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Abstract
In this paper we investigate the stability of solution sets for set optimization problems
via improvement sets. Some sufficient conditions for the upper semicontinuity, lower
semicontinuity, and compactness of E-minimal solution mappings are given for
parametric set optimization under some suitable conditions. We also give some
examples to illustrate our main results.
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1 Introduction
In recent years, set optimization problems have received increasing attention and have
been intensively discussed due to extensive applications in many areas such as vector op-
timization, vector variational inequalities, mathematical economics, game theory, engi-
neering management, control system field, and many others; for details, see [1–6] and the
references therein.

It is well known that the stability of solutions is a very interesting topic in the study of
set optimization. Xu and Li [7] established the semicontinuity of minimal solution map-
pings and weak minimal solution mappings to a parametric set optimization problem by
making use of the converse u-property of objective mappings. Han and Huang [8] studied
the upper semicontinuity, lower semicontinuity, and convexity of solution mappings of
parametric set optimization problems. Khoshkhabar-amiranloo [9] studied the semicon-
tinuity and compactness of minimal solutions of parametric set optimization problems.
Karuna and Lalitha [10] discussed the continuity of approximate weak efficient solution
mappings of parametric set optimization problems under the strict quasiconvexity of the
objective map. Under some suitable conditions Zhang et al. [11] discussed the semicon-
tinuity and compactness of minimal solution mappings to a parametric set optimization
with the general pre-order relations. Mao and Han [12] discussed the semicontinuity of
solution mappings for parametric set optimization problems via improvement sets un-
der several suitable conditions. Since the compactness of objective values is so strong, it
limits the application of stability of set optimization problems. The main purpose of this
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paper is to investigate the upper semicontinuity, lower semicontinuity, and closedness of
solution maps to the parametric set optimization problem via improvement sets under
appropriate assumptions. In our results we have no compactness assumption on the ob-
jective maps. Moreover, the continuity of the objective map is replaced by (weak, converse)
≤l

E-continuity assumptions, which is of great interest and importance. Our results extend
and improve the corresponding ones of [7, 8, 10–14].

The rest of this paper is organized as follows. The next section presents some neces-
sary notations, concepts, and results to be used throughout the paper. In Sect. 3 we obtain
the upper semicontinuity, lower semicontinuity, and compactness of E-minimal solution
mappings for a parametric set optimization problem under weaker and simpler assump-
tions.

2 Preliminaries
Throughout the paper, unless otherwise specified, we assume that X, Y , and � are real
normed vector spaces. We assume that K ⊆ Y is a convex, closed, and pointed cone with
nonempty interior. We denote the family of nonempty subsets of Y by P(Y ). We denote
by int A, cl A, and Ac the topological interior, the closure of A, and the complementary set
of A, respectively.

A set A ∈ P(Y ) is called K-closed if A + K is closed; K-proper if A + K �= Y .
The sets of all minimal solutions and weak minimal solutions of A ∈ P(Y ) are defined as

follows:

minA :=
{

a ∈ A : (A – a) ∩ (–K) = {0}};

WminA :=
{

a ∈ A : (A – a) ∩ (– int K) = ∅}
.

In [15], for any A, B ∈ P(Y ), the lower set less order relation ≤l
K and the strict lower set

less order relation �l
K on P(Y ) are defined by

A ≤l
K B ⇔ B ⊆ A + K ;

A �l
K B ⇔ B ⊆ A + int K .

In [16], Chicco et al. defined the upper comprehensive set of a set E ⊆ Y by

u – compr(E) := E + K .

Definition 2.1 ([16]) Let E be a nonempty subset in Y. E is called an improvement set
with respect to K iff 0 /∈ E and E + K = E.

In the sequel, we assume that E ⊆ Y is an improvement set with E ⊆ K\{0}. Dhigra and
Lalitha [17] defined a set relation as follows:

A ≤l
E B ⇔ B ⊆ A + E;

A �l
E B ⇔ B ⊆ A + int E.
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Let F : X → 2Y be a set-valued mapping with nonempty values and G ⊆ X with G �= ∅.
We consider the following set optimization problem:

(SOP) min F(x)

s.t. x ∈ G.

