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Abstract
The Hölder–Morrey spaces �

p,τ
κ (�,∧l) are proposed in this paper. The imbedding

inequalities for homotopy operator are derived in Hölder–Morrey spaces on
differential forms. The Hölder continuity for Riesz potential with envelope function is
deduced. As application, some composite theorems, which are associated with
conjugate A-harmonic equations on differential forms, are given.
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1 Introduction
The purpose of this paper is to study the imbedding theory for homotopy operator in
Hölder–Morrey spaces on differential forms. We first give a new definition for the Hölder–
Morrey spaces �

p,τ
κ (�,∧l) that is based on the classical Hölder theory and Sobolev spaces

W p,κ (�,∧l) on differential forms. The theory of Hölder continuity of order κ ∈ (0, 1] has
been widely used in various fields such as partial differential equations, harmonic analysis,
and basic geometrical theory, see [1–3].

The concept of Morrey space was proposed in 1938, and many scholars have conducted
in-depth research on it. Morrey space theory was extended to generalized Morrey spaces,
weighted Morrey spaces, variable exponent Morrey spaces, weak Morrey spaces, and so
on, see [4–7]; with the deepening of research, to composite spaces of Morrey spaces such
as Morrey–Herz spaces and Orlicz–Morrey spaces, see [8, 9]. The concept of Hölder–
Morrey spaces we present is in Sect. 2. Furthermore, the theory of envelope functions is
introduced in the same section, and we give the definition for a class of admissible envelope
functions. Envelope functions have been widely studied in super-lattice band structure,
medical science, and nonlinear periodic structure, see [10–12]. In the present paper, the
real envelope function λ : Rn → R satisfies the condition of locally Hölder-continuous in
Lp,τ -norm.

Homotopy operator T is a key tool used in the decomposition theorem and Poincaré-
type inequality on differential forms, see [13, 14] for more details. Homotopy operator T
on differential forms is a linear mapping from ∧l(Rn) to ∧l–1(Rn). In fact, by using the

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13660-023-02977-3
https://crossmark.crossref.org/dialog/?doi=10.1186/s13660-023-02977-3&domain=pdf
mailto:wjwanghit@163.com
http://creativecommons.org/licenses/by/4.0/


Li et al. Journal of Inequalities and Applications         (2023) 2023:71 Page 2 of 15

Poincaré lemma in [15], we obtain

u = dTu + T du = dTu

for a closed form u on �. The primary properties for homotopy operator T on differential
forms can be found in [15].

In this paper, we introduce the definition of Hölder–Morrey spaces and envelope func-
tions on differential forms in Sect. 2. The imbedding inequality for homotopy operator
T and Poincaré-type inequality are given in Sect. 3. In Sect. 4, the Hölder continuity for
Riesz potential operator with envelope functions is derived. Finally, some estimates that
are closely related to homotopy operator applied to the solutions of conjugate A-harmonic
equations on differential forms are obtained.

2 Preliminary
Before stating our main results, we introduce some notations and basic theory for differ-
ential forms.

Let � ⊂R
n be a bounded, convex domain, n ≥ 2 and an l-form u be a locally integrable

function on � with values in ∧l(Rn). If u(x) ∈ ∧l(Rn), then the value of u(x) at the vectors
ξ1, . . . , ξl ∈ R

n is denoted by u(x)(ξ1, . . . , ξl) = u(x; ξ1, . . . , ξl). For more details on differential
forms, see [16].

Arbitrary l-form u : � → ∧l(Rn) can be denoted as u(x) =
∑

I uI(x) dxI , and each uI is
the coefficient function. Moreover, u is called a differential form, the coefficient functions
uI are differentiable, see [17, 18]. The operator � : ∧l(Rn) → ∧n–l(Rn) is the Hodge-star
operator, and the linear operator d : D′(�,∧l) → D′(�,∧l+1), 0 ≤ l ≤ n – 1, is called the ex-
terior differential. d� : D′(�,∧l+1) → D′(�,∧l) denotes the Hodge codifferential operator,
which is the formal adjoint of d.

Denote by Lp(�,∧l) the space of differential l-forms satisfying
∫
�

|uI |p < ∞ with the
norm

‖u‖Lp(�,∧l) =
(∫

�

(∑

I

∣
∣uI(x)

∣
∣2

) p
2

dx
) 1

p
.

Definition 2.1 (Hölder space) If 1 < p < ∞ and κ ∈ (0, 1]. Let �p,κ (�,∧l) denote the
Hölder space of all differential l-forms u whose norm

‖u‖�p,κ (�,∧l) := ‖u‖Lp(�,∧l) + sup
x,y∈�

‖u(x) – u(y)‖Lp(�,∧l)

|x – y|κ < ∞.

