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Abstract
We study Orlicz sequence algebras and their properties. In particular, we fully
characterize biflat and biprojective Orlicz sequence algebras as well as weakly
amenable and approximately (semi-)amenable Orlicz sequence algebras. As a
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algebras �p, 1≤ p ≤ ∞.
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1 Introduction
The aim of this note is to study Orlicz sequence spaces �ϕ and hϕ as Banach algebras. Recall
that an Orlicz function space Lϕ(X) is a Banach algebra with respect to pointwise multipli-
cation if and only if bϕ < ∞ (the definition of the number bϕ is provided at the beginning
of Sect. 2) or X is at most a countable union of atoms—see [7, Theorem B]. Consequently,
Orlicz sequence spaces are always Banach algebras with respect to pointwise multiplica-
tion. On the other hand, if G is a locally compact group then Lϕ(G) is a Banach algebra
if and only if Lϕ(G) embeds continuously into L1(G)—see [8, Theorem 2]. The situation
changes substantially—see, e.g., [22, 25]—if one considers weighted Orlicz spaces Lϕ

w(G),
where by a weight we mean a measurable function w : G → (0,∞) satisfying

w(st) ≤ w(s)w(t) (s, t ∈ G).

One can also consider the so-called twisted Orlicz algebras, which are Orlicz spaces
Lϕ(G) with multiplication arising from a specific 2-cocycle—see [23, 24] for details. Their
weighted variants are also considered. In this note, we focus entirely on Orlicz sequence
algebras �ϕ and hϕ .

The paper is organized as follows. Section 2 gives some preliminaries and notation. Sec-
tion 3 contains a list of auxiliary but very useful results. The final section presents the main
results of the paper. It emphasizes in particular the power of the �2(0) condition.
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For unexplained details from Banach algebra theory we refer the reader to [3, 27] and
from Orlicz space theory to [12–16, 18, 20, 26].

2 Notation and preliminaries
In the whole paper ϕ denotes an Orlicz function (see [12, 16, 18, 20, 26]), that is,
ϕ : [0,∞) → [0,∞] and ϕ is convex, vanishing, and right continuous at zero, not iden-
tically equal to zero and left continuous on the interval (0,∞). By the convexity of ϕ, it is
nondecreasing on [0,∞). Let

aϕ := sup
{

u ≥ 0 : ϕ(u) = 0
}

,

bϕ := sup
{

u ≥ 0 : ϕ(u) < ∞}
.

Note that the left continuity of ϕ on (0,∞) is equivalent to the fact that

lim
u→(bϕ )–

ϕ(u) = ϕ(bϕ).

Recall that an Orlicz function ϕ is an N-function at 0 if aϕ = 0 and limu→0
ϕ(u)

u = 0.
The generalized inverse ϕ–1 of the Orlicz function ϕ is defined as follows:

ϕ–1(v) := inf
{

u ≥ 0 : ϕ(u) > v
}

if v ∈ [0,∞) and

ϕ–1(∞) = lim
v→∞ϕ–1(v)

(see [21] and [11]).
We say that an Orlicz function ϕ satisfies the condition �2(0) (in short, ϕ ∈ �2(0)) if

there exist u0 > 0 and a constant K > 0 such that ϕ(u0) > 0 and ϕ(2u) ≤ Kϕ(u) for every
u ≤ u0 (then we also have aϕ = 0).

Given any Orlicz function ϕ, we define its complementary function in the sense of Young
by the formula

ψ(u) := sup
v>0

{
uv – ϕ(v)

}
(1)

for all u ≥ 0. It is easy to show that ψ is also an Orlicz function and ϕ is complementary
to ψ (see [16, p. 147]).

For any Orlicz function ϕ we define Orlicz sequence spaces �ϕ by

�ϕ :=

{

x =
(
x(i)

)
i∈N ∈ K

N :
∞∑

i=1

ϕ
(
λ
∣∣x(i)

∣∣) < ∞ for some λ > 0

}

,

where K is either R or C. It is well known that the space �ϕ equipped with the Luxemburg
norm ‖ · ‖ϕ , defined by

‖x‖ϕ := inf

{

λ > 0:
∞∑

i=1

ϕ
(
λ–1∣∣x(i)

∣∣) ≤ 1

}

,
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is a Banach space. Moreover, as has been shown in [7], it is also a Banach algebra.
Recall that the subspace hϕ of the space �ϕ is defined by the formula

hϕ :=

{

x ∈ �ϕ | ∀λ > 0 ∃i0 ∈N :
∞∑

i=i0

ϕ
(
λ
∣∣x(i)

∣∣) < ∞
}

.

