1
as t → ∞. (5)

The functional central limit theorem (FCLT) of linear multivariate Hawkes model under
certain assumptions was investigated by Bacry et al. [1], and the results are given by

N·t – ·μt√
t

→ σB(·) as t → ∞,

where B(·) is the standard Brownian motion and

μ =
ν

1 – ‖h‖L1
and σ 2 =

ν

(1 – ‖h‖L1 )3 .

Throughout the paper, we use a weak convergence on D[0, 1], and the space of càdlàg
function on [0, 1] is equipped with Skorokhod topology. Bordenave and Torrisi [2] showed
that under the conditions 0 < ‖h‖L1 < 1 and

∫ ∞
0 th(t) dt < ∞, P(Nt

t ∈ ·) satisfies the large
deviation principle with the good rate function I(·), which means that for any closed set
C ⊂R,

lim sup
t→∞

1
t

logP(Nt/t ∈ C) ≤ – inf
x∈C

I(x),

and for any open set G ⊂ R,

lim inf
t→∞

1
t

logP(Nt/t ∈ G) ≥ – inf
x∈G

I(x),
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where

I(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xθx + ν – νx
ν+‖h‖L1 x if x ∈ (0,∞),

ν if x = 0,

+∞ if x ∈ (–∞, 0),

where θ = θx is the unique solution in (–∞,‖h‖L1 – 1 – log‖h‖L1 ) of

E
(
eθS) =

x
ν + x‖h‖L1

, x > 0, (6)

where S in the above equation is S(∞), the total number of descendants with ‖h‖L1 . Zhu
[35] showed that under the conditions ‖h‖L1 < 1 and supt>0 t3/2h(t) ≤ C < ∞, for any Borel
set B and time sequence

√
n � κ(n) � n, there exists a moderate deviation principle

– inf
x∈β◦ L(x) ≤ lim inf

t→∞
t

κ(t)2 logP

(
1

κ(t)
(Nt – μt) ∈ B

)

≤ lim sup
t→∞

t
κ(t)2 logP

(
1

κ(t)
(Nt – μt) ∈ B

)
≤ – inf

x∈B̄
L(x), (7)

where L(x) = x2(1–‖h‖L1 )3

2ν
.

When λ(·) is nonlinear, we call the process nonlinear Hawkes process, and the general
Galton–Watson theory cannot be used to work. The nonlinear model is much harder
to study because of the lack of immigration-birth representation with computational
tractability. Brémaud and Massoulié [3] provided the unique stationary of nonlinear
Hawkes processes under certain conditions with convergence to equilibrium of a non-
stationary version. Massoulié [23] extended the stability results of the nonlinear case of
Hawkes processes with random marks and also considered the Markovian case. The au-
thor also proved stability without the Lipschitz condition for λ(·). Furthermore, Brémaud
[3] considered the rate of extinction for the nonlinear case of Hawkes process. A func-
tional central limit theorem(FCLT) of the nonlinear case of Hawkes process was reported
by Zhu [34]. Zhu [39] also proved large deviation principles for a special case of nonlinear
Hawkes process when h(·) was an exponential function or a sum of exponential functions.
Zhu [37] provided a large deviation principle level-3 of nonlinear Hawkes processes for
the general h(·).

1.2 Inverse Markovian Hawkes process
In the recent paper of Seol [29], an inverse version of Markovian Hawkes process was
developed and studied. This new model has some particular remarks compared with the
general Hawkes process. For the general Hawkes process, the more jumps can be expected
in the future, the more jumps one has in the past. However, for the inverse version of
Hawkes process, the larger jumps can be expected in the future, the more jumps one has
in the past. It is worth mentioning that, for the general Hawkes process, the self-excitation
depends upon the intensity for the general Hawkes process, while for the inverse version
of Hawkes process, the self-excitation depends upon the jump size. That is, for the gen-
eral Hawkes process, self-excitation represents frequency, whereas for the inverse version
of Markovian Hawkes process, self-excitation represents severity. The inverse Markovian
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Hawkes process can be represented as several existing models of the self-exciting pro-
cess, which means that if p = 0, then Zt can be expressed as a shot-noise process, such as
Zt = Z0e–qt +

∫ t
0 νe–q(t–s) dNs, and if ν = 0, then it can be represented as a jump-diffusion

process with no diffusions, such as the following model Zt = Z0 exp(–qt + log(1 + p)Nt).
Seol [29] first proposed an inverse version of the Markovian Hawkes process, which was

defined as

dZt = –qZt dt + (ν + pZt–) dNt , (8)

where Nt is Poisson with intensity 1 and p > 0, q > 0, and ν > 0, and it follows that

d
(
eqtZt

)
= (pZt– + ν)eqt dNt , (9)

and since we assumed Z0 = 0, we get

Zt =
∫ t

0
(pZs– + ν)e–q(t–s) dNs. (10)

