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Abstract
By means of the weight functions, the idea of introduced parameters, using the
transfer formula and Hermite–Hadamard’s inequality, a more accurate half-discrete
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1
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(x,λ > 0) involving one derivative function of m-order is given. The
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parameters are considered. The equivalent forms. the operator expressions and some
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1 Introduction
Suppose that p > 1, 1

p + 1
q = 1, am, bn ≥ 0, 0 <

∑∞
m=1 ap

m < ∞ and 0 <
∑∞

n=1 bq
n < ∞. We have

the following discrete Hardy–Hilbert’s inequality with the best possible constant factor
π/ sin( π

p ) (cf. [1], Theorem 315):

∞∑

m=1

∞∑

n=1

ambn

m + n
<

π

sin(π/p)

( ∞∑

m=1

ap
m

) 1
p
( ∞∑

n=1

bq
n

) 1
q

. (1)

The integral analogues of (1) named in Hardy–Hilbert’s integral inequality was provided
as follows (cf. [1], Theorem 316):

∫ ∞

0

∫ ∞

0

f (x)g(y)
x + y

dx, dy <
π

sin(π/p)

(∫ ∞

0
f p(x) dx

) 1
p
(∫ ∞

0
gq(y) dy

) 1
q

, (2)
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with the same best possible factor. The more accurate form of (1) was given as follows (cf.
[1], Theorem 323):

∞∑

m=1

∞∑

n=1

ambn

m + n – 1
<

π

sin(π/p)

( ∞∑

m=1

ap
m

) 1
p
( ∞∑

n=1

bq
n

) 1
q

. (3)

Inequalities (1)–(3) with their extensions played an important role in analysis and its
applications (cf. [2–13]).

The following half-discrete Hilbert-type inequality was provided in 1934 (cf. [1], The-
orem 351): If K(x) (x > 0) is decreasing, p > 1, 1

p + 1
q = 1, 0 < φ(s) =

∫ ∞
0 K(x)xs–1 dx < ∞,

f (x) ≥ 0, 0 <
∫ ∞

0 f p(x) dx < ∞, then

∞∑

n=1

np–2
(∫ ∞

0
K(nx)f (x) dx

)p

< φp
(

1
q

)∫ ∞

0
f p(x) dx. (4)

Some new extensions of (3) were given by [14–19].
In 2006, by using Euler–Maclaurin summation formula, Krnic et al. [20] gave an exten-

sion of (1) with the kernel as 1
(m+n)λ (0 < λ ≤ 4). In 2019–2020, following the results of [20],

Adiyasuren et al. [21] provided an extension of (1) involving partial sums, and Mo et al.
[22] gave an extension of (2) involving the upper limit functions, which a new application
of the way in [21]. In 2016–2017, Hong et al. [23, 24] considered some equivalent state-
ments of the extensions of (1) and (2) with a few parameters. Some further results were
provided by [25–28]. In 2023, Hong et. al. [29] published a more accurate half-discrete
multidimensional Hilbert-type inequality involving one multiple upper limit function.

In this paper, following the way of [22], by means of the weight functions, the idea of
introduced parameters, using the transfer formula and Hermite–Hadamard’s inequality,
a more accurate half-discrete multidimensional Hilbert-type inequality with the homoge-
neous kernel as 1

(x+‖k–ξ‖α )λ+m (x,λ > 0) involving one derivative function of m-order and the
beta function is given. The equivalent conditions of the best possible constant factor re-
lated to several parameters are considered. The equivalent forms, the operator expressions
and some particular inequalities are obtained. Our new work is different to [29], which is
involving one higher-order derivative function but not involving one multiple upper limit
function.

2 Some formulas and lemmas
Hereinafter in this paper, we suppose that p > 1, 1

p + 1
q = 1,λ > 0,λ1,λ2 ∈ (0,λ), m, n ∈

N = {1, 2, . . .},α ∈ (0, 1], ξ ∈ [0, 1
2 ], λ̂1 := λ–λ2

p + λ1
q , λ̂2 := λ–λ1

q + λ2
p ,‖y‖α := (

∑n
k=1 |yi|α) 1

α (y =
(y1, . . . , yn) ∈ Rn). We also assume that f (x) (≥ 0) is a differentiable function of m-order
unless at finite points in R+ = (0,∞),

f (k–1)(x) = o
(
etx) (t > 0; x → ∞), f (k–1)(0+)

= 0 (k = 1, . . . , m),

f (m)(x), ak = (ak1 , . . . , akn ) ≥ 0
(
x ∈ R+ = (0,∞), k = (k1, . . . , kn) ∈ Nn), such that

0 <
∫ ∞

0
xp(1–λ̂1)–1(f (m)(x)

)p dx < ∞ and 0 <
∑

k

‖k – ξ‖q(n–λ̂2)–n
α aq

k < ∞.
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For M > 0,ψ(u) (u > 0) is a nonnegative measurable function, we have the following
transfer formula (cf. [2], (9.3.3)):

