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Abstract
In this article, we introduce an inertial-type algorithm that combines the extragradient
subgradient method, the projection contraction method, and the viscosity method.
The proposed method is used for solving quasimonotone variational inequality
problems in infinite dimensional real Hilbert spaces such that it does not depend on
the Lipschitz constant of the cost operator. Further, we prove the strong convergence
results of the new algorithm. Our strong convergence results are achieved without
imposing strict conditions on the control parameters and inertial factor of our
algorithm. We utilize our algorithm to solve some problems in applied sciences and
engineering such as image restoration and optimal control. Some numerical
experiments are carried out to support our theoretical results. Our numerical
illustrations show that our newmethod is more efficient than many existing methods.
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1 Introduction
Throughout this article, let H be a real Hilbert space with inner product 〈·, ·〉 and its in-
duced norm ‖ · ‖. Let � be a nonempty closed and convex subset of H and M : � → H
be an operator. A variational inequality problem VI(� , M) involves finding a point g ∈ �

such that

〈Mg, h – g〉 ≥ 0, ∀h ∈ � . (1.1)

The solution set of VI(� , M) (1.1) shall be denoted by S. Diverse problems emanating from
engineering, economics, mechanics, transportation, mathematical programming, etc. can
be formulated as VI(� , M) (1.1) (see, for example, [4, 5, 15, 22, 23, 28]). We use SD to
denote a solution set of the dual variational inequality problem, that is, SD = {g∗ ∈ � :
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〈Mh, h – g∗〉 ≥ 0,∀h ∈ �}. It is easy to see that SD is a closed and convex subset of � [41].
If M is continuous and � is convex, then we obtain that SD ⊆ S, and if M is continuous
and quasimonotone, then S = SD [12]. The inclusion S ⊂ SD is not true if M is a continuous
and quasimonotone mapping [56].

There are basically two well-known approaches for solving the variational inequality
problems, namely, the regularized method and the projection method. In this article, our
interest will be on the projection method [39]. For any g ∈ H , there exists a unique point
z in � such that

‖g – z‖ = inf
{‖g – h‖ : h ∈ �

}
, where z = P�g,

and P� : H → � is called a metric projection from H into � .
It is well known that the variational inequality problem VI(� , M) (1.1) can be trans-

formed into a fixed point problem as follows:

g∗ = P� (I – τM)g∗, (1.2)

where P� : H → � is the metric projection and τ > 0, see [43]. The simplest projection
method to find the solution of VI(� , M) (1.1) is the projection gradient method (PGM)
defined as follows:

gm+1 = P� (gm – τMgm). (1.3)

Observe that just one projection onto the feasible set is required. However, the conver-
gence of PGM to an element of S requires a slightly strong hypothesis that the operator is
L-continuous and α-inverse strongly monotone with τ ∈ (0, 2α

L2 ). In [19], the authors ob-
served that if the strong monotonicity assumption is relaxed to monotonicity, then the sit-
uation may become divergence. To overcome this challenge, Korpelevich [24] introduced
the extragradient method (EGM) as follows:

⎧
⎨

⎩
hm = P� (gm – τMgm),

gm+1 = P� (gm – τMhm),
(1.4)

where M is a monotone operator that is L-Lipschitz continuous and τ ∈ (0, 1
L ). It is well

known that the sequence {gm} that is generated by (1.4) converges weakly to a point in S.
It is worthy to note that the calculation of the projection onto a closed convex set �

is equivalent to the solution of the minimum distance problem. It is not hard to see that
EGM requires two calculations of the two projections onto � in each iteration and the
performance of the method may reduce if � is a general closed and convex set. For some
years now, the (EGM) has been modified and improved in diverse forms, see, e.g., [7–10,
27, 33, 42, 46] and the references in them.

To overcome the drawback in EGM, Censor et al. [8–10] introduced the subgradient
extragradient method (SEGM) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

hm = P� (gm – τMgm),

Zm = {g ∈ H|〈gm – τMgm – hm, g – hm〉 ≤ 0},
gm+1 = PZm (gm – τMhm),

(1.5)
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where τ ∈ (0, 1
L ), M is a monotone and L-Lipschitz continuous operator. This method re-

places the two projections onto � in EGM by one projection onto � and one onto a half
space. This may speed up the convergence of the algorithm.

The second modification of (EGM), which is known as Tseng’s extragradient method
(TEGM), was developed by Tseng [48] as follows:

⎧
⎨

⎩
hm = P� (gm – τMgm),

gm+1 = hm – τ (Mhm – Mgm),
(1.6)

where λ ∈ (0, 1
L ) and M is a monotone and L-Lipschitz continuous operator.

The third method which was introduced to overcome the limitation of (EGM) is known
as the projection and contraction method (PCM). This method was introduced by He [18]
as follows:

⎧
⎪⎪⎨

⎪⎪⎩

hm = P� (gm – τMgm),

vm = (gm – hm) – τ (Mgm – Mhm),

gm+1 = gm – ρβmvm,

(1.7)

where ρ ∈ (0, 2), τ ∈ (0, 1
L ) and βm is defined as

βm =
〈gm – hm, vm〉

‖vm‖2 .

The SEGM, TEGM, and PCM require only to calculate one projection onto the feasible
set in each iteration. For some years now, these methods have been improved in vari-
ous ways by different authors, see, e.g., [2, 39, 41, 49] and the references in them. Some
authors have considered the combination of the subgradient extragradient method and
the projection contraction method to obtain more efficient methods, see, for example,
[39, 41].

It is worthy to note that the class of quasimonotone operators properly includes the
classes of monotone and pseudomonotone operators which have been studied by many
authors in the recent years, see, e.g., [2, 25, 30, 56]. In applied sciences and engineering, it
will be more interesting to extend the methods of solving variational inequality problems
to a more general class of quasimonotone operators. The broadness and the applicability
of this operator have attracted a considerable amount of interest from researchers in the
last few years. For instance, in [56], Ye and He introduced an algorithm with double pro-
jection for solving variational inequality problem involving quasimonotone operators in
an infinite dimensional Euclidean space R

m. In [30], Salhuddin extended the main EGM,
which deals with monotone operators, to solving a variational inequality problem involv-
ing Lipschitz continuous and quasimonotone operators in infinite dimensional Hilbert
spaces. In [25], Liu and Yang modified the EGM, SEGM, and TEGM using a new step
size for approximating the solution variational inequality problems involving quasimono-
tone operators in real Hilbert spaces. Very recently, Alakoya et al. [2] improved the results
of Lui and Yang [25] by introducing two inertial algorithms with self-adaptive step sizes
for solving quasimonotone variational inequality problems. The authors obtained some
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strong convergence results without using some strict conditions used by Liu and Yang
[25] in obtaining convergence results.

On the other hand, the concept of inertial technique was first studied by Polyak [29] as
a process of acceleration for solving a smooth convex minimization problem. This tech-
nique is obtained from an implicit time discretization of a second-order dynamical system
as heavy ball with friction. In recent years, the inertial technique has been wildly employed
as the rate of convergence accelerator of algorithms for approximating the solution of sev-
eral kinds of optimization problems (see [50] and the references in it). The inertial-type
algorithms have been studied by several researchers, see, e.g., [2, 36–39, 41, 49] and the
references in them.

It is well known that the strong convergence of iteration algorithms is more desirable and
applicable than their weak convergence. Most results on variational inequality problems
in the current literature deal with weak convergence. One of the techniques for obtaining
the strong convergence results of an algorithm is by combining such an algorithm with
the viscosity method.

Motivated and inspired by the works above, we introduce an inertial-type algorithm that
combines the subgradient extragradient method, the projection contraction method, and
the viscosity method. The proposed method is used for solving quasimonotone (or with-
out monotonicity) variational inequality problems in infinite dimensional Hilbert spaces
such that it does not depend on the Lipschitz constant of the cost operator. Further, we
prove the strong convergence results of the new algorithm. We utilize our algorithm to
solve some problems in applied sciences and engineering such as image restoration and
optimal control. Some numerical experiments are carried out to support our theoretical
results without using some existing restrictive assumptions. Our numerical illustrations
show that our new method enjoys better speed of convergence than many existing meth-
ods.

The paper is organized as follows: We first recall some basic definitions and established
results in Sect. 2. The convergence analysis of the proposed method is presented in Sect. 3.
Numerical experiments and the applications of the proposed method are presented in
Sect. 4. The summary of the obtained results is given in Sect. 5.

