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problems in infinite dimensional real Hilbert spaces such that it does not depend on
the Lipschitz constant of the cost operator. Further, we prove the strong convergence
results of the new algorithm. Our strong convergence results are achieved without
imposing strict conditions on the control parameters and inertial factor of our
algorithm. We utilize our algorithm to solve some problems in applied sciences and
engineering such as image restoration and optimal control. Some numerical
experiments are carried out to support our theoretical results. Our numerical
illustrations show that our new method is more efficient than many existing methods.
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1 Introduction

Throughout this article, let H be a real Hilbert space with inner product (-,-) and its in-
duced norm || - ||. Let ¥ be a nonempty closed and convex subset of H and M : ¥ — H
be an operator. A variational inequality problem VI(¥, M) involves finding a point g € W
such that

(Mg,h—g)>0, VheW. (1.1)

The solution set of VI(¥, M) (1.1) shall be denoted by S. Diverse problems emanating from
engineering, economics, mechanics, transportation, mathematical programming, etc. can
be formulated as VI(¥, M) (1.1) (see, for example, [4, 5, 15, 22, 23, 28]). We use Sp to
denote a solution set of the dual variational inequality problem, that is, Sp = {g* € ¥ :
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(Mh,h —g*) > 0,Yh € W}. It is easy to see that Sp is a closed and convex subset of W [41].
If M is continuous and WV is convex, then we obtain that Sp C S, and if M is continuous
and quasimonotone, then S = Sp [12]. The inclusion S C Sp, is not true if M is a continuous
and quasimonotone mapping [56].

There are basically two well-known approaches for solving the variational inequality
problems, namely, the regularized method and the projection method. In this article, our
interest will be on the projection method [39]. For any g € H, there exists a unique point
zin W such that

lg -zl =inf{llg—hll: he ¥}, wherez="Pyg,

and Py : H — W is called a metric projection from H into W.
It is well known that the variational inequality problem VI(¥,M) (1.1) can be trans-
formed into a fixed point problem as follows:

g =Pyl - TM)g", (1.2)

where Py : H — W is the metric projection and t > 0, see [43]. The simplest projection
method to find the solution of VI(W,M) (1.1) is the projection gradient method (PGM)
defined as follows:

8m+1 = P\Il(gm - ":Mgm) (13)

Observe that just one projection onto the feasible set is required. However, the conver-
gence of PGM to an element of S requires a slightly strong hypothesis that the operator is
L-continuous and «-inverse strongly monotone with 7 € (0, i—‘;‘). In [19], the authors ob-
served that if the strong monotonicity assumption is relaxed to monotonicity, then the sit-
uation may become divergence. To overcome this challenge, Korpelevich [24] introduced
the extragradient method (EGM) as follows:

hm = Plll (gm - TMgm):
m+1 = P\ll (gm - thm),

(1.4)

where M is a monotone operator that is L-Lipschitz continuous and 7 € (0, %). It is well
known that the sequence {g,,} that is generated by (1.4) converges weakly to a point in S.

It is worthy to note that the calculation of the projection onto a closed convex set ¥
is equivalent to the solution of the minimum distance problem. It is not hard to see that
EGM requires two calculations of the two projections onto W in each iteration and the
performance of the method may reduce if ¥ is a general closed and convex set. For some
years now, the (EGM) has been modified and improved in diverse forms, see, e.g., [7-10,
27, 33, 42, 46] and the references in them.

To overcome the drawback in EGM, Censor et al. [8—10] introduced the subgradient
extragradient method (SEGM) as follows:

hm = P\Il(gm - TMgm):
Zm ={g€H|@m_fMgm_hm;g_hm) SO}: (15)
m+1 = PZm (gm - chm):
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where 7 € (0, %), M is a monotone and L-Lipschitz continuous operator. This method re-
places the two projections onto ¥ in EGM by one projection onto ¥ and one onto a half
space. This may speed up the convergence of the algorithm.

The second modification of (EGM), which is known as Tseng’s extragradient method
(TEGM), was developed by Tseng [48] as follows:

hm = P\Il (gm - tMgm);
gm+1 = Hy — T(Mhy, _Mgm),

(1.6)

where A € (0, 1) and M is a monotone and L-Lipschitz continuous operator.

The third method which was introduced to overcome the limitation of (EGM) is known
as the projection and contraction method (PCM). This method was introduced by He [18]
as follows:

hm = P\II (gm - TMgm):
Vm = (gm - hy) - T(Mgm - Mhy,), (1.7)
&+l = 8m — plngm:

where p €(0,2), T € (0, %) and B,, is defined as

(gm - hm; Vm)

[1Vin 12

ﬂmz

The SEGM, TEGM, and PCM require only to calculate one projection onto the feasible
set in each iteration. For some years now, these methods have been improved in vari-
ous ways by different authors, see, e.g., [2, 39, 41, 49] and the references in them. Some
authors have considered the combination of the subgradient extragradient method and
the projection contraction method to obtain more efficient methods, see, for example,
(39, 41].

It is worthy to note that the class of quasimonotone operators properly includes the
classes of monotone and pseudomonotone operators which have been studied by many
authors in the recent years, see, e.g., [2, 25, 30, 56]. In applied sciences and engineering, it
will be more interesting to extend the methods of solving variational inequality problems
to a more general class of quasimonotone operators. The broadness and the applicability
of this operator have attracted a considerable amount of interest from researchers in the
last few years. For instance, in [56], Ye and He introduced an algorithm with double pro-
jection for solving variational inequality problem involving quasimonotone operators in
an infinite dimensional Euclidean space R”. In [30], Salhuddin extended the main EGM,
which deals with monotone operators, to solving a variational inequality problem involv-
ing Lipschitz continuous and quasimonotone operators in infinite dimensional Hilbert
spaces. In [25], Liu and Yang modified the EGM, SEGM, and TEGM using a new step
size for approximating the solution variational inequality problems involving quasimono-
tone operators in real Hilbert spaces. Very recently, Alakoya et al. [2] improved the results
of Lui and Yang [25] by introducing two inertial algorithms with self-adaptive step sizes

for solving quasimonotone variational inequality problems. The authors obtained some
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strong convergence results without using some strict conditions used by Liu and Yang
[25] in obtaining convergence results.