Definition 2.2 ([17]) An element x̄ ∈ G is said to be
(i) a K-l-minimal solution of (SOP) if x ∈ G such that F(x) ≤l

K F(x̄) imply F(x̄) ≤l
K F(x);

(ii) an E-l-minimal solution of (SOP) if x ∈ G such that F(x) ≤l
E F(x̄) imply

F(x̄) ≤l
E F(x);

(iii) a weak E-l-minimal solution of (SOP) if x ∈ G such that F(x) �l
E F(x̄) imply

F(x̄) �l
E F(x).

Let Kl(G), El(G), Wl(G) denote the K-l-minimal solution, E-l-minimal solution, and the
weak E-l-minimal solution set of (SOP), respectively.

Remark 2.1 ([12]) Kl(G) ⊆ El(G) ⊆ Wl(G).

We say that F is K-closed-valued (K-proper-valued) on G if F(x) is K-closed (K-proper)
for each x ∈ G.

Definition 2.3 Let G be a nonempty convex subset of X and E be an improvement set.
A set-valued mapping F : X → 2Y is said to be l-E-strictly quasiconvex at x̄ ∈ G if, for any
x ∈ G with x �= x̄, t ∈ (0, 1)

F(x) ≤l
E F(x̄) ⇒ F

(
tx + (1 – t)x̄

) �l
E F(x̄).

The map F : X → 2Y is said to be l-E-strictly quasiconvex on G if it is l-E-strictly quasi-
convex at every x ∈ G.

We use the following example to illustrate the existence of l-E-strictly quasiconvex for
set-valued mappings.

Example 2.1 Let X = Y = R
2, G = [0, 2] × [0, 2], and K = R

2
+, E = [0.1, +∞) × [0.1, +∞).

Consider F : X → 2Y defined as

F(x1, x2) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

{(3, 3)}, if x1 = x2 = 0,

(0, 1) + R
2
+, if x1 = 0, 0 < x2 ≤ 1,

(1, 0) + R
2
+, if 0 < x1 ≤ 1, x2 = 0,

{(5, 5)}, otherwise.

We can verify that F is l-E-strictly quasiconvex at (0, 0).

Definition 2.4 ([4]) Let F : X → 2Y be a set-valued mapping. Then F is said to be
(i) K-lower semicontinuous (K-l.s.c.) at x̄ if, for any open subset U of Y with

F(x̄) ∩ U �= ∅, there is a neighborhood N(x̄) of x̄ such that F(x) ∩ (U – K) �= ∅ for all
x ∈ N(x̄).
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(ii) K-upper semicontinuous (K-u.s.c.) at x̄ if, for any open neighborhood U of F(x̄),
there is a neighborhood N(x̄) of x̄ such that for every x ∈ N(x̄), F(x) ⊆ U + K .

(iii) K-Hausdorff lower semicontinuous (K-H-l.s.c.) at x̄ if, for any open neighborhood
U of zero, there is a neighborhood N(x̄) of x̄ such that for every x ∈ N(x̄),
F(x̄) ⊆ F(x) + U + K .

(iv) K-Hausdorff upper semicontinuous (K-H-u.s.c.) at x̄ if, for any open neighborhood
U of zero, there is a neighborhood N(x̄) of x̄ such that for every x ∈ N(x̄),
F(x) ⊆ F(x̄) + U + K .

We say that F is K-l.s.c., K-u.s.c., K-H-l.s.c., and K-H-u.s.c. on X if it is K-l.s.c., K-u.s.c.,
K-H-l.s.c., and K-H-u.s.c. at each point x ∈ X, respectively. Taking K = {0}, we get the
definition of lower semicontinuity (l.s.c.), upper semicontinuity (u.s.c.), Hausdorff lower
semicontinuity (H-l.s.c.), and Hausdorff upper semicontinuity (H-u.s.c.), respectively.

