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Abstract
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1 Introduction
As can be seen in the literature, retarded differential or integral inequalities play a cru-
cial role in the study of the qualitative behavior of delay differential equations. The first
result in this direction was given in the earlier work of Hanalay [1] (see also [2, pp. 378]),
which is now called Halanay’s inequality. This inequality can be seen as a retarded ver-
sion of the classical Gronwall inequality. Since then, there have appeared various retarded
inequalities, generalizing Halanay’s inequality to different cases; see, e.g., [3–11].

Very recently, Li et al. [6] established a new integral inequality involving finite (bounded)
time delay, which can be seen as a more general extension of the Gronwall–Bellman in-
equality. It allows us to obtain necessary estimates for solutions of retarded differential
equations in the same manner as in the situation of nonretarded equations; see [6, 12].

In applications, many problems from different areas such as sampled-data control, neu-
ral networks, economics, and biology are described by difference equations [13–18]. (The
numerical computation of continuous-time systems also give rise to numerous difference
equations.) As in the case of continuous-time systems, in many cases we have to fall back
on difference inequalities while studying the dynamical behavior of difference equations.
The interested reader is referred to [8, 13, 19, 20] etc., where one can find many nice results
in this area.

In this note, we are basically interested in delay difference inequalities. As far as we know,
the first result concerning this topic was given in Liz [21], which is actually a discretization
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of Hanalay’s inequality. Later, there appeared many such inequalities, most of which were
focused on finite time delay [3, 4, 7, 18, 20–24]. In contrast to that of finite delay, the situa-
tion in the case of unbounded or infinite time delay seems to be much more complicated,
in fact, even if the phase space for dealing with a problem involving infinite delay needs to
be carefully constructed. Inspired by the work in [6], we establish a difference inequality
parallel to the one in [6] in a more general setting of infinite delay, which is one of our
main innovations. As the argument involved in the proof of the corresponding result in
[6] depends heavily on the continuity of the inequality, such an extension is not trivial even
in the special case of finite delay. We also mention that [6] only concerns finite time delay.
Since the inequalities in this present work involve infinite delay, we need to put them into
suitable phase spaces that are different from the usual ones used in [6] and overcome some
new technical difficulties brought about by the delay, although the basic ideas used here
are borrowed directly from [6].

As an application, we consider the asymptotic stability of the zero solution for the non-
linear Volterra difference system

y(n + 1) – y(n) = A(n)y(n) +
n∑

s=–∞
G

(
n, s, y(s)

)
, y(n) ∈R

N , n ∈ Z, (1.1)

where A(n) is an N × N matrix for each n ∈ Z, and G ∈ C(Z×Z×R
N ;RN ). Equation (1.1)

is actually the discretization of the Volterra integrodifferential equation

d
dt

x(t) = A(t)x(t) +
∫ t

–∞
G

(
t, s, x(s)

)
ds.

(This type of equation arise in various fields such as the viscoelasticity theory and the pro-
cesses of biomechanics; see, e.g., [25, 26] and references therein.) In the past two decades,
there have appeared many nice works on the asymptotic behavior of such equations; see
[16, 27–31], etc. In particular, in [31] Ngoc and Hieu studied the asymptotic stability of
difference equations like (1.1) extensively by using the Perron–Frobenius theory and some
comparison principles. Here, we give a new criteria for the asymptotic stability of the null
solution of the equation by applying the delay difference inequality established here, which
is not covered by the general results in [31].

This paper is organized as follows. Section 2 consists of some preliminary work. Specif-
ically, we recall the notions of some suitable Banach spaces introduced in Matsunage and
Murakami [32] and the notion of asymptotic stability. Section 3 is devoted to the main
results mentioned above. In Sect. 4 we discuss the asymptotic stability of the Volterra dif-
ference equation (1.1). A concrete example will also be presented.