On the other hand, the concept of inertial technique was first studied by Polyak [29] as
a process of acceleration for solving a smooth convex minimization problem. This tech-
nique is obtained from an implicit time discretization of a second-order dynamical system
as heavy ball with friction. In recent years, the inertial technique has been wildly employed
as the rate of convergence accelerator of algorithms for approximating the solution of sev-
eral kinds of optimization problems (see [50] and the references in it). The inertial-type
algorithms have been studied by several researchers, see, e.g., [2, 36-39, 41, 49] and the
references in them.

It is well known that the strong convergence of iteration algorithms is more desirable and
applicable than their weak convergence. Most results on variational inequality problems
in the current literature deal with weak convergence. One of the techniques for obtaining
the strong convergence results of an algorithm is by combining such an algorithm with
the viscosity method.

Motivated and inspired by the works above, we introduce an inertial-type algorithm that
combines the subgradient extragradient method, the projection contraction method, and
the viscosity method. The proposed method is used for solving quasimonotone (or with-
out monotonicity) variational inequality problems in infinite dimensional Hilbert spaces
such that it does not depend on the Lipschitz constant of the cost operator. Further, we
prove the strong convergence results of the new algorithm. We utilize our algorithm to
solve some problems in applied sciences and engineering such as image restoration and
optimal control. Some numerical experiments are carried out to support our theoretical
results without using some existing restrictive assumptions. Our numerical illustrations
show that our new method enjoys better speed of convergence than many existing meth-
ods.

The paper is organized as follows: We first recall some basic definitions and established
results in Sect. 2. The convergence analysis of the proposed method is presented in Sect. 3.
Numerical experiments and the applications of the proposed method are presented in

Sect. 4. The summary of the obtained results is given in Sect. 5.

2 Preliminaries
In this section, we present some important notations, definitions, and results that will be
useful in the sequel.

Let ¥ stand for a nonempty closed and convex subset of a real Hilbert space H. The
weak and strong convergence of {g,,} to g are written as g,, — g and g,, — g, respectively.
Assume that a subsequence {g,,,} of {g,,} converges weakly to a point g, then g is known

as the weak cluster point of {g,,} and the set of such cluster points of {g,,} is denoted by

@y (gm)-

Definition 2.1 An operator M : H — H is called:

(a1) contraction if there exists a constant ¢ € [0, 1) such that

Mg - Mh|| <cllg-hl, Vg heH,
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(ap) L-Lipschitz continuous if L > 0 exists with
Mg —Mhl| <Llg—hl, Vg heH;
(as) L-strongly monotone if L > 0 exists with
(Mg-Mh,g—h) = Llg-h|? VgheH;
(aq) monotone if
(Mg —-Mh,g—h)>0, Vg,heH;
(a5) pseudomonotone if
(Mh,g-h)y>0 = (Mg,g—h)>0, Vg, heH;
(a6) quasimonotone if
(Mh,g—h)>0 = (Mgg-h)>0, YgheH,

(a7) sequentially weakly continuous if for any sequence {g,,} that converges weakly to g
the sequence {Mg,,} weakly converges to Mg.
From the definition above, it is true that (a3) = (a4) = (as) = (as). However, the

converses are not always true.

Lemma 2.1 ([56]) If one of the following holds:
(i) The mapping M is a pseudomonotone on V and S # ;

(i) The mapping M is the gradient of U, where U is the differential quasiconvex
function of the open set V- O W and attains its global minimum on V;

(i) The mapping M is quasimonotone on W, M #0 on , and V is bounded,;

(iv) The mapping M is quasimonotone on W, M # 0 on \V, and there exists a positive
number r such that, for all g € r with ||g|| > r, there exists h € W such that ||h|| <r
and (Mg,h - g) < 0;

(v) The mapping M is quasimonotone on \V, intWV is nonempty, and there exists g* € S
such that Mg* #0.

Then Sp is nonempty.

Lemma 2.2 Let H be a real Hilbert space. Then, for each g,h € H and { € R, we have
D llg+hl* < lgl® +2(h,g + h);
(i) llg+nl*=lIgl* +2(g, i) + I All*;
(iii) g+ @ =ohl* =gl + A= O)Al* -1 -¢)llg - hl>.

Lemma 2.3 ([16]) Let ¥ be nonempty closed convex subset of a real Hilbert space H. Sup-
posege Handhe V. Then h=Pyg < (g—h,h—-w)>0,VYwe V.

Lemma 2.4 ([16]) Let \V be a closed convex subset of a real Hilbert space H. If g € H, then
(i) |Pwg —Pyh| < (Pyg-Pyh,g—h),Vh e H;

Page 5 of 30
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(ii) (I - Py)g— (I —Py)h,g —h) > |(I - Py)g — (I — Py)h||*, Vh € H;
(iii) [|[Pyg—hl*<lg-hl*-lg - Pugl? Vh e H.

Lemma 2.5 ([51]) Let {u,,} be a sequence of nonnegative real numbers such that
U1 < (L= V)t + ViV + W,

where {vy,} C (0,1) and {v,,}, {wy} satisfy the following conditions:
(@) Yo Vim = 00;
(b) limsup,,_, o Vm <0;

(©) Wi =0,Vm, > o Wy, < 00. Then limy,_ o0 ty, = 0.

