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Abstract
This paper deals with the rate of convergence for the central limit theorem of
estimators of the drift coefficient, denoted θ , for the Ornstein-Uhlenbeck process
X := {Xt , t ≥ 0} observed at high frequency. We provide an approximate minimum
contrast estimator and an approximate maximum likelihood estimator of θ , namely
˜θn := 1/( 2n

∑n
i=1 X

2
ti
), and̂θn := –

∑n
i=1 Xti–1 (Xti – Xti–1 )/(�n

∑n
i=1 X

2
ti–1

), respectively, where
ti = i�n, i = 0, 1, . . . ,n, �n → 0. We provide Wasserstein bounds in the central limit
theorem for˜θn and̂θn.
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1 Introduction
Let X := {Xt , t ≥ 0} be the Ornstein-Uhlenbeck (OU) process driven by Brownian motion
{Wt , t ≥ 0}. More precisely, X is the solution of the following linear stochastic differential
equation

X0 = 0; dXt = –θXt dt + dWt , t ≥ 0, (1.1)

where θ > 0 is an unknown parameter.
The drift parametric estimation for the OU process (1.1) has been widely studied in the

literature. There are several methods that can estimate the parameter θ in (1.1) such as
maximum likelihood estimation, least squares estimation, and minimum contrast estima-
tion; we refer to monographs [14, 15]. While for the study of the asymptotic distribution
of the estimators of θ based on discrete observations of X, there is extensive literature, and
only several works have been dedicated to the rates of weak convergence of the distribu-
tions of the estimators to the standard normal distribution.
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From a practical point of view, in parametric inference, it is more realistic and interesting
to consider asymptotic estimation for (1.1) based on discrete observations. Thus, let us
assume that the process X given in (1.1) is observed equidistantly in time with the step
size �n: ti = i�n, i = 0, . . . , n, and T = n�n denotes the length of the “observation window”.
Here we are concerned with the approximate minimum contrast estimator (AMCE)

˜θn :=
1

2
n
∑n

i=1 X2
ti

,

and the approximate maximum likelihood estimator (AMLE)

̂θn := –
∑n

i=1 Xti–1 (Xti – Xti–1 )
�n
∑n

i=1 X2
ti–1

,

which are discrete versions of the minimum contrast estimator (MCE) and the maximum
likelihood estimator (MLE) defined as follows:

θ̄T :=
1

2
T
∫ T

0 X2
s ds

, θ̌T = –
∫ T

0 Xs dXs
∫ T

0 X2
s ds

, T ≥ 0.

Recall that, for two random variables X and Y , the Wasserstein metric is given by

dW (X, Y ) := sup
f ∈Lip(1)

∣

∣E
[

f (X)
]

– E
[

f (Y )
]∣

∣,

where Lip(1) is the set of all Lipschitz functions with the Lipschitz constant ≤ 1.
Rates of convergence in the central limit theorem of the MCE θ̄T and MLE θ̌T under the

Kolmogorov and Wasserstein distances have been studied as follows: There exist c, C > 0
depending only on θ such that

sup
x∈R

∣

∣

∣

∣

P
(
√

T
2θ

(θ̄T – θ ) ≤ x
)

– P(N ≤ x)
∣

∣

∣

∣

≤ C√
T

, see [3, Theorem 2.5],

dW

(
√

T
2θ

(θ̄T – θ ), N
)

≤ C√
T

, see [7, Theorem 5.4],

c√
T

≤ sup
x∈R

∣

∣

∣

∣

P
(
√

T
2θ

(θ̌T – θ ) ≤ x
)

– P(N ≤ x)
∣

∣

∣

∣

≤ C√
T

, see [12, Theorems 1 and 2],

dW

(
√

T
2θ

(θ̌T – θ ),N
)

≤ C√
T

, see [8, Theorem 1] for fixed N = 1,

where N ∼N (0, 1) denotes a standard normal random variable.
The purpose of this manuscript is to derive upper bounds of the Wasserstein distance

for the rates of convergence of the distribution of the AMCE˜θn and the AMLÊθn. These
estimators are unbiased, and we show that they are consistent and admit a central limit
theorem as �n → 0 and T → ∞. Moreover, we bound the rate of convergence to the
normal distribution in terms of the Wasserstein distance.

