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1 Introduction

The purpose of this paper is to study the imbedding theory for homotopy operator in
Holder—Morrey spaces on differential forms. We first give a new definition for the Holder—
Morrey spaces AL (2, Al) that is based on the classical Holder theory and Sobolev spaces
WP* (2, Al) on differential forms. The theory of Holder continuity of order € (0,1] has
been widely used in various fields such as partial differential equations, harmonic analysis,
and basic geometrical theory, see [1-3].

The concept of Morrey space was proposed in 1938, and many scholars have conducted
in-depth research on it. Morrey space theory was extended to generalized Morrey spaces,
weighted Morrey spaces, variable exponent Morrey spaces, weak Morrey spaces, and so
on, see [4—7]; with the deepening of research, to composite spaces of Morrey spaces such
as Morrey—Herz spaces and Orlicz—Morrey spaces, see [8, 9]. The concept of Holder—
Morrey spaces we present is in Sect. 2. Furthermore, the theory of envelope functions is
introduced in the same section, and we give the definition for a class of admissible envelope
functions. Envelope functions have been widely studied in super-lattice band structure,
medical science, and nonlinear periodic structure, see [10-12]. In the present paper, the
real envelope function X : R” — R satisfies the condition of locally Hélder-continuous in
LPT-norm.

Homotopy operator T is a key tool used in the decomposition theorem and Poincaré-
type inequality on differential forms, see [13, 14] for more details. Homotopy operator T
on differential forms is a linear mapping from A'(R”) to A“1(R”). In fact, by using the
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Poincaré lemma in [15], we obtain
u=dTu+Tdu=dTu

for a closed form u on 2. The primary properties for homotopy operator T on differential
forms can be found in [15].

In this paper, we introduce the definition of Holder—Morrey spaces and envelope func-
tions on differential forms in Sect. 2. The imbedding inequality for homotopy operator
T and Poincaré-type inequality are given in Sect. 3. In Sect. 4, the Holder continuity for
Riesz potential operator with envelope functions is derived. Finally, some estimates that
are closely related to homotopy operator applied to the solutions of conjugate A-harmonic

equations on differential forms are obtained.

2 Preliminary
Before stating our main results, we introduce some notations and basic theory for differ-
ential forms.

Let Q C R” be a bounded, convex domain, # > 2 and an /-form u be a locally integrable
function on 2 with values in AYR?). If u(x) € ALR"), then the value of u(x) at the vectors
&1,...,& € R" is denoted by u(x)(&1,...,&) = u(x; &1, ..., &). For more details on differential
forms, see [16].

Arbitrary [-form u : Q@ — AYR”) can be denoted as u(x) = >, ur(x) dxg, and each u; is
the coefficient function. Moreover, u is called a differential form, the coefficient functions
u; are differentiable, see [17, 18]. The operator % : A/(R”) — A"7/(R") is the Hodge-star
operator, and the linear operator d : D'(2, AY) — D'(, A1), 0 <1 < n—1, is called the ex-
terior differential. d* : D'(Q, A*') — D'(, A!) denotes the Hodge codifferential operator,
which is the formal adjoint of d.

Denote by L?(2, A') the space of differential /-forms satisfying Jq lurl? < oo with the
norm

el oo, nty = (/Q <Z\u,(x)|z>2 dx)”.
1

Definition 2.1 (Holder space) If 1 < p < 0o and « € (0,1]. Let A?*(Q, A!) denote the
Holder space of all differential /-forms # whose norm

lu(x) — u()ll !
U|| k(o by 2= || 2 N+ su v LP(Q’A)<oo
APK(Q,AD) 12(Q,AD) p
x,y€Q e — y[*

The Holder space on differential forms will reduce to the classical type when / = 0.

Clearly, Sobolev spaces W?* (2, A!) in [19] could replace Hélder spaces in what follows,
but we selected Holder spaces because they are slightly more elementary.

The following definition is contributed in Sect. 4.