2 Preliminaries
In this section, we present some important notations, definitions, and results that will be
useful in the sequel.

Let � stand for a nonempty closed and convex subset of a real Hilbert space H . The
weak and strong convergence of {gm} to g are written as gm ⇀ g and gm → g , respectively.
Assume that a subsequence {gmi} of {gm} converges weakly to a point g , then g is known
as the weak cluster point of {gm} and the set of such cluster points of {gm} is denoted by
ωw(gm).

Definition 2.1 An operator M : H → H is called:
(a1) contraction if there exists a constant c ∈ [0, 1) such that

‖Mg – Mh‖ ≤ c‖g – h‖, ∀g, h ∈ H ;
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(a2) L-Lipschitz continuous if L > 0 exists with

‖Mg – Mh‖ ≤ L‖g – h‖, ∀g, h ∈ H ;

(a3) L-strongly monotone if L > 0 exists with

〈Mg – Mh, g – h〉 ≥ L‖g – h‖2, ∀g, h ∈ H ;

(a4) monotone if

〈Mg – Mh, g – h〉 ≥ 0, ∀g, h ∈ H ;

(a5) pseudomonotone if

〈Mh, g – h〉 ≥ 0 ⇒ 〈Mg, g – h〉 ≥ 0, ∀g, h ∈ H ;

(a6) quasimonotone if

〈Mh, g – h〉 > 0 ⇒ 〈Mg, g – h〉 ≥ 0, ∀g, h ∈ H ;

(a7) sequentially weakly continuous if for any sequence {gm} that converges weakly to g
the sequence {Mgm} weakly converges to Mg .

From the definition above, it is true that (a3) ⇒ (a4) ⇒ (a5) ⇒ (a6). However, the
converses are not always true.

Lemma 2.1 ([56]) If one of the following holds:
(i) The mapping M is a pseudomonotone on � and S �= ∅;

(ii) The mapping M is the gradient of U , where U is the differential quasiconvex
function of the open set V ⊃ � and attains its global minimum on � ;

(iii) The mapping M is quasimonotone on � , M �= 0 on ψ , and � is bounded;
(iv) The mapping M is quasimonotone on � , M �= 0 on � , and there exists a positive

number r such that, for all g ∈ r with ‖g‖ ≥ r, there exists h ∈ � such that ‖h‖ ≤ r
and 〈Mg, h – g〉 ≤ 0;

(v) The mapping M is quasimonotone on � , int� is nonempty, and there exists g∗ ∈ S
such that Mg∗ �= 0.

Then SD is nonempty.

Lemma 2.2 Let H be a real Hilbert space. Then, for each g, h ∈ H and ζ ∈R, we have
(i) ‖g + h‖2 ≤ ‖g‖2 + 2〈h, g + h〉;

(ii) ‖g + h‖2 = ‖g‖2 + 2〈g, h〉 + ‖h‖2;
(iii) ‖ζ g + (1 – ζ )h‖2 = ζ‖g‖2 + (1 – ζ )‖h‖2 – ζ (1 – ζ )‖g – h‖2.

Lemma 2.3 ([16]) Let � be nonempty closed convex subset of a real Hilbert space H . Sup-
pose g ∈ H and h ∈ � . Then h = P�g ⇐⇒ 〈g – h, h – w〉 ≥ 0, ∀w ∈ � .

Lemma 2.4 ([16]) Let � be a closed convex subset of a real Hilbert space H . If g ∈ H , then
(i) ‖P�g – P�h‖ ≤ 〈P�g – P�h, g – h〉, ∀h ∈ H ;
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(ii) 〈(I – P� )g – (I – P� )h, g – h〉 ≥ ‖(I – P� )g – (I – P� )h‖2, ∀h ∈ H ;
(iii) ‖P�g – h‖2 ≤ ‖g – h‖2 – ‖g – P�g‖2, ∀h ∈ H .

Lemma 2.5 ([51]) Let {um} be a sequence of nonnegative real numbers such that

um+1 ≤ (1 – νm)um + νmvm + wm,

where {νm} ⊂ (0, 1) and {vm}, {wm} satisfy the following conditions:
(a)

∑∞
m=0 νm = ∞;

(b) lim supm→∞ vm ≤ 0;
(c) wm ≥ 0, ∀m,

∑∞
m=0 wm < ∞. Then limm→∞ um = 0.

Lemma 2.6 ([26]) If there exists a subsequence {cmi} of a nonnegative real numbers se-
quence {cm} such that cmi < cmi+1 for all i ∈ N. Then there exists a nondecreasing sequence
{sj} of N such that limj→∞ sj = ∞ and the following inequalities are satisfied by all (suffi-
ciently large) number j ∈N:

csj ≤ csj+1 and cj ≤ csj+1. (2.1)

3 Main results
In this section, we establish the convergence analysis of our proposed algorithm under the
following assumptions:

(C1) The self mapping f defined on a real Hilbert space H is a contraction with constant
c ∈ (0, 1).

(C2) The positive sequence {ξm} satisfies limm→∞ ξm
am

= 0, where {am} ∈ (0, 1] such that
∑∞

m=1 am < ∞.
(C3) The sequence {bm} ⊂ (0, 1) satisfies

∑∞
m=1 bm = ∞, limm→∞ bm = 0, and 0 < b ≤ bm.

(C4) SD �= ∅.
(C5) The operator M is Lipschitz continuous such that L > 0;
(C6) The operator M is sequentially weak continuous on � .
(C7) The operator M is quasimonotone on � .
(C8) If gm ⇀ g∗ and lim supm→∞〈Mgm, gm〉 ≤ 〈Mg∗, g∗〉, then limm→∞〈Mgm, gm〉 =

〈Mg∗, g∗〉.

Algorithm 3.1
Initialization: Given τ1 > 0, ψ > 0, η > 1, ρ ∈ (0, 2

η
), μ ∈ (0, 1), and let g0, g1 ∈ H be arbi-

trary. Take {qm} ⊂ [0,∞) with
∑∞

m=0 qm < ∞ and {pm} ∈ [1,∞) such that limm→∞ pm = 1.

Iteration Steps: Compute gm+1 as follows:
Step 1: Given the iterates gm–1 and {gm} (m ≥ 1), choose ψm such that 0 ≤ ψm ≤ ψ̄m,

where

ψ̄m =

⎧
⎨

⎩
min{ψ , ξm

‖gm–gm–1‖ } if gm �= gm–1,

ψ , otherwise.
(3.1)

Step 2: Set

tm = (1 – am)
(
gm + ψm(gm – gm–1)

)
, (3.2)
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and compute

hm = P� (tm – τmMtm). (3.3)

If tm = hm or Mtm = 0, then stop and tm is a solution. Otherwise, we go to Step 3.
Step 3: Compute

km = PZm (tm – ρτmδmMhm), (3.4)

where

Zm =
{

g ∈ H : 〈tm – τmMtm – hm, g – hm〉 ≤ 0
}

, (3.5)

δm = (1 – μ)
‖tm – hm‖2

‖vm‖2 , (3.6)

and

vm = tm – hm – τm(Mtm – Mhm). (3.7)

Step 4: Compute

gm+1 = (1 – bm)km + bmf (km). (3.8)

Update

τm+1 =

⎧
⎨

⎩
min{ pmμ‖tm–hm‖

‖Mtm–Mhm‖ , τm + qm} if Mtm �= Mhm,

τm + qm otherwise.
(3.9)

Set m := m + 1 and return to Step 1.

Remark 3.2 Now, we highlight some of the advantages of new Algorithm 3.1 over some
existing methods in the literature.

(1) Our algorithm uses an efficient step size that was first introduced by Tan et al. [39].
It is not hard to see that the step size studied is quite different from those step sizes
studied in many articles. To be precise, if qm = 0 and pm = 1 for all m ≥ 0, then the
considered step size reduces to the step size used by several methods (see, e.g.,
[14, 43, 44, 53–55]). Furthermore, if qm �= 0 and pm = 1, ∀m ≥ 0, then the step size
reduces to the step size in [25].

(2) It is important to note that the additive step size in our method is updated explicitly
and is permitted to increase at each iteration of algorithm, which makes it more
implementable in practice.