Note that the papers [2] and [4] provided explicit upper bounds for the Kolmogorov
distance for the rates of convergence of the distribution of ˜θn and ̂θn, respectively. On
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the other hand, [7] provided Wasserstein bounds in central limit theorem for ˜θn. Let us
describe what is proved in this direction:

• Theorem 2.1 in [2] shows that there exists C > 0 depending on θ such that

sup
x∈R

∣

∣

∣

∣

P
(
√

T
2θ

(˜θn – θ ) ≤ x
)

– P(N ≤ x)
∣

∣

∣

∣

≤ C max

(
√

log T
T

,
T4

n2 log T

)

. (1.2)

• Theorem 2.3 in [4] proves that there exists C > 0 depending on θ such that

sup
x∈R

∣

∣

∣

∣

P
(
√

T
2θ

(̂θn – θ ) ≤ x
)

– P(N ≤ x)
∣

∣

∣

∣

≤ C max

(
√

log T
T

,
T2

n log T

)

. (1.3)

• Theorem 5.4 in [7] establishes that there exists C > 0 depending on θ such that

dW

(
√

T
2θ

(˜θn – θ ),N
)

≤ C max

(

1√
T

,
√

T2

n

)

. (1.4)

Remark 1.1 Note that in [2, Theorem 2.1], [4, Theorem 2.3], and [7, Theorem 5.4], the
asymptotic normality of the distribution of ˜θn and ̂θn need n�2

n = T2

n → 0 and T → ∞.
However, Theorem 3.6 and Theorem 4.1, which are stated and proved below, show that,
respectively, the asymptotic normality of the distribution of˜θn and̂θn only need �n = T

n →
0 and T → ∞.

The aim of the present paper is to provide new explicit bounds for the rate of conver-
gence in the CLT of the estimators ˜θn and ̂θn under the Wasserstein metric as follows:
There exists a constant C > 0 such that, for all n ≥ 1, T > 0,

dW

(
√

T
2θ

(˜θn – θ ),N
)

≤ C max

(

1√
T

,
T2

n2

)

, (1.5)

see Theorem 3.6, and

dW

(
√

T
2θ

(̂θn – θ ),N
)

≤ C max

(

1√
T

,
√

T3

n2

)

, (1.6)

see Theorem 4.1.

Remark 1.2 The estimates (1.5) and (1.6) show that we have improved the bounds on the
error of normal approximation for ˜θn and ̂θn. In other words, it is clear that the obtained
bounds in (1.5) and (1.6) are sharper than the bounds in (1.2), (1.3), and (1.4).

To finish this introduction, we note the general structure of this paper. Section 2 con-
tains some preliminaries presenting the tools needed for the analysis of the Wiener space,
including Wiener chaos calculus and Malliavin calculus. Upper bounds for the rates of
convergence of the distribution of the AMCE˜θn and the AMLÊθn are provided in Sect. 3
and Sect. 4, respectively.
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2 Preliminaries
This section gives a brief overview of some useful facts from the Malliavin calculus on
Wiener space. Some of the results presented here are essential for the proofs in the present
paper. For our purposes, we focus on special cases that are relevant to our setting and
omit the general high-level theory. We direct the interested reader to [18, Chap. 1]and [16,
Chap. 2].

The first step is to identify the general centered Gaussian process (Zt)≥0 with an isonor-
mal Gaussian process X = {X(h), h ∈ H} for some Hilbert space H, that is, X is a cen-
tered Gaussian family defined a common probability space (�,F , P) satisfying, for every
h1, h2 ∈H, E[X(h1)X(h2)] = 〈h1, h2〉H.

One can define H as the closure of real-valued step functions on [0,∞) with respect to
the inner product 〈1[0,t], 1[0,s]〉H = E[ZtZs]. Note that X(1[0,t])

d= Zt .
The next step involves the multiple Wiener-Itô integrals. The formal definition in-

volves the concepts of the Malliavin derivative and divergence. We refer the reader to [18,
Chap. 1]and [16, Chap. 2]. For our purposes, we define the multiple Wiener-Itô integral Ip

via the Hermite polynomials Hp. In particular, for h ∈H with ‖h‖H = 1, and any p ≥ 1,

Hp
(

X(h)
)

= Ip
(

h⊗p).

For p = 1 and p = 2, we have the following:

H1
(

X(1[0,t])
)

=X(1[0,t]) = I1(1[0,t])
d= Zt , (2.1)

H2
(

X(1[0,t])
)

=X(1[0,t])2 – E
[

X(1[0,t])2] = I2
(

1⊗2
[0,t]
) d= Z2

t – E[Zt]2. (2.2)

Note also that I0 can be taken to be the identity operator.
• Some notation for Hilbert spaces. Let H be a Hilbert space. Given an integer q ≥ 2, the

Hilbert spaces H⊗q and Hq correspond to the qth tensor product and qth symmetric ten-
sor product of H. If f ∈ H⊗q is given by f =

∑

j1,...,jq a(j1, . . . , jq)ej1 ⊗ · · · ejq , where (eji )i∈[1,q]

form an orthonormal basis of H⊗q, then the symmetrization f̃ is given by

f̃ =
1
q!
∑

σ

∑

j1,...,jq

a(j1, . . . , jq)eσ (j1) ⊗ · · · eσ (jq),

where the first sum runs over all permutations σ of {1, . . . , q}. Then f̃ is an element of
Hq. We also make use of the concept of contraction. The rth contraction of two tensor
products ej1 ⊗ · · · ⊗ ejp and ek1 ⊗ · · · ekq is an element of H⊗(p+q–2r) given by

(ej1 ⊗ · · · ⊗ ejp ) ⊗r (ek1 ⊗ · · · ⊗ ekq )

=

[ r
∏

�=1

〈ej� , ek�
〉
]

ejr+1 ⊗ · · · ⊗ ejq ⊗ ekr+1 ⊗ · · · ⊗ ekq . (2.3)

• Isometry property of integrals [16, Proposition 2.7.5] Fix integers p, q ≥ 1 as well as
f ∈Hp and g ∈Hq.