Definition 2.2 (Envelope function) A real envelope function is a function A : R — R
such that for every 1 < p < oo there exists « € (0, 1) such that A € A?*(R"). Thus, the space
of all envelope functions is

A = ﬂ U A’”(R").

l<p<oo O<k <1



Li et al. Journal of Inequalities and Applications (2023) 2023:71 Page 3 of 15

In this paper, we consider that each envelope function A € A satisfies the condition: there

exists a constant C; > 1 such that
Ci' <A()=Cu (2.1)

Remark 1 Any function in the Schwartz class is an envelope function, and the product of

two envelope functions A1, A, € A is again an envelope function.

Let u € L} (2, AY) be a differential /-form on 2. For 1 <p<00,0<7 <mandr>0,we

loc

denote the Morrey space on differential forms by L7 (2, A/) with the norm

Ip

s ) pl2 1
|« Sl <xesslzl,g>o [B(x, )| ./B(x,r) (;MO}” ) dy) =

where B(x,r) C 2 is an open ball centered at x of radius 7.
Easily we see that 77 (2, A’) is an expansion of L7(2, A’) in the sense that L?"(Q, Al) =
L7(2, A}).1f [ = 0, then the Morrey space on differential forms reduces to the classical Mor-

rey space, which was first introduced by C. Morrey in [20]. In recent years, Morrey spaces
and generalized Morrey spaces have received much investigation. The boundedness for
Hardy-Littlewood maximal function and singular integrals in Morrey spaces were given
in [21-23].

Definition 2.3 (Holder—Morrey space) Assume 1 <p<o00,0< 1t <n,and « € (0,1]. Let
ALT(, A) denote the Holder—Morrey space of all differential /-forms z whose norm

lul lul + sup 2@y
APvT Q, 1y = P (R, )
o (10 (2,A) yeQ Ix—yl"

We choose / = 0 and 7 = 1, then AZT(R”, A) coincides with A#* (R"). Furthermore, the

space

A= () U AR

1<p<oo O<k<1

denotes all envelope functions with Morrey norms. Recall some properties of BMO spaces

and integral average on differential forms. For b € L{, (R"), let

&l !
= sup
- x€R” >0 |B(x: r)l

/ 166) - baen | dy,
B(x,r)

where

1
bpxyy = ——— b(y) dy.
Blwr) |B(x, r)| /J;(x,r) (y) i’

Define BMO(R”) = {b € Lt (R"): ||b|+ < 0o}. Analogically, we show integral average on

loc
differential forms. The following lemma appeared in [24].
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Lemma 2.4 Let Q2 be a bounded, convex domain in R". To each z € Q, there corresponds
a linear operator K, : C*°(L, A = Co(Q, AFY) defined by

(Ku) (%51, ... E11) = /01 lulte + z - tz;x — 2,61, 610 dt,
and the decomposition

u = d(K,u) + K,(du)
holds at any point z in Q.

Assume that ¢ € C°(€2) is a test function and satisfies fQ ¢(z)dz = 1. We define T :
LP(, A = 17(2, AFY) is a homotopy operator by averaging K, in Q:

1
Tu = / 0(2)K,udz = / g1 / o@u(tx +z—tz;x — z,&1,...,&) dz dt.
Q 0 Q
It is obvious that
u =d(Tu) + T(du). (2.2)

Then we denote the integral average of u over Q by ug = d(Tu) for [ = 1,2,...,n. If
[ = 0, then the differential form u reduces to the function type and integral average
Ug = ﬁ Jo u(y) dy. Clearly, we see that

u=Tdu) + ug. (2.3)

From Poincaré lemma in [15], ug is a closed form. Suppose that u is a differential /-form
inLL (Q,AY),1=0,1,2,...,n,and for 1 < p < 00, 0 < T < n. Let BMO”* (2, A") be a space

loc
on differential form with the finite norm

1/p

s

4l Bmor T (@,n1) = SUP (—/ ”(Y)—”B(,)pdy> )
@n) x€Q,r>0 |B(x’ r)| B(x,r)| o |

where up coincides with (2.3). If / = 0 and 7 = 0, then BMO?* (2, A) spaces reduce to the
classical BMO spaces.