Let E ⊂K
N be a Banach lattice. An element x ∈ E is said to be order continuous if for any

sequence (xn) in E with 0 ≤ xn ≤ |x| and xn → 0 coordinatewise one obtains ‖xn‖E → 0.
The subspace Ea of all order-continuous elements in E is an order ideal in E. The space E
is called order continuous if Ea = E, see [17]. It is well known that hϕ = (�ϕ)a. Hence, the
standard unit vectors en := (δjn)j∈N, n ∈ N constitute a Schauder basis in hϕ (see also [16,
Proposition 4.a.2]). The sequence (e∗

n)n∈N of evaluation functionals is defined as

〈
x, e∗

n
〉

:= x(n) (x ∈ �ϕ , n ∈ N).

It is easy to show that if aϕ > 0, then �ϕ = �∞ (hϕ = c0) as sets and the norms ‖ · ‖ϕ and
‖ · ‖∞ are equivalent. On the other hand, if aϕ = 0, then �ϕ ↪→ c0. Moreover, in this case
�ϕ = hϕ if and only if ϕ ∈ �2(0) (see [16, Proposition 4.a.4]). Recall that if ϕ vanishes only
at zero but is not an N-function at 0, then �ϕ = �1 as sets and the norms ‖ · ‖ϕ and ‖ · ‖1

are equivalent (see [16, p. 147]). On the other hand, there exist N-functions at 0 such that
�ϕ is not isomorphic to any �p, 1 ≤ p ≤ ∞. Obviously, we have this situation whenever
ϕ /∈ �2(0), because then hϕ is a proper subspace of �ϕ . A more sophisticated construction
is provided in [14, Theorem 3].

We end this section by recalling a number of well-known ideas. If X is a Banach space
then by ι : X ↪→ X ′′ we denote the canonical embedding into the second dual. If A is a
Banach algebra then the product map πA : A⊗̂A → A is the unique linear mapping arising
from the bilinear map A × A � (a, b) �→ ab ∈ A. We will simply write π when there is no
risk of confusion. If, furthermore, X is a Banach A-bimodule then X ′ becomes the so-called
dual A-bimodule with the bimodule operations defined as

〈x, a · λ〉 := 〈x · a,λ〉 and 〈x,λ · a〉 := 〈a · x,λ〉 (
a ∈ A, x ∈ X,λ ∈ X ′). (2)

A projective tensor product X⊗̂X becomes canonically an A-bimodule with the bimod-
ule operations defined as

a · (x ⊗ y) := a · x ⊗ y, (x ⊗ y) · a := x ⊗ y · a (a ∈ A, x, y ∈ X).

A bounded linear map T : X → Y between A-bimodules X and Y is a bimodule map if

T(a · x · b) = a · Tx · b (a, b ∈ A, x ∈ X).

If A is a Banach algebra and X is a Banach A-bimodule then a linear (not necessarily
bounded) mapping δ : A → X is called a derivation if it satisfies the so-called “derivation
rule”, i.e.,

δ(ab) = a · δ(b) + δ(a) · b (a, b ∈ A).
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A derivation δ : A → X is inner if there is some x ∈ X such that

δ(a) = adx(a) := a · x – x · a (a ∈ A).

A Banach algebra A is said to be amenable if for any Banach A-bimodule X every contin-
uous derivation δ : A → X ′ into the dual A-bimodule X ′ (see (2)) is inner.

3 Auxiliary results
Recall that if A is a Banach algebra then we denote A2 := span{ab : a, b ∈ A} and A2 is the
norm closure of A2.

Proposition 3.1 If ϕ is an Orlicz function and aϕ = 0, then (�ϕ)2 = hϕ .

Proof Clearly, en = en · en ∈ (�ϕ)2, thus
∑j

i=1 x(i)ei ∈ (�ϕ)2 for any x ∈ hϕ and any j ∈N and,
in consequence, hϕ ⊂ (�ϕ)2.

Conversely, let x, y ∈ �ϕ and let μ > 0 satisfy ‖y‖ϕ < μ. Since �ϕ ⊂ c0, for an arbitrary
λ > 0 there exists i0 ∈N such that

λ
∣∣x(i)

∣∣ ≤ μ–1 for any i ≥ i0.

Hence,

∞∑

i=i0

ϕ
(
λ
∣∣x(i)y(i)

∣∣) ≤
∞∑

i=i0

ϕ
(
μ–1∣∣y(i)

∣∣) ≤ 1 < ∞.

Consequently, (�ϕ)2 ⊂ hϕ . �

Theorem 3.2 If ϕ is an Orlicz function and aϕ = 0 then the Orlicz sequence algebras �ϕ

and hϕ are not closed with respect to taking square roots.

