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Abstract

In this paper we investigate the stability of solution sets for set optimization problems
via improvement sets. Some su�cient conditions for the upper semicontinuity, lower
semicontinuity, and compactness ofE-minimal solution mappings are given for
parametric set optimization under some suitable conditions. We also give some
examples to illustrate our main results.
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1 Introduction
In recent years, set optimization problems have received increasing attention and have

been intensively discussed due to extensive applications in many areas such as vector op-

timization, vector variational inequalities, mathematical economics, game theory, engi-

neering management, control system “eld, and many others; for details, see [1…6] and the

references therein.

It is well known that the stability of solutions is a very interesting topic in the study of

set optimization. Xu and Li [7] established the semicontinuity of minimal solution map-

pings and weak minimal solution mappings to a parametric set optimization problem by

making use of the converseu-property of objective mappings. Han and Huang [8] studied

the upper semicontinuity, lower semicontinuity, and convexity of solution mappings of

parametric set optimization problems. Khoshkhabar-amiranloo [9] studied the semicon-

tinuity and compactness of minimal solutions of parametric set optimization problems.

Karuna and Lalitha [10] discussed the continuity of approximate weak e�cient solution

mappings of parametric set optimization problems under the strict quasiconvexity of the

objective map. Under some suitable conditions Zhang et al. [11] discussed the semicon-

tinuity and compactness of minimal solution mappings to a parametric set optimization

with the general pre-order relations. Mao and Han [12] discussed the semicontinuity of

solution mappings for parametric set optimization problems via improvement sets un-

der several suitable conditions. Since the compactness of objective values is so strong, it

limits the application of stability of set optimization problems. The main purpose of this
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paper is to investigate the upper semicontinuity, lower semicontinuity, and closedness of

solution maps to the parametric set optimization problem via improvement sets under

appropriate assumptions. In our results we have no compactness assumption on the ob-

jective maps. Moreover, the continuity of the objective map is replaced by (weak, converse)

≤l
E-continuity assumptions, which is of great interest and importance. Our results extend

and improve the corresponding ones of [7, 8, 10…14].

The rest of this paper is organized as follows. The next section presents some neces-

sary notations, concepts, and results to be used throughout the paper. In Sect.3 we obtain

the upper semicontinuity, lower semicontinuity, and compactness ofE-minimal solution

mappings for a parametric set optimization problem under weaker and simpler assump-

tions.

2 Preliminaries
Throughout the paper, unless otherwise speci“ed, we assume thatX, Y, and� are real

normed vector spaces. We assume thatK ⊆ Y is a convex, closed, and pointed cone with

nonempty interior. We denote the family of nonempty subsets ofY by P(Y). We denote

by int A, cl A, andAc the topological interior, the closure ofA, and the complementary set

of A, respectively.

A setA ∈ P(Y) is calledK-closed ifA + K is closed;K-proper if A + K �= Y.

The sets of all minimal solutions and weak minimal solutions ofA ∈ P(Y) are de“ned as

follows:

minA :=
{
a ∈ A : (A …a) ∩ (…K) = {0}};

WminA :=
{
a ∈ A : (A …a) ∩ (…int K) = ∅}

.

In [15], for any A,B ∈ P(Y), the lower set less order relation≤l
K and the strict lower set

less order relation�l
K on P(Y) are de“ned by

A ≤l
K B ⇔ B⊆ A + K;

A �l
K B ⇔ B⊆ A + int K.

In [16], Chicco et al. de“ned the upper comprehensive set of a setE⊆ Y by

u …compr(E) := E+ K.

Definition 2.1 ([16]) Let E be a nonempty subset in Y.E is called an improvement set

with respect toK i� 0 /∈ E andE+ K = E.

In the sequel, we assume thatE⊆ Y is an improvement set withE⊆ K\{0}. Dhigra and

Lalitha [17] de“ned a set relation as follows:

A ≤l
E B ⇔ B⊆ A + E;

A �l
E B ⇔ B⊆ A + int E.
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Let F : X → 2Y be a set-valued mapping with nonempty values andG ⊆ X with G �= ∅.