E
[

Iq(f )Iq(g)
]

=

⎧

⎨

⎩

p!〈f , g〉H⊗p if p = q,

0 otherwise.
(2.4)
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• Product formula [16, Proposition 2.7.10] Let p, q ≥ 1. If f ∈ Hp and g ∈ Hq

then

Ip(f )Iq(g) =
p∧q
∑

r=0

r!
(

p
r

)(

q
r

)

Ip+q–2r(f˜⊗rg). (2.5)

• Hypercontractivity in Wiener Chaos. For every q ≥ 1, Hq denotes the qth Wiener chaos
of W , defined as the closed linear subspace of L2(�) generated by the random variables
{Hq(W (h)), h ∈H,‖h‖H = 1}, where Hq is the qth Hermite polynomial. For any F ∈ ⊕q

l=1Hl

(i.e., in a fixed sum of Wiener chaoses), we have

(

E
[|F|p])1/p ≤ cp,q

(

E
[|F|2])1/2 for any p ≥ 2. (2.6)

It should be noted that the constants cp,q above are known with some precision when F is
a single chaos term: indeed, by [16, Corollary 2.8.14], cp,q = (p – 1)q/2.

• Optimal fourth moment theorem. Let N denote the standard normal law. Let a se-
quence X : Xn ∈ Hq, such that EXn = 0 and Var[Xn] = 1, and assume that Xn converges to
a normal law in distribution, which is equivalent to limn E[X4

n] = 3. Then we have the op-
timal estimate for total variation distance dTV(Xn,N ), known as the optimal 4th moment
theorem, proved in [17]. This optimal estimate also holds with the Wasserstein distance
dW (Xn,N ), see [7, Remark 2.2], as follows: there exist two constants c, C > 0 depending
only on the sequence X but not on n, such that

c max
{

E
[

X4
n
]

– 3,
∣

∣E
[

X3
n
]∣

∣

}≤ dW (Xn,N ) ≤ C max
{

E
[

X4
n
]

– 3,
∣

∣E
[

X3
n
]∣

∣

}

. (2.7)

Moreover, we recall that the third and fourth cumulants are, respectively,

κ3(X) = E
[

X3] – 3E
[

X2]E[X] + 2E[X]3,

κ4(X) = E
[

X4] – 4E[X]E
[

X3] – 3E
[

X2]2 + 12E[X]2E
[

X2] – 6E[X]4.

In particular, when E[X] = 0, we have that

κ3(X) = E
[

X3] and κ4(X) = E
[

X4] – 3E
[

X2]2.

If g ∈H⊗2, then the third and fourth cumulants for I2(g) satisfy the following (see (6.2)
and (6.6) in [1], respectively),

k3
(

I2(g)
)

= E
[(

I2(g)
)3] = 8〈g, g ⊗1 g〉H⊗2 , (2.8)

and

∣

∣k4
(

I2(g)
)∣

∣ = 16
(‖g ⊗1 g‖2

H⊗2 + 2‖g˜⊗1g‖2
H⊗2
)

≤ 48‖g ⊗1 g‖2
H⊗2 . (2.9)
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Lemma 2.1 ([19]) Fix an integer M ≥ 2. We have

∑

|kj |≤n
1≤j≤M

∣

∣ρ(k · v)
∣

∣

M
∏

j=1

∣

∣ρ(kj)
∣

∣≤ C
(

∑

|k|≤n

∣

∣ρ(k)
∣

∣

1+ 1
M

)M

,

where k = (k1, . . . , kM), and v ∈R
M is a fixed vector whose components are 1 or –1.

Throughout the paper N denotes a standard normal random variable. Also, C denotes
a generic positive constant (perhaps depending on θ but not on anything else), which may
change from line to line.

3 Approximate minimum contrast estimator
In this section, we prove the consistency and provide upper bounds in the Wasserstein
distance for the rate of normal convergence of an approximate minimum contrast estima-
tor of the drift parameter θ of the Ornstein-Uhlenbeck process X := {Xt , t ≥ 0} driven by
Brownian motion {Wt , t ≥ 0}, defined as solution of the following linear stochastic differ-
ential equation

X0 = 0; dXt = –θXt dt + dWt , t ≥ 0, (3.1)

where θ > 0 is an unknown parameter. Since (3.1) is linear, it is immediate to see that its
solution can be expressed explicitly as

Xt =
∫ t

0
e–θ (t–s) dWs. (3.2)

Moreover,

Zt =
∫ t

–∞
e–θ (t–s) dWs (3.3)

is a stationary Gaussian process, see [5, 9].
Furthermore,

Xt = Zt – e–θ tZ0. (3.4)

Since Z := {Zt , t ≥ 0} is a continuous centered stationary Gaussian process, then it can
be represented as a Wiener-Itô (multiple) integral Zt

d= I1(1[0,t]) for every t ≥ 0, according
to (2.1). Let ρ(r) = E(ZrZ0) denote the covariance of Z for every r ≥ 0. It is easy to show
that

ρ(t) = E(ZtZ0) =
e–θ |t|

2θ
, t ∈R.