Proof Let u1 ≤ 10–2 satisfy ϕ(u1) ≤ 1
2 and let k1 ∈N be the largest number such that

1
4

< k1ϕ(u1) ≤ 1
2

.

Let u2 ≤ min{u1, 10–4} satisfy ϕ(2u2) ≤ 1
4 and let k2 ∈N be the largest number such that

1
8

< k2ϕ(2u2) ≤ 1
4

.

Proceeding recursively, we obtain two sequences (un)n∈N ⊂ (0,∞) and (kn)n∈N ⊂ N such
that

un ≤ min
{

un–1, 10–2n},
1

2n+1 < knϕ(nun) ≤ 1
2n (n ∈N).

Let l0 = 0, ln =
∑n

m=1 km and

x :=
∞∑

n=1

ln∑

i=ln–1+1

unei.
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We will show that x ∈ hϕ and
√

x /∈ �ϕ . To this end, let λ > 0 be fixed and let n0 be the
smallest natural number such that λ ≤ n0. Then,

∞∑

i=ln0–1+1

ϕ
(
λx(i)

) ≤
∞∑

n=n0

ln∑

i=ln–1+1

ϕ(nun)

≤
∞∑

n=n0

knϕ(nun) ≤
∞∑

n=n0

1
2n ≤ 1 < ∞.

Consequently, x ∈ hϕ . To obtain the other claim we again fix λ > 0 and choose n0 ∈N such
that λ > n

5n for every n ≥ n0. Then,

ϕ(λ
√

un) ≥ ϕ

(
n
5n

un√un

)
≥ ϕ

(
2nnun

) ≥ 2nϕ(nun),

where the last inequality follows from convexity of ϕ. Thus,

∞∑

i=1

ϕ
(
λ
√

x(i)
)

=
∞∑

n=1

ln∑

i=ln–1+1

ϕ(λ
√

un) ≥
∞∑

n=n0

2nknϕ(nun) ≥
∞∑

n=n0

1
2

= ∞.

Consequently,
√

x /∈ �ϕ . �

Remark 3.3 From [27, Proposition 2.2.1] and [3, Corollary 2.9.25] it follows that if aϕ = 0
then neither �ϕ nor hϕ is amenable.

Recall that a Banach algebra A factors weakly if A2 = A as sets.

Corollary 3.4 If ϕ is an Orlicz function and aϕ = 0, then the Orlicz sequence algebras �ϕ

and hϕ do not factor weakly.

Proof Let x ∈ hϕ be such that
√

x /∈ �ϕ . Assume towards a contradiction that x ∈ (�ϕ)2, i.e.,

x =
n∑

k=1

akbk (ak , bk ∈ �ϕ).

Then,

∀i ∈N ∃k = 1, . . . , n :
∣∣ak(i)bk(i)

∣∣ ≥ 1
n
∣∣x(i)

∣∣.

We can therefore decompose N into a finite disjoint union N =
⋃n

k=1 Nk and

∀k = 1, . . . , n ∀i ∈ Nk :
∣∣ak(i)bk(i)

∣∣ ≥ 1
n
∣∣x(i)

∣∣.

This implies

∀k = 1, . . . , n ∀i ∈ Nk :
∣∣x(i)

∣∣
1
2 ≤ √

n max
{∣∣ak(i)

∣∣,
∣∣bk(i)

∣∣} ≤ √
n
(∣∣ak(i)

∣∣ +
∣∣bk(i)

∣∣).
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Let

λ := 2
√

n max
{‖ak‖ϕ ,‖bk‖ϕ : k = 1, . . . , n

}
.

Using the convexity of ϕ we obtain

∞∑

i=1

ϕ
(
λ–1∣∣x(i)

∣∣1/2) =
n∑

k=1

∑

i∈Nk

ϕ
(
λ–1∣∣x(i)

∣∣1/2)

≤
n∑

k=1

∑

i∈Nk

ϕ

( |ak(i)|
2‖ak‖ϕ

+
|bk(i)|
2‖bk‖ϕ

)

≤ 1
2

n∑

k=1

∑

i∈Nk

(
ϕ
(‖ak‖–1

ϕ

∣∣ak(i)
∣∣) + ϕ

(‖bk‖–1
ϕ

∣∣bk(i)
∣∣))

≤ 1
2

n∑

k=1

∞∑

i=1

(
ϕ
(‖ak‖–1

ϕ

∣∣ak(i)
∣∣) + ϕ

(‖bk‖–1
ϕ

∣∣bk(i)
∣∣)) ≤ n < ∞.