Lemma 2.6 ([26]) If there exists a subsequence {c,,} of a nonnegative real numbers se-
quence {c,,} such that c,,; < ¢y for all i € N. Then there exists a nondecreasing sequence
{sj} of N such that lim;_, o s; = 00 and the following inequalities are satisfied by all (suffi-
ciently large) number j € N:

Cs; = Csj+1 and G = Csj+1- (2.1)

3 Main results
In this section, we establish the convergence analysis of our proposed algorithm under the
following assumptions:
(C1) The self mapping f defined on a real Hilbert space H is a contraction with constant
ce(0,1).
(Cy) The positive sequence {&,,} satisfies lim,,,_, o, j—’:’ = 0, where {a,,} € (0,1] such that
L G < OO
(Cs) The sequence {b,,} C (0,1) satisfies anozl b,, =00, lim,,_, 5 b, =0,and 0 < b < b,,.
(Ca) Sp#9.
(Cs) The operator M is Lipschitz continuous such that L > 0;
(Cs) The operator M is sequentially weak continuous on W.
(C7) The operator M is quasimonotone on W.
(Cg) If gy — g* and limsup,,_, . (Mg, gn) < (Mg*,g*), then lim,,_, oo (Mg, gm) =
(Mg*,g%).

Algorithm 3.1
Initialization: Given 7; >0, ¥ >0, > 1, p € (0, %), € (0,1), and let gy, g1 € H be arbi-

trary. Take {g,,} C [0,00) with )" - g, < 00 and {p,,} € [1,00) such that lim,,— o0 py = 1.

Iteration Steps: Compute g,,,1 as follows:
Step 1: Given the iterates g,,_1 and {g,,} (m > 1), choose v, such that 0 < ¢, < Yoy
where

g M ) e g,

¥, otherwise.

(3.1)

Step 2: Set

by = (1 - am) (gm + 1/fm(gm _gm—l)): (32)

Page 6 of 30
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and compute

T = Po £y — TpuMt). (3.3)

If t,, = h,, or Mt,, =0, then stop and ¢, is a solution. Otherwise, we go to Step 3.

Step 3: Compute

km = Pz, (tm — PTm8mMhyy), (3.4)
where

Zn={g€H: (ty — TuMty — hyp, g — him) <0}, (3.5)

O = (1—M)M, (3.6)

[Vin

and

Vi = by — My — Tu(Mt,,, — Mh,,). (3.7)
Step 4: Compute

g1 = (1 = b))k + by f (k). (3.8)
Update

Tm+l =

B .
mln{%,% +qm)  if Mt,, # Mh,,,

(3.9)
T+ qm otherwise.

Set m := m + 1 and return to Step 1.

Remark 3.2 Now, we highlight some of the advantages of new Algorithm 3.1 over some

existing methods in the literature.

(1)

Our algorithm uses an efficient step size that was first introduced by Tan et al. [39].
It is not hard to see that the step size studied is quite different from those step sizes
studied in many articles. To be precise, if g,, = 0 and p,, = 1 for all m > 0, then the
considered step size reduces to the step size used by several methods (see, e.g.,

[14, 43, 44, 53-55]). Furthermore, if g,, # 0 and p,, = 1, Ym > 0, then the step size
reduces to the step size in [25].

It is important to note that the additive step size in our method is updated explicitly
and is permitted to increase at each iteration of algorithm, which makes it more
implementable in practice.

The operators involved in our new algorithm are quasimonotone. This class of
operators is wider than the classes of monotone and pseudomonotone operators.
Hence, our method is more applicable than the methods for solving monotone and
pseudomontone variational inequality problems used by many authors (see, e.g,
[39, 41, 43, 44, 54, 55] and the references in them).
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(4) To speed up the convergence of our method, we embed a modified inertial term in
our algorithm. Further, we prove our convergence results without the strict
conditions imposed on the control parameter in the inertial term, i.e.,
1imy,— 00 @y =0 and Y o dyy = 00.

(5) Our algorithm uses a nonmonotonic step size rule which allows it work without the
prior knowledge of the Lipschitz constant of M. In practical application sense, this is
preferable to the fixed-step algorithm studied in [11, 47]. Also, our algorithm does
not require any line search rule.

(6) The inertial term used in the algorithm [2, 41] has been studied by several authors in
the literature. Recently, a more relaxed inertial term (3.3), which is considered in our
proposed Algorithm 3.1, has been studied by a few authors (see, e.g., [39, 40, 45]). In
this research direction, convergence analysis of these methods required that the
relaxation parameter a,, in the inertial term (3.3) is in (0,1). In this article, we
improve upon the existing results in this direction by proving our convergence
results such that the relaxation parameter a,, is allowed to be chosen in (0,1]. This
implies that the relaxation parameter can be chosen in a special case to be 1. Thus,
our proposed algorithm improves several inertial algorithm types for solving
variational inequality problems in the existing literature.

Lemma 3.3 ([39, 52]) Suppose that M is L-Lipschitz continuous on H and {t,} is the
sequence generated by (3.9), then there exists T € [min{%, 71}, 71 + > e qm] with T =

lim,;,_, 50 T,;s. Moreover,

Pmll

m+1

Mty — Mhy |l <

tm = Bmll. (3.10)

Next we show the boundedness of the sequence {g,,} generated by Algorithm 3.1.

Lemma 3.4 If {g,,} is a sequence generated by Algorithm 3.1, then under assumptions
(C1)—(Cs), {gn} is bounded.

Proof Let g* € Sp. Then from (3.2) we have

[t =& = (X = @) (@ + Yn(@on —gn-1) &
= H(l - am)(gm _g*) +(1- ﬂm)l//m(gm _gm—l) - “mg* ”
< -am)|gn-g*|| + A = am)¥mlgn — gnll + am|g*| (3.11)
Yo

=(1- am)Hgm -g" H +am |:(1 - am)a_”gm —gm-1ll + ”g* ”i|

On the other hand, since by (3.1) we have

v §
“lgm = gmall <= =0, (3.12)
a a

m m

which implies that 1im,,_, oo [(1 — am)‘;’—:: lgm — gm-1ll + ig*ll] = lig”|l, therefore there exists
K3 > 0 such that

(1- am)@ngm —gnll + | g*] = K. (3.13)
am
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From (3.13) and (3.11), we obtain

ltm —g*|| < @ = am)|gn—g*| + amki. (3.14)
Next, by (3.4), Lemma 2.4, and Lemma 2.2, we have