We consider the following set optimization problem:

(SOP) min F(x)

s.t. x ∈ G.

Definition 2.2 ([17]) An element x̄ ∈ G is said to be

(i) a K-l-minimal solution of (SOP) if x ∈ G such that F(x) ≤l
K F(x̄) imply F(x̄) ≤l

K F(x);
(ii) an E-l-minimal solution of (SOP) if x ∈ G such that F(x) ≤l

E F(x̄) imply
F(x̄) ≤l

E F(x);
(iii) a weak E-l-minimal solution of (SOP) if x ∈ G such that F(x) �l

E F(x̄) imply
F(x̄) �l

E F(x).
Let Kl (G), El (G), Wl(G) denote theK-l-minimal solution, E-l-minimal solution, and the

weakE-l-minimal solution set of (SOP), respectively.

Remark2.1 ([12]) Kl (G) ⊆ El(G) ⊆ Wl(G).

We say thatF isK-closed-valued (K-proper-valued) onG if F(x) isK-closed (K-proper)

for eachx ∈ G.

Definition 2.3 Let G be a nonempty convex subset ofX and E be an improvement set.

A set-valued mappingF : X → 2Y is said to bel-E-strictly quasiconvex at̄x ∈ G if, for any

x ∈ G with x �= x̄, t ∈ (0, 1)

F(x) ≤l
E F(x̄) ⇒ F

(
tx + (1 …t)x̄

) �l
E F(x̄).

The mapF : X → 2Y is said to bel-E-strictly quasiconvex onG if it is l-E-strictly quasi-

convex at everyx ∈ G.

We use the following example to illustrate the existence ofl-E-strictly quasiconvex for

set-valued mappings.

Example2.1 LetX = Y = R
2, G = [0,2] × [0, 2], andK = R

2
+, E = [0.1,+∞) × [0.1,+∞).

ConsiderF : X → 2Y de“ned as

F(x1,x2) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

{(3, 3)}, if x1 = x2 = 0,

(0,1) +R2
+, if x1 = 0,0 <x2 ≤ 1,

(1,0) +R2
+, if 0 <x1 ≤ 1,x2 = 0,

{(5, 5)}, otherwise.

We can verify thatF is l-E-strictly quasiconvex at (0,0).

Definition 2.4 ([4]) Let F : X → 2Y be a set-valued mapping. ThenF is said to be

(i) K-lower semicontinuous (K-l.s.c.) at x̄ if, for any open subset U of Y with
F(x̄) ∩ U �= ∅, there is a neighborhood N(x̄) of x̄ such that F(x) ∩ (U …K) �= ∅ for all
x ∈ N(x̄).
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(ii) K-upper semicontinuous (K-u.s.c.) at x̄ if, for any open neighborhood U of F(x̄),
there is a neighborhood N(x̄) of x̄ such that for every x ∈ N(x̄), F(x) ⊆ U + K .

(iii) K-Hausdorff lower semicontinuous (K-H-l.s.c.) at x̄ if, for any open neighborhood
U of zero, there is a neighborhood N(x̄) of x̄ such that for every x ∈ N(x̄),
F(x̄) ⊆ F(x) + U + K .

(iv) K-Hausdorff upper semicontinuous (K-H-u.s.c.) at x̄ if, for any open neighborhood
U of zero, there is a neighborhood N(x̄) of x̄ such that for every x ∈ N(x̄),
F(x) ⊆ F(x̄) + U + K .

We say thatF isK-l.s.c.,K-u.s.c.,K-H-l.s.c., andK-H-u.s.c. onX if it is K-l.s.c.,K-u.s.c.,

K-H-l.s.c., andK-H-u.s.c. at each pointx ∈ X, respectively. TakingK = {0}, we get the

de“nition of lower semicontinuity (l.s.c.), upper semicontinuity (u.s.c.), Hausdor� lower

semicontinuity (H-l.s.c.), and Hausdor� upper semicontinuity (H-u.s.c.), respectively.