Consequently,
√

x ∈ �ϕ , which contradicts the choice of x. �

We are now going to focus on Arens regularity. Recall that if A is a Banach algebra then
A′′ can be made into a Banach algebra in two canonical ways. These are the so-called
Arens products and they are defined as follows. Let �,� ∈ A′′ be given. Then, the first
Arens product is defined as

〈λ,���〉 := 〈� · λ,�〉 (
λ ∈ A′),

where

〈a,� · λ〉 := 〈λ · a,�〉 (a ∈ A)

and

〈b,λ · a〉 := 〈ab,λ〉 (b ∈ A).

The second Arens product is defined as

〈λ,� � �〉 := 〈λ · �,�〉 (
λ ∈ A′),

where

〈a,λ · �〉 := 〈a · λ,�〉 (a ∈ A)

and

〈b, a · λ〉 := 〈ba,λ〉 (b ∈ A).

A Banach algebra A is called Arens regular if ��� = � � � for all �,� ∈ A′′.
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Proposition 3.5 Orlicz sequence algebras �ϕ and hϕ are Arens regular.

Proof If aϕ > 0 then �ϕ = �∞ (equivalent norms) and �∞, being a unital C∗-algebra, is Arens
regular by [2, Theorem 7.1] (cf. [3, Theorem 3.2.36]). From now on we restrict ourselves
to the case where aϕ = 0. Assume for a moment that a ∈ �ϕ and θ ∈ �′

ϕ are given so that
a · θ ∈ �′

ϕ . From [26, Proposition 2] it follows that

�′
ϕ = �ψ ⊕ h⊥

ϕ ,

where ψ denotes the complementary function to ϕ (see formula (1)). Therefore, there
exists a unique decomposition

θ = (y, f ), y ∈ �ψ , f ∈ h⊥
ϕ .

Thus,

〈x, a · θ〉 = 〈xa, y〉 + 〈xa, f 〉 (x ∈ �ϕ).

From Proposition 3.1 it now follows that xa ∈ hϕ , whence

〈xa, f 〉 = 0

and, consequently,

〈x, a · θ〉 = 〈x, ay〉 (x ∈ �ϕ).

Since ay ∈ hψ (again the argument from the proof of Proposition 3.1 applies), we may
assume without loss of generality that

∀a ∈ �ϕ , θ ∈ �′
ϕ : a · θ ∈ ι(hψ ).

We now proceed with the proof of Arens regularity. Since h′
ψ = �ϕ (see [16, Proposi-

tion 4.b.1], recall that ϕ is the complementary function of ψ ) we may apply the Dixmier
projection to obtain the decomposition

�′′
ϕ = �ϕ ⊕ ι(hψ )⊥.

Let (a, F), (b, G) ∈ �′′
ϕ with a, b ∈ �ϕ , F , G ∈ ι(hψ )⊥ be given. For any θ ∈ �′

ϕ we obtain

〈
θ , (a, F)�(b, G)

〉
= 〈a, b · θ〉 + 〈a, G · θ〉 + 〈b · θ , F〉 + 〈G · θ , F〉.

By the choice of the elements involved we obtain

〈a, G · θ〉 = 〈θ · a, G〉 = 0, 〈b · θ , F〉 = 0, 〈G · θ , F〉 = 0.

Therefore,

〈
θ , (a, F)�(b, G)

〉
= 〈ab, θ〉,
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whence

(a, F)�(b, G) = (ab, 0).

Similarly, we show that

(a, F) � (b, G) = (ab, 0). �

Recall that a character space �A of a Banach algebra A is a set of nonzero multiplicative
functionals on A.

Proposition 3.6 Let ϕ be an Orlicz function and aϕ = 0. Then,

��ϕ = �hϕ =
{

e∗
n : n ∈N

}
.

Proof Let f ∈ �′
ϕ be a multiplicative functional. We have

f (en) = f
(
e2

n
)

= f (en)2 (n ∈ N)

therefore,

f (en) = 0 or f (en) = 1 (n ∈N).

If f (en) = 0 for all n ∈N then f ∈ h⊥
ϕ . This implies

f (x)2 = f
(
x2) = 0 (x ∈ �ϕ)

since x2 ∈ hϕ , see Proposition 3.1. Thus, f = 0. If f (en) = f (em) = 1 for some n �= m, then

0 = f (enem) = f (en)f (em) = 1,

a contradiction. Consequently, the only nonzero multiplicative functionals are the evalu-
ation ones. �

Let A be a Banach algebra and let λ ∈ �A ∪ {0}. A Banach A-bimodule X is called left
λ-linked, resp. right λ-linked, if

a · x = 〈a,λ〉x (a ∈ A, x ∈ X),

resp.

x · a = 〈a,λ〉x (a ∈ A, x ∈ X).