[k =& = [Pz, ton = pTm8 M) &7 |
<t = DTnBuMIy = &> = o = DT SMy — koI
= [t = & |” = 20Tt — & M) + p> 7282 | MBI = 1ty — Ko
+ 20T8m i — Ky Mb,y) — p2 7282 | M, ||
=t =& = It = konlI* = 20TSn (M, Ko — &)
=t =& =t = kinlI® = 20T S (M, ks — P)
= 20T (Mhyn, i — &°). (3.15)

Now, since k,, € ¥ and g* € Sp, we have (Mh,,, h,, — g*) > 0 for all n > 0. Thus, from
(3.15), we have

Vo =& < [t =& ” = 1t = Knl1* = 20T My K — Fi). (3.16)
On the other hand, since &, € Z,,, we have
(tm — TuMby — By Ko — 1) < 0.
Hence,
=20 TS AMMyss Ky = M) = 20T 81 (b — TuMbs — By Ko — W)
= 20Tmmtm — i — Ton (Mt — M), Ky — P
= - prmam(tm - hm - Tm(th _Mhm)rkm - hm)

= = 20TuSm Vi, Ky — By

= - prmam <er b — hm) + 2p.’:mam <Vrm b — km) (317)

Now, we estimate —207,,,8, (Vi, tn — M) and 207,,8,, (Vis E — k). From (3.7) and (3.9),
we have

<Vm’ by — hm) = (tm - hm - tm(th _Mhm): Ly — hm)

= ”tm - hm”2 - tm”th _Mhm” ”tm - hm”

T
= (1 _Pmﬂ_’: >||tm_hm”2~ (3.18)

m+1

By Lemma 3.3, we have that lim, o 7, exists. Since limy_copmn = 1, we have

1lim,;— 0o Pz’:’ni’l” = 1. Now, since lim,,,_, oo (1 = puit

Tm
Tm+1

)=1—,u>I_T”>O,thereexistsmoeN

Page 9 of 30
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such that

T 1-u

>0, Vm>myg.

Using (3.18) and (3.19), we have

1-p
Vi tn = Bim) = T”tm_hm”z: Vm > my.
Since §,, = (1 — M)%, it implies
Smllvml?
by — M |? = —2 .
12 = Bom 1-p)

By (3.20) and (3.21), we have

—2p82
_2;07:m8m <er Ly — hm> = 0 ”Vm”Z! Vm > my.

Next, by Lemma 2.2, we get

20TmSm (Vs tn — M) = 1t — km”2 + ,053,,||le|2 =Nt — ko — :O(SVm”2~

Putting (3.22) and (3.23), we obtain
- 2IOTm8m (Mhm’ km - hm)

2
< ”tm _km”2 - ”tm _km - /)‘SVm”2 - ,0(; - p>872nllvm||2
Using (3.7), we obtain

Vil = 1t = Kl + T | Mty — M |

T
<t = koml +pmur—mntm — ko

m+1

T,
= (1 +Pmi - >||tm — ki ll.

Tm+1

It follows from (3.25) that

1 - 1
Wl = (T4 Dbt 22 [t — Pl

Tm

Thus, from (3.6) and (3.26), we obtain

(1- M)Zntm - hm”4

1Vl

(1 _//L)Z 2
= " ”tm _hm” .
1 +pmMT:nT)2

2
Sullvmll =

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

Page 10 of 30
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Combining (3.16), (3.22), and (3.27), we have

[km = &> < 16w = &* | = Wt — ki — 0OV,

2 1-u 2
(2 ) () et
n 1+pup—2

Tm+1

From (3.14) and (3.28), we obtain

[ =& < Jtm - &7
=< (1 - “m)”gm _g* H + ﬂm1<l'

From (3.8) we get

lgmer —g"[| = @ = bk + bonf (ki) — g*|
= ([ B (F (ki) = %) + (1 = bn) (Ko &) |
< by |[f (ki) = &" || + (1= bo) [ Ko — &7 |
< bu|[f i) = £ (&7) | + b |f () —&"[| + (A = b) [ o ~ "
< bc|kn =& || + b (€") 7| + (1 = b [ o — &7
= (1=~ bm) [k —g"[ + bun|[f (") & |-

Substituting (3.29) into (3.30), we have

e =g = (1= A=) [(1 - @)@ —g"[| + ank] + b |f (g7) - "]

(3.28)

(3.29)

(3.30)

(3.31)

Since a,, € (0,1), b,, € (0,1),0< b < b,,, and ¢ € (0, 1), then it implies that (1 - (1 -¢)b,,) <

1 and (1 —a,,) < 1. Again, since K; > 0, (3.31) becomes

g =€ = (1= @ = i) g = &°[| + @nki + b | (¢*) - &
< (1= (1= bw) |gn—&*| + K1+ bu|lf (g") &7

K,
(1= ln ¢ by bl 2|

- (== )=+ 3+ ) -l

K
< (1= Q=9 + 5] 3+ ) -1

K I@)-g

=(1- 0=kl -g] + 0 _C)b’"[(l —ob " (1-0)

K . Ilf(g*)—g*ll}
"1-¢)b 1-c¢)

*

5max{”gm—g

*

6L VO-d)

fmax{”g"_g A=ob " (1-0)

Page 11 of 30
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This implies that {g,,} is bounded. Furthermore, it follows that {k,,}, {f(k,)}, and {¢,,} are
bounded. O

Lemma 3.5 Suppose that assumptions (C1)—(C7) hold and {g,,} is a sequence generated
by Algorithm 3.1. If there exists a subsequence {g,,;} of {gm} with g,, — p* € H and
limy,—, o0 |1Am; — t, || = O, then either p* € Sp or Mp* = 0.

Proof ByLemma 3.4, {t,,} isbounded. Thus, the weak cluster point set of {t,,} is nonempty.
Let p* be a weak cluster point of {z,,}. Suppose that we take a subsequence {z,,} of {£,}
such that £,,, = p* € W as i — oo. From the hypothesis of the lemma, it implies that /,,,, —
prevasi— oo.

The following two cases will now be considered.

Case I: Assume that limsup;_, ., [|Mg,, || = 0. Then

lim (| Mgy, || = liminf | Mgy, || = 0.