Remark2.2 ([4,6,9]) u.s.c.⇒ H-u.s.c.⇒ K-H-u.s.c.; u.s.c.⇒ K-u.s.c.⇒ K-H-u.s.c.; and

H-l.s.c.⇒ l.s.c.⇒ K-l.s.c.;H-l.s.c.⇒ K-H-l.s.c.⇒ K-l.s.c.

As pointed out in [4], F isH-l.s.c. (resp.K-H-l.s.c.) atx if F is l.s.c. (resp.K-l.s.c.) atx and

F(x) is compact. Moreover,F is K-u.s.c. (resp.u.s.c.) atx if F is K-H-u.s.c. (resp.H-u.s.c.)

at x andF(x) is compact.

Lemma 2.1 ([3, 10]) A set-valued mapping F: X → 2Y is l.s.c. at x̄ ∈ X if and only if, for

any sequence{xn} ⊆ X with xn → x̄ and for anyȳ ∈ F(x̄), there exists yn ∈ F(xn) such that

yn → ȳ.

Lemma 2.2 ([3,10]) Let F: X → 2Y be a set-valued mapping.For any given̄x ∈ X, if F(x̄) is

compact, then F is u.s.c. at x̄ ∈ X. If and only if for any sequence{xn} ⊆ X with xn → x̄ and

for any yn ∈ F(xn) there exist̄y∈ F(x̄) and a subsequence{ynk} of {yn} such that ynk → ȳ.

Lemma 2.3 ([18]) If E is an improvement set, then E+ int K = int E and int E+ K = int E.

Lemma 2.4 ([9]) Let A∈ P(Y). Then WminA �= ∅ if A is K-closed and K-proper.

Lemma 2.5 ([12, 17]) Let E be an improvement set. For any given̄x ∈ G, if F(x̄) is compact,

then x̄ is an E-l-minimal solution if and only if there is no x∈ G such that F(x) ≤l
E F(x̄).

Theorem 2.1 Let E be an improvement set. For any given̄x ∈ G, if F(x̄) is K-closed and

K-proper, then x̄ is a weak E-l-minimal solution if and only if there is no x∈ G such that

F(x) �l
E F(x̄).

Proof In view of Lemma2.4, we haveWminF(x̄) �= ∅. Suppose that there existsx ∈ G such

that F(x) �l
E F(x̄). Sincex̄ ∈ Wl(G), we haveF(x̄) �l

E F(x). So, we get

F(x̄) ⊆ F(x) + int E⊆ F(x̄) + int E+ int E⊆ F(x̄) + int E+ K ⊆ F(x̄) + int K. (2.1)

Let ȳ ∈ WminF(x̄). Consequently,

(
F(x̄) …̄y

) ∩ (…int K) = ∅. (2.2)
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It follows from (2.1) that there existy0 ∈ F(x̄) andk ∈ int K such thatȳ = y0 + k. Thus,

…k = y0 …ȳ∈ (
F(x̄) …̄y

) ∩ (…int K),

which contradicts (2.2). The converse is obvious. �

Lemma 2.6 ([12]) Let A be a nonempty and compact subset of Y. Then Min(A) �= ∅ and

Max(A) �= ∅. Furthermore, A � A + K\{0} and A� A …K\{0}.

Lemma 2.7 Let G be a nonempty convex subset of X and E be an improvement set. F : X →
2Y is l-E-strictly quasiconvex on G with nonempty compact values. Then El(G) = Wl(G).

Proof It su�ces to prove that Wl(G) ⊆ El(G). Let x̄ ∈ Wl(G). If there existsx0 ∈ G such

that F(x0) ≤l
E F(x̄), then

F(x̄) ⊆ F(x0) + E.

SinceE⊆ K\{0}, we getF(x̄) ⊆ F(x0) + K\{0}. This together with Lemma2.6implies that

x0 �= x̄. SinceF is l-E-strictly quasiconvex onG, one has

F
(
tx0 + (1 …t)x̄

) �l
E F(x̄).