2 Preliminaries
This section consists of some preliminary work.

• Notations and notions
Let Z and R denote the sets of integers and real numbers, respectively.
A subset I of Z is called an interval in Z, if there is an interval J ⊂ R such that I =

J ∩Z. Clearly, both the sets Z+ of nonnegative integers and Z
– of non-positive integers are

intervals in Z. For an interval J ⊂R, we denote by JZ the interval J ∩Z in Z.



Chen and Li Journal of Inequalities and Applications         (2023) 2023:78 Page 3 of 16

A mapping y from an interval I in Z to a set X will be referred to as a sequence in X,
usually written as y = y(n) or y = yn (n ∈ I).

Given an interval I in Z, denote by S(I ;RN ) the set of sequences y = y(n) (n ∈ I) taking
values in R

N . If N = 1, we will simply write S(I ;R) = S(I).
Let S0 := S(Z–;RN ).

Definition 2.1 Let I– = (–∞, a]Z, where –∞ < a ≤ ∞. (Here, we identify (–∞, a]Z with
Z if a = ∞.) For each sequence y ∈ S(I–;RN ), define the lift of y in S0 to be the sequence
ŷ = yn (n ∈ I–) given by

yn(k) = y(n + k), k ∈ Z
–.

• Admissible spaces
To deal with problems with infinite delay, we need to introduce the notion of an admis-

sible space.

Definition 2.2 An admissible space B = (B,‖ · ‖) is a Banach space consisting of se-
quences in S0 satisfying the following axiom (see [32]):

(A0) There exists N0 > 0 and K , M ∈ S(Z+;R+) such that if x ∈ S(Z;RN ) and xm ∈B for
some m ∈ Z, then we have xn ∈B for all n ≥ m; furthermore,

N0
∣∣x(n)

∣∣ ≤ ‖xn‖ ≤ K(n – m) sup
k∈[m,n]Z

∣∣x(k)
∣∣ + M(n – m)‖xm‖. (2.1)

As in the continuous case (see Hale and Kato [33, §3]), for an admissible space B, we
also assume that the functions K(n) and M(n) in axiom (A0) satisfy

(A1) there exist constants K∗ and M∗ such that

K(n) ≤ K∗, M(n) ≤ M∗, n ∈ Z
+ (2.2)

and

M(n) → 0 as n → ∞. (2.3)

Remark 2.3 The requirement “if x ∈ S(Z;RN ) and xm ∈ B for some m ∈ Z, then we have
xn ∈ B for all n ≥ m” in axiom (A0) is actually an expression of a fundamental complete-
ness requirement on B: if y ∈B, then the “expansion” ỹ of y by adding in y a finite number
of elements a1, a2, . . . , ak ∈R

N as below belongs to B:

ỹ(n) =

⎧
⎨

⎩
y(n + k), n ≤ –k;

an+k , –k + 1 ≤ n ≤ 0.

In fact, in the definition of B, it is also natural to ask that if y ∈ B, then the sequence
obtained by simply deleting a finite number of elements from y belongs to B. However,
this latter requirement does not seem to be quite necessary in applications, hence, it is
removed.
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By (2.3) we see that if n – m is large enough then the term M(n – m)‖xm‖ in (2.1) can be
very small. Hence, the second inequality in (2.1) indicates that the norm ‖x‖ of a sequence
x ∈ B mainly concentrates on a finite segment of x. In applications, this corresponds to
the principle of fading memory in areas such as continuum mechanics, etc.

• Asymptotic stability
Let B be an admissible space. Given φ ∈B, denote by y(n; m,φ) the solution y = y(n) of

equation (1.1) with initial data ym = φ.
Suppose G(n, s, 0) = 0 for all n ∈ Z and s ≤ n, and hence y(n) ≡ 0 is a trivial solution of

equation (1.1).
The null solution 0 is called stable, if for every m ∈ Z and ε > 0, there is δ > 0 such that

for every solution y = y(n; m,φ) with ‖φ‖ ≤ δ,

‖yn‖ < ε, ∀n ≥ m.

The null solution is said to be globally asymptotically stable (GAS in brief ), if it is stable;
furthermore, for every solution y = y(n; m,φ) of (1.1), we have

‖yn‖ → 0 as n → ∞.