3 Imbedding inequalities for homotopy operator
In this section, we are concerned with the imbedding inequality for homotopy operator.
The following lemma appeared in [13, 14].

Lemma 3.1 Let u be a differential I-form on Q, 1 = 0,1,...,n. Let T : [7(Q,A}) —
LP(2, Al7Y) be a homotopy operator and Q C R" be a bounded, convex domain. Then there
exists a constant C, independent of u, such that

1/p 1/p
(/|T(u)|”dx) < C|B|””(/ |u|1”dx) ,
B B

where B := B(x,r) C Q is an open ball centered at x of radius r.
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Now, we give the imbedding inequality for homotopy operator on differential forms.

Theorem 3.2 Let u € AP (Q, A bea differential l-formon Q,[=1,2,...,n,0<t <n-p,
and k € (0,1]. Let also T : LP(Q, A)) — LP(Q2, Al"Y) be a homotopy operator. Then there
exists a constant C, independent of u, such that

lutll xpe 0ty + Nl o @0y forl=1,

I Tull 27 (o pi1y S
el g+ (g a5 forl=2,

Proof For arbitrary y € 2, we have

||TM()/) ”LPT(QAI 1y
||Tu||Apr a1y = 1 Tull e a-1) + sup .
n @A x,y€Q |J’—x|K

By using Lemma 3.1, we get the first part of the right-hand side for (3.1)

1/p
1 Tul 1o (o ai-1) = ( sup / Tu(x) pdx)
@A) x0€R2,r>0 |B(x0’ | B(xo,r) | |

1/p
< sup r(’”)/pr(/ |Tu(x)|p dx)
x0€82,r>0 B(xg,r)

5 ||I/l||Lp,r+p(QyAl).

For any &;,...,&_1 € R”, we denote & = (&;,...,&._1) for notational simplicity. Then we de-

duce that
’Tu(y) - Tu(x)’
1
£ | w@ulty + z— tz;y - 2,6) dzdt
1
- / ¢! / 0@ultx +z - tz;x — z,€) dz dt
4 @ty -tz - z,e>—u(ty+z—tz;x—z,s)]dzdt'
tH p@)|ulty +z—tz;x - 2,8) —ultx + z - tz;x — 2,§) | dzdt‘
Q
=T+ T,
Note
1
1| o@ulty + z - tz;x—y,0) dzdt|, (3.2)
Q

where 0 = (6y,...,0,1) and each §; fori = 1,2,...,/ - 1is a 0-vector in R". For (3.2), we only
consider the condition for / = 1. In fact, if / > 1, then the determinant of (x — y,0) = 0. For
/=1 and each u; is a locally integrable function, we obtain

1
tl—l

@Qu(ty +z—tz;x — y) dzdt’
Q

Page 5 of 15
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1/2
§/Q<p(Z)<Z |ui|2) lx =yl dz

l<i<n

< (Z |ui|2)m.

1<i<n

For 75, we have

1
tl—l

o(2) [u(ty +z—t2)—u(tx +z— tz)](x —z,&)dzdt
Q
= |T (u(y) — ux)) (x: )|
Combining (3.2) and (3.3), we obtain

| Touy) — Tu() ”LW(Q,AH)

<N Tillpr a1y + 1720l o (@, ni1)

T ) pl2 1/p
§|y—x|( sup ( lu-l) dx)
x0€2,r>0 |B(x0: )| B(xo,r) Z l

1<i<n

1/p
+( wp / T(uy) - u(x))(x,s)r’dx)

x0€2,r>0 |B X0,

S Matll e gty + 40D = 4@ | eepg nty-

Collecting the above facts, we deduce that

ul| \per oy + |t 1o n, forl=1
I Tl g2 (@ p1-1) S luell xp7o2 (g nty + el 2 @,00)) )

]l ppv+p (o ptys forl=2,...,n.