The Hölder space on differential forms will reduce to the classical type when l = 0.
Clearly, Sobolev spaces W p,κ (�,∧l) in [19] could replace Hölder spaces in what follows,

but we selected Hölder spaces because they are slightly more elementary.
The following definition is contributed in Sect. 4.

Definition 2.2 (Envelope function) A real envelope function is a function λ : Rn → R

such that for every 1 < p < ∞ there exists κ ∈ (0, 1) such that λ ∈ �p,κ (Rn). Thus, the space
of all envelope functions is

� =:
⋂

1<p<∞

⋃

0<κ<1

�p,κ(
R

n).
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In this paper, we consider that each envelope function λ ∈ � satisfies the condition: there
exists a constant C1 ≥ 1 such that

C–1
1 ≤ λ(·) ≤ C1. (2.1)

Remark 1 Any function in the Schwartz class is an envelope function, and the product of
two envelope functions λ1,λ2 ∈ � is again an envelope function.

Let u ∈ L1
loc(�,∧l) be a differential l-form on �. For 1 ≤ p < ∞, 0 < τ ≤ n, and r > 0, we

denote the Morrey space on differential forms by Lp,τ (�,∧l) with the norm

∥
∥u(x)

∥
∥

Lp,τ (�,∧l) =
(

sup
x∈�,r>0

rτ

|B(x, r)|
∫

B(x,r)

(∑

I

∣
∣uI(y)

∣
∣2

)p/2

dy
)1/p

< ∞,

where B(x, r) ⊂ � is an open ball centered at x of radius r.
Easily we see that Lp,τ (�,∧l) is an expansion of Lp(�,∧l) in the sense that Lp,n(�,∧l) =

Lp(�,∧l). If l = 0, then the Morrey space on differential forms reduces to the classical Mor-
rey space, which was first introduced by C. Morrey in [20]. In recent years, Morrey spaces
and generalized Morrey spaces have received much investigation. The boundedness for
Hardy–Littlewood maximal function and singular integrals in Morrey spaces were given
in [21–23].

Definition 2.3 (Hölder–Morrey space) Assume 1 ≤ p < ∞, 0 < τ ≤ n, and κ ∈ (0, 1]. Let
�

p,τ
κ (�,∧l) denote the Hölder–Morrey space of all differential l-forms u whose norm

‖u‖�
p,τ
κ (�,∧l) := ‖u‖Lp,τ (�,∧l) + sup

x,y∈�

‖u(x) – u(y)‖Lp,τ (�,∧l)

|x – y|κ < ∞.

We choose l = 0 and τ = n, then �
p,τ
κ (Rn,∧l) coincides with �p,κ (Rn). Furthermore, the

space

�τ =:
⋂

1<p<∞

⋃

0<κ<1

�p,τ
κ

(
R

n)

denotes all envelope functions with Morrey norms. Recall some properties of BMO spaces
and integral average on differential forms. For b ∈ L1

loc(Rn), let

‖b‖∗ = sup
x∈Rn ,r>0

1
|B(x, r)|

∫

B(x,r)

∣
∣b(y) – bB(x,r)

∣
∣dy,

where

bB(x,r) =
1

|B(x, r)|
∫

B(x,r)
b(y) dy.

Define BMO(Rn) = {b ∈ L1
loc(Rn) : ‖b‖∗ < ∞}. Analogically, we show integral average on

differential forms. The following lemma appeared in [24].
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Lemma 2.4 Let � be a bounded, convex domain in R
n. To each z ∈ �, there corresponds

a linear operator Kz : C∞(�,∧l) → C∞(�,∧l–1) defined by

(Kzu)(x; ξ1, . . . , ξl–1) =
∫ 1

0
tl–1u(tx + z – tz; x – z, ξ1, . . . , ξl–1) dt,

and the decomposition

u = d(Kzu) + Kz(du)

holds at any point z in �.

Assume that ϕ ∈ C∞
0 (�) is a test function and satisfies

∫
�

ϕ(z) dz = 1. We define T :
Lp(�,∧l) → Lp(�,∧l–1) is a homotopy operator by averaging Kz in �:

Tu =
∫

�

ϕ(z)Kzu dz =
∫ 1

0
tl–1

∫

�

ϕ(z)u(tx + z – tz; x – z, ξ1, . . . , ξl) dz dt.

It is obvious that

u = d(Tu) + T(du). (2.2)

Then we denote the integral average of u over � by u� = d(Tu) for l = 1, 2, . . . , n. If
l = 0, then the differential form u reduces to the function type and integral average
u� = 1

|�|
∫
�

u(y) dy. Clearly, we see that

u = Td(u) + u�. (2.3)

From Poincaré lemma in [15], u� is a closed form. Suppose that u is a differential l-form
in L1

loc(�,∧l), l = 0, 1, 2, . . . , n, and for 1 < p < ∞, 0 < τ ≤ n. Let BMOp,τ (�,∧l) be a space
on differential form with the finite norm

‖u‖BMOp,τ (�,∧l) := sup
x∈�,r>0

(
rτ

|B(x, r)|
∫

B(x,r)

∣
∣u(y) – uB(x,r)

∣
∣p dy

)1/p

,

where uB coincides with (2.3). If l = 0 and τ = 0, then BMOp,τ (�,∧l) spaces reduce to the
classical BMO spaces.