Remark 2.2 ([4, 6, 9]) u.s.c. ⇒ H-u.s.c. ⇒ K-H-u.s.c.; u.s.c. ⇒ K-u.s.c. ⇒ K-H-u.s.c.; and
H-l.s.c. ⇒ l.s.c. ⇒ K-l.s.c.; H-l.s.c. ⇒ K-H-l.s.c. ⇒ K-l.s.c.

As pointed out in [4], F is H-l.s.c. (resp. K-H-l.s.c.) at x if F is l.s.c. (resp. K-l.s.c.) at x and
F(x) is compact. Moreover, F is K-u.s.c. (resp.u.s.c.) at x if F is K-H-u.s.c. (resp. H-u.s.c.)
at x and F(x) is compact.

Lemma 2.1 ([3, 10]) A set-valued mapping F : X → 2Y is l.s.c. at x̄ ∈ X if and only if, for
any sequence {xn} ⊆ X with xn → x̄ and for any ȳ ∈ F(x̄), there exists yn ∈ F(xn) such that
yn → ȳ.

Lemma 2.2 ([3, 10]) Let F : X → 2Y be a set-valued mapping. For any given x̄ ∈ X, if F(x̄) is
compact, then F is u.s.c. at x̄ ∈ X. If and only if for any sequence {xn} ⊆ X with xn → x̄ and
for any yn ∈ F(xn) there exist ȳ ∈ F(x̄) and a subsequence {ynk } of {yn} such that ynk → ȳ.

Lemma 2.3 ([18]) If E is an improvement set, then E + int K = int E and int E + K = int E.

Lemma 2.4 ([9]) Let A ∈ P(Y ). Then WminA �= ∅ if A is K-closed and K-proper.

Lemma 2.5 ([12, 17]) Let E be an improvement set. For any given x̄ ∈ G, if F(x̄) is compact,
then x̄ is an E-l-minimal solution if and only if there is no x ∈ G such that F(x) ≤l

E F(x̄).

Theorem 2.1 Let E be an improvement set. For any given x̄ ∈ G, if F(x̄) is K-closed and
K-proper, then x̄ is a weak E-l-minimal solution if and only if there is no x ∈ G such that
F(x) �l

E F(x̄).

Proof In view of Lemma 2.4, we have WminF(x̄) �= ∅. Suppose that there exists x ∈ G such
that F(x) �l

E F(x̄). Since x̄ ∈ Wl(G), we have F(x̄) �l
E F(x). So, we get

F(x̄) ⊆ F(x) + int E ⊆ F(x̄) + int E + int E ⊆ F(x̄) + int E + K ⊆ F(x̄) + int K . (2.1)

Let ȳ ∈ WminF(x̄). Consequently,

(
F(x̄) – ȳ

) ∩ (– int K) = ∅. (2.2)
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It follows from (2.1) that there exist y0 ∈ F(x̄) and k ∈ int K such that ȳ = y0 + k. Thus,

–k = y0 – ȳ ∈ (
F(x̄) – ȳ

) ∩ (– int K),

which contradicts (2.2). The converse is obvious. �

Lemma 2.6 ([12]) Let A be a nonempty and compact subset of Y . Then Min(A) �= ∅ and
Max(A) �= ∅. Furthermore, A � A + K\{0} and A � A – K\{0}.

Lemma 2.7 Let G be a nonempty convex subset of X and E be an improvement set. F : X →
2Y is l-E-strictly quasiconvex on G with nonempty compact values. Then El(G) = Wl(G).

Proof It suffices to prove that Wl(G) ⊆ El(G). Let x̄ ∈ Wl(G). If there exists x0 ∈ G such
that F(x0) ≤l

E F(x̄), then

F(x̄) ⊆ F(x0) + E.

Since E ⊆ K\{0}, we get F(x̄) ⊆ F(x0) + K\{0}. This together with Lemma 2.6 implies that
x0 �= x̄. Since F is l-E-strictly quasiconvex on G, one has

F
(
tx0 + (1 – t)x̄

) �l
E F(x̄).