In particular, ρ(0) = 1
2θ

. Moreover, notice that ρ(r) = ρ(–r) for all r < 0.
Our goal is to estimate θ based on the discrete observations of X, using the approxima-

tive minimum contrast estimator:

˜θn :=
1

2( 1
n
∑n

i=1 X2
ti )

=
1

2fn(X)
= g
(

fn(X)
)

, n ≥ 1, (3.5)



Es-Sebaiy et al. Journal of Inequalities and Applications         (2023) 2023:62 Page 7 of 17

where g(x) := 1
2x , ti = i�n, i = 0, . . . , n, �n → 0 and T = n�n, whereas fn(X), n ≥ 1, are given

by

fn(X) :=
1
n

n–1
∑

i=0

X2
ti

. (3.6)

To analyze the estimator˜θn of θ based on discrete high-frequency data in time of X, we
first estimate the limiting variance ρ(0) = 1

2θ
by the estimator fn(X), given by (3.6).

Let us introduce

Fn(Z) :=
√

T
(

fn(Z) –
1

2θ

)

, where fn(Z) :=
1
n

n–1
∑

i=0

Z2
ti

.

According to (2.2), Fn(Z) can be written as

Fn(Z) =
√

�n

n

n–1
∑

i=0

I2
(

1⊗2
[0,ti]
)

= I2

(
√

�n

n

n–1
∑

i=0

1⊗2
[0,ti]

)

=: I2(εn). (3.7)

We will make use of the following technical lemmas.

Lemma 3.1 Let X and Z be the processes given in (3.2) and (3.3), respectively. Then there
exists C > 0 depending only on θ such that for every p ≥ 1 and for all n ∈N,

∥

∥Fn(X) – Fn(Z)
∥

∥

Lp(�) ≤ C
n�n

. (3.8)

Proof By (3.4), we can write

∥

∥Fn(X) – Fn(Z)
∥

∥

Lp(�) ≤ 1
n

n–1
∑

i=0

∥

∥e–2θ ti Z2
0 – 2e–θ ti Z0Zti

∥

∥

Lp(�).

Combining this and the fact that Z is a stationary Gaussian process, we deduce

∥

∥Fn(X) – Fn(Z)
∥

∥

Lp(�) ≤ C
n

n–1
∑

i=0

e–θ ti

=
C
n

1 – e–nθ�n

1 – e–θ�n

≤ C
n�n

,

where we used �n
1–e–θ�n → 1

θ
as n → ∞. Thus, the desired result is obtained. �

Lemma 3.2 There exists C > 0 depending only on θ such that for large n

∣

∣

∣

∣

E
(

F2
n(Z)

)

–
1

2θ3

∣

∣

∣

∣

≤ C
(

�2
n +

1
n�n

)

. (3.9)
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Consequently, using (3.8), for large n

∣

∣

∣

∣

E
(

F2
n(X)

)

–
1

2θ3

∣

∣

∣

∣

≤ C
(

�2
n +

1
n�n

)

. (3.10)

Proof Using the well-known Wick formula, we have

E
(

Z2
t Z2

s
)

= E
(

Z2
t
)

E
(

Z2
s
)

+ 2
(

E(ZtZs)
)2 = ρ2(0) + 2ρ2(t – s). (3.11)

This implies

E
(

F2
n(Z)

)

= T
[

Ef 2
n (Z) – 2

1
2θ

Efn(Z) + ρ2(0)
]

= T
[

Ef 2
n (Z) – ρ2(0)

]

= T

[

1
n2

n–1
∑

i,j=0

E
(

Z2
ti

Z2
tj

)

– ρ2(0)

]

= T

[

2
n2

n–1
∑

i,j=0

ρ2(tj – ti)

]

=
2�n

n

n–1
∑

i,j=0

ρ2((j – i)�n
)

=
2�n

n

n–1
∑

i,j=0

e–2θ |j–i|�n

(2θ )2

=
�n

2θ2 +
�n

θ2n
∑

0≤i<j≤n–1

e–2θ (j–i)�n

=
�n

2θ2 +
�n

θ2n

n–1
∑

k=1

(n – k)e–2k�nθ

=
–�n

2θ2 +
�n

θ2

n–1
∑

k=0

e–2k�nθ –
�n

θ2n

n–1
∑

k=1

ke–2k�nθ . (3.12)