3 Imbedding inequalities for homotopy operator
In this section, we are concerned with the imbedding inequality for homotopy operator.
The following lemma appeared in [13, 14].

Lemma 3.1 Let u be a differential l-form on �, l = 0, 1, . . . , n. Let T : Lp(�,∧l) →
Lp(�,∧l–1) be a homotopy operator and � ⊂R

n be a bounded, convex domain. Then there
exists a constant C, independent of u, such that

(∫

B

∣
∣T(u)

∣
∣p dx

)1/p

≤ C|B|1/n
(∫

B
|u|p dx

)1/p

,

where B := B(x, r) ⊂ � is an open ball centered at x of radius r.
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Now, we give the imbedding inequality for homotopy operator on differential forms.

Theorem 3.2 Let u ∈ �
p,τ
κ (�,∧l) be a differential l-form on �, l = 1, 2, . . . , n, 0 < τ ≤ n – p,

and κ ∈ (0, 1]. Let also T : Lp(�,∧l) → Lp(�,∧l–1) be a homotopy operator. Then there
exists a constant C, independent of u, such that

‖Tu‖�
p,τ
κ (�,∧l–1) �

⎧
⎨

⎩

‖u‖�
p,τ+p
κ (�,∧l) + ‖u‖Lp,τ (�,∧l), for l = 1,

‖u‖�
p,τ+p
κ (�,∧l), for l = 2, . . . , n.

Proof For arbitrary y ∈ �, we have

‖Tu‖�
p,τ
κ (�,∧l–1) = ‖Tu‖Lp,τ (�,∧l–1) + sup

x,y∈�

‖Tu(y) – Tu(x)‖Lp,τ (�,∧l–1)

|y – x|κ . (3.1)

By using Lemma 3.1, we get the first part of the right-hand side for (3.1)

‖Tu‖Lp,τ (�,∧l–1) =
(

sup
x0∈�,r>0

rτ

|B(x0, r)|
∫

B(x0,r)

∣
∣Tu(x)

∣
∣p dx

)1/p

� sup
x0∈�,r>0

r(τ–n)/pr
(∫

B(x0,r)

∣
∣Tu(x)

∣
∣p dx

)1/p

� ‖u‖Lp,τ+p(�,∧l).

For any ξ1, . . . , ξl–1 ∈ R
n, we denote ξ = (ξ1, . . . , ξl–1) for notational simplicity. Then we de-

duce that

∣
∣Tu(y) – Tu(x)

∣
∣

=
∣
∣
∣
∣

∫ 1

0
tl–1

∫

�

ϕ(z)u(ty + z – tz; y – z, ξ ) dz dt

–
∫ 1

0
tl–1

∫

�

ϕ(z)u(tx + z – tz; x – z, ξ ) dz dt
∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ 1

0
tl–1

∫

�

ϕ(z)
[
u(ty + z – tz; y – z, ξ ) – u(ty + z – tz; x – z, ξ )

]
dz dt

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ 1

0
tl–1

∫

�

ϕ(z)
[
u(ty + z – tz; x – z, ξ ) – u(tx + z – tz; x – z, ξ )

]
dz dt

∣
∣
∣
∣

= T1 + T2.

Note

T1 =
∣
∣
∣
∣

∫ 1

0
tl–1

∫

�

ϕ(z)u(ty + z – tz; x – y, θ ) dz dt
∣
∣
∣
∣, (3.2)

where θ = (θ1, . . . , θl–1) and each θi for i = 1, 2, . . . , l – 1 is a 0-vector in R
n. For (3.2), we only

consider the condition for l = 1. In fact, if l > 1, then the determinant of (x – y, θ ) = 0. For
l = 1 and each ui is a locally integrable function, we obtain

T1 =
∣
∣
∣
∣

∫ 1

0
tl–1

∫

�

ϕ(z)u(ty + z – tz; x – y) dz dt
∣
∣
∣
∣
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≤
∫

�

ϕ(z)
(∑

1<i<n

|ui|2
)1/2

|x – y|dz

�
(∑

1<i<n

|ui|2
)1/2

.