The Zt process has the infinitesimal generator

�f (z) = –qzf ′(z) + f (z + pz + ν) – f (z). (11)

Under certain assumptions, Seol [29] obtained the law of large numbers

lim
t→∞

1
t

∫ t

0
Zs ds =

ν

q – p
(12)

in probability and the central limit theorem

1√
t

[∫ t

0
Zs ds –

ν

q – p
· t

]
→ N

(
0,

ν2 + 2νp ν
q–p + p2 ν2(p+q+2)

(q–p)(2q–2p–p2)

(q – p)2

)
(13)

in distribution as t → ∞. Furthermore, Seol [30] introduced a model combining the
Hawkes process and the inverse Hawkes process, which is an extended version of the in-
verse Markovian Hawkes process. The extended model can be defined as

dZt = –qZt dt + p1 dN(1)
t + (ν2 + p2Zt–) dN(2)

t , (14)

where N
(1)
t is a simple point process with intensity ν1 + Zt– at time t and N

(2)
t is a Poisson

process with intensity 1, where p1, p2, q, ν1, and ν2 are all positive constants. The infinites-
imal generator of Zt process is given by

�f (z) = –qzf ′(z) + (ν1 + z)
[
f (z + p1) – f (z)

]
+ f (z + ν2 + p2z) – f (z). (15)

Under certain assumptions, Seol [30] obtained the law of large numbers

lim
t→∞

1
t

∫ t

0
Zs ds =

ν1p1 + ν2

q – p1 + p2
(16)
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in probability a.s. as t → ∞, and the central limit theorem

1√
t

[∫ t

0
Zs ds –

ν1p1 + ν2

q – p1 + p2
· t

]
→ N

(
0,σ 2) (17)

in distribution as t → ∞, where

σ 2 :=
1

(q – p1 – p2)2

[
p2

1
(
ν1 + E[Z∞]

)
+ E

[
(ν1 + p2Z∞)2]]

=
(p2

1ν1 + ν2
1 )K1K2 + (p2

1ν1 + 2ν1p2)K2K3 + p2
2(K3K5 + K1K4)

K3
1 K2

,

and Ki (i ∈ 1, 2, 3, 4, 5) are constants and

K1 = q – p1 + p2,

K2 = 2q – 2p1 – p2 – p2
2,

K3 = ν1p1 + ν2,

K4 = ν1p2
1 + ν2

2 ,

K5 = p2
1 + 2ν1p1 + 2ν2p2 + 2ν2.

1.3 Main results of this paper
We now give the statement of the main part for this paper. We investigate asymptotic
results for a more general Markovian self-exciting process that interpolates between the
Hawkes process and the inverse Hawkes process. Our results mainly consist of both the
central limit theorems (CLT) and the law of large numbers (LLN). We developed a more
general and newly considered model, which is a class of Markovian self-exciting processes
that interpolates between the general Hawkes process and the inverse Hawkes process.

We first define Zt as a Markov process satisfying the dynamics

dZt = –qZt dt + p(ν + Zt–)1–γ dNt , (18)

where we assume that q > p, and Nt is a simple point process with intensity

λt = (ν + Zt–)γ (19)

at time t, where 0 ≤ γ ≤ 1 is the interpolation coefficient. The infinitesimal generator of
Zt process is given by

Af (z) = –qzf ′(z) + (ν + z)γ
[
f
(
z + p(ν + z)1–γ

)
– f (z)

]
. (20)

Note that when γ = 1, it reduces to the Markovian Hawkes process, and when γ = 0, it
reduces to the inverse Markovian Hawkes process.

The assumptions that we use throughout the paper are stated below.

Assumption 1.1
1. N(–∞, 0] = 0, which means that Hawkes model has empty history;
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2. q > p > 0;
3. 0 ≤ γ ≤ 1, where γ is the interpolation coefficient;
4. ν > 0.

The first asymptotic result is a law of large numbers for our considered model.

Theorem 1.2 Let Zt be defined in (18). Under Assumption 1.1, we have

1
t

∫ t

0
Zs ds → pν

q – p
(21)

a.s. as t → ∞.

The second asymptotic result is the central limit theorem.

Theorem 1.3 Let Zt be defined in (18). Under Assumption 1.1, we have

1√
t

(∫ t

0
Zs ds –

pν

q – p
t
)

→ N
(

0,
p2

(q – p)2 E
[
(ν + Z∞)2–γ

])
(22)

in distribution as t → ∞.

2 Proofs of the main results
In the current section, we give the proofs of our main theorems and related auxiliary re-
sults. The following are the key results to prove the main results. The key result is devoted
to the distributional properties of non-Markovian inverse Hawkes processes. Both the first
and the second moments of Zt have been computed in Sect. 2.1. The main theorems of
the paper are validated in Sects. 2.2 and 2.3.

2.1 Some auxiliary results
In this section, we obtain closed formulae for the moments of Zt . In particular, the first
moments can be discussed.