A is said to be left λ-amenable, resp. right λ-amenable, if for any left λ-linked, resp. right λ-
linked, Banach A-bimodule X every continuous derivation δ : A → X ′ is inner. A is said to
be λ-amenable if it is both left and right λ-amenable. A is said to be left character amenable,
resp. right character amenable, if it is left λ-amenable, resp. right λ-amenable, for every λ ∈
�A ∪{0}. A more detailed account on character amenability can be found in [27, Sect. 4.3].
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Remark 3.7 Let ϕ be an Orlicz function such that aϕ = 0 and let A ∈ {�ϕ , hϕ}. From Propo-
sition 3.6 and [10, Theorem 1.1] (cf. [27, Theorem 4.3.5]) it follows that A is λ-amenable
for every λ ∈ �A. From [27, Theorem 4.3.4] it follows that A is never 0-amenable. Conse-
quently, A is never character amenable.

4 Main results
Before proceeding with the main results we recall the following well-known facts from
the theory of Orlicz functions. Let ϕ be an Orlicz function such that aϕ = 0 and let �ϕ

be the Orlicz sequence space. Obviously, ϕ is continuous and increasing on the interval
[0, bϕ). Consequently, ϕ–1 is continuous and increasing on the interval [0,ϕ(bϕ)). Thus,
ϕ–1(ϕ(u)) = u for all u ∈ [0, bϕ) and ϕ(ϕ–1(v)) = v for all v ∈ [0,ϕ(bϕ)). Then, a straightfor-
ward computation shows that

∃k ∈N ∀n ≥ k :

∥∥∥∥∥

n∑

j=1

ej

∥∥∥∥∥
ϕ

=
1

ϕ–1( 1
n )

. (3)

In such a case, we will say that the equality (3) is satisfied for large n ∈N.
We will also be using the following notation. If (an)n∈N and (bn)n∈N are two sequences

of nonnegative numbers, then (an)n∈N ≈ (bn)n∈N means that there is a constant C > 0 such
that

C–1an ≤ bn ≤ Can for all n ∈N.

Recall that a Banach algebra A:
(1) is called biprojective if the product map πA has a right inverse bimodule map;
(2) is called biflat if the dual map π ′

A has a left inverse bimodule map;
(3) has the π -property if πA(A⊗̂A) = A2.

Theorem 4.1 Let �ϕ be an Orlicz sequence algebra. TFAE:
(i) �ϕ is biflat;

(ii) �ϕ has the π -property;
(iii) ϕ is not an N-function at 0.

Remark 4.2 Recall that if ϕ is not an N-function at 0 then either aϕ > 0 (i.e., �ϕ = �∞ with
equivalent norms) or limu→0

ϕ(u)
u > 0 (i.e., �ϕ = �1 with equivalent norms). Examples of

Orlicz functions with the above properties will be provided in Example 4.8.

Proof (i) ⇒ (ii): Let π : �ϕ⊗̂�ϕ → �ϕ be the product map and let σ : (�ϕ⊗̂�ϕ)′ → �′
ϕ be the

left module inverse to π ′. We will show that imπ is closed. To this end, let

lim
n→∞π ′fn = F

for some sequence (fn)n∈N ⊂ �′
ϕ . Then,

lim
n→∞ fn = lim

n→∞σπ ′fn = σF .
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Therefore,

π ′σF = lim
n→∞π ′fn = F .

Consequently, F ∈ imπ ′ and the latter space is closed. From [19, Theorem 9.4] it follows
that imπ is closed as well. However, then

imπ = imπ = �2
ϕ .

From [3, p. 166] it now follows that �ϕ has the π-property.
(ii) ⇒ (iii): Assume that �ϕ has the π-property. If

aψ = lim
u→0+

ϕ(u)
u

> 0,

where ψ denotes the complementary function of ϕ (see formula (1)), then �ϕ = �1 (equiv-
alent norms). Let us therefore assume that

aψ = lim
u→0+

ϕ(u)
u

= 0. (4)

We will now show that aϕ > 0 that is �ϕ = �∞ as sets and the norms ‖ · ‖ϕ and ‖ · ‖∞ are
equivalent. By assumption

π̂ : �ϕ⊗̂�ϕ/ kerπ → hϕ

is an isomorphism. Since h′
ϕ = �ψ (see [16, Proposition 4.b.1]) and (�ϕ⊗̂�ϕ/ kerπ )′ =

(kerπ )⊥ we obtain that

π̂ ′ : �ψ → (kerπ )⊥ (5)

is an isomorphism as well. Let

Bj : �ϕ × �ϕ →K, Bj(x, y) := x(j)y(j) (j ∈ N)

be a continuous bilinear form. Clearly, Bj ∈ kerπ⊥. Moreover,

〈
u + kerπ , π̂ ′ej

〉
=

〈
π (u), ej

〉
= 〈u + kerπ , Bj〉 (u ∈ �ϕ⊗̂�ϕ).