For T2, we have

T2 =
∣
∣
∣
∣

∫ 1

0
tl–1

∫

�

ϕ(z)
[
u(ty + z – tz) – u(tx + z – tz)

]
(x – z, ξ ) dz dt

∣
∣
∣
∣

=
∣
∣T

(
u(y) – u(x)

)
(x; ξ )

∣
∣. (3.3)

Combining (3.2) and (3.3), we obtain

∥
∥Tu(y) – Tu(x)

∥
∥

Lp,τ (�,∧l–1)

≤ ‖T1‖Lp,τ (�,∧l–1) + ‖T2‖Lp,τ (�,∧l–1)

� |y – x|
(

sup
x0∈�,r>0

rτ

|B(x0, r)|
∫

B(x0,r)

(∑

1<i<n

|ui|2
)p/2

dx
)1/p

+
(

sup
x0∈�,r>0

rτ

|B(x0, r)|
∫

B(x0,r)

∣
∣T

(
u(y) – u(x)

)
(x; ξ )

∣
∣p dx

)1/p

� ‖u‖Lp,τ (�,∧l) +
∥
∥u(y) – u(x)

∥
∥

Lp,τ+p(�,∧l). (3.4)

Collecting the above facts, we deduce that

‖Tu‖�
p,τ
κ (�,∧l–1) �

⎧
⎨

⎩

‖u‖�
p,τ+p
κ (�,∧l) + ‖u‖Lp,τ (�,∧l), for l = 1,

‖u‖�
p,τ+p
κ (�,∧l), for l = 2, . . . , n.

The proof of Theorem 3.2 has been completed. �

Next, we show the Poincaré-type inequality in Hölder–Morrey spaces on differential
forms.

Theorem 3.3 Let u ∈ �
p,τ
κ (�,∧l) be a differential l-form and du ∈ �

p,τ
κ (�,∧l+1), l =

1, 2, . . . , n – 1, 0 < τ ≤ n – p. Then there exists a constant C, independent of u, such that

‖u – uB‖�
p,τ
κ (B,∧l) ≤ C‖du‖�

p,τ+p
κ (B,∧l+1),

where B is any ball in �.

Proof Using Lemma 3.1, we get

‖u – uB‖Lp,τ (B,∧l) = ‖T du‖Lp,τ (B,∧l) � ‖du‖Lp,τ+p(B,∧l+1).

Note that

∣
∣
(
u(y) – u(y)B

)
–

(
u(x) – u(x)B

)∣
∣ =

∣
∣
∣
∣

∫

B
ϕ(z)

[
Kz

(
du(y)

)
– Kz

(
du(x)

)]
dz dt

∣
∣
∣
∣.
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From Lemma 2.4, we have

Kz
(
du(y; ξ1 · · · , ξl)

)
=

∫ 1

0
tl[u′(ty + z – tz)(y – z)

]
(ξ1, . . . , ξl) dt

+
l∑

i=1

(–1)i
∫ 1

0
tl[u′(ty + z – tz)ξi

]
(y – z, ξ1, . . . , ξ̂i, . . . , ξl) dt

= K1 + K2

and

Kz
(
du(x; ξ1 · · · , ξl)

)
=

∫ 1

0
tl[u′(tx + z – tz)(x – z)

]
(ξ1, . . . , ξl) dt

+
l∑

i=1

(–1)i
∫ 1

0
tl[u′(tx + z – tz)ξi

]
(x – z, ξ1, . . . , ξ̂i, . . . , ξl) dt

= K3 + K4,

where u′(x) : Rn → ∧l(Rn) is a derivative mapping. Moreover, u′(x)ξi is an l-linear anti-
symmetric function on R

n × · · · ×R
n for each ξi ∈R

n. We first estimate K1 – K3:

K1 – K3 ≤
∫ 1

0
tl{[u′(ty + z – tz)(y – z)

]
(ξ1, . . . , ξl)

–
[
u′(ty + z – tz)(x – z)

]
(ξ1, . . . , ξl)

}
dt

+
∫ 1

0
tl{[u′(ty + z – tz)(x – z)

]
(ξ1, . . . , ξl)

–
[
u′(tx + z – tz)(x – z)

]
(ξ1, . . . , ξl)

}
dt. (3.5)

Similarly, for K2 – K4, we obtain

K2 – K4

≤
l∑

i=1

(–1)i
∫ 1

0
tl[u′(ty + z – tz)θi

]
(y – x, θ1, . . . , θ̂i, . . . , θl) dt

+
l∑

i=1

(–1)i
∫ 1

0
tl[[u′(ty + z – tz) – u′(tx + z – tz)

]
ξi

]

× (x – y, ξ1, . . . , ξ̂i, . . . , ξl) dt. (3.6)

Combining (3.5) and (3.6), we deduce that

Kz du(y) – Kz du(x) = (K1 – K3) + (K2 – K4)

=
∫ 1

0
tl[[u′(ty + z – tz) – u′(tx + z – tz)

]
(x – z)

]
(ξ1, . . . , ξl) dt

+
l∑

i=1

(–1)i
∫ 1

0
tl[[u′(ty + z – tz) – u′(tx + z – tz)

]
ξi

]



Li et al. Journal of Inequalities and Applications         (2023) 2023:71 Page 8 of 15

× (x – z, ξ1, . . . , ξ̂i, . . . , ξl) dt

= Kz
(
du(y) – du(x)

)
.