11— 00 11— 00
Since h,,, converges weakly to p* € W and M is weakly sequentially continuous on W, it
implies that {Mh,,;} converges weakly to Np*. From the sequentially lower semicontinuity
of the norm, we obtain

0 < |Mp*| <liminf||Mg,, | =0. (3.32)

=00

This implies that Mp™* = 0.

Case II: Assume that limsup,_, . |Mg,, || > 0. Then, without loss of generality, we can
take lim;_, o [|Mg,,; || = Ky > 0. This means that there exists J > 0 such that || Mg, || > KTZ for
all i > J. Since h,,, = Py (s, — Tu;Mt,,;), by Lemma 2.3, we get

My =t + TyMby s h = hyy) >0, Vhe W,

This implies that

(Eons = gy 1 = Ti,) < Ty (M = By}, V€W,

It follows that
1
- (tmi - hmi;h - hml) - (th,- _Mhm,';h - hrm)
T,
<{(Mhy,, h-hy,), YheWw. (3.33)
Since limy,— o0 |1, — tm;ll = 0 and M is Lipschitz continuous on H, we have that

limy,—, o0 |Mt; — Mh,y,, || = 0. Thus, from (3.33), we get

0 <liminf(Mh,,,, h — h,,,) <limsup(Mh,,,, h— h,,,) < +00. (3.34)
11— 00 i—00
As aresult of (3.34), the following cases are considered under Case II:
Case 1: Assume that limsup;_, . (Mh,,;, h — h,,;) > 0, Vi € W. Then we can take a sub-
sequence {hm,-/.} of {h,,,} such that limjﬁw(Mhmi/_,h - hml-,> > 0. Hence, there exists jo > 1
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such that (Mhml.j,h - hmij> > 0, Vj > jo. From the quasimonotonicity of M on W, it im-
plies that (Mh,h — hmt,) >0, Vh e ¥, j > jo. Consequently, by letting j — oo, we obtain
(Mh,h - p*) > 0,Vh € W. Thus, p* € Sp.

Case 2: Suppose that limsup,_, . (Mh,,;, h — hy;) =0, Vi € W. Then, by (3.34), we have

im (M, b= hy) =0, Vhe W, (3.35)

i—00

which implies that
1
(Mhyys b= o) + | (M = )| + —>0 VheWw. (3.36)
1+

Furthermore, since lim;_,  [|Mgy,;|| = Ky > 0, there exists i, > 1 such that ||Mh,,, || > I%,

Mh"ff“z, Vi > iy. Hence (Mh,,,d,,) = 1, Vi > io. From

Vi > iy. Therefore, we can let d,,,, = M T
m.

(3.36) it follows that

1
<Mhmi,h + dmi[|(Mhml.,h—hmi)| + —} —hml.> >0,
i+1

and due to the quasimonotonicity of M on H, we get

: })
+— )

i+1

1
+,_]_hm,>zo.
i+1 !

1
+,—i| _hmi>
i+1
1
z<Mh—M<h+dmi[|(Mhmi,h—hmi)| + —])
i+1
1
S
i+1 !
)
o
i+1
1
+’—i| —hm4
i+1 !

1
<Mhm,-)h - hml)} + —i| H
i+1

<M<h + dy, [\ (M, = D))

b+ dmi|:|(Mhm,.,h — ;)

This means that

<Mh, h+dy, [| (MM, = D)

h+ dmi[\(Mhml.,h—hmi)

> —HMh —M(h +dy, [| (MM, = D)

x |[h+ dmi|:|(Mhmi,h ~ ;)

X h+dmi|:’(Mhmi,h—hmi)‘ + —] —hy;

L 1
My~ hiy)| + ——
= ||Mhm,.||<|< o = o) +z+1>
1
x h+dmi|:|(Mhml.,h—hmt) +—]_hm,
+1
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2L 1
> —\ |Mhy,, h—h,, )| + —— |K3 3.37
> 2 (1= )+ 1) 637)

for some K3 > 0, where K3 is obtained from the boundedness of {1 + d,,,; [| (MM, b — h,; ) | +
L]- H;}. Now, from (3.23), it follows that limj_, oo (| (M1, 11 — hy; )| + L) = 0. Hence, as

i+1 i+1

i — o0 in (3.37), we obtain (Mh,h — p*), Vh € V. Thus, p* € Sp. O
Now, we present the strong convergence theorem of our Algorithm 3.1 as follows.

Theorem 3.6 Suppose that assumptions (C1)—(C;) hold and Mg #0,Vg € H. If (g} isa
sequence generated by Algorithm 3.1, then {g,,} converges strongly to an element g* € Sp C
S, where g* = Pg, of (g%).

Proof Claim a:
2 1-pun 2
”tm _km - /)(SVm”2 + p(_ —,0> <71m) ”tm _hm||2
n 1+pml’~m

2 2
<|lgn-&*|" = |gmne1 —&*||” + amKs + bmKa (3.38)
for some Ky, K5 > 0. Indeed, for g* € Sp, using (3.8) and Lemma 2.2, we have

I gmes =& " = 10 = bukin + binf (ki) ~ g
= (k) — ) + (1 = bn) (ki — &) [
< b k) =& [|* + 0 = b) [ ="
< bu([f ) £ ()| + () =& )" + (1 =B [ — &7
< (el —g" || + £ (e*) —£*)* + A = b [ Ko - g"|
< bu(lkn =g + £ (e") € ])” + W =) [ K — g
= kon =& |* + b 2l k= g"| - [ (&) " | + £ (&*) - & [")
< |k —g*|* + buKa, (3.39)

where Ky = sup,,-.1 {2[1kn — g*I - If (&) = g" Il + IIf (g") — g*||%}. Putting (3.28) into (3.39), we
get

lgmer =& |° < 16w —* | =t — kn — pSV,II?