The proof of Theorem 3.2 has been completed.

(3.3)

O

Next, we show the Poincaré-type inequality in Holder—Morrey spaces on differential

forms.

Theorem 3.3 Let u € AY"(Q,A)) be a differential I-form and du € AYT (2, A1), [ =
1,2,...,n=1,0<t <n-—p. Then there exists a constant C, independent of u, such that

ot — upll \pe g 1y < Cllduall ppsw g p101)
where B is any ball in Q.
Proof Using Lemma 3.1, we get
lu = upll o g oty = 1T Auill pr g pty S AUl oo g pter)-

Note that

| (1)~ u)s) — (@) ~ u@)5)| =

/ 0(@)[ K (du()) - K, (du(x))] dzdt|.
B

Page 6 of 15
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From Lemma 2.4, we have

1
I<z(du(y;él e r's;:l)) = /0 tl[u/(t}“rZ— tZ)(y—Z)](El,.,.,S[)dt
l . 1 ~
+Z(—1)’/0 tl[u/(ty+z—tz)Si](y—z,i—‘l,...,éi,...,&)dt
i=1
:]Cl +]C2

and

1
K (du(x; & -+ ,&)) = / [ (tx + z— t2)(x - 2)|(51,..., &) dt
0
I 1 R
+Y (1) / £ (tx + 2 - t2)& | (¥ — 2,61, Eir.., &) dlt
i=1 0
= ’Cg + IC4,

where #'(x) : R” — Al(R") is a derivative mapping. Moreover, #'(x)&; is an I-linear anti-
symmetric function on R” x - - - x R” for each & € R”. We first estimate K; — KC5:

1
Ky -Ks < /0 [ty +z-t2)(y - 2], ... &)
- [u’(ty +z—tz)(x — z)](él, . ,f;’l)} dt
1
+ / [ty + z - t2)(x - 2) | (Ers ..., £)
0
- [u/(tx +z—tz)(x — z)](él, s “;‘1)} dt. (3.5)
Similarly, for Iy — K4, we obtain
Ky =Ky
J 1
< Z(—l)i / tl[u'(ty +z— tz)@i](y —%,01,...,0;,...,0) dt
i=1 0
/ 1
+ Z(—l)i/ [ (ty + 2~ tz) - (tx + 2 — t2) £
i=1 0
X (X =9,E1,.., &, &) dL. (3.6)
Combining (3.5) and (3.6), we deduce that
]<z du(y) —1<Z du(x) = (’Cl - ICg) + (IC2 — IC4)

1
= / t'[u (ty + 2~ tz) — / (tx + 2 - £2)|(x = 2) | €, ..., £)) it
0

[

1
+ Z(—l)i /0 [ (ty + 2~ tz) -t (tx + 2 - t2) &/

i=1

Page 7 of 15
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X (x—z,él,...,é,-,...,fl)dt
:Kz(du(y) —du(x)).

Finally, we obtain

1T () — T oo
”M Z413”1\1‘” (Bl ~ < ”du”Lp'[+p (Bl + sup -
xyeQ ly — x|

= ||du||A£'”P(B,/\l+l)-
The proof of Theorem 3.3 has been completed. g

Remark 2 Replacing u € L10 A, Al) with the solution for A-harmonic equation on differ-
ential forms in [25, 26]

d*A(x, du) = B(x, du),

we can get the high order Poincaré-type estimate with Holder norm by using the reverse

Holder inequality

|| (u - MB)| Anp/(n—p),K(B,Al—l) S C”du” AP:K(O-B,/\Z‘*‘I)
forocBC Q witho > 1.
Next, we show the vectorial differential forms

Us=(u'u,.. ,u ) Q— Al xox Ak

where each u; is a differential /; form for i = 1,2,...,k and all /; satisfy the condition 1 <
h<--<l<n, le( l; < n. We denote the spaces of all vectorial differential forms by
LP(Q, AL x - .. x Alk) with the norm

ILEN 2oyt e iy = D Nl s piry < 09

where P = (p1,p2, ..., pr) and each p; belongs to (1, 00). Analogically, we denote the vecto-
rial Holder—Morrey space by AP7(Q, All x ... x Alk) with the finite norm

”U(y ”EPT QAN x-x nlk)

NN g2 (it e nlicy = U £Piz (a1 oo by + SUP
A (A x o x Atk LOT (AL x---x Ak) xyeQ |y x|K

Then we can obtain the following corollary.