Finally, we obtain

‖u – uB‖�
p,τ
κ (B,∧l) � ‖du‖Lp,τ+p(B,∧l+1) + sup

x,y∈�

‖T(du(y)) – T(du(x))‖Lp,τ (�,∧l+1)

|y – x|κ

= ‖du‖�
p,τ+p
κ (B,∧l+1).

The proof of Theorem 3.3 has been completed. �

Remark 2 Replacing u ∈ Lp
loc(�,∧l) with the solution for A-harmonic equation on differ-

ential forms in [25, 26]

d�A(x, du) = B(x, du),

we can get the high order Poincaré-type estimate with Hölder norm by using the reverse
Hölder inequality

∥
∥(u – uB)

∥
∥

�np/(n–p),κ (B,∧l–1) ≤ C‖du‖�p,κ (σB,∧l+1)

for σB ⊂ � with σ > 1.

Next, we show the vectorial differential forms

U =
(
u1, u2, . . . , uk) : � → ∧l1 × · · · × ∧lk ,

where each ui is a differential li form for i = 1, 2, . . . , k and all li satisfy the condition 1 ≤
l1 ≤ · · · ≤ lk ≤ n,

∑k
1 li ≤ n. We denote the spaces of all vectorial differential forms by

LP(�,∧l1 × · · · × ∧lk ) with the norm

‖U‖LP(�,∧l1 ×···×∧lk ) =
k∑

1

‖ui‖Lpi (�,∧li ) < ∞,

where P = (p1, p2, . . . , pk) and each pi belongs to (1,∞). Analogically, we denote the vecto-
rial Hölder–Morrey space by �P,τ

κ (�,∧l1 × · · · × ∧lk ) with the finite norm

‖U‖
�

P,τ
κ (�,∧l1 ×···×∧lk ) := ‖U‖LP,τ (�,∧l1 ×···×∧lk ) + sup

x.y∈�

‖U(y) – U(x)‖LP,τ (�,∧l1 ×···×∧lk )

|y – x|κ .

Then we can obtain the following corollary.

Corollary 3.4 Suppose that U = (u1, u2, . . . , uk) is a vectorial differential form on �. Each
ui belongs to �

pi ,τ
κ (�,∧li ) with P = (p1, . . . , pk) and each dui belongs to �

qi ,τ
κ (�,∧li+1) with

Q = (q1, . . . , qk), l = l1 + · · ·+ lk . P = (p1, . . . , pk) and Q = (q1, . . . , qk) satisfying max{1, npi/(n+
pi)} ≤ qi ≤ pi for i = 1, 2, . . . , k. Let Tk = T × · · · × T be a k-order vectorial homotopy oper-
ator and TkU = (Tu1, . . . , Tuk). Then
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(i) There exists a constant C > 0 independent of u such that

∥
∥TkU

∥
∥

�P,τ (�,∧l1–1×···×∧lk –1) ≤ C‖U‖
�P,τ+P(�,∧l1 ×···×∧lk ),

where τ + P =: (p1 + τ , . . . , pk + τ ).
(ii) There exists a test form η ∈ C∞

0 (�,∧n–l) that satisfies ‖η‖∞ ≤ 1 and ‖dη‖∞ ≤ 1 with
l =

∑k
1 li such that

∣
∣
∣
∣

∫

�

η ∧ (
u1(y) ∧ · · · ∧ uk(y) – u1(x) ∧ · · · ∧ uk(x)

)
∣
∣
∣
∣

� ‖U‖k–2
LP(�,∧l1 ×···×∧lk )

{‖U‖LP(�,∧l1 ×···×∧lk ) + ‖dU‖LQ(�,∧l1 ×···×∧lk )
}

.

4 Hölder continuity with envelope function
For 0 < α < n and a differential l-form u on �, we define Riesz potential operator Iαu of
order α by

Iαu(x) =
∑

I

(∫

Rn

1
|x – y|n–α

uI(y) dy
)

dxI .

The operator Iαu will reduce to function type if l = 0. The boundedness and Sobolev-type
imbedding inequality in classic Morrey spaces for Riesz potential operator were given by
Adams and Xiao in [27, 28]. The Hölder continuity for Iα with envelope functions is as
follows.