By Theorem 2.1, we can see that x̄ /∈ Wl(G), which contradicts x̄ ∈ Wl(G). Therefore, x̄ ∈
El(G). �

Definition 2.5 Let G be a nonempty subset of X and F : D → 2Y be a set-valued mapping.
We say that

(i) F is ≤l
E-continuous at x0 ∈ G with respect to y0 ∈ G if for all sequences {xn},

{yn} ⊆ G satisfy xn → x0, yn → y0 such that F(xn) ≤l
E F(yn) for sufficiently large n,

then F(x0) ≤l
E F(y0);

(ii) F is weak �l
E-continuous at x0 ∈ G with respect to y0 ∈ G if for all sequences {xn},

{yn} ⊆ G satisfy xn → x0, yn → y0 such that F(xn) �l
E F(yn) for sufficiently large n,

then F(x0) �l
E F(y0);

(iii) F is converse ≤l
E-continuous at x0 ∈ G with respect to y0 ∈ G if F(x0) ≤l

E F(y0) and
for any sequences {xn}, {yn} ⊆ G satisfy xn → x0, yn → y0, we have F(xn) ≤l

E F(yn)
for sufficiently large n;

(iv) F is weak converse �l
E-continuous at x0 ∈ G with respect to y0 ∈ G if

F(x0) �l
E F(y0) and for any sequences {xn}, {yn} ⊆ G satisfy xn → x0, yn → y0, we

have F(xn) �l
E F(yn) for sufficiently large n.

F is ≤l
E-continuous (resp., weak �l

E-continuous) on G if F is ≤l
E-continuous (resp., weak

�l
E-continuous) at each x0 ∈ G with respect to each y0 ∈ G; F is converse ≤l

E-continuous
(resp., weak converse �l

E-continuous) on G if F is converse ≤l
E-continuous (resp., weak

converse �l
E-continuous) at each x0 ∈ G with respect to each y0 ∈ G.

Proposition 2.1 Let G be a nonempty subset of X . Assume that a set-valued mapping
F : G → 2Y is K-H-u.s.c. at x0 ∈ G and K-l.s.c. at y0 ∈ G. If F(x0) + E is closed, then F is
≤l

E-continuous at x0 ∈ G with respect to y0 ∈ G.
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Proof Since F : G → 2Y is K-H-u.s.c. at x0 ∈ G, take two sequences {xn} and {yn} that
satisfy xn → x0, yn → y0 such that F(xn) ≤l

E F(yn) for sufficiently large n. Let e ∈ int K and
ε > 0. Then –εe + int K is an open neighborhood of 0 in Y . Since F is K-H-u.s.c. at x0, we
have F(xn) ⊆ F(x0) – εe + int K + K for sufficiently large n. Then we have

F(yn) ⊆ F(x0) – εe + int K + K + E ⊆ F(x0) – εe + E.

Since F(x0) + E is closed, letting ε → 0, we have

F(yn) ⊆ F(x0) + E. (2.3)

We now claim that F(x0) ≤l
E F(y0); otherwise, F(y0) ∩ (F(x0) + E)C �= ∅. Since F is K-l.s.c.

at y0, we have F(yn) ∩ ((F(x0) + E)C – K) �= ∅ for n sufficiently large. That is, F(x0) �l
E F(yn),

(indeed, if F(x0) ≤l
E F(yn), then we have (F(yn) + K) ⊆ (F(x0) + E + K) = F(x0) + E, so we get

(F(yn) + K)) ∩ (F(x0) + E)C = ∅. We conclude that F(yn) ∩ ((F(x0) + E)C – K) = ∅. This is a
contradiction.), which contradicts (2.3). �

Proposition 2.2 Let G be a nonempty subset of X . Assume that a set-valued mapping
F : G → 2Y is H-K-u.s.c. at x0 ∈ G and H-K-l.s.c. at y0 ∈ G. If F(x) + K is closed for any
x ∈ G, then F is weak �l

E-continuous at x0 ∈ G with respect to y0 ∈ G.