Corollary 3.4 Suppose that U = (u',u?,...,u") is a vectorial differential form on Q. Each
u' belongs to A" (Q2, Al) with P = (py, ..., px) and each du' belongs to A" (2, Ai*Y) with
Q=(qu--qr)l=h+- -+l P=(p1,....px) and Q = (q1, . . -, qx) satisfying max{1, np;/(n +
p)y<qi<pifori=1,2,....k.Let T* = T x --- x T be a k-order vectorial homotopy oper-
ator and T¥U = (Tu', ..., Tu*). Then
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(i) There exists a constant C > 0 independent of u such that

k
|| r u”APvT(Q,All Lyox b < C”U”AP”P Q.nh ><-~><Al/<)’
wheret +P=:(p1 +T,...,px + T).
(ii) There exists a test form n € C*(Q, A"!) that satisfies |0 < 1 and ||dn|lec < 1 with

l= le( l; such that

A @) A AUE@) - ut @) A AU ()
Q
SISty et N 2 ptt sl * 1AU gt et -

4 Holder continuity with envelope function
For 0 < o < n and a differential /-form u on €2, we define Riesz potential operator I,u of

order o by

Tyu(x) = Z(‘/H;n Wﬂ[(y) dy) dxy.

1

The operator I, u will reduce to function type if / = 0. The boundedness and Sobolev-type
imbedding inequality in classic Morrey spaces for Riesz potential operator were given by
Adams and Xiao in [27, 28]. The Holder continuity for I, with envelope functions is as

follows.

Theorem 4.1 Suppose thatl<p<qg<oo,Tt€(a+k—1,0+k)andt e (ap-nplq,oq-
(R, Al) be a differential I-form and \(-) € AT be an envelope

function. Then there exists a constant C > 0 such that

nglp), h=|x—-z|. Letu e L}

loc

|| (A(x)]au(x)) - M2) L, u(z) HLP,,(Q'A,) < C{h“*"” i h"‘*"’”p’”/q}
for all differential I-forms u € LIOC(Q A with || ul| e @nh < 1.
Proof Since A(-) € AT and each A(-) on R” satisfies condition (2.1), we get

|2.(x) < Clhl",

A(z) ”Ll”(R”)

where C is a constant independent of A. Assume that each u; for u = )", u; dx; is nonneg-
ative on 2 and [|u|pr (g A < 1. Let B(x, i) C Q2 be an open ball centered at x of radius /.

Then we have

’k(x)]a u(x) — AM2) I u(z) ‘

=

1
A(x) / —u;(y)dydx
Z Blx2h) X =y 1) dy i

Z fR ————wy(y) dydx;

m\B(x,2h) 1% — )’|" «
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1
—A _ dyd.
(Z)Z/mh oy

1

1
—k(z)Z/ ———u(y)dydx;
— Jrm B2 12—

1
< |a § _ dyd.
N‘ ) /B(xSh |X—J’|”"“u1(y) y

1
+|A(2) / ——u;(y)dydx
Z B(z3h) |2 —yI"™ 1) dydzi

+ Z/R (AM(x) = A(2)) |z = y1*"uy (y) dy dxy

"\ B(x,3h)

+ |A(x) /
Z R\ B(x,2))

1

e = 1% =z = Y| |us (y) dy dix; |

=Sl+82+83+84,.