∫

· · ·
∫

{y∈Rn
+;0<

∑n
i=1( yi

M )α≤1}
ψ

( n∑

i=1

(
yi

M

)α
)

dy1 · · · dyn

=
Mn�n( 1

α
)

αn�( n
α

)

∫ 1

0
ψ(u)u

n
α –1 du. (5)

In particular, (i) in view of ‖y‖α = M[
∑n

i=1( yi
M )α] 1

α , by (5), we have

∫

Rn
+

φ
(‖y‖α

)
dy

= lim
M→∞

∫

· · ·
∫

{y∈Rn
+;0<

∑n
i=1( yi

M )α≤1}
φ

(

M

[ n∑

i=1

(
yi

M

)α
] 1

α
)

dy1 · · · dyn

= lim
M→∞

Mn�n( 1
α

)
αn�( n

α
)

∫ 1

0
φ
(
Mu

1
α
)
u

n
α –1 du v=Mu

1
α=

�n( 1
α

)
αn–1�( n

α
)

∫ ∞

0
φ(v)vn–1 dv; (6)

(ii) for ψ(u) = φ(Mu 1
α ) = 0.u < bα

Mα (b > 0), by (5), we have

∫

{y∈Rn
+,‖y‖α≥b}

φ
(‖y‖α

)
dy = lim

M→∞
Mn�n( 1

α
)

αn�( n
α

)

∫ 1

bα

Mα

φ
(
Mu

1
α
)
u

n
α –1 du

=
�n( 1

α
)

αn–1�( n
α

)

∫ ∞

b
φ(v)vn–1 dv. (7)

Lemma 1 For s > 0,α ∈ (0, 1], ξ ∈ [0, 1
2 ], Aξ := {y = {y1, . . . , yn}; yi > ξ (i = 1, . . . , n)}, define

the following function:

gx(y) :=
1

(x + ‖y – ξ‖α)s =
1

{x + [
∑n

i=1(yi – ξ )α]1/α}s

(
x > 0, y = (y1, . . . , yn) ∈ Aξ

)
.

Then we have ∂
∂yj

gx(y) < 0, ∂2

∂y2
j

gx(y) > 0 (y ∈ Aξ ; j = 1, . . . , n).

Proof We obtain that for s > 0,α ∈ (0, 1], ξ ∈ [0, 1
2 ], y ∈ Aξ ,

∂

∂yj
gx(y) =

–s[
∑n

i=1(yi – ξ )α] 1
α –1(yj – ξ )α–1

{x + [
∑n

i=1(yi – ξ )α]1/α}s+1 < 0,

∂2

∂y2
j

gx(y) =
s(s + 1)[

∑n
i=1(yi – ξ )α] 2

α –2(yj – ξ )2α–2

{x + [
∑n

i=1(yi – ξ )α]1/α}s+2

+
s(1 – α)[

∑n
i=1(yi – ξ )α] 1

α –2(yj – ξ )α–2

{x + [
∑n

i=1(yi – ξ )α]1/α}s+1

[ n∑

i=1

(yi – ξ )α – (yj – ξ )α
]

> 0.

The lemma is proved. �
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Note. In the same way, for s2 ≤ n,α ∈ (0, 1], ξ ∈ [0, 1
2 ], y ∈ Aξ , we can prove that

∂

∂yj
‖y – ξ‖s2–n

α ≤ 0,
∂2

∂y2
j
‖y – ξ‖s2–n

α ≥ 0 (j = 1, . . . , n), (8)

and then for s2 ≤ n,α ∈ (0, 1], ξ ∈ [0, 1
2 ], hx(y) := gx(y)‖y–ξ‖s2–n

α (x > 0, y ∈ Aξ ), by Lemma 1,
we obtain

∂

∂yj
hx(y) = ‖y – ξ‖s2–n

α

∂

∂yj
gx(y) + gx(y)

∂

∂yj
‖y – ξ‖s2–n

α < 0,

∂2

∂y2
j

hx(y) =
∂

∂yj
‖y – ξ‖s2–n

α

∂

∂yj
gx(y) + ‖y – ξ‖s2–n

α

∂2

∂y2
j

gx(y)

+
∂

∂yj
gx(y)

∂

∂yj
‖y – ξ‖s2–n

α + gx(y)
∂2

∂y2 ‖y – ξ‖s2–n
α > 0, (j = 1, . . . , n). (9)

Lemma 2 For c > 0, we have the following inequalities:

�n( 1
α

)
cαn–1�( n

α
)

<
∑

k

‖k‖–c–n
α <

2c�n( 1
α

)
cαn–1�( n

α
)
, (10)

where,
∑

k G(k) =
∑∞

kn=1 · · ·∑∞
k1=1 G(k1, . . . , kn).