2 1-u ) )
—ol=—=0o |\ —————=— | ltm—hull” + buKs. (3.40)
n 1+ pmp2-

Tm+1

Owing to (3.29), we obtain

[en =g 1" < (=) g~ g | + anis)’
= (1 - am)ZHgm _g* Hz + am[z(l - am)1<1 ”gm _g* ” + amKlz]
< llgn—g*|* + anks, (341)

Page 14 of 30
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where K5 = sup,,- 1 {2(1 — @,,)K111gm — &1 + a,,K}}. Combining (3.40) and (3.41), we get

lgmer =& |” < lgm —&*|* + @nkKs = 1t = kon = pSv,l®

2 1-pn 2 9
—o(Z-p ) —— ) ltm =l + buKa, (3.42)
n 1+ pup 2

Tm+1

which implies that

2 1-p4 2
||tm_km_p3Vm||2+/0<__p)<7rm) 1Em = Hom1?
n L+ pmp

<len-g|" - lgm1 -&"’
+ a,,Ks + b,,Ky. (3.43)

Claim b:

||gm+l —g* ”2 = (1 - (1 - C)bm) Hgm _g* HZ

2
+(1=c)by, [:(f(g*) —g5gmi1 —g*)] +2a,Ks

for all m > mg and for some Ky > 0.

Indeed, from (3.2) we have

[t =g * = 1= @) (g + ol — gn0)) — &[]
< (1= @)@ — & + Vi@ — Gn-1) — amg” || + 2amlg*, " — t)
< (=2 (|gn =& |” + 2Vmlgm — &n1:8m — & + Vin(@n — gm1)))
+2a,(g", 8" — tm)
< (1= am)|gm —g"|* +2(1 = @)Wl gm — Gn-111Ks
+2am(g", 8" — tm)s (3.44)

where Kg = sup,,,~.1{llgn — &* + ¥m(gn — gm-1)|I}. Now, from Lemma 2.2 and (3.8), we have

g =" [* = [ Buf (i) + (1= Bl —g*
= Bl ) ~£(@7)) + (1 = b (ki = &°) + bn(f (&) €7 |
< [Bun(Fen) = £ (7)) + (0 = b (ki — )| + 28lf (&) — &7 Gu1 - ")
< b k) £ @) + A= b [hn =g |* + 20lf (¢" = 27), 01 — &)
< b [k =" |* + (1= b) [ hon =" |+ 26l (&) ~ £" e =)
< bk =g |+ (1= b)) [ = " | + 28lf (") — &, gms1 — &)
< (1= (1= b o —&*[|” + 2bulf (") - " 81 - £7)
< (- (-0 lim g I+ 2l (&) - ). (349)

Page 15 of 30
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Putting (3.44) into (3.45), we obtain

lgmir—&*[* < (1= (1= b)) [(1 ~ @) g —&*|” + 201 = @) Vinllgin — Gn-111Ks
+2a,,(g", 8" = t)] + 2blf () — &1 Gmer — &)
< (1-(1-9by)|gn g’
+2(1= (1= by ) (1 = @) Vmllgm — g1 11K
+2a,(1 = (1= )by (g g* — tm)
+2(1= (1= )bm)bulf (¢7) ~ " gme1 ~ &)
< (1-1-9bw)|gn -2’
+2(1= (1= b ) (1 = @) Y| g — g1 1K
+2a(1= (1= b) |g" | |lg" ~ tm|
+2(1 = (1= )b)bulf (&) - &* @1 — &)
< (1= (=) g~ |* + 0= by /(") ~ &' s &)
+2(1-(1-0)by)
Vim

X Am |:(1 - dm)a_ ”gm _gm—l ||I<6 + 2“"’1 Hg* H ”g* “lm H:|

2
<(1-(1-9by)|gn-g*|*+ - C)bmm(f(g*) - g5 gn - &)
+2(1-(1-0)by)
wm * *
X | (1~ dm)a_ g — gm-111Ke + 2a,, ”g ” ”g —tm ”
m
< (1-1-9bw)|gn-g"[’
2
+(1=¢)b,, [:(f(g*) - g g —g*)]
+2(1- (1 - 0)bm)anks
< (1-1-9bw)|gn-g"[’
2
+ (1 — C)bm |:1—_C(f(g*) —g*»ngrl _g*>]
+2a,,K5, (3.46)
where K7 = sup,,,. {(1 - dm)lg—:: gmn — 8m-111Ke + 2allg* g — tull} > O.
Claim c: We now show that the sequence {||g,, — g*||*} converges strongly to zero. To
show this, we consider two possible cases on the sequence {||g,, — g*||*}.

Case A: There exists N € N such that ||g,,1 — g*I|> < llgm — g*|? for all m > N. Since
{llgn — g*1?} is bounded, it follows that {||g,, — g*||*} converges, and hence

“gm -g “2 - ||gm+1 —g*”2 — 0 asm— oo.

Page 16 of 30
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Recallingthat Y | a,, < 00, limy,—00 by = 0, p € (0, %), and lim,,_, oo (—£-—)2 > 0, then

Ttpy o 72—
from (3.43) it follows that

m+1

Hm |6y — ko — pSVmll =0 and  lim ||ty — Him]| =O. (3.47)
m— 00 m— 00

1~

For all m > mgy, we observe that ||v,| > 1_T"Htm — hy|l, which implies that ol =

1
- Thus, we have

”tm - km” = ”tm - km - PSVm” + p8m||vm||
”tm _hm”2
Vil

< Mt — ko = P8Vl + Pl — M.