Therefore,

π̂ ′ej = Bj or
(
π̂ ′)–1(Bj) = ej (j ∈N).

If we now denote

pn :=
n∑

j=1

ej, B̂n :=
n∑

j=1

Bj (n ∈N),
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then

(
π̂ ′)–1(B̂n) = pn (n ∈N).

From (5) we obtain a constant D > 0 such that

‖pn‖ψ ≤ D‖B̂n‖ (n ∈N), (6)

where on the right-hand side we consider the norm of a bilinear form, i.e., if B : X ×Y → Z
is a bilinear mapping and X, Y , Z are Banach spaces, then ‖B‖ := sup{‖B(x, y)‖Z : ‖x‖X =
‖y‖Y = 1}. Let us now compute these norms. From (3) and (4) it follows that

‖pn‖ψ =
1

ψ–1( 1
n )

(large n ∈N).

As for the other norms, let us first observe that

‖B̂n‖ = ‖pn‖M(�ϕ ,�ψ ) (n ∈N),

where M(�ϕ ,�ψ ) is the multiplier space. From [4, Theorem 3] it now follows that

M(�ϕ ,�ψ ) � �τ (equivalent norms),

where τ is the Orlicz function defined by

τ (s) := max
{

0, sup
{
ψ(st) – ϕ(t) : t ∈ [0, 1]

}}
.

Therefore, we obtain that (‖B̂n‖)n∈N ≈ (‖pn‖τ )n∈N. Assume for the moment that aτ > 0,
i.e., �τ = �∞ (equivalent norms). Then, there exist constants D1, D2 > 0 such that

D1 ≤ ‖pn‖τ ≤ D2 (n ∈ N).

In particular, condition (6) takes the form

1
ψ–1( 1

n )
≤ D3

for some constant D3 > 0 and all large n ∈N. Equivalently (see the discussion at the begin-
ning of this section),

ψ

(
1

D3

)
≤ 1

n
−−−→
n→∞

0,

which contradicts the fact that aψ = 0. Therefore, aτ = 0 and

‖pn‖τ =
1

τ–1( 1
n )

(large n ∈N).
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Coming back to (6) we obtain another constant C > 0 such that

τ–1
(

1
n

)
≤ Cψ–1

(
1
n

)
(large n ∈N). (7)

The convexity of ψ now implies that

ψ
(
tψ–1(s)

)
– ϕ(t) ≤ ts – ϕ(t)

(
t ∈ [0, 1], s ≥ 0

)
.

Recall that from [16, Proposition 4.a.5] it follows that we may assume that bψ = ∞ that
then implies that ψ–1 is well defined for every s ≥ 0. Hence,

sup
{
ψ

(
tψ–1(s)

)
– ϕ(t) : t ∈ [0, 1]

} ≤ sup
{

ts – ϕ(t) : t ≥ 0
}

= ψ(s).

Consequently,

τ ◦ ψ–1 ≤ ψ

or, equivalently,

ψ–1 ≤ τ–1 ◦ ψ . (8)

If we denote un := ψ–1( 1
n ) (equivalently, ψ(un) = 1

n , see the discussion at the beginning of
this section) then (7) and (8) imply that

ψ–1(un) ≤ τ–1 ◦ ψ(un) ≤ Cun (large n ∈N),

whence

un ≤ ψ(Cun) (large n ∈N).

Equivalently,

ψ(Cun)
Cun

≥ 1
C

(large n ∈N).

We now recall that un = ψ–1( 1
n ) −−−→

n→∞
0, which implies that

aϕ = lim
u→0+

ψ(u)
u

≥ 1
C

> 0.

Consequently, �ϕ = �∞ as sets and the respective norms are equivalent.
(iii) ⇒ (i): By assumption, the Orlicz algebra �ϕ is either �∞ (in the case where aϕ > 0)

or �1 (in the case where limu→0+ ϕ(u)/u > 0). That �∞ is biflat follows from [28] (cf.
[3, Theorem 2.9.65]) since �∞ is a commutative C∗-algebra, therefore amenable by [9,
Lemma 7.10]. As for the other case observe that �1 is even biprojective—see [3, Exam-
ple 4.1.42]. �
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Corollary 4.3 Let �ϕ be an Orlicz sequence algebra. TFAE:
(i) �ϕ is biprojective;

(ii) �ϕ = �1 (equivalent norms).