Further,

–�n

2θ2 +
�n

θ2

n–1
∑

k=0

e–2k�nθ

=
–�n

2θ2 +
�n

θ2
1 – e–2nθ�n

1 – e–2θ�n

=
–�n

2θ2 +
1
θ2

�n

1 – e–2θ�n
–

1
θ2

�n

1 – e–2θ�n
e–2nθ�n

=
–�n

2θ2 +
1
θ2

1
2θ (1 – θ�n + o(�n))

–
1
θ2

�n

1 – e–2θ�n
e–2θn�n

=
–�n

2θ2 +
1

2θ3

(

1 + θ�n + θ2�2
n + o

(

�2
n
))

–
1
θ2

�n

1 – e–2θ�n
e–2θn�n

=
1

2θ3

(

1 + θ2�2
n + o

(

�2
n
))

–
1
θ2

�n

1 – e–2θ�n
e–2θn�n . (3.13)



Es-Sebaiy et al. Journal of Inequalities and Applications         (2023) 2023:62 Page 9 of 17

Moreover,

�n

θ2n

n–1
∑

k=1

ke–2k�nθ =
1

θ2n�n

n–1
∑

k=1

(k�n)e–2k�nθ�n, (3.14)

and as n → ∞

n–1
∑

k=1

(k�n)e–2k�nθ�n −→
∫ ∞

0
xe–2θx dx =

1
4θ2 < ∞.

Combining (3.12), (3.13), and (3.14) and �n
1–e–2θ�n → 1

2θ
, there exists C > 0 depending only

on θ such that for large n

∣

∣

∣

∣

E
(

F2
n(Z)

)

–
1

2θ3

∣

∣

∣

∣

≤ C
(

�2
n + e–2θn�n +

1
n�n

)

≤ C
(

�2
n +

1
n�n

)

.

Therefore, the desired result is obtained. �

Lemma 3.3 There exists C > 0 depending only on θ such that for large n,

∣

∣k3
(

Fn(Z)
)∣

∣≤ C
(n�n)3/2 , (3.15)

∣

∣k4
(

Fn(Z)
)∣

∣≤ C
1

n�n
. (3.16)

Consequently,

max
(∣

∣k3
(

Fn(Z)
)∣

∣,
∣

∣k4
(

Fn(Z)
)∣

∣

)≤ C
1

n�n
. (3.17)

Proof Using 1⊗2
[0,s] ⊗1 1⊗2

[0,t] = 〈1[0,s], 1[0,t]〉H1[0,s] ⊗ 1[0,t] = ρ(t – s)1[0,s] ⊗ 1[0,t], we can write

εn ⊗1 εn =
�n

n

n–1
∑

i,j=0

ρ(tj – ti)1[0,ti] ⊗ 1[0,tj].

Combining this with (2.8) and (3.7), we get

k3
(

Fn(Z)
)

= k3
(

I2(εn)
)

= 8〈εn, εn ⊗1 εn〉H⊗2

=
�3/2

n
n3/2

n–1
∑

i,j,k=0

ρ(tj – ti)ρ(ti – tk)ρ(tk – tj)

=
�3/2

n
n3/2

n–1
∑

i,j,k=0

ρ
(

(j – i)�n
)

ρ
(

(i – k)�n
)

ρ
(

(k – j)�n
)
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≤ �3/2
n

n3/2

∑

|ki|<n,i=1,2,3

ρ(k1�n)ρ(k2�n)ρ(k3�n)

≤ �3/2
n

n3/2

(

∑

|k|<n

ρ(k�n)
)3

. (3.18)

On the other hand,

∑

|k|<n

ρ(k�n) =
1

2θ

∑

|k|<n

e–θ |k|�n

≤ 1
θ

n–1
∑

k=0

e–θk�n

≤ 1 – e–θn�n

θ (1 – e–θ�n )

≤ C
�n

. (3.19)

Combining (3.18) and (3.19) yields

k3
(

Fn(Z)
) ≤ C

(n�n)3/2 ,

which implies (3.15).
Using (2.9) and (3.7), we get

∣

∣k4
(

Fn(Z)
)∣

∣ ≤ 48‖εn ⊗1 εn‖2
H⊗2

= 48
�2

n
n2

n–1
∑

k1,k2,k3,k4=0

〈

1⊗2
[0,tk1 ] ⊗1 1⊗2

[0,tk2 ], 1⊗2
[0,tk3 ] ⊗1 1⊗2

[0,tk4 ]
〉

H⊗2

= 48
�2

n
n2

n–1
∑

k1,k2,k3,k4=0

E[Ztk1
Ztk2

]E[Ztk3
Ztk4

]E[Ztk1
Ztk3

]E[Ztk2
Ztk4

]

= 48
�2

n
n2

n–1
∑

k1,k2,k3,k4=0

ρ(tk1 – tk2 )ρ(tk3 – tk4 )ρ(tk1 – tk3 )ρ(tk2 – tk4 ),

where we used

1⊗2
[0,s] ⊗1 1⊗2

[0,t] = 〈1[0,s], 1[0,t]〉H1[0,s] ⊗ 1[0,t]