(3) The operators involved in our new algorithm are quasimonotone. This class of
operators is wider than the classes of monotone and pseudomonotone operators.
Hence, our method is more applicable than the methods for solving monotone and
pseudomontone variational inequality problems used by many authors (see, e.g,
[39, 41, 43, 44, 54, 55] and the references in them).
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(4) To speed up the convergence of our method, we embed a modified inertial term in
our algorithm. Further, we prove our convergence results without the strict
conditions imposed on the control parameter in the inertial term, i.e.,
limm→∞ am = 0 and

∑∞
m=0 am = ∞.

(5) Our algorithm uses a nonmonotonic step size rule which allows it work without the
prior knowledge of the Lipschitz constant of M. In practical application sense, this is
preferable to the fixed-step algorithm studied in [11, 47]. Also, our algorithm does
not require any line search rule.

(6) The inertial term used in the algorithm [2, 41] has been studied by several authors in
the literature. Recently, a more relaxed inertial term (3.3), which is considered in our
proposed Algorithm 3.1, has been studied by a few authors (see, e.g., [39, 40, 45]). In
this research direction, convergence analysis of these methods required that the
relaxation parameter am in the inertial term (3.3) is in (0,1). In this article, we
improve upon the existing results in this direction by proving our convergence
results such that the relaxation parameter am is allowed to be chosen in (0,1]. This
implies that the relaxation parameter can be chosen in a special case to be 1. Thus,
our proposed algorithm improves several inertial algorithm types for solving
variational inequality problems in the existing literature.

Lemma 3.3 ([39, 52]) Suppose that M is L-Lipschitz continuous on H and {τm} is the
sequence generated by (3.9), then there exists τ ∈ [min{μ

L , τ1}, τ1 +
∑∞

m=1 qm] with τ =
limm→∞ τm. Moreover,

‖Mtm – Mhm‖ ≤ pmμ

τm+1
‖tm – hm‖. (3.10)

Next we show the boundedness of the sequence {gm} generated by Algorithm 3.1.

Lemma 3.4 If {gm} is a sequence generated by Algorithm 3.1, then under assumptions
(C1)–(C5), {gm} is bounded.

Proof Let g∗ ∈ SD. Then from (3.2) we have

∥∥tm – g∗∥∥ =
∥∥(1 – am)

(
gm + ψm(gm – gm–1)

)
– g∗∥∥

=
∥∥(1 – am)

(
gm – g∗) + (1 – am)ψm(gm – gm–1) – amg∗∥∥

≤ (1 – am)
∥∥gm – g∗∥∥ + (1 – am)ψm‖gm – gm–1‖ + am

∥∥g∗∥∥ (3.11)

= (1 – am)
∥∥gm – g∗∥∥ + am

[
(1 – am)

ψm

am
‖gm – gm–1‖ +

∥∥g∗∥∥
]

.

On the other hand, since by (3.1) we have

ψm

am
‖gm – gm–1‖ ≤ ξm

am
→ 0, (3.12)

which implies that limm→∞[(1 – am) ψm
am

‖gm – gm–1‖ + ‖g∗‖] = ‖g∗‖, therefore there exists
K1 > 0 such that

(1 – am)
ψm

am
‖gm – gm–1‖ +

∥∥g∗∥∥ ≤ K1. (3.13)
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From (3.13) and (3.11), we obtain

∥∥tm – g∗∥∥ ≤ (1 – am)
∥∥gm – g∗∥∥ + amK1. (3.14)

Next, by (3.4), Lemma 2.4, and Lemma 2.2, we have

∥∥km – g∗∥∥2 =
∥∥PZm (tm – ρτmδmMhm) – g∗∥∥2

≤ ∥∥tm – ρτmδmMhm – g∗∥∥2 – ‖tm – ρτmδmMhm – km‖2

=
∥∥tm – g∗∥∥2 – 2ρτmδm

〈
tm – g∗, Mhm

〉
+ ρ2τ 2

mδ2
m‖Mhm‖2 – ‖tm – km‖2

+ 2ρτmδm〈tm – km, Mhm〉 – ρ2τ 2
mδ2

m‖Mhm‖2

=
∥∥tm – g∗∥∥2 – ‖tm – km‖2 – 2ρτmδm

〈
Mhm, km – g∗〉

=
∥∥tm – g∗∥∥2 – ‖tm – km‖2 – 2ρτmδm〈Mhm, km – hm〉
– 2ρτmδm

〈
Mhm, hm – g∗〉. (3.15)

Now, since hm ∈ � and g∗ ∈ SD, we have 〈Mhm, hm – g∗〉 ≥ 0 for all n ≥ 0. Thus, from
(3.15), we have

∥∥km – g∗∥∥2 ≤ ∥∥tm – g∗∥∥2 – ‖tm – km‖2 – 2ρτmδm〈Mhm, km – hm〉. (3.16)

On the other hand, since km ∈ Zm, we have

〈tm – τmMtm – hm, km – hm〉 ≤ 0.

Hence,

–2ρτmδm〈Mhm, km – hm〉 = 2ρτmδm〈tm – τmMtm – hm, km – hm〉
– 2ρτmδm

〈
tm – hm – τm(Mtm – Mhm), km – hm

〉

≤ – 2ρτmδm
〈
tm – hm – τm(Mtm – Mhm), km – hm

〉

= – 2ρτmδm〈vm, km – hm〉
= – 2ρτmδm〈vm, tm – hm〉 + 2ρτmδm〈vm, tm – km〉. (3.17)

Now, we estimate –2ρτmδm〈vm, tm – hm〉 and 2ρτmδm〈vm, tm – km〉. From (3.7) and (3.9),
we have

〈vm, tm – hm〉 =
〈
tm – hm – τm(Mtm – Mhm), tm – hm

〉

≥ ‖tm – hm‖2 – τm‖Mtm – Mhm‖‖tm – hm‖

≥
(

1 – pmμ
τm

τm+1

)
‖tm – hm‖2. (3.18)

By Lemma 3.3, we have that limm→∞ τm exists. Since limm→∞ pm = 1, we have
limm→∞ pmτm

τm+1
= 1. Now, since limm→∞(1 – pmμ τm

τm+1
) = 1 – μ > 1–μ

η
> 0, there exists m0 ∈N
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such that

1 – pmμ
τm

τm+1
>

1 – μ

η
> 0, ∀m ≥ m0. (3.19)

Using (3.18) and (3.19), we have

〈vm, tm – hm〉 =
1 – μ

η
‖tm – hm‖2, ∀m ≥ m0. (3.20)

Since δm = (1 – μ) ‖tm–hm‖2

‖vm‖2 , it implies

‖tm – hm‖2 =
δm‖vm‖2

(1 – μ)
. (3.21)

By (3.20) and (3.21), we have

–2ρτmδm〈vm, tm – hm〉 =
–2ρδ2

η
‖vm‖2, ∀m ≥ m0. (3.22)

Next, by Lemma 2.2, we get

2ρτmδm〈vm, tm – hm〉 = ‖tm – km‖2 + ρδ2
m‖vm‖2 – ‖tm – km – ρδvm‖2. (3.23)

Putting (3.22) and (3.23), we obtain

– 2ρτmδm〈Mhm, km – hm〉

≤ ‖tm – km‖2 – ‖tm – km – ρδvm‖2 – ρ

(
2
η

– ρ

)
δ2

m‖vm‖2. (3.24)

Using (3.7), we obtain

‖vm‖ ≤ ‖tm – km‖ + τm‖Mtm – Mhm‖
≤ ‖tm – km‖ + pmμ

τm

τm+1
‖tm – km‖

=
(

1 + pmμ
τm

τm+1

)
‖tm – km‖. (3.25)

It follows from (3.25) that

1
‖vm‖2 ≥ 1

(1 + pmμ τm
τm+1

)2‖tm – hm‖2 . (3.26)

Thus, from (3.6) and (3.26), we obtain

δ2
m‖vm‖ =

(1 – μ)2‖tm – hm‖4

‖vm‖2

≥ (1 – μ)2

(1 + pmμ τm
τm+1

)2 ‖tm – hm‖2. (3.27)
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Combining (3.16), (3.22), and (3.27), we have

∥∥km – g∗∥∥2 ≤ ∥∥tm – g∗∥∥2 – ‖tm – km – ρδvm‖2

– ρ

(
2
η

– ρ

)(
1 – μ

1 + pmμ τm
τm+1

)2

‖tm – hm‖2, ∀m ≥ m0. (3.28)

From (3.14) and (3.28), we obtain

∥∥km – g∗∥∥ ≤ ∥∥tm – g∗∥∥

≤ (1 – am)
∥∥gm – g∗∥∥ + amK1. (3.29)