By Theorem2.1, we can see that̄x /∈ Wl(G), which contradictsx̄ ∈ Wl(G). Therefore,x̄ ∈
El(G). �

Definition 2.5 Let G be a nonempty subset ofX andF : D → 2Y be a set-valued mapping.

We say that

(i) F is ≤l
E-continuous at x0 ∈ G with respect to y0 ∈ G if for all sequences {xn},

{yn} ⊆ G satisfy xn → x0, yn → y0 such that F(xn) ≤l
E F(yn) for sufficiently large n,

then F(x0) ≤l
E F(y0);

(ii) F is weak �l
E-continuous at x0 ∈ G with respect to y0 ∈ G if for all sequences {xn},

{yn} ⊆ G satisfy xn → x0, yn → y0 such that F(xn) �l
E F(yn) for sufficiently large n,

then F(x0) �l
E F(y0);

(iii) F is converse ≤l
E-continuous at x0 ∈ G with respect to y0 ∈ G if F(x0) ≤l

E F(y0) and
for any sequences {xn}, {yn} ⊆ G satisfy xn → x0, yn → y0, we have F(xn) ≤l

E F(yn)

for sufficiently large n;
(iv) F is weak converse �l

E-continuous at x0 ∈ G with respect to y0 ∈ G if
F(x0) �l

E F(y0) and for any sequences {xn}, {yn} ⊆ G satisfy xn → x0, yn → y0, we
have F(xn) �l

E F(yn) for sufficiently large n.
F is≤l

E-continuous (resp., weak�l
E-continuous) onG if F is≤l

E-continuous (resp., weak

�l
E-continuous) at eachx0 ∈ G with respect to eachy0 ∈ G; F is converse≤l

E-continuous

(resp., weak converse�l
E-continuous) on G if F is converse≤l

E-continuous (resp., weak

converse�l
E-continuous) at eachx0 ∈ G with respect to eachy0 ∈ G.

Proposition 2.1 Let G be a nonempty subset of X. Assume that a set-valued mapping

F : G → 2Y is K-H-u.s.c. at x0 ∈ G and K-l.s.c. at y0 ∈ G. If F(x0) + E is closed, then F is

≤l
E-continuous at x0 ∈ G with respect to y0 ∈ G.
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Proof SinceF : G → 2Y is K-H-u.s.c. atx0 ∈ G, take two sequences{xn} and {yn} that
satisfyxn → x0, yn → y0 such thatF(xn) ≤l

E F(yn) for su�ciently large n. Let e∈ int K and
ε > 0. Then …εe+ int K is an open neighborhood of 0 inY. SinceF is K-H-u.s.c. atx0, we
haveF(xn) ⊆ F(x0) …εe+ int K + K for su�ciently large n. Then we have

F(yn) ⊆ F(x0) …εe+ int K + K + E⊆ F(x0) …εe+ E.

SinceF(x0) + E is closed, lettingε → 0, we have

F(yn) ⊆ F(x0) + E. (2.3)

We now claim that F(x0) ≤l
E F(y0); otherwise,F(y0) ∩ (F(x0) + E)C �= ∅. SinceF is K-l.s.c.

at y0, we haveF(yn) ∩ ((F(x0) + E)C …K) �= ∅ for n su�ciently large. That is, F(x0) �l
E F(yn),

(indeed, ifF(x0) ≤l
E F(yn), then we have (F(yn) + K) ⊆ (F(x0) + E+ K) = F(x0) + E, so we get

(F(yn) + K)) ∩ (F(x0) + E)C = ∅. We conclude thatF(yn) ∩ ((F(x0) + E)C …K) = ∅. This is a
contradiction.), which contradicts (2.3). �

Proposition 2.2 Let G be a nonempty subset of X. Assume that a set-valued mapping

F : G → 2Y is H-K-u.s.c. at x0 ∈ G and H-K-l.s.c. at y0 ∈ G. If F(x) + K is closed for any
x ∈ G, then F is weak�l

E-continuous at x0 ∈ G with respect to y0 ∈ G.