= E[ZsZt]1[0,s] ⊗ 1[0,t]. (3.20)

Furthermore,

48
�2

n
n2

n–1
∑

k1,k2,k3,k4=0

ρ(tk1 – tk2 )ρ(tk3 – tk4 )ρ(tk1 – tk3 )ρ(tk2 – tk4 )

= 48
�2

n
n2

n–1
∑

k1,k2,k3,k4=0

ρ
(

(k1 – k2)�n
)

ρ
(

(k3 – k4)�n
)

ρ
(

(k1 – k3)
)

�n)ρ
(

(k2 – k4)
)

�n)
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= 48
�2

n
n
∑

|ji|<n
i=1,2,3

∣

∣ρ(j1�n)ρ(j2�n)ρ(j3�n)ρ
(

(j1 + j2 – j3)�n
)∣

∣

≤ C
�2

n
n

(

∑

|k|<n

∣

∣ρ(k�n)
∣

∣

4
3

)3

≤ C
1

n�n

(

�n
∑

|k|<n

∣

∣ρ(k�n)
∣

∣

4
3

)3

≤ C
1

n�n
, (3.21)

where we used the the change of variables k1 – k2 = j1, k2 – k4 = j2 and k3 – k4 = j3, and then
applying the Brascamp-Lieb inequality given by Lemma 2.1. Therefore, the proof of (3.16)
is complete. �

Theorem 3.4 There exists C > 0 depending only on θ such that for all n ≥ 1,

dW
(√

2θ3/2Fn(X),N
) ≤ C

(

�2
n +

1
n�n

)

.

Proof Using (3.8) and (3.9), we obtain

dW
(√

2θ3/2Fn(X),N
)

≤ dW
(√

2θ3/2Fn(Z),N
)

+
∥

∥Fn(X) – Fn(Z)
∥

∥

L2(�)

≤ dW

(

Fn(Z)
√

E(F2
n(Z))

,N
)

+ E
∣

∣

∣

∣

√
2θ3/2Fn(Z)
√

E(F2
n(Z))

(

1√
2θ3/2

–
√

E
(

F2
n(Z)

)

)∣

∣

∣

∣

+
C

n�n

≤ dW

(

Fn(Z)
√

E(F2
n(Z))

,N
)

+
√

2θ3/2 |E(F2
n(Z)) – 1

2θ3 |
| 1√

2θ3/2 +
√

E(F2
n(Z))| +

C
n�n

≤ dW

(

Fn(Z)
√

E(F2
n(Z))

,N
)

+ C
∣

∣

∣

∣

E
(

F2
n(Z)

)

–
1

2θ3

∣

∣

∣

∣

+
C

n�n

≤ dW

(

Fn(Z)
√

E(F2
n(Z))

,N
)

+ C
(

�2
n +

1
n�n

)

≤ C
(

�2
n +

1
n�n

)

,

where the latter inequality comes from (2.7) and (3.17). �

Theorem 3.5 Suppose �n → 0 and T → ∞. Then, the estimator˜θn of θ is weakly consis-
tent, that is,˜θn → θ in probability, as �n → 0 and T → ∞.

If, moreover, n�
η
n → 0 for some 1 < η < 2 or n�

η
n → ∞ for some η > 1, then˜θn is strongly

consistent, that is,˜θn → θ almost surely.

Proof Using (3.5), it is sufficient to prove that the results of the theorem are satisfied for
the estimator fn(X) of 1

2θ
.

The weak consistency of fn(X) is an immediate consequence from (3.10).
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If n�
η
n → 0 for some 1 < η < 2, the strong consistency of fn(X) has been proved by [10,

Theorem 11].
Now, suppose that n�

η
n → ∞ for some η > 1. It follows from (3.10) that

E
[(

fn(X) –
1

2θ

)2]

≤ C
n�n

≤ C
n1–1/η(n�

η
n)1/η ≤ C

n1–1/η .

Combining this with the hypercontractivity property (2.6) and [13, Lemma 2.1], which
is a well-known direct consequence of the Borel-Cantelli Lemma, we obtain fn(X) → 1

2θ

almost surely. �

Theorem 3.6 There exists C > 0 depending only on θ such that for all n ≥ 1,

dW

(
√

T
2θ

(˜θn – θ ),N
)

≤ C
(

�2
n +

1√
n�n

)

. (3.22)

Proof Recall that by definition θ = g( 1
2θ

). We have

(˜θn – θ ) =
(

g
(

fn(X)
)

– g
(

1
2θ

))

= g ′
(

1
2θ

)(

fn(X) –
1

2θ

)

+
1
2

g ′′(ζn)
(

fn(X) –
1

2θ

)2

for some random point ζn between fn(X) and 1
2θ

.
Thus, we can write

√

T
2θ

(˜θn – θ ) = –
√

2θ3/2Fn(X) +
1

23/2
√

θTζ 3
n

(

Fn(X)
)2.