It is said to be globally exponentially asymptotically stable (GEAS in brief ), if for every
m ∈ Z, there exist K ,σ > 0 with σ < 1 such that

‖yn‖ ≤ K‖φ‖σ n–m, ∀n > m

for every solution y = y(n; m,φ).

Remark 2.4 By definition it is obvious that GEAS automatically implies GAS.

Remark 2.5 For a nonautonomous dynamical system, one can actually introduce different
notions to describe the asymptotic behavior of the system, according to different stability
and attracting properties. For instance, if we require the constants K and σ in the defini-
tion of GEAS to be independent of the initial time m ∈ Z, then we give a stronger notion
of asymptotic stability, called the uniform global asymptotic stability.

• Convention
Throughout this paper, we always assign the values of an empty sum and an empty prod-

uct to be 0 and 1, respectively. For instance, if {x(n)}n∈Z is a sequence and n > m, then we
put

m∑

k=n

x(k) = 0,
m∏

k=n

x(k) = 1.

3 A discrete Gronwall–Halanay-type inequality with infinite delay
Denote by S +(Q) the family of nonnegative functions on Q := (Z+)2, and define the fam-
ilies F and G of functions on Q as follows:

F =
{

f ∈ S +(Q) : lim
n→∞ f (n + m, m) = 0 uniformly w.r.t. m ∈ Z

+}
,
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G =

{
g ∈ S +(Q) :

n∑

k=0

g(n, k) < ∞ for all n ∈ Z
+

}
.

For every f ∈ F and g ∈ G , we write

ϑ(f ) := sup
n≥m≥0

f (n, m), κ(g) := sup
n≥m≥0

( n∑

k=m

g(n, k)

)
.

Let (B,‖ · ‖) be an admissible space consisting of sequences in S(Z–), and let

S+
B(Z) :=

{
y ∈ S(Z) : y(n) ≥ 0 for all n ∈ Z, y0 ∈ B

}
.

Given f ∈ F , g ∈ G and ρ ≥ 0, consider the following inequality:

y(n) ≤ f (n, m)‖ym‖ +
n∑

k=m

g(n, k)‖yk‖ + ρ, ∀n ≥ m ≥ 0, (3.1)

where y ∈ S+
B

(Z). For convenience in statement, set

L (f ; g;ρ) =
{

y ∈ S+
B(Z) : y satisfies (3.1)

}
.

Our main result is summarized in the following theorem.

Theorem 3.1 Let K∗ and M∗ be the constants in axiom (A1). Then, the following assertions
hold:

(1) If κ(g)K∗ < 1, then for every y ∈ L (f ; g;ρ),

lim sup
n→∞

‖yn‖ ≤ μρ, where μ =
K∗

1 – κ(g)K∗ . (3.2)

(2) If κ(g)K∗ < 1/(1 + M∗ + ϑ(f )K∗), then there exist B,σ > 0 with σ < 1 such that

‖yn‖ ≤ B‖y0‖σ n + γρ, n ∈ Z
+ (3.3)

for all y ∈ L (f ; g;ρ), where

γ =
1 + μ

1 – κ(g)K∗c
, c = max

{
K∗ϑ(f ) + M∗

1 – κ(g)K∗ , 1
}

. (3.4)

Remark 3.2 Under the hypothesis in assertion (2), one trivially verifies that κ(g)K∗c < 1.
Hence, the constant γ in (3.4) is well defined.

Note also that the definition of μ in (3.2) implies that

K∗(κ(g)μ + 1
)

= μ. (3.5)

Remark 3.3 Theorem 3.1 can be seen as a generalization of the inequalities in [32,
Lemma A.3] and [20, Theorem 3]. We mention that [32, Lemma A.3] only concerns fi-
nite delay, and [20, Theorem 3] focuses on unbounded delay. Note also that our inequality
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given here takes a quite different form from the two in the literature mentioned above. It
is in fact a discrete version of some integral Halanay-type inequalities with infinite delay
in the literature.