Theorem 4.1 Suppose that 1 < p < q < ∞, τ ∈ (α + κ – 1,α + κ) and τ ∈ (αp – np/q,αq –
nq/p), h = |x – z|. Let u ∈ L1

loc(�,∧l) be a differential l-form and λ(·) ∈ �τ be an envelope
function. Then there exists a constant C > 0 such that

∥
∥
(
λ(x)Iαu(x)

)
– λ(z)Iαu(z)

∥
∥

Lp,τ (�,∧l) ≤ C
{

hα+κ–τ + hα–τ /q–n/p + hα+κ–τ /p–n/q}

for all differential l-forms u ∈ Lp
loc(�,∧l) with ‖u‖Lp,τ (�,∧l) ≤ 1.

Proof Since λ(·) ∈ �τ and each λ(·) on R
n satisfies condition (2.1), we get

∥
∥λ(x) – λ(z)

∥
∥

Lp,τ (Rn) ≤ C|h|κ ,

where C is a constant independent of λ. Assume that each uI for u =
∑

I uI dxI is nonneg-
ative on � and ‖u‖Lp,τ (�,∧l) ≤ 1. Let B(x, h) ⊂ � be an open ball centered at x of radius h.
Then we have

∣
∣λ(x)Iαu(x) – λ(z)Iαu(z)

∣
∣

≤
∣
∣
∣
∣λ(x)

∑

I

∫

B(x,2h)

1
|x – y|n–α

uI(y) dy dxI

+ λ(x)
∑

I

∫

Rn\B(x,2h)

1
|x – y|n–α

uI(y) dy dxI
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– λ(z)
∑

I

∫

B(x,2h)

1
|z – y|n–α

uI(y) dy dxI

– λ(z)
∑

I

∫

Rn\B(x,2h)

1
|z – y|n–α

uI(y) dy dxI

∣
∣
∣
∣

�
∣
∣
∣
∣λ(x)

∑

I

∫

B(x,3h)

1
|x – y|n–α

uI(y) dy dxI

∣
∣
∣
∣

+
∣
∣
∣
∣λ(z)

∑

I

∫

B(z,3h)

1
|z – y|n–α

uI(y) dy dxI

∣
∣
∣
∣

+
∣
∣
∣
∣

∑

I

∫

Rn\B(x,3h)

(
λ(x) – λ(z)

)|z – y|α–nuI(y) dy dxI

∣
∣
∣
∣

+
∣
∣
∣
∣λ(x)

∑

I

∫

Rn\B(x,2h)

∣
∣
∣
∣|x – y|α–n – |z – y|α–n∣∣uI(y) dy dxI

∣
∣

= S1 + S2 + S3 + S4.

We first estimate S1

S1 =
∣
∣
∣
∣λ(x)

∑

I

∫

B(x,3h)

1
|x – y|n–α

uI(y) dy dxI

∣
∣
∣
∣

≤
∫

B(x,3h)

|λ(x) – λ(y)|
|x – y|n–α

(∑

I

∣
∣uI(y)

∣
∣2

)1/2

dy

+
∫

B(x,3h)

λ(y)
|x – y|n–α

(∑

I

∣
∣uI(y)

∣
∣2

)1/2

dy

= S11 + S12.

Hence

S11 �
∫ 3h

0
tα–n

∫

B(x,t)

∣
∣λ(x) – λ(y)

∣
∣
(∑

I

∣
∣uI(y)

∣
∣2

)1/2

dy
dt
t

�
∫ 3h

0
tα–τ

∥
∥λ(x) – λ(y)

∥
∥

Lp,τ (B(x,t))
dt
t

� hα+κ–τ ,

where α + κ – τ > 0. For S12,

S12 �
∫ 3h

0
tα

(
1

|B(x, t)|
∫

B(x,t)
λ(y)

(∑

I

∣
∣uI(y)

∣
∣2

)1/2

dy
)

dt
t

� hα–τ /q–n/p,

where α – τ /q – n/p > 0. Similar to S1, we omit the calculation of S2. For S3, we have

S3 �
∣
∣λ(x) – λ(z)

∣
∣
∫

Rn\B(x,3h)
|z – y|α–n

(∑

I

∣
∣uI(y)

∣
∣2

)1/2

dy
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�
∣
∣λ(x) – λ(z)

∣
∣
∫

Rn\B(z,2h)
|z – y|α–n

(∑

I

∣
∣uI(y)

∣
∣2

)1/2

dy

�
∣
∣λ(x) – λ(z)

∣
∣
∫ ∞

2h
tα–n

(∑

I

∣
∣uI(y)

∣
∣2

)1/2

dy
dt
t

� hα–τ /p–n/q∣∣λ(x) – λ(z)
∣
∣

since α – τ /p – n/q < 0. Next, we estimate S4:

S4 ≤ h
∣
∣
∣
∣λ(x)

∑

I

∫

Rn\B(x,3h)
|x – y|α–n–1uI(y) dy dxI

∣
∣
∣
∣

� h
∫

Rn\B(x,3h)

|λ(x) – λ(y)|
|x – y|n–α+1

(∑

I

∣
∣uI(y)

∣
∣2

)1/2

dy

+ h
∫

Rn\B(x,3h)

λ(y)
|x – y|n–α+1

(∑

I

∣
∣uI(y)

∣
∣2

)1/2

dy

= S41 + S42.