Proof That �1 is biprojective follows from [3, Example 4.1.42]. Assume now that �ϕ is
biprojective. It is therefore biflat and Theorem 4.1 implies that it is either �∞ or �1. That
�∞ is not biprojective follows from [3, Theorem 2.8.48] and [27, Corollary 4.1.5]. �

Recall that an approximate identity in a Banach algebra A is a net (eα)α∈� ⊂ A such that

lim
α

eαa = a = lim
α

aeα (a ∈ A).

It is called sequential if � is countable and bounded if the set {eα : α ∈ �} is bounded in A.
A Banach algebra A is called:
(1) essential if A2 = A as sets;
(2) weakly amenable if every continuous derivation δ : A → A′ is inner;
(3) approximately semicontractible if for any A-bimodule X and every continuous

derivation δ : A → X there are nets (xα)α∈�, (yα)α∈� ⊂ X such that

δ(a) = lim
α

(a · xα – yα · a) (a ∈ A).

If, in addition we can always choose xα = yα ,α ∈ � then A is approximately
contractible. If, moreover, the net (adxα )α∈� is bounded in B(A, X) then A is
boundedly approximately contractible. If the above properties hold only for dual
A-bimodules then A is said to be (boundedly) approximately (semi-)amenable.

A more detailed account on (bounded) approximate (semi-)amenability/contractibility
can be found in [27, Sect. 4.4].

Now, we are ready to prove the following characterization.

Theorem 4.4 Let �ϕ be an Orlicz sequence algebra. TFAE:
(i) �ϕ admits a (sequential) approximate identity;

(ii) �ϕ is essential;
(iii) �ϕ is weakly amenable;
(iv) either ϕ ∈ �2(0) or aϕ > 0;
(v) �ϕ is approximately semiamenable.

Remark 4.5 Observe that in condition (iv) we have an “exclusive-or” relation, i.e., proper-
ties ϕ ∈ �2(0) and aϕ > 0 cannot hold simultaneously for any Orlicz function ϕ.

Proof We will show two chains of implications, namely

(i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i)

and

(iv) ⇔ (v).
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(i) ⇒ (ii): this implication is clear.
(ii) ⇒ (iii): if aϕ > 0 then �ϕ = �∞ is even amenable by [9, Lemma 7.10] therefore weakly

amenable. If aϕ = 0 then from the assumption and Proposition 3.1 it follows that �ϕ =
(�ϕ)2 = hϕ , therefore (en)n∈N is a Schauder basis in �ϕ consisting of idempotents. From [3,
Proposition 2.8.72] the conclusion follows.

(iii) ⇒ (iv): Suppose that ϕ /∈ �2(0) and aϕ = 0. Since ϕ /∈ �2(0), we obtain that hϕ � �ϕ

(see Proposition [16, Proposition 4.a.4]). From the Hahn–Banach Theorem it now follows
that there exists a continuous nonzero functional g ∈ �′

ϕ that vanishes on hϕ . Then, the
mapping

δ : �ϕ → �′
ϕ , δ(a) := g(a)g

defines a nonzero continuous derivation. Indeed,

∥∥δ(a)
∥∥ =

∣∣g(a)
∣∣‖g‖ ≤ ‖g‖2‖a‖ϕ (a ∈ �ϕ),

where for any f ∈ �′
ϕ we have ‖f ‖ = sup{|f (a)| : ‖a‖ϕ = 1}. Moreover, since aϕ = 0, from

Proposition 3.1 it follows that

δ(ab) = g(ab)g = 0 (a, b ∈ �ϕ)

and

〈
c, a · δ(b)

〉
= g(b)g(ca) = 0,

〈
c, δ(a) · b

〉
= g(a)g(bc) = 0 (a, b, c ∈ �ϕ).

Clearly, δ is nonzero since for a /∈ ker g we have

〈
a, δ(a)

〉
= g(a)2 �= 0.

Since �ϕ is commutative the only inner derivation is the trivial one. Thus, δ is not inner
that contradicts the weak amenability of �ϕ . Consequently, ϕ ∈ �2(0) or aϕ > 0.