Proof SinceF : G → 2Y is H-K-u.s.c. atx0 ∈ G and H-K-l.s.c. aty0 ∈ G. Take two se-
quences{xn} and {yn} that satisfyxn → x0, yn → y0 such that F(xn) �l

E F(yn) for n suf-
“ciently large. Let e∈ int K and ε > 0. Then …εe+ int K is a neighborhood of 0 inY. We

haveF(xn) ⊆ F(x0) …εe+ int K + K and F(y0) ⊆ F(yn) …εe+ int K + K for n su�ciently
large. SinceF(x0) + K andF(yn) + K is closed, lettingε → 0, we haveF(xn) ⊆ F(x0) + K and
F(y0) ⊆ F(yn) + K. Then we have

F(y0) ⊆ F(yn) + K ⊆ F(xn) + int E+ K ⊆ F(x0) + K + int E+ K ⊆ F(x0) + int E.

That is,F(x0) �l
E F(y0). �

Proposition 2.3 Let G be a nonempty subset of X. Assume that a set-valued mapping
F : G → 2Y is H-K-u.s.c. at y0 ∈ G and H-K-l.s.c. at x0 ∈ G. If F(x) + K is closed for any

x ∈ G, then F is converse≤l
E-continuous and weak converse�l

E-continuous at x0 ∈ G with
respect to y0 ∈ G.

Proof Let e∈ int K andε > 0, then …εe+ int K is an open neighborhood of 0 inY. Take two
sequences{xn} and {yn} satisfyxn → x0, yn → y0 such thatF(x0) �l

E F(y0). SinceF : G →
2Y is H-K-u.s.c. atx0 ∈ G andH-K-l.s.c. aty0 ∈ G, we haveF(x0) ⊆ F(xn) …εe+ int K + K

andF(yn) ⊆ F(y0) …εe+ int K + K for n su�ciently large. Since F(xn) + K andF(y0) + K is
closed, lettingε → 0, we haveF(x0) ⊆ F(xn) + K and F(yn) ⊆ F(y0) + K for n su�ciently
large. Then we have

F(yn) ⊆ F(y0) + K ⊆ F(x0) + int E+ K ⊆ F(xn) + K + int E+ K ⊆ F(xn) + int E,

for n su�ciently large. That is, F(xn) �l
E F(yn) for n su�ciently large.
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The proof of converse≤l
E-continuous property is similar to the proof of weak converse

�l
E-continuous property. �

Assume thatG : � → 2X and F : X → 2Y are two set-valued mappings with nonempty
values. For anyλ ∈ �, now we consider the following parametric set optimization problem
(for short, PSOP):

(PSOP) min F(x)

s.t. x ∈ G(λ).

We denote the solution mappingsEl : � → 2X, Wl : � → 2X for (PSOP) as follows:
El (λ) = El (G(λ)), Wl(λ) = Wl(G(λ)).

3 Main results
In this section, we make an investigation of the continuity of solution mappings for
(PSOP). Firstly, we give the upper semicontinuity and compactness of the weakE-minimal
solution mapping for (PSOP).

Theorem 3.1 Letλ0 ∈ �. Suppose that
(i) G is continuous and compact-valued at λ0;

(ii) F is weak converse �l
E-continuous on G(λ0), K-closed-valued, and K-proper-valued.

Then Wl(λ) is u.s.c. at λ0 and Wl(λ0) is compact.

Proof We “rst assert thatWl(λ) is u.s.c. atλ0. Suppose on the contrary thatWl(λ) is not
u.s.c. atλ0, hence there exist an open neighborhoodW0 in X with Wl(λ0) ⊆ W0 and a
sequence{λn} with λn → λ0 such thatWl(λn) � W0. Therefore, there is a sequence{xn}
with xn ∈ Wl(λn) and

xn /∈ W0, ∀n ∈ N. (3.1)

SinceG is upper semicontinuous and compact-valued atλ0, by Lemma2.2, there exist
x0 ∈ G(λ0) and a subsequence{xnk} of {xn} such thatxnk → x0. Without loss of generality,
let xn → x0.