Proof Since F : G → 2Y is H-K-u.s.c. at x0 ∈ G and H-K-l.s.c. at y0 ∈ G. Take two se-
quences {xn} and {yn} that satisfy xn → x0, yn → y0 such that F(xn) �l

E F(yn) for n suf-
ficiently large. Let e ∈ int K and ε > 0. Then –εe + int K is a neighborhood of 0 in Y . We
have F(xn) ⊆ F(x0) – εe + int K + K and F(y0) ⊆ F(yn) – εe + int K + K for n sufficiently
large. Since F(x0) + K and F(yn) + K is closed, letting ε → 0, we have F(xn) ⊆ F(x0) + K and
F(y0) ⊆ F(yn) + K . Then we have

F(y0) ⊆ F(yn) + K ⊆ F(xn) + int E + K ⊆ F(x0) + K + int E + K ⊆ F(x0) + int E.

That is, F(x0) �l
E F(y0). �

Proposition 2.3 Let G be a nonempty subset of X . Assume that a set-valued mapping
F : G → 2Y is H-K-u.s.c. at y0 ∈ G and H-K-l.s.c. at x0 ∈ G. If F(x) + K is closed for any
x ∈ G, then F is converse ≤l

E-continuous and weak converse �l
E-continuous at x0 ∈ G with

respect to y0 ∈ G.

Proof Let e ∈ int K and ε > 0, then –εe + int K is an open neighborhood of 0 in Y . Take two
sequences {xn} and {yn} satisfy xn → x0, yn → y0 such that F(x0) �l

E F(y0). Since F : G →
2Y is H-K-u.s.c. at x0 ∈ G and H-K-l.s.c. at y0 ∈ G, we have F(x0) ⊆ F(xn) – εe + int K + K
and F(yn) ⊆ F(y0) – εe + int K + K for n sufficiently large. Since F(xn) + K and F(y0) + K is
closed, letting ε → 0, we have F(x0) ⊆ F(xn) + K and F(yn) ⊆ F(y0) + K for n sufficiently
large. Then we have

F(yn) ⊆ F(y0) + K ⊆ F(x0) + int E + K ⊆ F(xn) + K + int E + K ⊆ F(xn) + int E,

for n sufficiently large. That is, F(xn) �l
E F(yn) for n sufficiently large.
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The proof of converse ≤l
E-continuous property is similar to the proof of weak converse

�l
E-continuous property. �

Assume that G : � → 2X and F : X → 2Y are two set-valued mappings with nonempty
values. For any λ ∈ �, now we consider the following parametric set optimization problem
(for short, PSOP):

(PSOP) min F(x)

s.t. x ∈ G(λ).

We denote the solution mappings El : � → 2X , Wl : � → 2X for (PSOP) as follows:
El(λ) = El(G(λ)), Wl(λ) = Wl(G(λ)).

3 Main results
In this section, we make an investigation of the continuity of solution mappings for
(PSOP). Firstly, we give the upper semicontinuity and compactness of the weak E-minimal
solution mapping for (PSOP).

Theorem 3.1 Let λ0 ∈ �. Suppose that
(i) G is continuous and compact-valued at λ0;

(ii) F is weak converse �l
E-continuous on G(λ0), K -closed-valued, and K -proper-valued.

Then Wl(λ) is u.s.c. at λ0 and Wl(λ0) is compact.

Proof We first assert that Wl(λ) is u.s.c. at λ0. Suppose on the contrary that Wl(λ) is not
u.s.c. at λ0, hence there exist an open neighborhood W0 in X with Wl(λ0) ⊆ W0 and a
sequence {λn} with λn → λ0 such that Wl(λn) � W0. Therefore, there is a sequence {xn}
with xn ∈ Wl(λn) and

xn /∈ W0, ∀n ∈ N. (3.1)

Since G is upper semicontinuous and compact-valued at λ0, by Lemma 2.2, there exist
x0 ∈ G(λ0) and a subsequence {xnk } of {xn} such that xnk → x0. Without loss of generality,
let xn → x0.