To simplify the notation, in what follows we will write

ϑ(f ) = ϑ , κ(g) = κ .

To prove Theorem 3.1, let us first give an estimate for ‖yn‖:

Lemma 3.4 Suppose that κK∗ < 1. Let y ∈ L (f ; g;ρ), then

‖yn‖ ≤ c‖y0‖ + μρ, n ∈ Z
+, (3.6)

where μ and c are the constants defined in (3.2) and (3.4), respectively.

Proof To prove (3.6), it suffices to check that for any ε > 0,

‖yn‖ ≤ c
(‖y0‖ + ε

)
+ μρ, n ∈ Z

+. (3.7)

For clarity, we write Aε := ‖y0‖ + ε. We argue by contradiction and suppose that (3.7)
was false. Then, there would exist 
 ∈ Z with 
 ≥ 1 such that

‖y
‖ > cAε + μρ, (3.8)

‖yn‖ ≤ cAε + μρ, n ∈ [0,
)Z. (3.9)

Combining (2.1), (3.1), and (3.9) we derive that

‖y
‖ ≤ K(
) sup
k∈[0,
]Z

∣∣y(k)
∣∣ + M(
)‖y0‖

≤ K∗ sup
k∈[0,
]Z

{
f (k, 0)‖y0‖ +

k∑

i=0

g(k, i)‖yi‖ + ρ

}
+ M∗‖y0‖

≤ K∗{ϑAε + G(j)(cAε + μρ) + g(
,
)δj
‖y
‖ + ρ
}

+ M∗Aε ,

where

G(j) = max

{
sup

k∈[0,
–1]Z

k∑

i=0

g(k, i),

–1∑

i=0

g(
, i)

}

and j is the nonnegative integer such that the following equality is fulfilled:

G(j) =
j–δj
∑

i=0

g(j, i),

δj
 is the Kronecker symbol, i.e., δ

 = 1 and δj
 = 0 with j 
= 
. Hence,

(
1 – K∗g(
,
)δj


)‖y
‖ ≤ (
K∗ϑ + K∗G(j)c + M∗)Aε + K∗(G(j)μ + 1

)
ρ.
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Noting that 1 – K∗g(
,
)δj
 ≥ 1 – κK∗ > 0, it follows from (3.8) that

(
1 – K∗g(
,
)δj


)
(cAε + μρ)

<
(
1 – K∗g(
,
)δj


)‖y
‖
≤ (

K∗ϑ + K∗G(j)c + M∗)Aε +
(
K∗G(j)μ + K∗)ρ.

(3.10)

Observing that

sup
k∈[0,
]Z

k∑

i=0

g(k, i) = G(j) + g(
,
)δj
,

by (3.10) and the assumption supk∈[0,
]Z
∑k

i=0 g(k, i) ≤ κ , we deduce that

cAε <

(
K∗ϑ + sup

k∈[0,
]Z

k∑

i=0

g(k, i)K∗c + M∗
)

Aε

+

(
sup

k∈[0,
]Z

k∑

i=0

g(k, i)K∗μ + K∗ – μ

)
ρ

≤ (
K∗ϑ + κK∗c + M∗)Aε +

(
κK∗μ + K∗ – μ

)
ρ

= (by (3.5)) =
(
K∗ϑ + κK∗c + M∗)Aε .

(3.11)

Since Aε > 0, (3.11) implies c < (K∗ϑ + M∗)/(1 – κK∗) ≤ c, which is a contradiction. �

Remark 3.5 Let y ∈ L (f ; g;ρ). For 
 ∈ Z
+, if we set ỹ(n) = y(n + 
), and define

f̃ (n, m) = f (n + 
, m + 
), g̃(n, m) = g(n + 
, m + 
)

for n, m ∈ Z
+, then one easily checks that ỹ ∈ L (f ; g;ρ) with

κ(g̃)K∗ ≤ κ(g)K∗ ≤ κK∗ < 1.