Proof By (8) (for ξ = 0), in view of –c – n < 0, we find that

∂

∂yj
‖y‖–c–n

α < 0,
∂2

∂y2
j
‖y‖–c–n

α > 0 (j = 1, . . . , n),

and then by Hermite–Hadamard’s inequality (cf. [30]) and (7), we have

∑

k

‖k‖–c–n
α <

∫

{y∈Rn
+,‖y‖α≥ 1

2 }
‖y‖–c–n

α dy =
�n( 1

α
)

αn–1�( n
α

)

∫ ∞

1
2

v–c–nvn–1 dv =
2c�n( 1

α
)

cαn–1�( n
α

)
.

By the decreasingness property of series and (7), it follows that

∑

k

‖k‖–c–n
α >

∫

{y∈Rn
+,‖y‖α≥1}

‖y‖–c–n
α dy =

�n( 1
α

)
αn–1�( n

α
)

∫ ∞

1
v–c–1 dv =

�n( 1
α

)
cαn–1�( n

α
)
,

namely, inequalities (10) follow.
The lemma is proved. �

Lemma 3 For s > 0, we fine the following weight functions:


s(s2, x) := xs–s2
∑

k

‖k – ξ‖s2–n
α

(x + ‖k – ξ‖α)s (x ∈ R+), (11)

ωs(s1, k) := ‖k – ξ‖s–s1
α

∫ ∞

0

xs1–1

(x + ‖k – ξ‖α)s dx
(
k ∈ Nn), (12)
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(i) For 0 < s2 < s, s2 ≤ n, we have the following inequality:


s(s2, x) <
�n( 1

α
)

αn–1�( n
α

)
B(s2, s – s2) (x ∈ R+); (13)

(ii) for 0 < s1 < s, the following expression follows:

ωs(s1, k) = B(s1, s – s1)
(
y ∈ Rn

+
)
, (14)

where, B(u, v) :=
∫ ∞

0
tu–1

(1+t)u+v dt (u, v > 0) is the beta function (cf. [31]).

Proof (i) For 0 < s2 < s, s2 ≤ n, by (9) and Hermite–Hadamard’s inequality, we have


s(s2, x) < xs–s2

∫

A1/2

‖y – ξ‖s2–n
α

(x + ‖y – ξ‖α)s dy ≤ xs–s2

∫

Aξ

‖y – ξ‖s2–n
α

(x + ‖y – ξ‖α)s dy

= xs–s2

∫

Rn
+

‖y‖s2–n
α

(x + ‖y‖α)s dy.

Setting φ(v) := vs2–n

(x+v)s , by (6), it follows that


s(s2, x) < xs–s2

∫

Rn
+

φ
(‖y‖α

)
dy = xs–s2

�n( 1
α

)
αn–1�( n

α
)

∫ ∞

0
φ(v)vn–1 dv

= xs–s2
�n( 1

α
)

αn–1�( n
α

)

∫ ∞

0

vs2–1

(x + v)s dv u=v/x=
�n( 1

α
)

αn–1�( n
α

)

∫ ∞

0

us2–1

(1 + u)s du

=
�n( 1

α
)

αn–1�( n
α

)
B(s2, s – s2),

namely, (13) follows.
(ii) Setting u = x

‖k–ξ‖α
in (12), we find

ωs(s1, k) = ‖k – ξ‖s–s1
α

∫ ∞

0

(u‖k – ξ‖α)s1–1‖k – ξ‖α

(u‖k – ξ‖α + ‖k – ξ‖α)s du

=
∫ ∞

0

us1–1

(u + 1)s du = B(s1, s – s1),

and then we have (17).
The lemma is proved. �

We indicate the following gamma function (cf. [31]): �(α) :=
∫ ∞

0 e–ttα–1 dt (α > 0), satis-
fying �(α + 1) = α�(α) (α > 0) and B(u, v) = 1

�(u+v)�(u)�(v) (u, v > 0). By the definition of
the gamma function, for λ, x > 0, the following expression holds:

1
(x + ‖k – ξ‖α)λ+m =

1
�(λ + m)

∫ ∞

0
tλ+m–1e–(x+‖k–ξ‖α )t dt. (15)

Lemma 4 For t > 0, we have the following expression:

∫ ∞

0
e–txf (x) dx = t–m

∫ ∞

0
e–txf (m)(x) dx. (16)



Hong et al. Journal of Inequalities and Applications         (2023) 2023:74 Page 6 of 15

Proof Since f (0) = 0, f (x) = o(etx) (t > 0; x → ∞), we find

∫ ∞

0
e–txf ′(x) dx =

∫ ∞

0
e–tx df (x) = e–txf (x)|∞0 –

∫ ∞

0
f (x) de–tx

= lim
x→∞

f (x)
etx + t

∫ ∞

0
e–txf (x) dx = t

∫ ∞

0
e–txf (x) dx.