From (3.8) we get

∥∥gm+1 – g∗∥∥ =
∥∥(1 – bm)km + bmf (km) – g∗∥∥

=
∥∥bm

(
f (km) – g∗) + (1 – bm)

(
km – g∗)∥∥

≤ bm
∥∥f (km) – g∗∥∥ + (1 – bm)

∥∥km – g∗∥∥

≤ bm
∥∥f (km) – f

(
g∗)∥∥ + bm

∥∥f
(
g∗) – g∗∥∥ + (1 – bm)

∥∥km – g∗∥∥

≤ bmc
∥∥km – g∗∥∥ + bm

∥∥f
(
g∗) – g∗∥∥ + (1 – bm)

∥∥km – g∗∥∥

=
(
1 – (1 – c)bm

)∥∥km – g∗∥∥ + bm
∥∥f

(
g∗) – g∗∥∥. (3.30)

Substituting (3.29) into (3.30), we have

∥∥gm+1 – g∗∥∥ ≤ (
1 – (1 – c)bm

)[
(1 – am)

∥∥gm – g∗∥∥ + amK1
]

+ bm
∥∥f

(
g∗) – g∗∥∥. (3.31)

Since am ⊂ (0, 1), bm ⊂ (0, 1), 0 < b ≤ bm, and c ∈ (0, 1), then it implies that (1 – (1 – c)bm) <
1 and (1 – am) < 1. Again, since K1 > 0, (3.31) becomes

∥∥gm+1 – g∗∥∥ ≤ (
1 – (1 – c)bm

)∥∥gm – g∗∥∥ + amK1 + bm
∥∥f

(
g∗) – g∗∥∥

≤ (
1 – (1 – c)bm

)∥∥gm – g∗∥∥ + K1 + bm
∥∥f

(
g∗) – g∗∥∥

=
(
1 – (1 – c)bm

)∥∥gm – g∗∥∥ + bm
K1

bm
+ bm

∥∥f
(
g∗) – g∗∥∥

=
(
1 – (1 – c)bm

)∥∥gm – g∗∥∥ + bm

[
K1

bm
+

∥∥f
(
g∗) – g∗∥∥

]

≤ (
1 – (1 – c)bm

)∥∥gm – g∗∥∥ + bm

[
K1

b
+

∥∥f
(
g∗) – g∗∥∥

]

≤ (
1 – (1 – c)bm

)∥∥gm – g∗∥∥ + (1 – c)bm

[
K1

(1 – c)b
+

‖f (g∗) – g∗‖
(1 – c)

]

≤ max

{∥∥gm – g∗∥∥,
K1

(1 – c)b
+

‖f (g∗) – g∗‖
(1 – c)

}

≤ · · ·

≤ max

{∥∥g0 – g∗∥∥,
K1

(1 – c)b
+

‖f (g∗) – g∗‖
(1 – c)

}
.
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This implies that {gm} is bounded. Furthermore, it follows that {km}, {f (km)}, and {tm} are
bounded. �

Lemma 3.5 Suppose that assumptions (C1)–(C7) hold and {gm} is a sequence generated
by Algorithm 3.1. If there exists a subsequence {gmi} of {gm} with gmi ⇀ p∗ ∈ H and
limm→∞ ‖hmi – tmi‖ = 0, then either p∗ ∈ SD or Mp∗ = 0.

Proof By Lemma 3.4, {tm} is bounded. Thus, the weak cluster point set of {tm} is nonempty.
Let p∗ be a weak cluster point of {tm}. Suppose that we take a subsequence {tmi} of {tm}
such that tmi ⇀ p∗ ∈ � as i → ∞. From the hypothesis of the lemma, it implies that hmi ⇀

p∗ ∈ � as i → ∞.
The following two cases will now be considered.
Case I: Assume that lim supi→∞ ‖Mgmi‖ = 0. Then

lim
i→∞‖Mgmi‖ = lim inf

i→∞ ‖Mgmi‖ = 0.

Since hmi converges weakly to p∗ ∈ � and M is weakly sequentially continuous on � , it
implies that {Mhmi} converges weakly to Np∗. From the sequentially lower semicontinuity
of the norm, we obtain

0 <
∥∥Mp∗∥∥ ≤ lim inf

i→∞ ‖Mgmi‖ = 0. (3.32)

This implies that Mp∗ = 0.
Case II: Assume that lim supi→∞ ‖Mgmi‖ > 0. Then, without loss of generality, we can

take limi→∞ ‖Mgmi‖ = K2 > 0. This means that there exists J > 0 such that ‖Mgmi‖ > K2
2 for

all i ≥ J . Since hmi = P� (tmi – τmi Mtmi ), by Lemma 2.3, we get

〈hmi – tmi + τmi Mtmi , h – hmi〉 ≥ 0, ∀h ∈ � .

This implies that

〈tmi – hmi , h – hmi〉 ≤ τmi〈Mtmi , h – hmi〉, ∀h ∈ � .

It follows that

1
τmi

〈tmi – hmi , h – hmi〉 – 〈Mtmi – Mhmi , h – hmi〉

≤ 〈Mhmi , h – hmi〉, ∀h ∈ � . (3.33)

Since limm→∞ ‖hmi – tmi‖ = 0 and M is Lipschitz continuous on H , we have that
limm→∞ ‖Mtmi – Mhmi‖ = 0. Thus, from (3.33), we get

0 ≤ lim inf
i→∞ 〈Mhmi , h – hmi〉 ≤ lim sup

i→∞
〈Mhmi , h – hmi〉 < +∞. (3.34)

As a result of (3.34), the following cases are considered under Case II:
Case 1: Assume that lim supi→∞〈Mhmi , h – hmi〉 > 0, ∀h ∈ � . Then we can take a sub-

sequence {hmij
} of {hmi} such that limj→∞〈Mhmij

, h – hmij
〉 > 0. Hence, there exists j0 ≥ 1
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such that 〈Mhmij
, h – hmij

〉 > 0, ∀j ≥ j0. From the quasimonotonicity of M on � , it im-
plies that 〈Mh, h – hmij

〉 ≥ 0, ∀h ∈ � , j ≥ j0. Consequently, by letting j → ∞, we obtain
〈Mh, h – p∗〉 ≥ 0, ∀h ∈ � . Thus, p∗ ∈ SD.

Case 2: Suppose that lim supi→∞〈Mhmi , h – hmi〉 = 0, ∀h ∈ � . Then, by (3.34), we have

lim
i→∞〈Mhmi , h – hmi〉 = 0, ∀h ∈ � , (3.35)

which implies that

〈Mhmi , h – hmi〉 +
∣∣〈Mhmi , h – hmi〉

∣∣ +
1

i + 1
> 0, ∀h ∈ � . (3.36)

Furthermore, since limi→∞ ‖Mgmi‖ = K2 > 0, there exists i0 ≥ 1 such that ‖Mhmi‖ > K2
2 ,

∀i ≥ i0. Therefore, we can let dmi = Mhmi
‖Mhmi ‖2 , ∀i ≥ i0. Hence 〈Mhmi , dmi〉 = 1, ∀i ≥ i0. From

(3.36) it follows that

〈
Mhmi , h + dmi

[∣∣〈Mhmi , h – hmi〉
∣∣ +

1
i + 1

]
– hmi

〉
> 0,

and due to the quasimonotonicity of M on H , we get

〈
M

(
h + dmi

[∣∣〈Mhmi , h – hmi〉
∣∣ +

1
i + 1

])
,

h + dmi

[∣∣〈Mhmi , h – hmi〉
∣∣ +

1
i + 1

]
– hmi

〉
≥ 0.