Thus, by Lemma 3.4 we see that

‖yn+
‖ ≤ c‖yn‖ + μρ, n,
 ∈ Z
+. (3.12)

Proof of Theorem 3.1. (1) We check the validity of the conclusion in (3.2).
Suppose the contrary. Then, since y is bounded (see Lemma 3.4), we would have

lim sup
n→∞

‖yn‖ = μρ + δ

for some δ > 0. Take a nondecreasing sequence τn ∈ Z
+ with τn → ∞ such that

limn→∞ ‖yτn‖ = μρ + δ.
Let ε > 0 be arbitrary. Take a T > 0 sufficiently large such that

‖yn‖ ≤ μρ + δ + ε, n ≥ T .
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Then, for each τn > T and j ∈ Z
+ sufficiently large, by axiom (A0), we deduce that yτn , yτn+j ∈

B, and

‖yτn+j‖ ≤ K(τn+j – τn) sup
k∈[τn ,τn+j]Z

∣∣y(k)
∣∣ + M(τn+j – τn)‖yτn‖

≤ (by (3.1)) ≤ K∗ sup
k∈[τn ,τn+j]Z

{
f (k, T)‖yT‖ +

k∑

i=T

g(k, i)‖yi‖ + ρ

}

+ M(τn+j – τn)‖yτn‖
≤ K∗

{(
sup

k∈[τn ,τn+j]Z
f (k, T) + κ

)
(μρ + δ + ε) + ρ

}
+ M(τn+j – τn)‖yτn‖.

Setting j → ∞ in the above inequality, it follows from (2.3) that

μρ + δ ≤ K∗
{(

sup
k∈[τn ,∞)Z

f (k, T) + κ
)

(μρ + δ + ε) + ρ
}

.

Since f ∈ F and therefore supk∈[τn ,∞)Z f (k, T) → 0 as τn → ∞, setting n → ∞ in the above
inequality this yields

μρ + δ ≤ K∗(κ(μρ + δ + ε) + ρ
)
.

As ε is arbitrary, we finally obtain that

μρ + δ ≤ K∗(κμ + 1)ρ + K∗κδ.

This and (3.5) imply that δ ≤ κK∗δ, i.e., κK∗ ≥ 1, which leads to a contradiction and com-
pletes the proof of (3.2).

(2) Now, we assume that κK∗ < 1/(1 + M∗ + K∗ϑ). To derive the exponential decay esti-
mate in (3.3), let us first prove a temporary result:

There exists a positive number σ < 1 and an integer N > 0 such that if ‖y0‖ ≤ C + γρ

with C > 0, then

‖yn‖ ≤ Cσ n + γρ, n ≥ N . (3.13)

For this purpose, we take a real number λ as

λ =
1 + (2r – 1)κK∗c

2r
, r = [μ] + 2, (3.14)

where μ is the number given in (3.2). (Here and below [p] denotes the integer part of a
real number p.) By Remark 3.2, it is easy to see that λ < 1. Define

η = min
{

m ∈ [1,∞)Z : ‖yn‖ ≤ λC + γρ for all n ≥ m + 1
}

. (3.15)

Since γ > μ (see (3.4)) and C > 0, by (3.2) it is clear that η < ∞. Therefore, we necessarily
have

‖yη‖ > λC + γρ. (3.16)
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In what follows let us give an estimate for the upper bound of η.
By (2.3), there exists a positive integer n0 such that

M(n)c <
1 – κK∗c

4r
, M(n)μ <

1
4

, n ≥ n0. (3.17)

As f ∈ F , we can also take a number n1 ∈ [0,∞)Z with n0 < n1 such that

f (m + n, m) < min

{
1

2K∗γ
,

1 – κK∗c
4rK∗

}
, ∀n ≥ n1, m ∈ Z

+. (3.18)

Let τ = [η/2], and set

b(η) := sup
k∈[τ ,η]Z

f (k, 0).

In what follows we show that

τ ≤ n1.