Inductively, for f (i)(0+) = 0, f (i)(x) = o(etx) (t > 0, i = 1, . . . , m; x → ∞), we still have

∫ ∞

0
e–txf (x) dx = t–1

∫ ∞

0
e–txf ′(x) dx = · · · = t–i

∫ ∞

0
e–txf (i)(x) dx,

namely, expression (17) follows.
The lemma is proved. �

Lemma 5 We have the following inequality:

Iλ :=
∑

k

∫ ∞

0

f (m)(x)ak

(x + ‖k – ξ‖α)λ
dx

<
(

�n( 1
α

)
αn–1�( n

α
)
B(λ2,λ – λ2)

) 1
p

B
1
q (λ1,λ – λ1)

×
[∫ ∞

0
xp(1–λ̂1)–1(f (m)(x)

)p dx
] 1

p
[∑

k

‖k – ξ‖q(n–λ̂2)–n
α aq

k

] 1
q

. (17)

Proof By Hölder’s inequality (cf. [30]), and Lebesgue term by term integration theorem
(cf. [32]), we obtain

Iλ =
∑

k

∫ ∞

0

1
(x + ‖k – ξ‖α|)λ

[‖k – ξ‖(λ2–n)/p
α

x(λ1–1)/q f (m)(x)
][

x(λ1–1)/q

‖k – ξ‖(λ2–n)/p
α

ak

]

dx

≤
{∫ ∞

0

[∑

k

1
(x + ‖k – ξ‖α|)λ

‖k – ξ‖λ2–n
α

x(λ1–1)(p–1)

]
(
f (m)(x)

)p dx
} 1

p

×
{∑

k

[∫ ∞

0

1
(x + ‖k – ξ‖α|)λ

xλ1–1

‖k – ξ‖(λ2–n)(q–1)
α

dx
]

aq
k

} 1
q

=
[∫ ∞

0

λ(λ2, x)xp(1–λ̂1)–1(f (m)(x)

)p dx
] 1

p

×
[∑

k

ωλ(λ1, k)‖k – ξ‖q(n–λ̂2)–n
α aq

k

] 1
q

.

Therefore, by (13) and (15) (for s = λ, s1 = λ1, s2 = λ2), we have (18).
The lemma is proved. �
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3 Main results
Theorem 1 We have the following more accurate half-discrete multidimensional Hilbert-
type inequality involving one derivative function of m-order:

I :=
∑

k

∫ ∞

0

f (x)ak

(x + ‖k – ξ‖α)λ+m dx

<

[m–1∏

i=0

(λ + i)

]–1(
�n( 1

α
)

αn–1�( n
α

)
B(λ2,λ – λ2)

)

)
1
p B

1
q (λ1,λ – λ1)

×
[∫ ∞

0
xp(1–λ̂1)–1(f (m)(x)

)p dx
] 1

p
[∑

k

‖k – ξ‖q(n–λ̂2)–n
α aq

k

] 1
q

. (18)

In particular, for λ1 + λ2 = λ, we reduce (19) to the following:

I =
∑

k

∫ ∞

0

f (x)ak

(x + ‖k – ξ‖α)λ+m dx

<
(

�n( 1
α

)
αn–1�( n

α
)

) 1
p
[m–1∏

i=0

(λ + i)

]–1

B(λ1,λ2)

×
[∫ ∞

0
xp(1–λ1)–1(f (m)(x)

)p dx
] 1

p
[∑

k

‖k – ξ‖q(n–λ2)–n
α aq

k

] 1
q

. (19)

where, the constant factor ( �n( 1
α )

αn–1�( n
α ) )

1
p [

∏m–1
i=0 (λ + i)]–1B(λ1,λ2) is the best possible.

Proof Using (16) and (17), in view of Lebesgue term by term integration theorem (cf. [32]),
we find

I =
1

�(λ + m)
∑

k

∫ ∞

0
f (x)ak

[∫ ∞

0
tλ+m–1e–(x+‖k–ξ‖α )t dt

]

dx

=
1

�(λ + m)

∫ ∞

0
tλ+m–1

(∫ ∞

0
e–xtf (x) dx

)(∑

k

e–‖k–ξ‖α tak

)

dt

=
1

�(λ + m)

∫ ∞

0
tλ+m–1

(

t–m
∫ ∞

0
e–xtf (m)(x) dx

)(∑

k

e–‖k–ξ‖α tak

)

dt

=
1

�(λ + m)
∑

k

∫ ∞

0
f (m)(x)ak

[∫ ∞

0
tλ–1e–(x+‖k–ξ‖α )t dt

]

dx

=
�(λ)

�(λ + m)
∑

k

∫ ∞

0

f (m)(x)ak

(x + ‖k – ξ‖α)λ
dx =

[m–1∏

i=0

(λ + i)

]

]–1Iλ.