We first estimate S;

1
Sy = ‘A(@Z/Bm oy a0y

1

< /B - I/\|xx) yﬁ(i (Z! ()| ) dy
+/x3h |x — y|na(2‘u1(y ) @

=811 + Sia.
Hence
3h ) 1/2 dt
311N/ / A(x) - A(9) <;|u1(y)|> dy7
o dt
< [0
0
5ha+K7T’

where o + « — 7 > 0. For Sy,

3h 1 dt
< o
Slz“/(; g <|B(x,t)| /Jz(x,t)k(y) (21:|M1()/)| ) dy)

S/ ha—t/q—n/p,

where @ — t/q — n/p > 0. Similar to S1, we omit the calculation of S,. For S3, we have

1/2
Ax) = Az —y[en 2) d
S 1 -2 R\ B(x,3h) =31 (XI:IMI(M Y
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1/2

S [ -2 /Rn\s(zzh) e <Z|u1(y)|2> @

© dt
z)\/2h t (;‘m(y)‘ ) dy—

5 ha—r/p—n/q|)\(x) _ )\(Z)|

since o — t/p — n/q < 0. Next, we estimate Sy:

S<hp Y [ ey ) dyds
— Jrm B3k

A (x) - A(9)] 12
Sh/R W(;’W(}/)’Z) dy

m\Bx3h) X =Y

1/2
vh o (o)
I

RM\Bx,3h) [ — YI”

=S4 + S
Then
* a—n—1 dt
5415;1[ ¢ / @ -20)|(Cluo)) "
3h B(xt) 7
OO o—T— dt
S [ =20 e

< ha+K7T

fora +xk —7-1<0and

[es) ) 1/2 dt
sush "o [ o) Luol) o
3h B(x) 7 ¢

a-1/q-n/,
< potlanie

fora —t/p—nlg-1<0.
Let B(xg, r9) D 2 centered at xg and radius of rg. Then ry is a finite constant independent
of x. Combining all the above facts, we deduce that

|2(0 L u(x) = M@ e g 0

4
Z ISill o @ty

4

_ Z sup ||S ”LP B0 < C{haH{ T ha—r/q—n/p + hotﬂ(—r/p—n/q}’

i-1 x0€82,r>0

where C is a constant independent of x and z. The proof of Theorem 4.1 has been com-
pleted. d

Page 11 of 15
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The inequality for composite operator with Morrey norms on differential forms is as
follows.

Theorem 4.2 Let u € AY"(Q,A)) be a differential I-form and du € AYT(2,AHY), [ =
0,1,...,n— 1, h = |x — z|, let T : [P(Q,A) — LP(Q, A) be a homotopy operator and
M) € AT. Then there exists a constant C, independent of u, such that

|G () = (x)5) = (@) e (4(2) = (2)) | e 01

< C{ha+x—r + hoz—r/q—n/p + ham—r/p—n/q}’ (4‘1)
where B is any ball in Q.

Proof Assume that [ > 1, arbitrary x¢ € 2, and B(xo,7) C €2 is any ball centered at xy and
radius of r. Then we have

1260 o () = 4(x)5) = (@M (18(2) = 1(2)) | e 01

< sup PP A ) () — ()5) = M2V ((2) = #(2)8) | 1y (a0l

|A (%)L (du(x)) — A(2)I, (du(z))| is expressed by

|)L(x)1a (du(x)) - A2)1, (du(z)) |

“ 1 Aur(y)
OIS /RW< a;k )dydxk/\dx,

k 1<ij<--<ij<n

“ 1 dur(y)
—)\,(Z)Z Z /Rn W( a;k )dydxk/\de .

k 1<ij<--<ij<n

Assume that each B%S') = vy(x) is a coefficient function of differential (/ + 1) form du. By
using Theorem 4.1, we obtain (4.1) holds. O

5 Homotopy operator and A-harmonic equations
As applications for homotopy operator on differential forms, we study the solutions for
nonhomogeneous A-harmonic equation on differential forms

A(w,g +du)=h+d", (5.1)

where A : @ x AHR") — Al(R") and g, / are differential /-forms on Q. To study the prop-

erty of (5.1), we need the following conditions for operator A:
A, )] < alg !
and

(A 0)c) <121,
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where arbitrary x € Q, ¢ € A/(R”) and a is a positive constant. In the present paper, we
choose g = & =0in (5.1), then we get the nonhomogeneous conjugate A-harmonic equa-

tion
A(x,du) = d*v. (5.2)

If u, v is a pair of solutions for equation (5.2), then we say u and v are a pair of conjugate
A-harmonic tensors. Furthermore, u was called homogeneous A-harmonic tensor if u is
a solution for homogeneous A-harmonic equation

d*A(x,du) = 0. (5.3)
The following lemma appeared in [24].