Then

S41 � h
∫ ∞

3h
tα–n–1

∫

B(x,t)

∣
∣λ(x) – λ(y)

∣
∣
(∑

I

∣
∣uI(y)

∣
∣2

)1/2

dy
dt
t

� h
∫ ∞

3h
tα–τ–1∥∥λ(x) – λ(y)

∥
∥

Lp,τ (B(x,t))
dt
t

� hα+κ–τ

for α + κ – τ – 1 < 0 and

S42 � h
∫ ∞

3h
tα–n–1

∫

B(x,t)
λ(y)

(∑

I

∣
∣uI(y)

∣
∣2

)1/2

dy
dt
t

� hα–τ /q–n/p

for α – τ /p – n/q – 1 < 0.
Let B(x0, r0) ⊃ � centered at x0 and radius of r0. Then r0 is a finite constant independent

of x. Combining all the above facts, we deduce that

∥
∥λ(x)Iαu(x) – λ(z)Iαu(z)

∥
∥

Lp,τ (�,∧l)

≤
4∑

i=1

‖Si‖Lp,τ (�,∧l)

=
4∑

i=1

sup
x0∈�,r>0

‖Si‖Lp(B(x0,r),∧l) ≤ C
{

hα+κ–τ + hα–τ /q–n/p + hα+κ–τ /p–n/q},

where C is a constant independent of x and z. The proof of Theorem 4.1 has been com-
pleted. �
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The inequality for composite operator with Morrey norms on differential forms is as
follows.

Theorem 4.2 Let u ∈ �
p,τ
κ (�,∧l) be a differential l-form and du ∈ �

p,τ
κ (�,∧l+1), l =

0, 1, . . . , n – 1, h = |x – z|, let T : Lp(�,∧l) → Lp(�,∧l–1) be a homotopy operator and
λ(·) ∈ �τ . Then there exists a constant C, independent of u, such that

∥
∥λ(x)Iα

(
u(x) – u(x)B

)
– λ(z)Iα

(
u(z) – u(z)B

)∥
∥

Lp,τ (�,∧l)

≤ C
{

hα+κ–τ + hα–τ /q–n/p + hα+κ–τ /p–n/q}, (4.1)

where B is any ball in �.

Proof Assume that l ≥ 1, arbitrary x0 ∈ �, and B(x0, r) ⊂ � is any ball centered at x0 and
radius of r. Then we have

∥
∥λ(x)Iα

(
u(x) – u(x)B

)
– λ(z)Iα

(
u(z) – u(z)B

)∥
∥

Lp,τ (�,∧l)

� sup
r>0

r(τ–n)/p∥∥λ(x)Iα
(
u(x) – u(x)B

)
– λ(z)Iα

(
u(z) – u(z)B

)∥
∥

Lp(B(x0,r),∧l).

|λ(x)Iα(du(x)) – λ(z)Iα(du(z))| is expressed by

∣
∣λ(x)Iα

(
du(x)

)
– λ(z)Iα

(
du(z)

)∣
∣

=

∣
∣
∣
∣
∣
λ(x)

n∑

k

∑

1≤i1<···<il≤n

∫

Rn

1
|x – y|n–α

(
∂uI(y)
∂xk

)

dy dxk ∧ dxI

– λ(z)
n∑

k

∑

1≤i1<···<il≤n

∫

Rn

1
|z – y|n–α

(
∂uI(y)
∂xk

)

dy dxk ∧ dxI

∣
∣
∣
∣
∣
.

Assume that each ∂uI (y)
∂xk

= vI(x) is a coefficient function of differential (l + 1) form du. By
using Theorem 4.1, we obtain (4.1) holds. �

5 Homotopy operator and A-harmonic equations
As applications for homotopy operator on differential forms, we study the solutions for
nonhomogeneous A-harmonic equation on differential forms

A(x, g + du) = h + d�v, (5.1)

where A : � × ∧l(Rn) → ∧l(Rn) and g , h are differential l-forms on �. To study the prop-
erty of (5.1), we need the following conditions for operator A:

∣
∣A(x, ζ )

∣
∣ ≤ a|ζ |p–1

and

〈
A(x, ζ ), ζ

〉 ≤ |ζ |p,
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where arbitrary x ∈ �, ζ ∈ ∧l(Rn) and a is a positive constant. In the present paper, we
choose g = h = 0 in (5.1), then we get the nonhomogeneous conjugate A-harmonic equa-
tion

A(x, du) = d�v. (5.2)

If u, v is a pair of solutions for equation (5.2), then we say u and v are a pair of conjugate
A-harmonic tensors. Furthermore, u was called homogeneous A-harmonic tensor if u is
a solution for homogeneous A-harmonic equation

d�A(x, du) = 0. (5.3)

The following lemma appeared in [24].