Then by (18), we have (19).
For λ1 + λ2 = λ in (19), we have (20). For any 0 < ε < pλ1, we set ãk := ‖k‖λ2– ε

q –n
α (k ∈

Nn), f̃ (x) := 0, 0 < x < 1,

f̃ (x) :=
m–1∏

i=0

(

λ1 + i –
ε

p

)∫ x

1

(∫ tm

1
· · ·

∫ t2

1
t
λ1– ε

p –1
1 dt1 · · · dtm–1

)

dtm
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= xλ1– ε
p +m–1 – O

(
xm–1), x ≥ 1,

where, for m ∈ N, O(xm–1) is indicated a nonnegative polynomial of (m – 1)-order.
If there exists a positive constant M(≤ ( �n( 1

α )
αn–1�( n

α ) )
1
p [

∏m–1
i=0 (λ + i)]–1B(λ1,λ2)), such that

(20) is valid when we replace ( �n( 1
α )

αn–1�( n
α ) )

1
p [

∏m–1
i=0 (λ + i)]–1B(λ1,λ2) by M, then in particular,

for ξ = 0, we still have

Ĩ :=
∑

k

∫ ∞

0

f̃ (x)ãk

(x + ‖k‖α)λ+m dx < M
[∫ ∞

0
xp(1–λ1)–1(f̃ (m)(x)

)p dx
] 1

p

×
[∑

k

‖k‖q(n–λ2)–n
α ãq

k

] 1
q

. (20)

By (10), we obtain

J̃ :=
[∫ ∞

0
xp(1–λ1)–1(f̃ (m)(x)

)p dx
] 1

p
[∑

k

‖k‖q(n–λ2)–n
α ãq

k

] 1
q

<
m–1∏

i=0

(

λ1 + i –
ε

p

)(∫ ∞

1
x–ε–1 dx

) 1
p
(∑

k

‖k‖–ε–n
α

) 1
q

=
1
ε

m–1∏

i=0

(

λ1 + i –
ε

p

)( 2ε�n( 1
α

)
αn–1�( n

α
)

) 1
q

. (21)

We obtain

Ĩ =
∑

k

∫ ∞

1

(xλ1– ε
p +m–1 – O(xm–1))

(x + ‖k‖α)λ+m ‖k‖λ2– ε
q –n

A dx = I0 – I1,

where, I0 :=
∑

k
∫ ∞

1
xλ1– ε

p +m–1

(x+‖k‖α )λ+m ‖k‖λ2– ε
q –n

A dx, I1 :=
∑

k
∫ ∞

1
O(xm–1)

(x+‖k‖α )λ+m ‖k‖λ2– ε
q –n

A dx.
By (10), we also find that 1

c–ε

∑
k ‖k‖–c–n

α = O(1) (c = λ1 + m + ε
q ). For s = λ + m > 0, s1 =

λ1 + m – ε
p ∈ (0, s) in (12) and (15), by (10), we find

I0 =
∑

k

‖k‖–ε–n
α

[

‖k‖(λ2+ ε
p )

α

∫ ∞

1

x(λ1+m– ε
p )–1

(x + ‖k‖α)λ+m dx
]

=
∑

k

‖k‖–ε–n
α

[

‖k‖(λ2+ ε
p )

α

∫ ∞

0

x(λ1+m– ε
p )–1

(x + ‖k‖α)λ+m dx – ‖k‖(λ2+ ε
p )

α

∫ 1

0

x(λ1+m– ε
p )–1

(x + ‖k‖α)λ+m dx
]

≥
∑

k

‖k‖–ε–n
α

[

ωλ+m

(

λ1 + m –
ε

p
, k

)

– ‖k‖(λ2+ ε
p )

α

∫ 1

0

x(λ1+m– ε
p )–1

‖k‖λ+m
α

dx
]

=
∑

k

‖k‖–ε–n
α ωλ+m

(

λ1 + m –
ε

p
, k

)

–
1

λ1 + m – ε
p

∑

k

‖k‖–(λ1+m+ ε
q )–n

α

= B
(

λ1 + m –
ε

p
,λ2 +

ε

p

)∑

k

‖k‖–ε–n
α – O(1)

>
1
ε

(
�n( 1

α
)

αn–1�( n
α

)
B
(

λ1 + m –
ε

p
,λ2 +

ε

p

)

– εO(1)
)

.
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We still find that

0 < I1 =
∑

k

‖k‖λ2– ε
q –n

A
(x + ‖k‖α)λ2

∫ ∞

1

O(xm–1)
(x + ‖k‖α)λ1+m dx

≤
∑

k

‖k‖λ2– ε
q –n

A

‖k‖λ2
α

∫ ∞

1

O(xm–1)
xλ1+m dx ≤ M1 < ∞.

Hence, by (21) and the above results, we have the following inequality

�n( 1
α

)
αn–1�( n

α
)
B
(

λ1 + m –
ε

p
,λ2 +

ε

p

)

– εO(1) – εI1

< εĨ < εMJ̃ ≤ M
m–1∏

i=0

(

λ1 + i –
ε

p

)( 2ε�n( 1
α

)
αn–1�( n

α
)

) 1
q

. (22)

For ε → 0+ in (23), in view of the continuity of the beta function, we find

�n( 1
α

)
αn–1�( n

α
)
B(λ1 + m,λ2) ≤ M

m–1∏

i=0

(λ1 + i)
(

�n( 1
α

)
αn–1�( n

α
)

) 1
q

,

namely, ( �n( 1
α )

αn–1�( n
α ) )

1
p [

∏m–1
i=0 (λ + i)]–1B(λ1,λ2) ≤ M. It follows that

M =
(

�n( 1
α

)
αn–1�( n

α
)

) 1
p
[m–1∏

i=0

(λ + i)

]–1

B(λ1,λ2)

is the best possible constant factor of (20).
The theorem is proved. �

Remark 1 For λ̂1 = λ–λ2
p + λ1

q , λ̂2 = λ–λ1
q + λ2

p = λ2 + λ–λ1–λ2
q , we find λ̂1 + λ̂2 = λ,

0 < λ̂1 =
λ – λ2

p
+

λ1

q
<

λ

p
+

λ

q
= λ, 0 < λ̂2 = λ – λ̂1 < λ.