(iv) ⇒ (i): if aϕ > 0 then �ϕ = �∞ (equivalent norms) is even unital and if ϕ ∈ �2(0) then
it follows that �ϕ = hϕ (see [16, Proposition 4.a.4]) and pn :=

∑n
j=1 ej is a sequential approx-

imate identity.
(iv) ⇒ (v): if aϕ > 0 then �ϕ = �∞ (equivalent norms) is even amenable by [9, Lemma 7.10]

therefore approximately semiamenable. Let ϕ ∈ �2(0). For any n ∈N let En := (pn ·�ϕ ,‖·‖ϕ)
and let X be an �ϕ-bimodule. If

δ : �ϕ → X

is a continuous derivation, then X is (in a natural way) an En-bimodule and

δn : En → X, δn(a) := δ(a)

is also a continuous derivation. Since En is finite dimensional and semisimple from [3,
Theorem 1.9.21] it follows that δn is inner, i.e., there is ξn ∈ X such that

δn(a) = a · ξn – ξn · a (a ∈ En, n ∈N).
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By assumption �ϕ = hϕ , therefore

a = lim
n

pna and pna ∈ En

and

δ(a) = lim
n

δn(pna) = lim
n

(pna · ξn – ξn · pna) = lim
n

(
a · (pn · ξn) – (pn · ξn) · a

)
.

Consequently, δ is approximately semiinner.
(v) ⇒ (iv): suppose that ϕ /∈ �2(0) and aϕ = 0 and define

δ : �ϕ → �ϕ/hϕ , δ(a) := a + hϕ ,

where �ϕ/hϕ is the quotient module. From Proposition 3.1 it follows that the module ac-
tions in this quotient module are trivial and that δ is a derivation. If it were to be approxi-
mately semiinner then it would have to be trivial. However, δ(a) �= 0 for any a /∈ hϕ . �

Recall that a Banach algebra A is said to be pseudoamenable if there is a (possibly un-
bounded) net (dα)α ⊂ A⊗̂A such that

a · dα – dα · a −→
α

0 and aπ (dα) −→
α

0 (a ∈ A).

A more detailed account on pseudoamenability can be found in [27, Sect. 4.4].

Remark 4.6 (1) From [1, Lemma 2.4 and Theorem 2.5] it follows that �ϕ as well as hϕ

are never approximately amenable unless aϕ > 0. Indeed, (pn)n∈N ⊂ hϕ constitutes an un-
bounded but multiplier bounded sequence satisfying pnpn+1 = pn = pn+1pn, n ∈N.

(2) From [5, Theorem 13] it follows that if ϕ ∈ �2(0) then �ϕ is even boundedly approx-
imately contractible.

(3) From [6, Corollary 3.7] and [27, Proposition 4.4.2] it follows that hϕ is always pseu-
doamenable, whereas �ϕ is pseudoamenable if and only if ϕ ∈ �2(0) or aϕ > 0.

Remark 4.7 Condition (iv) of the above theorem shows in particular that there is a wide
class of Orlicz sequence algebras (i.e., aϕ = 0 and ϕ /∈ �2(0)) that serve as nonexamples to
a number of amenability properties.

We end this section with a list of examples illustrating properties of Orlicz functions
considered in Theorems 4.1 and 4.4.

Example 4.8 (1) The Orlicz functions

ϕ1(u) := max
{

0, up – 1
}

(p ≥ 1)

and

ϕ2(u) :=

⎧
⎨

⎩
0, u ∈ [0, 1],

∞, u ∈ (1,∞),

satisfy aϕ1 = aϕ2 = 1.
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(2) The Orlicz functions

ϕa,b,c(u) := au ln(b + cu) (a > 0, b > 1, c ≥ 0)

are not N-functions at 0. Clearly, if ϕ is an Orlicz function such that aϕ = 0 and ϕ is not
an N-function at 0 then it satisfies condition �2(0).

(3) The Orlicz functions

ϕ3(u) := up (p > 1)

and

ϕ4(u) := up ln(1 + u) (p ≥ 1)

are N-functions at 0 and satisfy condition �2(0).
(4) We finish with a construction of an Orlicz function for which aϕ = 0 but it does not

satisfy condition �2(0). Let

un :=
1
2n

(
n ∈N∪ {0})

and let p : [0,∞) → [0,∞) be a function defined as

p(0) := 0, p(t) :=
1
n!

for t ∈ [un, un–1), n ∈N, p(t) := t for t ≥ 1.

The function p is nondecreasing and right-continuous. Now, we define the Orlicz function
ϕ5 as

ϕ5(u) :=
∫ u

0
p(t) dt.

Clearly, aϕ5 = 0. Moreover, for any n ∈ N we have

ϕ5(2un) =
∫ 2un

0
p(t) dt

≥
∫ 2un

un

1
n!

dt

= (n + 1)
∫ un

0

1
(n + 1)!

dt

≥ (n + 1)
∫ un

0
p(t) dt = (n + 1)ϕ5(un).

Therefore, the function ϕ5 does not satisfy condition �2(0).
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