It then follows that

η ≤ 2(n1 + 1),

which is precisely what we desired.
We argue by contradiction and suppose τ > n1. Then, by (3.18) it can be easily seen that

b(η) < min

{
1

2K∗γ
,

1 – κK∗c
4rK∗

}
. (3.19)

On the other hand, by (2.1) we have

‖yη‖ ≤ K(η – τ ) sup
k∈[τ ,η]Z

∣∣y(k)
∣∣ + M(η – τ )‖yτ‖

≤ (by (3.1)) ≤ K∗ sup
k∈[τ ,η]Z

{
f (k, 0)‖y0‖ +

k∑

i=0

g(k, i)‖yi‖ + ρ

}

+ M(η – τ )‖yτ‖
≤ (by (3.12)) ≤ K∗{b(η)‖y0‖ + κ

(
c‖y0‖ + μρ

)
+ ρ

}
+ M(η – τ )‖yτ‖

≤ (
K∗b(η) + κK∗c

)‖y0‖ + K∗(κμ + 1)ρ + M(η – τ )
(
c‖y0‖ + μρ

)

≤ (by (3.5)) ≤ (
K∗b(η) + κK∗c

)‖y0‖ + μρ + M(η – τ )
(
c‖y0‖ + μρ

)
.

Noting that η – τ ≥ τ > n1 > n0, it follows from (3.17) that

‖yη‖ ≤
(

K∗b(η) + κK∗c +
1 – κK∗c

4r

)
‖y0‖ +

(
μ +

1
4

)
ρ.
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Since ‖y0‖ ≤ C + γρ , we infer from the above estimate that

‖yη‖ ≤
(

K∗b(η) + κK∗c +
1 – κK∗c

4r

)
C

+
(

K∗b(η)γ + κK∗cγ +
(1 – κK∗c)γ

4r
+ μ +

1
4

)
ρ.

(3.20)

By the definitions of γ and r (see (3.4) and (3.14)) one easily verifies that

(1 – κK∗c)γ
4r

=
1 + μ

4r
<

1
4

.

Therefore, by (3.16) and (3.20), we deduce that

λC + γρ < ‖yη‖ ≤
(

K∗b(η) + κK∗c +
1 – κK∗c

4r

)
C

+
(

K∗b(η)γ + κK∗cγ + μ +
1
2

)
ρ.

(3.21)

The definition of γ and (3.19) also imply that

γ = 1 + κK∗cγ + μ > K∗b(η)γ + κK∗cγ + μ +
1
2

,

by which we find that the second term in the right-hand side in (3.21) is less than γρ .
Combining this with (3.21) yields

λC <
(

K∗b(η) + κK∗c +
1 – κK∗c

4r

)
C.

Hence,

b(η) >
4r(λ – κK∗c) – (1 – κK∗c)

4rK∗ =
1 – κK∗c

4rK∗ ,

which contradicts (3.19).
By the definition of η in (3.15), we have proved that if ‖y0‖ ≤ C + γρ then

‖yn‖ ≤ λC + γρ, ∀n ≥ η + 1 =: N .

Note that the constants λ, γ , and η are independent of C.
Define

ỹ(n) = y(n + N), n ∈ Z.

Then, ỹ satisfies a similar inequality as y does. Since ‖ỹ0‖ ≤ λC + γρ , the same argument
as above applies to show that

‖ỹn‖ ≤ λ(λC) + γρ, ∀n ≥ N ,
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i.e.,

‖yn‖ ≤ λ2C + γρ, ∀n ≥ 2N .

Repeating the above procedure we finally obtain that

‖yn‖ ≤ λkC + γρ, n ≥ kN , k = 1, 2, · · · . (3.22)

Setting σ = exp{lnλ/(2N)}, one has

λk ≤ σ n, n ∈ [
kN , (k + 1)N

]
Z

, k = 1, 2, · · · .