For λ – λ1 – λ2 ≤ q(n – λ2), we still can find λ̂2 ≤ n. In this case, we can rewrite (20) as
follows:

∑

k

∫ ∞

0

f (x)ak

(x + ‖k – ξ‖α)λ+m dx

<
(

�n( 1
α

)
αn–1�( n

α
)

) 1
p
[m–1∏

i=0

(λ + i)

]–1

B(λ̂1, λ̂2)

×
[∫ ∞

0
xp(1–λ̂1)–1(f (m)(x)

)p dx
] 1

p
[∑

k

‖k – ξ‖q(n–λ̂2)–n
α aq

k

] 1
q

. (23)
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Theorem 2 If λ – λ1 – λ2 ≤ q(n – λ2), the constant factor

[m–1∏

i=0

(λ + i)

]–1(
�n( 1

α
)

αn–1�( n
α

)
B(λ2,λ – λ2)

) 1
p

B
1
q (λ1,λ – λ1)

in (19) is the best possible, then we have λ – λ1 – λ2 = 0,λ1 + λ2 = λ.

Proof By Hölder’s inequality (cf. [29]), we obtain

B(λ̂1, λ̂2) =
∫ ∞

0

uλ̂1–1

(1 + u)λ
du =

∫ ∞

0

1
(1 + u)λ

u
λ–λ2

p + λ1
q –1 du

=
∫ ∞

0

1
(1 + u)λ

u
λ–λ2–1

p u
λ1–1

q du ≤
[∫ ∞

0

uλ–λ2–1

(1 + u)λ
du

] 1
p
[∫ ∞

0

uλ1–1

(1 + u)λ
du

] 1
q

= B
1
p (λ2,λ – λ2)B

1
q (λ1,λ – λ1). (24)

In view of the assumption, compare with the constant factors in (19) and (24), we have
the following inequality:

[m–1∏

i=0

(λ + i)

]–1(
�n( 1

α
)

αn–1�( n
α

)

) 1
p

B
1
q (λ1,λ – λ1)

≤
(

�n( 1
α

)
αn–1�( n

α
)

) 1
p
[m–1∏

i=0

(λ + i)

]–1

B(λ̂1, λ̂2),

namely, B(λ̂1, λ̂2) ≥ B
1
p (λ2,λ – λ2)B

1
q (λ1,λ – λ1), which follows that (25) retains the form

of equality. We observe that (25) retains the form of equality if and only if there exist
constants A and B, such that they are not both zero and Auλ–λ2–1 = Buλ1–1 a.e. in R+ (cf.
[30]). Assuming that A 	= 0, we have uλ–λ2–λ1 = B

A a.e.in R+, namely, λ–λ1 –λ2 = 0 and then
λ1 + λ2 = λ.

The theorem is proved. �

4 Equivalent forms and operator expressions
Theorem 3 Inequality (19) is equivalent to the following inequality:

J :=
{∑

k

‖k – ξ‖pλ̂2–n
α

[∫ ∞

0

f (x)
(x + ‖k – ξ‖α)λ+m dx

]p} 1
p

<

[m–1∏

i=0

(λ + i)

]–1(
�n( 1

α
)

αn–1�( n
α

)
B(λ2,λ – λ2)

) 1
p

B
1
q (λ1,λ – λ1)

×
[∫ ∞

0
xp(1–λ̂1)–1(f (m)(x)

)p dx
] 1

p
. (25)

In particular, for λ1 + λ2 = λ, we reduce (26) to the equivalent form of (20) as follows:

{∑

k

‖k – ξ‖pλ2–n
α

[∫ ∞

0

f (x)
(x + ‖k – ξ‖α)λ+m dx

]p} 1
p
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<
(

�n( 1
α

)
αn–1�( n

α
)

) 1
p
[m–1∏

i=0

(λ + i)

]–1

B(λ1,λ2)
[∫ ∞

0
xp(1–λ1)–1(f (m)(x)

)p dx
] 1

p
, (26)

where, the constant factor ( �n( 1
α )

αn–1�( n
α ) )

1
p [

∏m–1
i=0 (λ + i)]–1B(λ1,λ2) is the best possible.