Lemma 5.1 Let u and v be a pair of solutions for equation (5.1) on Q. If g € L?(B, Al)
and h € L1(B, \'), then du € LP(B, A') if and only if d*v € L1(B, Al). Moreover, we have the
following inequalities:

. q » p
”d VHL’I(B,AIH) = Cl{”h”L‘I(B,/\l) + ”g”Lp(B‘/\l) + ”du”Lp(B’AHl)}’

» q » .
ety 101y < Co{ 1N 0y + 181 5y + 1V a0y}

for Cy and C, are two constants independent of u and v.

Now, we show the Caccioppoli-type estimate for homotopy operator with L7 (2, A’)-

norms.

Theorem 5.2 Assume that 1 <t,v<nand 1< p < oo. Let u and v be a pair of conjugate
A-harmonic tensors on Q and T : L7 (2, ') — LP(2, AFY) be a homotopy operator. Then
there exist a constant C > 0, independent of u and v, such that

| Ta* )< Cllu—cll’

v H Z%T(Q,Al (AL’

where c is any closed formon Q and v =1t -p +q.

Proof From Theorem 2.9 in [29], we have the following Caccioppoli inequality in L?-
spaces:

ldsull 1o pivry < CIBI™ ™ Nt = cll oo n

for a homogeneous A-harmonic tensor #, B with o B in 2 and all closed forms c. Since u
and v are a pair of conjugate A-harmonic tensors on €2 with g = 4 = 0, by using Lemma 5.1,
we have

||d*V||[qﬂ(B,Al+1) =< C”dl/t”f,p(B,/\Hl)'

Hence

“ Td*VHZq(B,M) < C|B|7" ||dtv||f!’(3,/\l) < CIB[?"|u - C”iﬁ(aB,Al)'
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Clearly, d* = (-1)"*! xdxuand % : Al — A"~ is an isometric isomorphism mapping. Com-
bining all the facts, we obtain

*_||4 _ T-n * || 9
|7V oy = sup T | TdV 1 g
r>0
< T-n._.q-p _ 1P
~ supr r ”u C”LI’(UB,/\I)
>0
< _ AP
~ ||M C”U"U(Q,/\l)

for all B with 0B C Q and v = t — p + q. The proof of Theorem 5.2 has been com-
pleted. d

Next, we give the Poincaré-type estimate for homotopy operator with L”* (2, A’)-norms.

Theorem 5.3 Assume that 1 <t,v<nand 1 <p<oo.Let u and v be a pair of conjugate
A-harmonic tensors on Q and T : LP(, AY) — LP(2, AFY) be a homotopy operator. Then
there exists a constant C > 0, independent of u and v, such that

|7~ un)] )= Clavl;

p
Lp,v(Q,Al—l Lq,r(Qy/\Hl)ﬁ

where c is any closed form on Q and v =1 + p.

Proof Let u and v be a pair of conjugate A-harmonic tensors on 2 and g = & = 0. Using
the second relation of Lemma 5.1, we have

”du”IZp(B’/\Hl) = C”d*"”zq(s,ﬂﬂ)'

By using Lemma 3.1, we have

“n)lp| p 1/
T — ug < suprVP B | g iy = Al e g nie
r>0

) ”LP’“(Q,Al’l)

for = v + p and any ball B in Q. Collecting these facts, we obtain

| 7Ga = um) | i piety = ClAV | Lo g pivny
The proof of Theorem 5.3 has been completed. O
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