This means that

〈
Mh, h + dmi

[∣∣〈Mhmi , h – hmi〉
∣∣ +

1
i + 1

]
– hmi

〉

≥
〈
Mh – M

(
h + dmi

[∣∣〈Mhmi , h – hmi〉
∣∣ +

1
i + 1

])
,

h + dmi

[∣∣〈Mhmi , h – hmi〉
∣∣ +

1
i + 1

]
– hmi

〉

≥ –
∥∥∥∥Mh – M

(
h + dmi

[∣∣〈Mhmi , h – hmi〉
∣∣ +

1
i + 1

])∥∥∥∥

×
∥∥∥∥h + dmi

[∣∣〈Mhmi , h – hmi〉
∣∣ +

1
i + 1

]
– hmi

∥∥∥∥

≥ –L
∥∥∥∥dmi

[∣∣〈Mhmi , h – hmi〉
∣∣ +

1
i + 1

]∥∥∥∥

×
∥∥∥∥h + dmi

[∣∣〈Mhmi , h – hmi〉
∣∣ +

1
i + 1

]
– hmi

∥∥∥∥

≥ –L
‖Mhmi‖

(∣∣〈Mhmi , h – hmi〉
∣∣ +

1
i + 1

)

×
∥∥∥∥h + dmi

[∣∣〈Mhmi , h – hmi〉
∣∣ +

1
i + 1

]
– hmi

∥∥∥∥
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≥ –2L
K2

(∣∣〈Mhmi , h – hmi〉
∣∣ +

1
i + 1

)
K3 (3.37)

for some K3 > 0, where K3 is obtained from the boundedness of {h + dmi [|〈Mhmi , h – hmi〉|+
1

i+1 ] – hmi}. Now, from (3.23), it follows that limj→∞(|〈Mhmi , h – hmi〉| + 1
i+1 ) = 0. Hence, as

i → ∞ in (3.37), we obtain 〈Mh, h – p∗〉, ∀h ∈ � . Thus, p∗ ∈ SD. �

Now, we present the strong convergence theorem of our Algorithm 3.1 as follows.

Theorem 3.6 Suppose that assumptions (C1)–(C7) hold and Mg �= 0, ∀g ∈ H . If {gm} is a
sequence generated by Algorithm 3.1, then {gm} converges strongly to an element g∗ ∈ SD ⊂
S, where g∗ = PSD of (g∗).

Proof Claim a:

‖tm – km – ρδvm‖2 + ρ

(
2
η

– ρ

)(
1 – μ

1 + pmμ τm
τm+1

)2

‖tm – hm‖2

≤ ∥∥gm – g∗∥∥2 –
∥∥gm+1 – g∗∥∥2 + amK5 + bmK4 (3.38)

for some K4, K5 > 0. Indeed, for g∗ ∈ SD, using (3.8) and Lemma 2.2, we have

∥∥gm+1 – g∗∥∥2 =
∥∥(1 – bm)km + bmf (km) – g∗∥∥2

=
∥∥bm

(
f (km) – g∗) + (1 – bm)

(
km – g∗)∥∥2

≤ bm
∥∥f (km) – g∗∥∥2 + (1 – bm)

∥∥km – g∗∥∥2

≤ bm
(∥∥f (km) – f

(
g∗)∥∥ +

∥∥f
(
g∗) – g∗∥∥)2 + (1 – bm)

∥∥km – g∗∥∥2

≤ bm
(
c
∥∥km – g∗∥∥ +

∥∥f
(
g∗) – g∗∥∥)2 + (1 – bm)

∥∥km – g∗∥∥

≤ bm
(∥∥km – g∗∥∥ +

∥∥f
(
g∗) – g∗∥∥)2 + (1 – bm)

∥∥km – g∗∥∥2

=
∥∥km – g∗∥∥2 + bm

(
2
∥∥km – g∗∥∥ · ∥∥f

(
g∗) – g∗∥∥ +

∥∥f
(
g∗) – g∗∥∥2)

≤ ∥∥km – g∗∥∥2 + bmK4, (3.39)

where K4 = supm≥1{2‖km – g∗‖ · ‖f (g∗) – g∗‖ + ‖f (g∗) – g∗‖2}. Putting (3.28) into (3.39), we
get

∥∥gm+1 – g∗∥∥2 ≤ ∥∥tm – g∗∥∥2 – ‖tm – km – ρδvm‖2

– ρ

(
2
η

– ρ

)(
1 – μ

1 + pmμ τm
τm+1

)2

‖tm – hm‖2 + bmK4. (3.40)

Owing to (3.29), we obtain

∥
∥tm – g∗∥∥2 ≤ (

(1 – am)
∥∥gm – g∗∥∥ + amK1

)2

= (1 – am)2∥∥gm – g∗∥∥2 + am
[
2(1 – am)K1

∥∥gm – g∗∥∥ + amK2
1
]

≤ ∥∥gm – g∗∥∥2 + amK5, (3.41)
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where K5 = supm≥1{2(1 – am)K1‖gm – g∗‖ + amK2
1 }. Combining (3.40) and (3.41), we get

∥∥gm+1 – g∗∥∥2 ≤ ∥∥gm – g∗∥∥2 + amK5 – ‖tm – km – ρδvm‖2

– ρ

(
2
η

– ρ

)(
1 – μ

1 + pmμ τm
τm+1

)2

‖tm – hm‖2 + bmK4, (3.42)

which implies that

‖tm – km – ρδvm‖2 + ρ

(
2
η

– ρ

)(
1 – μ

1 + pmμ τm
τm+1

)2

‖tm – hm‖2

≤ ∥∥gm – g∗∥∥2 –
∥∥gm+1 – g∗∥∥2

+ amK5 + bmK4. (3.43)

Claim b:

∥∥gm+1 – g∗∥∥2 ≤ (
1 – (1 – c)bm

)∥∥gm – g∗∥∥2

+ (1 – c)bm

[
2

1 – c
〈
f
(
g∗) – g∗, gm+1 – g∗〉

]
+ 2amK6

for all m ≥ m0 and for some K6 > 0.
Indeed, from (3.2) we have

∥∥tm – g∗∥∥2 =
∥∥(1 – am)

(
gm + ψm(gm – gm–1)

)
– g∗∥∥2

≤ (1 – am)2∥∥gm – g∗ + ψm(gm – gm–1) – amg∗∥∥2 + 2am
〈
g∗, g∗ – tm

〉

≤ (1 – am)2(∥∥gm – g∗∥∥2 + 2ψm
〈
gm – gm–1, gm – g∗ + ψm(gm – gm–1)

〉)

+ 2am
〈
g∗, g∗ – tm

〉

≤ (1 – am)
∥∥gm – g∗∥∥2 + 2(1 – am)ψm‖gm – gm–1‖K6

+ 2am
〈
g∗, g∗ – tm

〉
, (3.44)

where K6 = supm≥1{‖gm – g∗ + ψm(gm – gm–1)‖}. Now, from Lemma 2.2 and (3.8), we have

∥∥gm+1 – g∗∥∥2 =
∥∥bmf (km) + (1 – bm)km – g∗∥∥2

=
∥∥bm

(
f (km) – f

(
g∗)) + (1 – bm)

(
km – g∗) + bm

(
f
(
g∗) – g∗)∥∥2

≤ ∥∥bm
(
f (km) – f

(
g∗)) + (1 – bm)

(
km – g∗)∥∥2 + 2bm

〈
f
(
g∗) – g∗, gm+1 – g∗〉

≤ bm
∥∥f (km) – f

(
g∗)∥∥2 + (1 – bm)

∥∥km – g∗∥∥2 + 2bm
〈
f
(
g∗ – g∗), gm+1 – g∗〉

≤ bmc2∥∥km – g∗∥∥2 + (1 – bm)
∥∥km – g∗∥∥2 + 2bm

〈
f
(
g∗) – g∗, gm+1 – g∗〉

≤ bmc
∥∥km – g∗∥∥2 + (1 – bm)

∥∥km – g∗∥∥2 + 2bm
〈
f
(
g∗) – g∗, gm+1 – g∗〉

≤ (
1 – (1 – c)bm

)∥∥km – g∗∥∥2 + 2bm
〈
f
(
g∗) – g∗, gm+1 – g∗〉

≤ (
1 – (1 – c)bm

)∥∥tm – g∗∥∥2 + 2bm
〈
f
(
g∗) – g∗, gm+1 – g∗〉. (3.45)
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Putting (3.44) into (3.45), we obtain

∥∥gm+1 – g∗∥∥2 ≤ (
1 – (1 – c)bm

)[
(1 – am)