Proof Suppose that (26) is valid. By Hölder’s inequality, we have

I =
∑

k

[

‖k – ξ‖
–n
p +λ̂2

α

∫ ∞

0

f (x)
(x + ‖k – ξ‖α)λ+m dx

]
[‖k – ξ‖

n
p –λ̂2
α ak

]

≤ J
[∑

k

‖k – ξ‖q(n–λ̂2)–n
α aq

k

] 1
q

. (27)

Then by (26), we have (19).
On the other hand, assuming that (19) is valid, we set

ak := ‖k – ξ‖pλ̂2–n
α

[∫ ∞

0

f (x)
(x + ‖k – ξ‖α)λ+m dx

]p–1

, k ∈ Nn.

If J = 0, then (26) is naturally valid; if J = ∞, then it is impossible to make (26) valid,
namely J < ∞. Suppose that 0 < J < ∞. By (19), we have

∑

k

‖k – ξ‖q(n–λ̂2)–n
α aq

k

= Jp = I <

[m–1∏

i=0

(λ + i)

]–1(
�n( 1

α
)

αn–1�( n
α

)
B(λ2,λ – λ2)

) 1
p

B
1
q (λ1,λ – λ1)

×
[∫ ∞

0
xp(1–λ̂1)–1(f (m)(x)

)p dx
] 1

p
[∑

k

‖k – ξ‖q(n–λ̂2)–n
α aq

k

] 1
q

,

[∑

k

‖k – ξ‖q(n–λ̂2)–n
α aq

k

] 1
p

= J <

[m–1∏

i=0

(λ + i)

]–1(
�n( 1

α
)

αn–1�( n
α

)
B(λ2,λ – λ2)

) 1
p

B
1
q (λ1,λ – λ1)

×
[∫ ∞

0
xp(1–λ̂1)–1(f (m)(x)

)p dx
] 1

p
,

namely, (26) follows, which is equivalent to (19).
The constant factor ( �n( 1

α )
αn–1�( n

α ) )
1
p [

∏m–1
i=0 (λ + i)]–1B(λ1,λ2) in (27) is the best possible. Oth-

erwise, by (28) (for λ1 + λ2 = λ), we would reach a contradiction that the constant factor
in (20) is not the best possible.

The theorem is proved. �

We set functions φ(x) := xp(1–λ̂1)–1,ψ(k) := ‖k – ξ‖q(n–λ̂2)–n
α , then,

ψ1–p(k) = (‖k – ξ‖pλ̂2–n
α

(
x ∈ R+, k ∈ Nn).
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Define the following real normed spaces:

Lp,φ(R+) :=
{

f = f (x);‖f ‖p,φ :=
(∫ ∞

0
φ(x)

∣
∣f (x)

∣
∣p dx

) 1
p

< ∞
}

,

lq,ψ :=
{

a = {ak1,...,kn};‖a‖q,ψ :=
(∑

k

ψ(k)|ak|q
) 1

q
< ∞

}

,

lp,ψ1–p :=
{

b = {bk1,...,kn};‖b‖q,ψ :=
(∑

k

ψ1–p(k)|bk|p
) 1

p
< ∞

}

,

and L̃(R+) := {f ∈ Lp,φ(R+); f (x) is a nonnegative differentiable function of m-order, unless
at finite points in R+, f (k–1)(x) = o(etx) (t > 0; x → ∞), f (k–1)(0+) = 0 (k = 1, . . . , m)}.

For any f ∈ L̃(R+), setting bk :=
∫ ∞

0
f (x)

(x+‖k–ξ‖α )λ+m dx, k ∈ Nn, we can rewrite (26) as follows:

‖b‖p,ψ1–p ≤
[m–1∏

i=0

(λ + i)

]–1(
�n( 1

α
)

αn–1�( n
α

)
B(λ2,λ – λ2)

) 1
p

B
1
q (λ1,λ – λ1)

∥
∥f (m)∥∥

p,φ < ∞,

namely, b ∈ lp,ψ1–p .

Definition 1 Define a Hilbert-type operator T : L̃(R+) → lp,ψ1–p as follows: For any f ∈
L̃(R+), there exists a unique representation Tf = b ∈ lp,ψ1–p , satisfying Tf (k) = bk (k ∈ Nn).
Define the formal inner product of Tf and a ∈ lq,ψ , and the norm of T as follows:

(Tf , a) :=
∑

k

ak

[∫ ∞

0

f (x)
(x + ‖k – ξ‖α)λ+m dx

]

= I,

‖T‖ := sup
f ( 	=0)∈Lp,φ (R+)

‖Tf ‖p,ψ1–p

‖f (m)‖p,φ
.