Proposition 2.1 Let Zt be defined in (18). Under Assumption 1.1, we have: Given Z0 > 0,

E[Zt] = Z0e–(q–p)t +
pν

q – p
(
1 – e–(q–p)t). (23)

In particular,

E[Z∞] =
pν

q – p
. (24)

Proof To show this, we will use the following:

Ef (Zt) = f (Z0) +
∫ t

0
EAf (Zs) ds. (25)

Taking f (z) = z gives us two explicit forms

E[Zt] = Z0 +
∫ t

0
EAZs ds. (26)
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We can compute that

Az = –qz + (ν + z)γ p(v + z)1–γ

= –(q – p)z + pν.

This implies that

E[Zt] = Z0 +
∫ t

0
EAZs ds = Z0 +

∫ t

0

(
pν + (p – q)E[Zs]

)
ds. (27)

Using the derivative with respect to t to both sides, we have

d
dt

E[Zt] = –(q – p)E[Zt] + pν. (28)

Solving differential equation yields

E[Zt] = Z0e–(q–p)t +
pν

q – p
(
1 – e–(q–p)t). (29)

In particular, we have, as t → ∞,

E[Z∞] =
pν

q – p
, (30)

since Zt is uniformly integrable. �

Remark 2.2 We notice that in the above result, E[Zt] is independent of the interpola-
tion coefficient γ ∈ [0, 1]. This means that for the Markovian Hawkes process, the inverse
Markovian Hawkes process and any interpolation in between share the same first moment.

2.2 Proof of the law of large numbers
The following are the proofs of the first main theorems.

Note that

Az = –(q – p)z + pν, (31)

where q – p > 0. Using the definition of Zt process, the Foster–Lyapunov criterion (see
[9] for details), and (i) of Assumption 1.1, we conclude that Zt is ergodic. Therefore, by
ergodic theorem and equation (30), we have

1
t

∫ t

0
Zs ds → E[Z∞] =

pν

q – p
(32)

a.s. as t → ∞. This completes the proof of Theorem 1.2.

2.3 Proof of the central limit theorem
In the current section, we prove the second main result. First of all, let us prove that

E
[
(ν + Z∞)2–γ

]
< ∞. (33)
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We can compute that

Az2–γ = –q(2 – γ )z2–γ + (ν + z)γ
[(

z + p(ν + z)1–γ
)2–γ – z2–γ

]
. (34)

If γ = 1, then

Az2–γ = Az = –(q – p)z + pν = –(q – p)z2–γ + pν. (35)

If γ < 1, then

(
z + p(ν + z)1–γ

)2–γ – z2–γ = z2–γ

[(
1 + p

(ν + z)1–γ

z

)2–γ

– 1
]

, (36)

where p (ν+z)1–γ

z → 0 as z → ∞, and we know that

lim
x→0

(1 + x)2–γ – 1
x

= 2 – γ . (37)

Therefore

lim
z→∞

(ν + z)γ [(z + p(ν + z)1–γ )2–γ – z2–γ ]
z2–γ

= lim
z→∞

(ν + z)γ

zγ

[(1 + p (ν+z)1–γ

z )2–γ – 1]

p (ν+z)1–γ

z

p (ν+z)1–γ

z
z–γ

= p(2 – γ ).

Hence, for any ε > 0, there exists some Cε > 0 so that

Az2–γ ≤ –(q – p – ε)(2 – γ )z + Cε . (38)

Since q > p, we can choose ε > 0 to be sufficiently small so that q – p – ε > 0. Hence,
E[Z2–γ

∞ ] < ∞, which implies that E[(ν + Z∞)2–γ ] < ∞.
Note that

Az = –(q – p)z + pν (39)

and

Mt = f (Zt) – f (Z0) –
∫ t

0
Af (Zs) ds (40)

is a martingale where we can take

f (z) = –
z

q – p
. (41)

Therefore
∫ t

0

(
Zs –

pν

q – p

)
ds = –Mt –

Zt

q – p
+

Z0

q – p
. (42)
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Mt is a martingale with quadratic variation the same as the quadratic variation of –Zt
q–p ,

which is given by

1
(q – p)2

∫ t

0
p2(ν + Zs–)2–2γ dNs (43)

and by ergodic theorem

1
t

1
(q – p)2

∫ t

0
p2(ν + Zs–)2–2γ dNs → p2

(q – p)2 E
[
(ν + Z∞)2–γ

]
(44)

a.s. as t → ∞. Applying the central limit theorem for the martingales properties (see The-
orem VIII-3.11 of [17] for details), we have

Mt√
t

→ N
(

0,
p2

(q – p)2 E
[
(ν + Z∞)2–γ

])
(45)

in distribution as t → ∞. Therefore, by the Markov inequality and the fact that
limt→∞ E[Zt] = pν

q–p < ∞, we have both Zt√
t → 0 in probability and Z0√

t → 0 in probabil-
ity as t → ∞. This completes the proof of Theorem 1.3.
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