= it =k — SVl + p(1 — 1)

Therefore, from (3.47) it follows that
im ||ty — kol = 0. (3.48)
m—00
Furthermore, from (3.2) we have

”gm - tm” = ”(1 - ﬂm)wm(gm _gm—l) + aAm&m ||
< (1= am)¥mllgm — gm-1ll + @mllgml

(0= Y g =g+ il )
Thus,
Tim g — bl = . (3.49)
Hence, using (3.48) and (3.49), we have
k= & ll < lkim = tll + 1t = gmll — O as m — oo. (3.50)
Combining (3.8) and (3.50), we get

”gm+1 _gm” =< ||gm+1 - km” + ”km _gm”
= by Hf(km) — kin ” + 1K = gl (3.51)

Since limy,—, o by, = 0, using (3.51), we obtain
lim || g1 —gmll =0. (3.52)
m— 00

Since {g,,,} is a bounded sequence, a subsequence {g,, ) of {g,,} exists such that {gn}—ze
H with

limsup(f (¢*) - ",gn = &) = lim{f (¢) ~&".&m; - &)

m— 00
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=f(g*")-¢"z-g") (3.53)

Now, due to the hypothesis that Mg # 0 for all g € H, we have Mz # 0 for all z € H. Since
Zm; — zand by (3.47), it follows from Lemma 3.5 that z € Sp. Itis not hard to see that Ps, of
is a contraction mapping. From the Banach contraction principle, we know that Ps, of has
a unique fixed point, say g* € H. That is, g*Ps, 0f (¢*). By Lemma 2.3, we have

[fg") -g"z-g") <0
It follows that

lim sup(f(g*) -5 8m —g*) = (f(g*) -gz —g*) <O0. (3.54)

m— 00

Using (3.52) and (3.54), we have

limsup(f (g*) - g%, @me1 — &) < limsup{f (¢*) - &* Gms1 — &m)
m—00

m— 00

+limsup(f (¢*) - g%, gm — g*) < 0. (3.55)

m— 00

By applying Lemma 2.5 to (3.46), we obtain g,, — g* as m — 00.

Case B: There exists a subsequence {||g.,;, — g*|I} of {llgn — g"|l} such that ||g,,, -gI’<
gm;+1 — &* |2 for all i € N. Now, by Lemma 2.6, a nondecreasing sequence {s;} of N such
that lim;_, o 5; = 00, and the following inequalities are satisfied for all j € N:

lgs —¢*|” < g1 —g"| and g —g*| < g1 - &*[ (3.56)

By (3.43), we have

2 1-pn 2
”tsl‘_ks,‘ —p8V5j||2+,O(— _IO> (7'%) ”ts}‘_hsl‘”z
n L+pgu—

rS]‘+1
S ||gS[ _g* H2 - ||gSj+1 _g* ||2 + asil<5 + b811<4-
< ﬂsj1<5 + bsjl<4.

This means that
lim |t; — kg — pdvgll=0 and  lim ||, — A = 0. (3.57)
Jj—00 j—o0

Using a similar proof as in Case A, we obtain

lim £, — k|| =0, (3.58)
j—oo
hm “gsl‘ -t =0, (359)
J—> 00

lim gy 41 — g5l =0, (3.60)
j—o0

Page 18 of 30
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and

limsup(f (¢*) -85 854 -g)=<o. (3.61)

j—o00
According to (3.46), we have
g€ 1" = (1= @-by) g -
+(1-c)by [li_c(f(g*) -g" g — g*>] +2a4Ks. (3.62)
Using (3.56) and (3.62), we have
g & < (1- 1= 0b) |gyr -&° [

2
+(1-c)b |:1——C(f(g*) _g*!gsi—l —g*):|

+2as/.K7.
This implies that
|| 2 2 * * * 2ayK7
||gs,+1 -g ” =< 1__C<f(g )_g ’gS/—l -8 >+ m
2as. K7
s *¥\ _ o* _oF J
=T &) - =) oy
Thus, we have
limsup||gy+1 —¢*[| <0. (3.63)
m—>00

Combining (3.56) and (3.63), we obtain limsup,,_, ., llg; — g*Il <0, it follows that g; — ¢*
as j — o0o. This ends the proof. g

Remark 3.7 It is not hard to see that quasimonotonicity was not employed in Lemma 3.3.
Also, only Case 2 of Lemma 3.5 is used. Now, we present the strong convergence result of
our proposed Algorithm 3.1 without monotonicity.

Lemma 3.8 Suppose that assumptions (C1)—(Cs), (Cg) hold and {g,,} is a sequence gener-
ated by Algorithm 3.1. If there exists a subsequence {g,,,;} of {gu} with g,,, — p* € H and
limy,— oo |Am; =t || = O, then either p* € Sp or Mp* = 0.

Proof By (3.34) and using the same argument in Lemma (3.5), if we fix # € W, then we
obtain /,,, — p*, p* € ¥ and
liminf(Mh,,;, i — hyy;) > 0.

i—00

Next, a positive sequence {€,,} such that lim,,_,» = 0 and

(Mhyysh— hyy;) + €, >0, Ym=>0.
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This means that

(M, 1) + €5 > (M, By >0, Ym > 0. (3.64)
In particular, set s = p* in (3.64), we have

(Mhy p*) + € > (Mhyny i) >0, ¥m > 0. (3.65)
Letting m — oo in (3.65), from condition (He) and recalling that /4,,, — p*, we have

(Mp*,p*) > limsup(Mh,,;, hy,,),  Ym > 0.

i—00

By condition (Hs), we have lim;_, o (Mh,,, h,,) = (Mp*, p*). Now, from (3.64) we have

(Mp*,h) = lim ((Mhy,, h) + em)

i—00

> liminf(Mh,,,, h)

I—> 00

lim (Mh,,,,, h)

i—o00

(Mp*, p*).

It follows that
(Mp*,h—p*)=0, VheW. (3.66)

This implies that p* € Sp. Consequently, we know that either p* € Sp or Mp* = 0 as re-
quired. 0

Theorem 3.9 Suppose that assumptions (C1)—(Cs), (Cg) hold and Mg #0,Vg € H. If {g,,,}
is a sequence generated by Algorithm 3.1, then {g,,} converges strongly to an element g* €
Sp C S, where g* = P of (g%).