The estimate (3.13) then follows from (3.22).
We are now in a position to accomplish the proof of the theorem.
Note that (3.12) implies that if ‖y0‖ = 0, then

‖yn‖ ≤ μρ ≤ γρ, n ∈ Z
+,

and therefore the conclusion trivially holds true. Thus, we assume ‖y0‖ > 0.
Take C = ‖y0‖. Clearly ‖y0‖ = C ≤ C + γρ . Therefore, by (3.13) we have

‖yn‖ ≤ ‖y0‖σ n + γρ, n ∈ [N ,∞)Z. (3.23)

On the other hand, by (3.6) we deduce that

‖yn‖ ≤ c‖y0‖ + μρ ≤ c‖y0‖ + γρ, n ∈ [0, N]Z.

Set B = cσ –N . Then,

‖yn‖ ≤ c‖y0‖ + γρ ≤ Bσ n‖y0‖ + γρ, n ∈ [0, N]Z.

Combining this with (3.23) we immediately arrive at the estimate (3.3). �

4 Asymptotic stability of nonautonomous difference equations with infinite
delay

As an application for Theorem 3.1, we now consider the asymptotic stability of the null
solution of system (1.1). Assume that the mapping G in (1.1) satisfies the following hy-
potheses:

(G1) There is a mapping c : Z×Z →R
+ such that

∣∣G(n, s, y)
∣∣ ≤ c(n, s)|y|, (n, s, y) ∈ Z×Z×R

N , s ≤ n. (4.1)

(G2) There is p > 0 such that

β(n) :=
n∑

s=–∞
c(n, s)ep(n–s) < ∞, ∀n ∈ Z.
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Note that (4.1) implies G(n, s, 0) = 0 for all n, s ∈ Z, s ≤ n, hence y(n) ≡ 0 is a solution of
(1.1).

Define

B
p :=

{
φ ∈ S

(
Z

–;RN)
: ‖φ‖ := sup

k∈Z–

(∣∣φ(k)
∣∣epk) < ∞

}
.

It is easy to check that (Bp,‖ · ‖) is an admissible phase space for equation (1.1) with the
corresponding constants in axioms (A0) and (A1) to be taken as

N0 = K∗ = M∗ = 1, M(n) = e–pn.

(In what follows we will also use the notation ‖ ·‖ to denote the operator norm of a matrix,
hoping that this will cause no confusion.)

Given m ∈ Z, denote by y(n; m,φ) the solution y = y(n) of equation (1.1) with initial value
ym = φ ∈Bp. Write

E(n, m) :=
n–1∏

k=m

∥∥I + A(k)
∥∥, n, m ∈ Z,

where I denotes the identity matrix. (By the convention in Sect. 2, if n – 1 < m then we
assign E(n, m) = 1.) Set

ϑ = sup
n≥m

E(n, m), κ = sup
n≥m

( n∑

k=m

E(n, k + 1)β(k)

)
.

Theorem 4.1 Suppose that ‖I + A(n)‖ 
= 0 for all n ∈ Z, and that

E(m + n, m) → 0 as n → +∞ uniformly with respect to m ∈ Z.

(1) If κ < 1, then the null solution 0 of equation (1.1) is GAS.
(2) If κ < 1/(2 + ϑ), then it is GEAS.

Proof We first show that for any solution y = y(n, m;φ) of equation (1.1),

‖yn‖ ≤ c‖φ‖, n ≥ m, (4.2)

where c > 0 is a constant that is defined as in (3.4) and is therefore independent of m ∈ Z.
Hence, the zero solution is stable.

For simplicity, we may put m = 0. Solving (1.1) by variation of constants formula for
difference equations (see, e.g., [13, §2.5.]) we find that

y(n) =
n–1∏

k=τ

(
I + A(k)

)
y(τ ) +

n–1∑

k=τ

n–1∏

j=k+1

(
I + A(j)

)
h(k, yk), n ≥ τ ≥ 0,
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where h(n, yn) =
∑n

s=–∞ G(n, s, y(s)). By (G1) and (G2) we have

∣∣h(n, yn)
∣∣ ≤

n∑

s=–∞
c(n, s)

∣∣y(s)
∣∣

≤
n∑

s=–∞

(
c(n, s)ep(n–s))(e–p(n–s)∣∣y(s)

∣∣)

=
n∑

s=–∞

(
c(n, s)ep(n–s))(e–p(n–s)∣∣yn(s – n)

∣∣)

≤
n∑

s=–∞

(
c(n, s)ep(n–s))‖yn‖ = β(n)‖yn‖.