We now claim that x0 ∈ Wl(λ0). If x0 /∈ Wl(λ0), then by Theorem 2.1 there exists y0 ∈
G(λ0) such that F(y0) �l

E F(x0). By the lower semicontinuity of G at λ0 and Lemma 2.1,
there exists a sequence {yn} with yn ∈ G(λn) such that yn → y0. F is weak converse �l

E-
continuous on G(λ0). By Proposition 2.3 we have F(yn) �l

E F(xn) for n sufficiently large,
which is a contradiction to xn ∈ Wl(λn), and so x0 ∈ Wl(λ0). Therefore, from the assump-
tion that xn → x0, we have xn ∈ W0 for n large enough, which contradicts (3.1). Therefore,
Wl(λ) is u.s.c. at λ0.

Next, we state that Wl(λ0) is compact. In fact, since Wl(λ0) ⊆ G(λ0) and G(λ0) is com-
pact, it is only sufficient to prove that Wl(λ0) is closed. Let {zn} ⊆ Wl(λ0) be a sequence
with zn → z0. If z0 /∈ Wl(λ0), then there exists z∗ ∈ G(λ0) such that F(z∗) �l

E F(z0). It yields
the same proof as above that we have F(z∗) �l

E F(zn) for n large enough, which contradicts
{zn} ⊆ Wl(λ0), and so {z0} ⊆ Wl(λ0). Therefore Wl(λ0) is compact. �

Now, we give the following example to illustrate Theorem 3.1.
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Example 3.1 Let X = R, Y = R
2, � = [0, 1], and K = R

2
+, E = [0.1, +∞) × [0.1, +∞). As-

sume that G(λ) = [0,λ] for all λ ∈ �. Let F : X → 2Y be a set-valued mapping defined as
F(x) = [–1, x) × [0, 1) for all x ∈ R. Let λ0 = 1. Then it is easy to check that all conditions
of Theorem 3.1 are satisfied. By a simple computation, we know that Wl(λ) = [0,λ] for all
λ ∈ �. Clearly, we can see that Wl(λ) is u.s.c. at 1 and Wl(1) = [0, 1] is compact.

Theorem 3.2 Let λ0 ∈ �. Suppose that
(i) G is continuous and compact-valued at λ0;

(ii) F is weak converse �l
E-continuous on G(λ0), K -closed-valued, and

K -proper-valued;
(iii) F is l-E-strictly quasiconvex on G.
Then El(λ) is u.s.c. at λ0 and El(λ0) is compact.

Proof We show that El(λ) is u.s.c. at λ0. Suppose on the contrary that El(λ) is not u.s.c. at
λ0, then there exist an open neighborhood W in X with El(λ0) ⊆ W and a sequence {λn}
with λn → λ0 such that

El(λn) � W . (3.2)

Since F is l-E-strictly quasiconvex on G, then by Lemma 2.7 we get El(λ0) = Wl(λ0) ⊆ W .
By employing Theorem 3.1, it follows that Wl(λ) is u.s.c. at λ0; therefore, there exists a
neighborhood V of λ0 such that Wl(λ) ⊆ W for all λ ∈ V . Since λn → λ0, it is clear that
λn ∈ V for n large enough. Thus, El(λn) ⊆ Wl(λn) ⊆ W for n large enough, which is a con-
tradiction to (3.2). Hence, El(λ) is u.s.c. at λ0. El(λ0) = Wl(λ0) together with Theorem 3.1
indicates that El(λ0) is compact. �

Remark 3.1 By Remark 2.2 and Proposition 2.3, it is easy to see that Theorem 3.1 and
Theorem 3.2 are the generalizations of Theorem 4.1 and Theorem 4.2 in [12], Theorem 3.1
and Theorem 3.7 in [10]. In Example 3.1, F is K-closed-valued but not compact-valued.
Therefore, Theorem 4.1 and Theorem 4.2 in [12], as well as Theorem 3.1 and Theorem 3.7
in [10], cannot be used.