Proof By using Lemma 3.5 and adopting the same approach in the proof of Theorem 3.6,
we get the required result. O

4 Applications and numerical experiments

In this section, we consider the application of our proposed algorithm to image restoration
problems and optimal control problems. Furthermore, we examine the efficiency of some
iterative algorithm for solving quasimonotone variational inequality problems. Specifi-
cally, we numerically compare our proposed Algorithm 3.1 with Algorithms 3.2 of Alakoya
et al. [2] (namely, Alakoya Alg. 3.2), Algorithm 3.1 of Liu and Yang [25] (namely, Liu and
Yang Alg. 3.1), and Algorithm 2.1 of Ye and He [56] (namely, Ye and He Alg. 2.1). Through-
out this section, the parameters of our proposed algorithm and the compared ones are as
follows:

e For our Algorithm 3.1, let 7o = 0.6, ¥ = 0.5, p = 1.6, = 0.5, a,, = ﬁ, b,, = m,
(m+1 100

1
qm:W,pm: m),%‘m:(m+l)3,andf(g)=‘§.
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e For Algorithm 3.2 of Alakoya et al. [2], let 7o = 0.6, ¥ = 0.5, p = 1.6, 1 = 0.5,
by = ﬁ» qm = (m+11)141 2 Em = (mlf%y and f(g) = ‘%
e For Algorithm 3.1 of Liu and Yang [25], let 7o = 0.6, £ = 0.5, ¢,y = W
e For Algorithm 2.1 of Ye and He [56], let y = 0.7 and ¢ = 0.95.
We perform all the numerical experiments on an HP laptop with Intel(R) Core(TM)i5-
6200U CPU 2.3GHz with 5 GB RAM.

4.1 Application to image restoration problem

In recent years, compressive sensing (CS) has become one of the major techniques used
by several authors for image/signal processing. Image restoration is one of the most pop-
ular classical inverse problems. This kind of problem has been deeply been studied in var-
ious applications such as image deblurring, remote sensing, astronomical imaging, digital
photography, radar imaging, and microscopic imaging [20].

In this part of the article, we compare the performance our Algorithm 3.1 with Algo-
rithm 2.1 of Ye and He [56], Algorithm 3.2 of Alakoya et al. [2], Algorithm 3.1 of Liu and
Yang [25] for solving an image restoration problem, which involves reformation of an im-
age that is degraded by blur and additive noise.

Example 4.1 Consider the /;-norm regularization problem that has to do with finding the
solution of the following continuous optimization problem:

g{gﬁ@g{llglll :Ag =dj, (4.1)

where A is a matrix of m x n (n < m) dimension, d is a vector in R”, and ||g|l; = >/, |g]
is the /; norm of g. We can reconstruct expression (4.1) as the least absolute selection and
shrinkage operator (LASSO) problem as follows [13, 32]:

. 1
mln{WIIgII1+—IId—AgII§}, (4.2)
geR? 2

where w > 0 denotes the balancing parameter. It is not hard to see that (4.2) is a convex
unconstrained minimization problem that appears in image reconstruction and compress
sensing, where the original image/signal is sparse in some orthogonal basis by the pro-
cess

d=Ag+t, (4.3)

where g € R”, g, t, and d are unknown original image, unknown additive random noise,
and known degraded observation, respectively, and A is the blurring operation. The first
iterative method used to the solve (4.2) was introduced by Figureido et al. [13]. After
that, many iterative methods have been studied for this problem (see [13, 17, 31, 32]
and the references in them). It is important to note that the LASSO problem (4.2)
can be formulated as a variational inequality problem, that is, finding g € R” such that
(M(g),h — g) > 0 for all h € R”, where Mg = AT(Ag — d) [31]. For this, M is monotone
(hence M is quasimonotone) Lipschitz continuous with L = |ATA||. Now, we let ¥ = R”.
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Table 1 Numerical comparison of various algorithms using their SNR values for peppers

Images m Algorithm 3.1 Alakoya Alg. 3.2 Liu and Yang Alg. 3.1 Ye and He Alg. 2.1
Peppers.tif SNR SNR SNR SNR
(256 x 256) 100 23.6706 21.8756 16.5638 15.7238
600 24.7789 22.6453 17.6571 16.7451
1200 255234 23.8254 17.7845 17.9894
2000 25.9385 24.6453 229843 18.7836

Table 2 Numerical comparison of various algorithms using their SNR values for board

Images m Algorithm 3.1 Alakoya Alg. 3.2 Liuand Yang Alg. 3.1 Ye and He Alg. 2.1
Board.tif SNR SNR SNR SNR
(256 x 256) 100 34.1606 32.3562 16.5638 15.7238
600 34.8977 32.5452 17.65718 16.7451
1200 35.2543 35.8672 17.7845 17.9894
2000 37.7356 36.9867 22.9843 18.7836

By so doing, it means that Z,, defined in our proposed modified subgradient extragradient-
type Algorithm 3.1 is equal to R”. Hence, our proposed Algorithm 3.1 coincides with
this problem. For more details about the equivalence of model (4.2) to variational in-
equality problem, we refer the reader to [1, 3, 17, 21, 34, 35, 50] and the references in
them.

Next, we aim at comparing the deblurring efficiency of our proposed Algorithm 3.1
with Algorithm 3.2 of Alakoya et al. [2], Algorithm 3.1 of Liu and Yang [25], and
Algorithm 2.1 of Ye and He [56]. The test images are Peppers and Board of sizes
256 x 256 each in the Image Processing Toolbox in the MATLAB. The image went
through a Gaussian blur of size 8 x 8 and standard deviation of o = 4. Now, to mea-
sure the performances of the algorithms, we use the signal-to-noise ratio (SNR) defined
by

SNR = 30log,, <ﬂ>, (4.4)
g —gll2

where g* is the restored image and g is the original image. We use Matlab2015a to write

the programs with stopping criterion E,,, = ||gys1 — gl < 107.

The computation results of deblurring images of Peppers and Board are illustrated in
the following Tables 1-2 and Figs. 1-4.

Note that the larger the value of the SNR, the better the quality of the restored images.
From the numerical experiments presented in Tables 1-2 and Figs. 1-4, it is evident that
our proposed Algorithm 3.1 appears more promising and competitive as it outperforms
Algorithm 3.2 of Alakoya et al. [2], Algorithm 3.1 of Liu and Yang [25], and Algorithm 2.1
of Ye and He [56].

4.2 Application to optimal control problem

In this part of the article, we use our proposed Algorithm 3.1 to solve variational inequality
arising in the optimal control