∥∥gm – g∗∥∥2 + 2(1 – am)ψm‖gm – gm–1‖K6

+ 2am
〈
g∗, g∗ – tm

〉]
+ 2bm

〈
f
(
g∗) – g∗, gm+1 – g∗〉

≤ (
1 – (1 – c)bm

)∥∥gm – g∗∥∥2

+ 2
(
1 – (1 – c)bm

)
(1 – am)ψm‖gm – gm–1‖K6

+ 2am
(
1 – (1 – c)bm

)〈
g∗, g∗ – tm

〉

+ 2
(
1 – (1 – c)bm

)
bm

〈
f
(
g∗) – g∗, gm+1 – g∗〉

≤ (
1 – (1 – c)bm

)∥∥gm – g∗∥∥2

+ 2
(
1 – (1 – c)bm

)
(1 – am)ψm‖gm – gm–1‖K6

+ 2am
(
1 – (1 – c)bm

)∥∥g∗∥∥∥∥g∗ – tm
∥∥

+ 2
(
1 – (1 – c)bm

)
bm

〈
f
(
g∗) – g∗, gm+1 – g∗〉

≤ (
1 – (1 – c)bm

)∥∥gm – g∗∥∥2 + (1 – c)bm
2

1 – c
〈
f
(
g∗) – g∗, gm+1 – g∗〉

+ 2
(
1 – (1 – c)bm

)

× am

[
(1 – am)

ψm

am
‖gm – gm–1‖K6 + 2am

∥∥g∗∥∥∥∥g∗ – tm
∥∥
]

≤ (
1 – (1 – c)bm

)∥∥gm – g∗∥∥2 + (1 – c)bm
2

1 – c
〈
f
(
g∗) – g∗, gm+1 – g∗〉

+ 2
(
1 – (1 – c)bm

)

× am

[
(1 – am)

ψm

am
‖gm – gm–1‖K6 + 2am

∥∥g∗∥∥∥∥g∗ – tm
∥∥
]

≤ (
1 – (1 – c)bm

)∥∥gm – g∗∥∥2

+ (1 – c)bm

[
2

1 – c
〈
f
(
g∗) – g∗, gm+1 – g∗〉

]

+ 2
(
1 – (1 – c)bm

)
amK7

≤ (
1 – (1 – c)bm

)∥∥gm – g∗∥∥2

+ (1 – c)bm

[
2

1 – c
〈
f
(
g∗) – g∗, gm+1 – g∗〉

]

+ 2amK7, (3.46)

where K7 = supm≥1{(1 – am) ψm
am

‖gm – gm–1‖K6 + 2am‖g∗‖‖g∗ – tm‖} > 0.
Claim c: We now show that the sequence {‖gm – g∗‖2} converges strongly to zero. To

show this, we consider two possible cases on the sequence {‖gm – g∗‖2}.
Case A: There exists N ∈ N such that ‖gm+1 – g∗‖2 ≤ ‖gm – g∗‖2 for all m ≥ N . Since

{‖gm – g∗‖2} is bounded, it follows that {‖gm – g∗‖2} converges, and hence

∥∥gm – g∗∥∥2 –
∥∥gm+1 – g∗∥∥2 → 0 as m → ∞.
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Recalling that
∑∞

m=1 am < ∞, limm→∞ bm = 0, ρ ∈ (0, 2
η

), and limm→∞( 1–μ

1+pmμ
τm

τm+1
)2 > 0, then

from (3.43) it follows that

lim
m→∞‖tm – km – ρδvm‖ = 0 and lim

m→∞‖tm – hm‖ = 0. (3.47)

For all m ≥ m0, we observe that ‖vm‖ ≥ 1–μ

η
‖tm – hm‖, which implies that 1

‖vm‖ ≤
η

(1–μ)‖tm–hm‖ . Thus, we have

‖tm – km‖ ≤ ‖tm – km – ρδvm‖ + ρδm‖vm‖

= ‖tm – km – ρδvm‖ + ρ(1 – μ)
‖tm – hm‖2

‖vm‖
≤ ‖tm – km – ρδvm‖ + ρη‖tm – hm‖.

Therefore, from (3.47) it follows that

lim
m→∞‖tm – km‖ = 0. (3.48)

Furthermore, from (3.2) we have

‖gm – tm‖ =
∥∥(1 – am)ψm(gm – gm–1) + amgm

∥∥

≤ (1 – am)ψm‖gm – gm–1‖ + am‖gm‖

= am

(
(1 – am)

ψm

am
‖gm – gm–1‖ + ‖gm‖

)
.

Thus,

lim
m→∞‖gm – tm‖ = 0. (3.49)

Hence, using (3.48) and (3.49), we have

‖km – gm‖ ≤ ‖km – tm‖ + ‖tm – gm‖ → 0 as m → ∞. (3.50)

Combining (3.8) and (3.50), we get

‖gm+1 – gm‖ ≤ ‖gm+1 – km‖ + ‖km – gm‖
= bm

∥∥f (km) – km
∥∥ + ‖km – gm‖. (3.51)

Since limm→∞ bm = 0, using (3.51), we obtain

lim
m→∞‖gm+1 – gm‖ = 0. (3.52)

Since {gm} is a bounded sequence, a subsequence {gmj} of {gm} exists such that {gmj} ⇀ z ∈
H with

lim sup
m→∞

〈
f
(
g∗) – g∗, gm – g∗〉 = lim

j→∞
〈
f
(
g∗) – g∗, gmj – g∗〉



Ofem et al. Journal of Inequalities and Applications         (2023) 2023:73 Page 18 of 30

=
〈
f
(
g∗) – g∗, z – g∗〉. (3.53)

Now, due to the hypothesis that Mg �= 0 for all g ∈ H , we have Mz �= 0 for all z ∈ H . Since
gmi ⇀ z and by (3.47), it follows from Lemma 3.5 that z ∈ SD. It is not hard to see that PSD of
is a contraction mapping. From the Banach contraction principle, we know that PSD of has
a unique fixed point, say g∗ ∈ H . That is, g∗PSD of (g∗). By Lemma 2.3, we have

〈
f
(
g∗) – g∗, z – g∗〉 ≤ 0.

It follows that

lim sup
m→∞

〈
f
(
g∗) – g∗, gm – g∗〉 =

〈
f
(
g∗) – g∗, z – g∗〉 ≤ 0. (3.54)

Using (3.52) and (3.54), we have

lim sup
m→∞

〈
f
(
g∗) – g∗, gm+1 – g∗〉 ≤ lim sup

m→∞
〈
f
(
g∗) – g∗, gm+1 – gm

〉

+ lim sup
m→∞

〈
f
(
g∗) – g∗, gm – g∗〉 ≤ 0. (3.55)

By applying Lemma 2.5 to (3.46), we obtain gm → g∗ as m → ∞.
Case B: There exists a subsequence {‖gmi – g∗‖} of {‖gm – g∗‖} such that ‖gmi – g∗‖2 ≤

‖gmi+1 – g∗‖2 for all i ∈ N. Now, by Lemma 2.6, a nondecreasing sequence {sj} of N such
that limj→∞ sj = ∞, and the following inequalities are satisfied for all j ∈N:

∥∥gsj – g∗∥∥2 ≤ ∥∥gsj+1 – g∗∥∥2 and
∥∥gj – g∗∥∥2 ≤ ∥∥gsj+1 – g∗∥∥2. (3.56)

By (3.43), we have

‖tsj – ksj – ρδvsj‖2 + ρ

(
2
η

– ρ

)(
1 – μ

1 + psjμ
τsj

τsj+1

)2

‖tsj – hsj‖2

≤ ∥∥gsj – g∗∥∥2 –
∥∥gsj+1 – g∗∥∥2 + asj K5 + bsj K4

≤ asj K5 + bsj K4.

This means that

lim
j→∞‖tsj – ksj – ρδvsj‖ = 0 and lim

j→∞‖tsj – hsj‖ = 0. (3.57)

Using a similar proof as in Case A, we obtain

lim
j→∞‖tsj – ksj‖ = 0, (3.58)

lim
j→∞‖gsj – tsj‖ = 0, (3.59)

lim
j→∞‖gsj+1 – gsj‖ = 0, (3.60)
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and

lim sup
j→∞

〈
f
(
g∗) – g∗, gsj+1 – g∗〉 ≤ 0. (3.61)

According to (3.46), we have

∥∥gsj+1 – g∗∥∥2 ≤ (
1 – (1 – c)bsj

)∥∥gsj – g∗∥∥2

+ (1 – c)bsj

[
2

1 – c
〈
f
(
g∗) – g∗, gsj+1 – g∗〉

]
+ 2asj K7. (3.62)

Using (3.56) and (3.62), we have

∥∥gsj+1 – g∗∥∥2 ≤ (
1 – (1 – c)bsj

)∥∥gsj+1 – g∗∥∥2

+ (1 – c)bsj

[
2

1 – c
〈
f
(
g∗) – g∗, gsj–1 – g∗〉

]

+ 2asj K7.