Therefore,

dW

(
√

T
2θ

(˜θn – θ ),N
)

≤ 1
23/2

√
θT

E
∣

∣

∣

∣

1
ζ 3

n

(

Fn(X)
)2
∣

∣

∣

∣

+ dW
(√

2θ3/2Fn(X),N
)

, (3.23)

where we have used that dW (x1 + x2, y) ≤ E[|x2|] + dW (x1, y) for any random variables x1,
x2, y.

The second term in the inequality above is bounded in Theorem 3.4. By Hölder’s in-
equality, and the hypercontractivity property (2.6), for p, q > 1 with 1/p+ 1/q = 1

E
∣

∣

∣

∣

1
ζ 3

n

(

Fn(X)
)2
∣

∣

∣

∣

≤
(

E
∣

∣

∣

∣

1
ζ 3

n

∣

∣

∣

∣

p)1/p
(

E
∣

∣Fn(X)
∣

∣

2q)1/q

≤ cp,q

(

E
∣

∣

∣

∣

1
ζ 3

n

∣

∣

∣

∣

p)1/p

E
∣

∣Fn(X)
∣

∣

2,

≤ C
(

E
∣

∣

∣

∣

1
ζ 3

n

∣

∣

∣

∣

p)1/p

, (3.24)

for some constant C > 0 depending on p.
Consequently, using (3.23), (3.24) and Theorem 3.4, we deduce that for every p ≥ 1

dW

(
√

T
2θ

(˜θn – θ ),N
)

≤ C√
n�n

(

E
∣

∣

∣

∣

1
ζ 3

n

∣

∣

∣

∣

p)1/p

+ C
(

�2
n +

1
n�n

)

.



Es-Sebaiy et al. Journal of Inequalities and Applications         (2023) 2023:62 Page 13 of 17

To establish (3.22), it is left to show that E|ζn|–3p < ∞ for some p ≥ 1. Using the
monotonocity of x–3 and the fact that ζn ∈ [|fn(X), 1

2θ
|], it is enough to show that

E|fn(X)|–3p < ∞ for some p ≥ 1. This follows as an application of the technical [7, Propo-
sition 6.3]. �

4 Approximate maximum likelihood estimator
In this section, we study an approximate maximum likelihood estimator of θ based on
discrete observations of X.

The maximum likelihood estimator for θ based on continuous observations of the pro-
cess X given by (3.1) is defined by

θ̌T = –
∫ T

0 Xs dXs
∫ T

0 X2
s ds

, T ≥ 0. (4.1)

Here we want to study the asymptotic distribution of a discrete version of (4.1). Then,
we assume that the process X given in (3.1) is observed equidistantly in time with the step
size �n: ti = i�n, i = 0, . . . , n, and T = n�n denotes the length of the “observation window”.
Let us consider the following discrete version of θ̌T :

̂θn = –
∑n

i=1 Xti–1 (Xti – Xti–1 )
�n
∑n

i=1 X2
ti–1

, n ≥ 1.

Note that [6] and [11], respectively, proved the weak and strong consistency of the esti-
mator̂θn as T → ∞ and �n → 0.

Let X be the process given by (3.1), and let us introduce the following sequences

Sn := �n

n
∑

i=1

X2
ti–1

,

and

�n :=
n
∑

i=1

e–θ ti Xti–1 (ζti – ζti–1 ) =
n
∑

i=1

e–θ (ti+ti–1)ζti–1 (ζti – ζti–1 ),

where

ζt =
∫ t

0
eθs dWs.

Thus,

–̂θn =
e–θ�n – 1

�n
+

�n

Sn
.

Therefore,

√
T(θ –̂θn) =

√
T
(

e–θ�n – 1
�n

+ θ

)

+
1√
T
�n

1
T Sn

=
√

T
(

e–θ�n – 1
�n

+ θ

)

+
1√
T
�n

fn(X)
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=
√

T
(

θ2

2
�n + o(�n)

)

+
1√
T
�n

fn(X)

=
√

n�3
n

(

θ2

2
+ o(1)

)

+
1√
T
�n

fn(X)
, (4.2)

where fn(X) is given by (3.6).
Next, since ζti–1 and ζti – ζti–1 are independent, we have

E
[(

1√
T

�n

)2]

=
1
T

n
∑

i,j=1

e–θ (ti+ti–1+tj+tj–1)E
[

ζti–1 (ζti – ζti–1 )ζtj–1 (ζtj – ζtj–1 )
]

=
1
T

n
∑

i=1

e–2θ (ti+ti–1)E
[

ζ 2
ti–1

(ζti – ζti–1 )2]

=
1
T

n
∑

i=1

e–2θ (ti+ti–1)E
[

ζ 2
ti–1

]

E
[

(ζti – ζti–1 )2]

=
1
T

n
∑

i=1

e–2θ (ti+ti–1)
(

e2θ ti–1 – 1
2θ

)(

e2θ ti – e2θ ti–1

2θ

)

=
(1 – e–2θ�n )

(2θ )2�n

1
n

n
∑

i=1

(

1 – e–2θ ti–1
)

=
(1 – e–2θ�n )

(2θ )2�n
–

(1 – e–2θ�n )
(2θ )2�n

(

1 – e–2θT

n(1 – e–2θ�n )

)

.