Making use of the property of the norm ‖·‖ of Bp as stated in (2.1) and the above estimate,
we easily derive that

∣∣y(n)
∣∣ ≤ E(n, τ )‖yτ‖ +

n–1∑

k=τ

E(n, k + 1)β(k)‖yk‖, ∀n ≥ τ ≥ 0. (4.3)

Since κ < 1, by Lemma 3.4 one immediately concludes the validity of (4.2).
To prove assertion (1), it remains to check that for any solution y = y(n, m;φ) of equation

(1.1),

y(n) → 0 as n → +∞. (4.4)

As above, once again we can put m = 0. Then, y satisfies the inequality (4.3). The asymp-
totic property in (4.4) then directly follows from Theorem 3.1(1).

Assertion (2) can be obtained by making use of the inequality in (4.3) and applying The-
orem 3.1(2). We omit the details. �

Remark 4.2 The global exponential stability of the null solution for difference equations
like (1.1) was extensively studied in Ngoc and Hieu [31] by using the Perron–Frobenius
theory. We mention that our result and method here are different from those in [31] in
some aspects.

Example 4.3 Consider the difference equation:

�y(n) = –
(

sin
2πn

3

)
y(n) +

n∑

s=–∞

1
3n–s g

(
y(s)

)
, (4.5)

where �y(n) = y(n + 1) – y(n), g is a globally Lipschitz continuous function with Lipschitz
constant L and g(0) = 0.

We observe that G(n, s, y) = 1
3n–s g(y) satisfies (G1) and (G2) with p = ln 2 and β(n) ≡ 3L.

Since sin 2πn
3 is a periodic function with period 3, for each k ∈ Z

+, we have

E(m + 3k + 1, m) :=
m+3k∏

j=m

∣∣∣∣1 – sin
2π j

3

∣∣∣∣
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=
(

1 – sin
2πm

3

)(
1
4

)k

≤
(

1 +
√

3
2

)(
1
4

)k

.

Thus, E(m + n, m) → 0 as n → +∞ uniformly with respect to m ∈ Z. It is also easy to check
that ϑ = 1 +

√
3

2 , and

κ = 3L sup
n≥m≥0

( n–1∑

k=m

E(n – 1, k + 1)

)
≤ (12 + 2

√
3)L.

According to Theorem 4.1, we deduce the following results.

Proposition 4.4 If L < 1/(12 + 2
√

3)≈ 0.064665, then the null solution of equation (4.5) is
GAS in Bln 2; and if L < 1/(39 + 12

√
3)≈ 0.016726, then it is GEAS in Bln 2.

We now give the numerical simulation of equation (4.5) via Matlab to verify the correct-
ness of our results. For simplicity, we assume that g(x) = Lx and

y(n) = 1, ∀n ∈ Z
–.

Thus, y0 ∈Bln 2. Indeed,

‖y0‖ := sup
k∈Z–

(∣∣y(k)
∣∣e(ln 2)k) = sup

k∈Z–
2k = 1 < ∞.

Taking L = 0.0645 and L = 0.0165, our PC produces Fig. 1 and Fig. 2 as follows.

Remark 4.5 We remark that the global exponential stability of the null solution of equation
(4.5) can not be derived by applying [31, Theorem 3.2 or Corollary 3.5]. Indeed, if we take

Figure 1 L = 0.0645
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Figure 2 L = 0.0165

n = 3k – 1 (k = 0, 1, · · · ) in this example, then

1 –
(

sin
2π (3k – 1)

3

)
= 1 +

√
3

2
> 1,

which indicates that the conditions required in [31, Theorem 3.2 or Corollary 3.5] are not
satisfied.
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