Lemma 5.1 Let u and v be a pair of solutions for equation (5.1) on �. If g ∈ Lp(B,∧l)
and h ∈ Lq(B,∧l), then du ∈ Lp(B,∧l) if and only if d�v ∈ Lq(B,∧l). Moreover, we have the
following inequalities:

∥
∥d�v

∥
∥q

Lq(B,∧l+1) ≤ C1
{‖h‖q

Lq(B,∧l) + ‖g‖p
Lp(B,∧l) + ‖du‖p

Lp(B,∧l+1)

}
,

‖du‖p
Lp(B,∧l+1) ≤ C2

{‖h‖q
Lq(B,∧l) + ‖g‖p

Lp(B,∧l) +
∥
∥d�v

∥
∥q

Lq(B,∧l+1)

}

for C1 and C2 are two constants independent of u and v.

Now, we show the Caccioppoli-type estimate for homotopy operator with Lp,τ (�,∧l)-
norms.

Theorem 5.2 Assume that 1 < τ ,υ < n and 1 < p < ∞. Let u and v be a pair of conjugate
A-harmonic tensors on � and T : Lp(�,∧l) → Lp(�,∧l–1) be a homotopy operator. Then
there exist a constant C > 0, independent of u and v, such that

∥
∥Td�v

∥
∥q

Lq,τ (�,∧l) ≤ C‖u – c‖p
Lp,υ (�,∧l),

where c is any closed form on � and υ = τ – p + q.

Proof From Theorem 2.9 in [29], we have the following Caccioppoli inequality in Lp-
spaces:

‖du‖Lp(B,∧l+1) ≤ C|B|–1/n‖u – c‖Lp(σB,∧l)

for a homogeneous A-harmonic tensor u, B with σB in � and all closed forms c. Since u
and v are a pair of conjugate A-harmonic tensors on � with g = h = 0, by using Lemma 5.1,
we have

∥
∥d�v

∥
∥q

Lq(B,∧l+1) ≤ C‖du‖p
Lp(B,∧l+1).

Hence

∥
∥Td�v

∥
∥q

Lq(B,∧l) ≤ C|B|q/n∥∥d�v
∥
∥p

Lp(B,∧l) ≤ C|B|–p/n‖u – c‖p
Lp(σB,∧l).
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Clearly, d� = (–1)nl+1 �d�u and � : ∧l → ∧n–l is an isometric isomorphism mapping. Com-
bining all the facts, we obtain

∥
∥Td�v

∥
∥q

Lq,τ (�,∧l) = sup
r>0

rτ–n∥∥Td�v
∥
∥q

Lq(B,∧l)

� sup
r>0

rτ–nrq–p‖u – c‖p
Lp(σB,∧l)

� ‖u – c‖p
Lp,υ (�,∧l)

for all B with σB ⊂ � and υ = τ – p + q. The proof of Theorem 5.2 has been com-
pleted. �

Next, we give the Poincaré-type estimate for homotopy operator with Lp,τ (�,∧l)-norms.

Theorem 5.3 Assume that 1 < τ ,υ < n and 1 < p < ∞. Let u and v be a pair of conjugate
A-harmonic tensors on � and T : Lp(�,∧l) → Lp(�,∧l–1) be a homotopy operator. Then
there exists a constant C > 0, independent of u and v, such that

∥
∥T(u – uB)

∥
∥p

Lp,υ (�,∧l–1) ≤ C
∥
∥d�v

∥
∥q

Lq,τ (�,∧l+1),

where c is any closed form on � and υ = τ + p.

Proof Let u and v be a pair of conjugate A-harmonic tensors on � and g = h = 0. Using
the second relation of Lemma 5.1, we have

‖du‖p
Lp(B,∧l+1) ≤ C

∥
∥d�v

∥
∥q

Lq(B,∧l+1).

By using Lemma 3.1, we have

∥
∥T(u – uB)

∥
∥

Lp,υ (�,∧l–1) � sup
r>0

r(υ–n)/p|B|1/n‖du‖Lp(B,∧l+1) = ‖du‖Lp,τ (�,∧l+1)

for τ = υ + p and any ball B in �. Collecting these facts, we obtain

∥
∥T(u – uB)

∥
∥p

Lp,υ (�,∧l–1) ≤ C
∥
∥d�v

∥
∥q

Lq,τ (�,∧l+1).

The proof of Theorem 5.3 has been completed. �
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