This implies that

∥∥gsj+1 – g∗∥∥2 ≤ 2
1 – c

〈
f
(
g∗) – g∗, gsj–1 – g∗〉 +

2asj K7

(1 – c)bsj

≤ 2
1 – c

〈
f
(
g∗) – g∗, gsj–1 – g∗〉 +

2asj K7

(1 – c)b
.

Thus, we have

lim sup
m→∞

∥∥gsj+1 – g∗∥∥ ≤ 0. (3.63)

Combining (3.56) and (3.63), we obtain lim supm→∞ ‖gj – g∗‖ ≤ 0, it follows that gj → g∗

as j → ∞. This ends the proof. �

Remark 3.7 It is not hard to see that quasimonotonicity was not employed in Lemma 3.3.
Also, only Case 2 of Lemma 3.5 is used. Now, we present the strong convergence result of
our proposed Algorithm 3.1 without monotonicity.

Lemma 3.8 Suppose that assumptions (C1)–(C6), (C8) hold and {gm} is a sequence gener-
ated by Algorithm 3.1. If there exists a subsequence {gmi} of {gm} with gmi ⇀ p∗ ∈ H and
limm→∞ ‖hmi – tmi‖ = 0, then either p∗ ∈ SD or Mp∗ = 0.

Proof By (3.34) and using the same argument in Lemma (3.5), if we fix h ∈ � , then we
obtain hmi ⇀ p∗, p∗ ∈ � and

lim inf
i→∞ 〈Mhmi , h – hmi〉 ≥ 0.

Next, a positive sequence {εm} such that limm→∞ = 0 and

〈Mhmi , h – hmi〉 + εm > 0, ∀m ≥ 0.
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This means that

〈Mhmi , h〉 + εm > 〈Mhmi , hmi〉 > 0, ∀m ≥ 0. (3.64)

In particular, set h = p∗ in (3.64), we have

〈
Mhmi , p∗〉 + εm > 〈Mhmi , hmi〉 > 0, ∀m ≥ 0. (3.65)

Letting m → ∞ in (3.65), from condition (H6) and recalling that hmi ⇀ p∗, we have

〈
Mp∗, p∗〉 ≥ lim sup

i→∞
〈Mhmi , hmi〉, ∀m ≥ 0.

By condition (H8), we have limi→∞〈Mhmi , hmi〉 = 〈Mp∗, p∗〉. Now, from (3.64) we have

〈
Mp∗, h

〉
= lim

i→∞
(〈Mhmi , h〉 + εm

)

≥ lim inf
i→∞ 〈Mhmi , h〉

= lim
i→∞〈Mhmi , h〉

=
〈
Mp∗, p∗〉.

It follows that

〈
Mp∗, h – p∗〉 ≥ 0, ∀h ∈ � . (3.66)

This implies that p∗ ∈ SD. Consequently, we know that either p∗ ∈ SD or Mp∗ = 0 as re-
quired. �

Theorem 3.9 Suppose that assumptions (C1)–(C6), (C8) hold and Mg �= 0, ∀g ∈ H . If {gm}
is a sequence generated by Algorithm 3.1, then {gm} converges strongly to an element g∗ ∈
SD ⊂ S, where g∗ = PSD of (g∗).

Proof By using Lemma 3.5 and adopting the same approach in the proof of Theorem 3.6,
we get the required result. �

4 Applications and numerical experiments
In this section, we consider the application of our proposed algorithm to image restoration
problems and optimal control problems. Furthermore, we examine the efficiency of some
iterative algorithm for solving quasimonotone variational inequality problems. Specifi-
cally, we numerically compare our proposed Algorithm 3.1 with Algorithms 3.2 of Alakoya
et al. [2] (namely, Alakoya Alg. 3.2), Algorithm 3.1 of Liu and Yang [25] (namely, Liu and
Yang Alg. 3.1), and Algorithm 2.1 of Ye and He [56] (namely, Ye and He Alg. 2.1). Through-
out this section, the parameters of our proposed algorithm and the compared ones are as
follows:

• For our Algorithm 3.1, let τ0 = 0.6, ψ = 0.5, ρ = 1.6, μ = 0.5, am = 1
(n+1)2 , bm = 1

(m+1) ,
qm = 1

(m+1)1.1 , pm = (m+1)
m , ξm = 100

(m+1)3 , and f (g) = g
5 .
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• For Algorithm 3.2 of Alakoya et al. [2], let τ0 = 0.6, ψ = 0.5, ρ = 1.6, μ = 0.5,
bm = 1

(m+1) , qm = 1
(m+1)1.1 , ξm = 100

(m+1)3 , and f (g) = g
5 .

• For Algorithm 3.1 of Liu and Yang [25], let τ0 = 0.6, μ = 0.5, qm = 1
(m+1)1.1 .

• For Algorithm 2.1 of Ye and He [56], let γ = 0.7 and σ = 0.95.
We perform all the numerical experiments on an HP laptop with Intel(R) Core(TM)i5-
6200U CPU 2.3GHz with 5 GB RAM.

4.1 Application to image restoration problem

In recent years, compressive sensing (CS) has become one of the major techniques used
by several authors for image/signal processing. Image restoration is one of the most pop-
ular classical inverse problems. This kind of problem has been deeply been studied in var-
ious applications such as image deblurring, remote sensing, astronomical imaging, digital
photography, radar imaging, and microscopic imaging [20].

In this part of the article, we compare the performance our Algorithm 3.1 with Algo-
rithm 2.1 of Ye and He [56], Algorithm 3.2 of Alakoya et al. [2], Algorithm 3.1 of Liu and
Yang [25] for solving an image restoration problem, which involves reformation of an im-
age that is degraded by blur and additive noise.

Example 4.1 Consider the l1-norm regularization problem that has to do with finding the
solution of the following continuous optimization problem:

min
g∈Rn

{‖g‖1 : Ag = d
}

, (4.1)

where A is a matrix of m × n (n < m) dimension, d is a vector in R
m, and ‖g‖1 =

∑n
i=1 |gi|

is the l1 norm of g . We can reconstruct expression (4.1) as the least absolute selection and
shrinkage operator (LASSO) problem as follows [13, 32]:

min
g∈Rn

{
w‖g‖1 +

1
2
‖d – Ag‖2

2

}
, (4.2)

where w > 0 denotes the balancing parameter. It is not hard to see that (4.2) is a convex
unconstrained minimization problem that appears in image reconstruction and compress
sensing, where the original image/signal is sparse in some orthogonal basis by the pro-
cess

d = Ag + t, (4.3)

where g ∈ R
n, g , t, and d are unknown original image, unknown additive random noise,

and known degraded observation, respectively, and A is the blurring operation. The first
iterative method used to the solve (4.2) was introduced by Figureido et al. [13]. After
that, many iterative methods have been studied for this problem (see [13, 17, 31, 32]
and the references in them). It is important to note that the LASSO problem (4.2)
can be formulated as a variational inequality problem, that is, finding g ∈ R

n such that
〈M(g), h – g〉 ≥ 0 for all h ∈ R

n, where Mg = AT (Ag – d) [31]. For this, M is monotone
(hence M is quasimonotone) Lipschitz continuous with L = ‖AT A‖. Now, we let � = R

n.
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Table 1 Numerical comparison of various algorithms using their SNR values for peppers

Images m Algorithm 3.1 Alakoya Alg. 3.2 Liu and Yang Alg. 3.1 Ye and He Alg. 2.1

Peppers.tif SNR SNR SNR SNR
(256× 256) 100 23.6706 21.8756 16.5638 15.7238

600 24.7789 22.6453 17.6571 16.7451
1200 25.5234 23.8254 17.7845 17.9894
2000 25.9385 24.6453 22.9843 18.7836

Table 2 Numerical comparison of various algorithms using their SNR values for board

Images m Algorithm 3.1 Alakoya Alg. 3.2 Liu and Yang Alg. 3.1 Ye and He Alg. 2.1

Board.tif SNR SNR SNR SNR
(256× 256) 100 34.1606 32.3562 16.5638 15.7238

600 34.8977 32.5452 17.65718 16.7451
1200 35.2543 35.8672 17.7845 17.9894
2000 37.7356 36.9867 22.9843 18.7836

By so doing, it means that Zm defined in our proposed modified subgradient extragradient-
type Algorithm 3.1 is equal to R

n. Hence, our proposed Algorithm 3.1 coincides with
this problem. For more details about the equivalence of model (4.2) to variational in-
equality problem, we refer the reader to [1, 3, 17, 21, 34, 35, 50] and the references in
them.