Moreover, since

(1 – e–2θ�n )
(2θ )2�n

=
1

2θ
–

�n

2
+ o(�n),

there exists C > 0 depending only on θ such that for large n

∣

∣

∣

∣

E
[(

1√
T

�n

)2]

–
1

2θ

∣

∣

∣

∣

≤ C
(

�n +
1

n�n

)

. (4.3)

Using E[�n] = 0 and the fact that ζti–1 and ζti – ζti–1 are independent, we get

κ3

(

1√
T

�n

)

= E
[(

1√
T

�n

)3]

= 0. (4.4)

On the other hand,

E
[(

1√
T

�n

)4]

=
1

T2

n
∑

i,j,k,l=1

e–θ (ti+ti–1+tj+tj–1+tk +tk–1+tl+tl–1)

× E
[

ζti–1 (ζti – ζti–1 )ζtj–1 (ζtj – ζtj–1 )ζtk–1 (ζtk – ζtk–1 )ζtl–1 (ζtl – ζtl–1 )
]
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=
1

T2

n
∑

i=1

e–4θ (ti+ti–1)E
[

ζ 4
ti–1

(ζti – ζti–1 )4]

+
3

T2

n
∑

i=j �=k=l

e–2θ (ti+ti–1+tk +tk–1)E
[

ζ 2
ti–1

(ζti – ζti–1 )2ζ 2
tk–1

(ζtk – ζtk–1 )2]

=
6

T2

n
∑

i=1

e–4θ (ti+ti–1)(E
[

ζ 2
ti–1

])2(E
[

(ζti – ζti–1 )2])2

+ 3

[

1
T

n
∑

i=1

e–2θ (ti+ti–1)E
[

ζ 2
ti–1

(ζti – ζti–1 )2]
]2

=
6

T2

n
∑

i=1

e–4θ (ti+ti–1)(E
[

ζ 2
ti–1

])2(E
[

(ζti – ζti–1 )2])2 + 3
[

E
[(

1√
T

�n

)2]]2

.

This implies

κ4

(

1√
T

�n

)

= E
[(

1√
T

�n

)4]

– 3
[

E
[(

1√
T

�n

)2]]2

=
6

T2

n
∑

i=1

e–4θ (ti+ti–1)(E
[

ζ 2
ti–1

])2(E
[

(ζti – ζti–1 )2])2

=
6

T2

n
∑

i=1

e–4θ (ti+ti–1)
(

e2θ ti–1 – 1
2θ

)2(e2θ ti – e2θ ti–1

2θ

)2

=
6(1 – e–2θ�n )2

(2θ )4�2
n

1
n2

n
∑

i=1

(

1 – e–2θ ti–1
)2

≤ 6(1 – e–2θ�n )2

(2θ )4�2
n

1
n

≤ C
n

, (4.5)

where the latter inequality comes from the fact that 1–e–2θ�n
�n

→ 2θ as n → ∞.

Theorem 4.1 There exists a constant C > 0 such that, for all n ≥ 1,

dW

(
√

T
2θ

(̂θn – θ ),N
)

≤ C
(

1√
n�n

+
√

n�3
n

)

. (4.6)

Proof Define Gn := 1√
T
�n. Using (2.7), (4.4), and (4.5), we have

dW

(

Gn
√

E(G2
n)

,N
)

≤ C
n

. (4.7)

Combining (4.7) with (4.2), (4.3), and (3.10), we obtain

dW

(
√

T
2θ

(̂θn – θ ),N
)

≤ dW

(

1√
2θ

Gn

fn(X)
,N
)

+ C
√

n�3
n
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≤ dW

(

Gn
√

E(G2
n)

,N
)

+ E
∣

∣

∣

∣

Gn
√

E(G2
n)fn(X)

(
√

E(G2
n)√

2θ
– fn(X)

)∣

∣

∣

∣

+ C
√

n�3
n

≤ dW

(

Gn
√

E(G2
n)

,N
)

+
∥

∥

∥

∥

Gn
√

E(G2
n)

∥

∥

∥

∥

L4(�)

∥

∥

∥

∥

1
fn(X)

∥

∥

∥

∥

L4(�)

∥

∥

∥

∥

√

E(G2
n)√

2θ
– fn(X)

∥

∥

∥

∥

L2(�)

+ C
√

n�3
n

≤ C
(

1
n

+
1√
n�n

)

+ C
√

n�3
n

≤ C
(

1√
n�n

+
√

n�3
n

)

,

where we used the fact that E|fn(X)|–4 < ∞, which is a direct application of the technical
[7, Proposition 6.3]. The proof of (4.6) is thus complete. �
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