We now claim that x0 ∈ Wl(λ0). If x0 /∈ Wl(λ0), then by Theorem2.1 there existsy0 ∈
G(λ0) such thatF(y0) �l

E F(x0). By the lower semicontinuity ofG at λ0 and Lemma2.1,
there exists a sequence{yn} with yn ∈ G(λn) such thatyn → y0. F is weak converse�l

E-
continuous onG(λ0). By Proposition2.3we haveF(yn) �l

E F(xn) for n su�ciently large,
which is a contradiction toxn ∈ Wl(λn), and sox0 ∈ Wl(λ0). Therefore, from the assump-
tion that xn → x0, we havexn ∈ W0 for n large enough, which contradicts (3.1). Therefore,
Wl(λ) is u.s.c. atλ0.

Next, we state thatWl(λ0) is compact. In fact, sinceWl(λ0) ⊆ G(λ0) and G(λ0) is com-
pact, it is only su�cient to prove that Wl(λ0) is closed. Let{zn} ⊆ Wl(λ0) be a sequence
with zn → z0. If z0 /∈ Wl(λ0), then there existsz∗ ∈ G(λ0) such thatF(z∗) �l

E F(z0). It yields
the same proof as above that we haveF(z∗) �l

E F(zn) for n large enough, which contradicts
{zn} ⊆ Wl(λ0), and so{z0} ⊆ Wl(λ0). ThereforeWl(λ0) is compact. �

Now, we give the following example to illustrate Theorem3.1.
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Example3.1 LetX = R, Y = R
2, � = [0,1], andK = R

2
+, E = [0.1,+∞) × [0.1,+∞). As-

sume thatG(λ) = [0,λ] for all λ ∈ �. Let F : X → 2Y be a set-valued mapping de“ned as
F(x) = […1,x) × [0, 1) for all x ∈ R. Let λ0 = 1. Then it is easy to check that all conditions
of Theorem3.1are satis“ed. By a simple computation, we know thatWl(λ) = [0,λ] for all
λ ∈ �. Clearly, we can see thatWl(λ) is u.s.c. at 1 andWl(1) = [0,1] is compact.

Theorem 3.2 Letλ0 ∈ �. Suppose that
(i) G is continuous and compact-valued at λ0;

(ii) F is weak converse �l
E-continuous on G(λ0), K-closed-valued, and

K-proper-valued;
(iii) F is l-E-strictly quasiconvex on G.
Then El(λ) is u.s.c. at λ0 and El(λ0) is compact.

Proof We show thatEl (λ) is u.s.c. atλ0. Suppose on the contrary thatEl (λ) is not u.s.c. at
λ0, then there exist an open neighborhoodW in X with El (λ0) ⊆ W and a sequence{λn}
with λn → λ0 such that

El (λn) � W. (3.2)

SinceF is l-E-strictly quasiconvex onG, then by Lemma2.7we getEl (λ0) = Wl(λ0) ⊆ W.
By employing Theorem3.1, it follows that Wl(λ) is u.s.c. atλ0; therefore, there exists a
neighborhoodV of λ0 such thatWl(λ) ⊆ W for all λ ∈ V. Sinceλn → λ0, it is clear that
λn ∈ V for n large enough. Thus,El (λn) ⊆ Wl(λn) ⊆ W for n large enough, which is a con-
tradiction to (3.2). Hence,El (λ) is u.s.c. atλ0. El (λ0) = Wl(λ0) together with Theorem3.1
indicates thatEl (λ0) is compact. �

Remark3.1 By Remark2.2 and Proposition2.3, it is easy to see that Theorem3.1 and
Theorem3.2are the generalizations of Theorem 4.1 and Theorem 4.2 in [12], Theorem 3.1
and Theorem 3.7 in [10]. In Example3.1, F is K-closed-valued but not compact-valued.
Therefore, Theorem 4.1 and Theorem 4.2 in [12], as well as Theorem 3.1 and Theorem 3.7
in [10], cannot be used.