The following theorem establishes the lower semicontinuity of the E-minimal solution
mapping for (PSOP).

Theorem 3.3 Let λ0 ∈ �. Assume that
(i) G is continuous and compact-valued at λ0;

(ii) F is ≤l
E-continuous on G(λ0) with nonempty and compact values and F(x) + E is

closed on G(λ0).
Then El(λ) is l.s.c. at λ0.

Proof Assume on the contrary that El(λ) is not l.s.c. at λ0, then there exist y ∈ El(λ0), an
open neighborhood W0 of 0 in X, and a sequence {λn} with λn → λ0 such that

(y + W0) ∩ El(λn) = ∅, ∀n ∈ N . (3.3)

We conclude from y ∈ El(λ0) that y ∈ G(λ0). Since G is l.s.c. at λ0, by Lemma 2.1 there
exists a sequence {yn} with yn ∈ G(λn) such that yn → y. We now claim that yn ∈ El(λn)
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for n large enough. Indeed, if not, there is a subsequence {ynk } of {yn} and a subsequence
{λnk } of {λn} such that ynk /∈ El(λnk ) for k = 1, 2, . . . . Without loss of generality, we sup-
pose yn /∈ El(λn) for n = 1, 2, . . . . Then by Lemma 2.5 there exists xn ∈ G(λn) such that
F(xn) ≤l

E F(yn). Since G is upper semicontinuous and compact-valued at λ0, by Lemma 2.2,
there exist x ∈ G(λ0) and a subsequence {xnk } of {xn} such that xnk → x. Without loss of
generality, let xn → x. It follows from F(xn) ≤l

E F(yn) and F is ≤l
E-continuous on G(λ0). By

Proposition 2.1 we get F(x) ≤l
E F(y), which contradicts y ∈ El(λ0). Hence yn ∈ El(λn) for n

large enough. Therefore, it is obvious to find that yn ∈ (y + W0) ∩ El(λn) for n large enough,
which contradicts (3.3). Hence, El(λ) is l.s.c. at λ0. �

Now, we give the following example to illustrate Theorem 3.3.

Example 3.2 Let X = R, Y = R
2, � = [0, 1], and K = R

2
+, E = [0.1, +∞)× [0.1, +∞). Assume

that G(λ) = [0, 1] for all λ ∈ �. Let F : X → 2Y be a set-valued mapping defined as

F(x) = [0, x] × [0, x], ∀x ∈ G.

Let λ0 = 0. Then it is easy to check that all conditions of Theorem 3.3 are satisfied. By a
simple computation, we know that El(λ) = [0, 1] for all λ ∈ �. Clearly, we can see that El(λ)
is l.s.c. at 0.

We show the lower semicontinuity of the weak E-minimal solution mapping for (PSOP)
as follows.

Theorem 3.4 Let λ0 ∈ �. Assume that
(i) G is continuous and compact-valued at λ0;

(ii) F is �l
E-continuous on G(λ0) with nonempty and compact values and F(x) + E is

closed on G(λ0);
(iii) F is l-E-strictly quasiconvex on G.
Then Wl(λ) is l.s.c. at λ0.

Proof Applying Theorem 3.3, we know that El(λ) is l.s.c. at λ0. By Lemma 2.7, we have
El(λ0) = Wl(λ0). For any open set V with V ∩ Wl(λ0) �= ∅, so we have that V ∩ El(λ0) �= ∅.
Since El(λ) is l.s.c. at λ0, there exists a neighbourhood U of λ0 such that, for all λ ∈ U ,

V ∩ El(λ) �= ∅.

By Remark 2.1, we have El(λ) ⊆ Wl(λ), then

V ∩ Wl(λ) �= ∅, ∀λ ∈ U .

Hence, Wl(λ) is l.s.c. at λ0. �
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