Next, we aim at comparing the deblurring efficiency of our proposed Algorithm 3.1
with Algorithm 3.2 of Alakoya et al. [2], Algorithm 3.1 of Liu and Yang [25], and
Algorithm 2.1 of Ye and He [56]. The test images are Peppers and Board of sizes
256 × 256 each in the Image Processing Toolbox in the MATLAB. The image went
through a Gaussian blur of size 8 × 8 and standard deviation of σ = 4. Now, to mea-
sure the performances of the algorithms, we use the signal-to-noise ratio (SNR) defined
by

SNR = 30 log10

( ‖g‖2

‖g – g∗‖2

)
, (4.4)

where g∗ is the restored image and g is the original image. We use Matlab2015a to write
the programs with stopping criterion Em = ‖gm+1 – gm‖ ≤ 10–6.

The computation results of deblurring images of Peppers and Board are illustrated in
the following Tables 1–2 and Figs. 1–4.

Note that the larger the value of the SNR, the better the quality of the restored images.
From the numerical experiments presented in Tables 1–2 and Figs. 1–4, it is evident that
our proposed Algorithm 3.1 appears more promising and competitive as it outperforms
Algorithm 3.2 of Alakoya et al. [2], Algorithm 3.1 of Liu and Yang [25], and Algorithm 2.1
of Ye and He [56].

4.2 Application to optimal control problem
In this part of the article, we use our proposed Algorithm 3.1 to solve variational inequality
arising in the optimal control problem. Now, we consider the following example when the
terminal function is nonlinear. The initial controls p0(z) = p1(z) are randomly taken in
[–1, 1]. We take the stopping criterion Em = ‖gm+1 – gm‖ ≤ 10–6.
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Figure 1 Degraded peppers and its restoration via various algorithms. (a) Original peppers; (b) Peppers
degraded by motion blur and random noise; (c) Peppers restored by Algorithm 3.1; (d) Peppers restored by
Alakoya Alg. 3.2; (e) Peppers restored by Liu and Yang Alg. 3.1 and (f) Peppers restored by Ye and He Alg. 2.1

Example 4.2 (See [6])

minimize – g1(2) +
(
g2(2)

)2,

subject to ġ1(z) = g2(z),

ġ2(z) = x(z), ∀z ∈ [0, 2],

ġ1(0) = 0 ġ2(0) = 0,

s(z) ∈ [–1, 1].
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Figure 2 Graph corresponding to Table 1

The exact solution of the problem in Example 4.2 is

s∗ =

⎧
⎨

⎩
1, if z ∈ [0, 1.2);

–1, if z ∈ [1.2, 2].

Algorithm 3.1 took 0.0563 sec. to obtain the approximate solution at the 89 iteration. Fig-
ure 5 represents the approximate optimal control and the corresponding trajectories of
Algorithm 3.1.

4.3 Numerical experiments
Here, we consider two numerical experiments in solving quasimonotone variational in-
equality problems. We illustrate the benefits and computing effectiveness of our proposed
Algorithm 3.1 in comparison to some well known algorithms in the literature which in-
cludes: Algorithm 3.2 of Alakoya et al. [2], Algorithm 3.1 of Liu and Yang [25] and Algo-
rithm 2.1 of Ye and He [56].

Example 4.3 (See [25]) Let � = [–1, 1] and

Mg =

⎧
⎪⎪⎨

⎪⎪⎩

2g – 1, if g > 1,

g2, if g ∈ [–1, 1],

–2g – 1, if g < 1.

Then the mapping is M is quasimonotone and Lipschitz continuous with SD = {–1} and
S = {–1, 0}.

We take the stopping criterion Em = ‖gm+1 –gm‖ ≤ 10–6 and consider the following initial
values for this experiment:

Case a: (g0, g1) = (0.5, 0.5);
Case b: (g0, g1) = (–0.08, 0.1);
Case c: (g0, g1) = (0.1, 0.9);
Case d: (g0, g1) = (–5, –0.001).
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Figure 3 Degraded board and its restoration via various algorithms. (a) Original board; (b) Board degraded by
motion blur and random noise; (c) Board restored by Algorithm 3.1; (d) Board restored by Alakoya Alg. 3.2; (e)
Board restored by Liu and Yang Alg. 3.1 and (f) Board restored by Ye and He Alg. 2.1

We compare the convergence efficiency of our proposed Algorithm 3.1 with Algo-
rithm 3.2 of Alakoya et al. [2], Algorithm 3.1 of Liu and Yang [25] and Algorithm 2.1 of Ye
and He [56]. The graphs of errors against the iteration numbers in each case are plotted.
We report the numerical results in Table 3 and Fig. 6.

Example 4.4 (See [30]) Let H = �2, where �2 is a real Hilbert space whose elements
are square summable sequences of real numbers, that is, �2 = {g = (g1, g2, . . . , gj, . . .), j =
1, 2, . . . ,

∑∞
j=1 |gj|2 < ∞}. Let p, q ∈ R be such that q > p > q

2 > 0. If � = {g ∈ �2 : ‖g‖ ≤ p}
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Figure 4 Graph corresponding to Table 2

Figure 5 Optimal control (red) and random initial control (blue) on the left and optimal trajectories on the
right for Example 4.2 generated by Algorithm 3.1

Table 3 Numerical results of Example 4.3

Cases Algorithm 3.1 Alakoya Alg. 3.2 Liu and Yang Alg. 3.1 Ye and He Alg. 2.1

Case a CPU time (sec.) 0.0024 0.0027 0.0062 0.0071
No of Iter. 15 16 25 42

Case b CPU time (sec.) 0.0084 0.0087 0.0119 0.0256
No of Iter. 14 15 22 43

Case c CPU time (sec.) 0.0023 0.0027 0.0031 0.0053
No of Iter. 12 14 19 43

Case d CPU time (sec.) 0.0022 0.0023 0.0032 0.0069
No of Iter. 11 14 18 53

and Mg = (q – ‖g‖)g , then M is quasimonotone and Lipschitz continuous with SD = 0. We
set p = 3 and q = 5.

Wet take the stopping criterion Em = ‖gm+1 – gm‖ ≤ 10–5 and consider the following
initial values for this experiment:

Case I: g0 = g1 = (1, 1, . . . , 150,000, 0, 0, . . .);
Case II: g0 = g1 = (2, 2, . . . , 250,000, 0, 0, . . .);
Case III: g0 = g1 = (1, 2, . . . , 50,000, 0, 0, . . .);
Case IV: g0 = g1 = (10, 10, . . . , 1050,000, 0, 0, . . .).
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Figure 6 Top left: Case a; top right: Case b; bottom left: Case c; bottom right: Case d

Table 4 Numerical results of Example 4.4

Cases Algorithm 3.1 Alakoya Alg. 3.2 Liu and Yang Alg. 3.1 Ye and He Alg. 2.1

Case I CPU time (sec.) 63.9093 70.5542 104.7962 260.1205
No of Iter. 8 14 14 21

Case II CPU time (sec.) 80.8797 94.1864 98.5054 205.8756
No of Iter. 9 15 18 19

Case II CPU time (sec.) 121.6154 188.6528 253.1705 291.0519
No of Iter. 9 15 15 18

Case IV CPU time (sec.) 98.2435 106.7654 201.2456 250.9876
No of Iter. 10 15 18 19

We compare the convergence efficiency of our proposed Algorithm 3.1 with Algo-
rithm 3.2 of Alakoya et al. [2], Algorithm 3.1 of Liu and Yang [25], and Algorithm 2.1 of Ye
and He [56]. The graphs of errors against the iteration numbers in each case are plotted.
We report the numerical results in Table 4 and Fig. 7.

5 Conclusion
In this paper, we constructed an inertial modified subgradient extragradient-type Algo-
rithm 3.1 for solving variational inequality problems involving quasimonotone and Lips-
chitz continuous operators in a real Hilbert space. The step-size considered in our algo-
rithm is explicitly and adaptively updated without prior knowledge of the Lipschitz con-
stant of the operator. We proved the strong convergence results of our proposed algorithm
under some mild assumptions imposed on the control parameters. We utilize our method
to solve some problems in applied sciences and engineering such as image restoration and
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Figure 7 Top left: Case I; top right: Case II; bottom left: Case III; bottom right: Case IV

optimal control problems. We carried out several numerical experiments to show that our
method outperforms many well known methods in the existing literature.
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