The following theorem establishes the lower semicontinuity of theE-minimal solution
mapping for (PSOP).

Theorem 3.3 Letλ0 ∈ �. Assume that
(i) G is continuous and compact-valued at λ0;

(ii) F is ≤l
E-continuous on G(λ0) with nonempty and compact values and F(x) + E is

closed on G(λ0).
Then El(λ) is l.s.c. at λ0.

Proof Assume on the contrary thatEl (λ) is not l.s.c. atλ0, then there existy ∈ El(λ0), an
open neighborhoodW0 of 0 in X, and a sequence{λn} with λn → λ0 such that

(y + W0) ∩ El(λn) = ∅, ∀n ∈ N. (3.3)

We conclude fromy ∈ El(λ0) that y ∈ G(λ0). SinceG is l.s.c. atλ0, by Lemma2.1there
exists a sequence{yn} with yn ∈ G(λn) such thatyn → y. We now claim thatyn ∈ El(λn)
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for n large enough. Indeed, if not, there is a subsequence{ynk} of {yn} and a subsequence

{λnk} of {λn} such that ynk /∈ El(λnk ) for k = 1,2, . . . . Without loss of generality, we sup-

poseyn /∈ El(λn) for n = 1,2, . . . . Then by Lemma2.5 there existsxn ∈ G(λn) such that

F(xn) ≤l
E F(yn). SinceG is upper semicontinuous and compact-valued atλ0, by Lemma2.2,

there existx ∈ G(λ0) and a subsequence{xnk} of {xn} such thatxnk → x. Without loss of

generality, letxn → x. It follows from F(xn) ≤l
E F(yn) andF is ≤l

E-continuous onG(λ0). By

Proposition2.1we getF(x) ≤l
E F(y), which contradictsy ∈ El(λ0). Henceyn ∈ El(λn) for n

large enough. Therefore, it is obvious to “nd thatyn ∈ (y+ W0)∩El(λn) for n large enough,

which contradicts (3.3). Hence,El (λ) is l.s.c. atλ0. �

Now, we give the following example to illustrate Theorem3.3.

Example3.2 LetX = R, Y = R
2,� = [0,1], andK = R

2
+, E= [0.1,+∞)× [0.1,+∞). Assume

that G(λ) = [0,1] for all λ ∈ �. Let F : X → 2Y be a set-valued mapping de“ned as

F(x) = [0,x] × [0,x], ∀x ∈ G.

Let λ0 = 0. Then it is easy to check that all conditions of Theorem3.3are satis“ed. By a

simple computation, we know thatEl (λ) = [0,1] for all λ ∈ �. Clearly, we can see thatEl (λ)

is l.s.c. at 0.

We show the lower semicontinuity of the weakE-minimal solution mapping for (PSOP)

as follows.

Theorem 3.4 Letλ0 ∈ �. Assume that

(i) G is continuous and compact-valued at λ0;
(ii) F is �l

E-continuous on G(λ0) with nonempty and compact values and F(x) + E is
closed on G(λ0);

(iii) F is l-E-strictly quasiconvex on G.
Then Wl(λ) is l.s.c. at λ0.

Proof Applying Theorem 3.3, we know thatEl (λ) is l.s.c. atλ0. By Lemma2.7, we have

El(λ0) = Wl(λ0). For any open setV with V ∩ Wl(λ0) �= ∅, so we have thatV ∩ El(λ0) �= ∅.

SinceEl (λ) is l.s.c. atλ0, there exists a neighbourhoodU of λ0 such that, for allλ ∈ U,

V ∩ El(λ) �= ∅.

By Remark2.1, we haveEl(λ) ⊆ Wl(λ), then

V ∩ Wl(λ) �= ∅, ∀λ ∈ U.

Hence,Wl(λ) is l.s.c. atλ0. �
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