By Theorem 1-3, we have

Theorem 4 If f ∈ L̃(R+), a ∈ lq,ψ ,‖f (m)‖p,φ ,‖a‖q,ψ > 0, then we have the following equiva-
lent inequalities:

(Tf , a) <

[m–1∏

i=0

(λ + i)

]–1(
�n( 1

α
)

αn–1�( n
α

)
B(λ2,λ – λ2)

) 1
p

× B
1
q (λ1,λ – λ1)

∥
∥f (m)∥∥

p,φ‖a‖q,ψ , (28)

‖Tf ‖p,ψ1–p <

[m–1∏

i=0

(λ + i)

]–1(
�n( 1

α
)

αn–1�( n
α

)
B(λ2,λ – λ2)

) 1
p

B
1
q (λ1,λ – λ1)

∥
∥f (m)∥∥

p,φ . (29)

Moreover, if λ1 + λ2 = λ then the constant factor [
∏m–1

i=0 (λ + i)]–1( �n( 1
α )

αn–1�( n
α ) B(λ2,λ –

λ2))
1
p B

1
q (λ1,λ–λ1) in (29) and (30) is the best possible, namely, ‖T‖ = ( �n( 1

α )
αn–1�( n

α ) )
1
p [

∏m–1
i=0 (λ+
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i)]–1B(λ1,λ2). On the other hand, if λ – λ1 – λ2 ≤ q(n – λ2), the constant factor

[m–1∏

i=0

(λ + i)

]–1(
�n( 1

α
)

αn–1�( n
α

)
B(λ2,λ – λ2)

) 1
p

B
1
q (λ1,λ – λ1)

in (29) or (30) is the best possible, then we have λ – λ1 – λ2 = 0, namely, λ1 + λ2 = λ.

Remark 2 (i) For λ = 1,λ1 = 1
q ,λ2 = 1

p in (20) and (27), we have the following equivalent
Hilbert-type inequalities:

∑

k

∫ ∞

0

f (x)ak

(x + ‖k – ξ‖α)1+m dx

<
1

m!

(
�n( 1

α
)

αn–1�( n
α

)

) 1
p π

sin(π/p)

[∫ ∞

0

(
f (m)(x)

)p dx
] 1

p
[∑

k

‖k – ξ‖(q–1)(n–1)
α aq

k

] 1
q

, (30)

{∑

k

|k – ξ‖1–n
α

[∫ ∞

0

f (x)
(x + ‖k – ξ‖α)1+m dx

]p} 1
p

<
1

m!

(
�n( 1

α
)

αn–1�( n
α

)

) 1
p π

sin(π/p)

[∫ ∞

0

(
f (m)(x)

)p dx
] 1

p
; (31)

(ii) for λ = 1,λ1 = 1
p ,λ2 = 1

q in (20) and (27), we have the following equivalent dual forms
of (32) and (33):

∑

k

∫ ∞

0

f (x)ak

(x + ‖k – ξ‖α)1+m dx

<
1

m!

(
�n( 1

α
)

αn–1�( n
α

)

) 1
p π

sin(π/p)

[∫ ∞

0
xp–2(f (m)(x)

)p dx
] 1

p

×
[∑

k

‖k – ξ‖(q–1)n–1
α aq

k

] 1
q

, (32)

{∑

k

‖k – ξ‖p–1–n
α

[∫ ∞

0

f (x)
(x + ‖k – ξ‖α)1+m dx

]p} 1
p

<
1

m!

(
�n( 1

α
)

αn–1�( n
α

)

) 1
p π

sin(π/p)

[∫ ∞

0
xp–2(f (m)(x)

)p dx
] 1

p
; (33)

(iii) for p = q = 2, both (31) and (33) reduce to

∑

k

∫ ∞

0

f (x)ak

(x + ‖k – ξ‖α)1+m dx

<
π

m!

(
�n( 1

α
)

αn–1�( n
α

)

) 1
2
[∫ ∞

0

(
f (m)(x)

)2 dx
∑

k

‖k – ξ‖n–1
α a2

k

] 1
2

, (34)
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and both (32) and (34) reduce to the equivalent form of (35) as follows:

{∑

k

‖k – ξ‖1–n
α

[∫ ∞

0

f (x)
(x + ‖k – ξ‖α)1+m dx

]2} 1
2

<
π

m!

(
�n( 1

α
)

αn–1�( n
α

)

) 1
2
[∫ ∞

0

(
f (m)(x)

)2 dx
] 1

2
, (35)

The constant factors in the above particular inequalities are all the best possible.

Remark 3 For α > 0, we only obtain ∂
yj

hx(y) < 0 (j = 1, . . . , n) in (9). In this case, we can’t
use Hermite–Hadamard’s inequality to obtain (11). But for ξ = 0, we still can obtain (11),
and then the equivalent inequalities (19) and (26) for ξ = 0 with the best possible constant
factor were proved.

5 Conclusions
In this paper, following the way of [22], by means of the weight functions, the idea of
introduced parameters and the transfer formula, a more accurate half-discrete multidi-
mensional Hilbert-type inequality with the homogeneous kernel as 1

(x+‖k–ξ‖α )λ+m (x,λ > 0)
involving one derivative function of m-order and the beta function is given in Theorem 1.
The equivalent conditions of the best possible constant factor related to several param-
eters are considered in Theorem 2. The equivalent forms, the operator expressions and
some particular Hilbert-type inequalities are obtained Theorem 3, Theorem 4 and Re-
mark 2. The lemmas and theorems provide an extensive account of this type of inequali-
ties.
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