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Abstract

This paper deals with the rate of convergence for the central limit theorem of
estimators of the drift coefficient, denoted � , for the Ornstein-Uhlenbeck process
X := {Xt , t � 0} observed at high frequency. We provide an approximate minimum
contrast estimator and an approximate maximum likelihood estimator of � , namely
˜� n := 1/( 2n

∑n
i=1 X

2
ti
), and̂� n := –

∑n
i=1 Xti–1 (Xti – Xti–1 )/(� n

∑n
i=1 X

2
ti–1

), respectively, where
ti = i� n, i = 0, 1, . . .,n, � n � 0. We provide Wasserstein bounds in the central limit
theorem for˜� n and̂� n.
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1 Introduction
Let X := {Xt ,t � 0} be the Ornstein-Uhlenbeck (OU) process driven by Brownian motion

{Wt ,t � 0}. More precisely,X is the solution of the following linear stochastic di�erential

equation

X0 = 0; dXt = …� Xt dt + dWt, t � 0, (1.1)

where� > 0 is an unknown parameter.

The drift parametric estimation for the OU process (1.1) has been widely studied in the

literature. There are several methods that can estimate the parameter� in (1.1) such as

maximum likelihood estimation, least squares estimation, and minimum contrast estima-

tion; we refer to monographs [14, 15]. While for the study of the asymptotic distribution

of the estimators of� based on discrete observations ofX, there is extensive literature, and

only several works have been dedicated to the rates of weak convergence of the distribu-

tions of the estimators to the standard normal distribution.
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From a practical point of view, in parametric inference, it is more realistic and interesting

to consider asymptotic estimation for (1.1) based on discrete observations. Thus, let us

assume that the processX given in (1.1) is observed equidistantly in time with the step

size� n: ti = i� n, i = 0, . . . ,n, andT = n� n denotes the length of the •observation windowŽ.

Here we are concerned with the approximate minimum contrast estimator (AMCE)

˜� n :=
1

2
n

∑n
i=1 X2

ti

,

and the approximate maximum likelihood estimator (AMLE)

̂� n := …

∑n
i=1 Xti…1(Xti …Xti…1)

� n
∑n

i=1 X2
ti…1

,

which are discrete versions of the minimum contrast estimator (MCE) and the maximum

likelihood estimator (MLE) de“ned as follows:

�̄ T :=
1

2
T

∫ T
0 X2

s ds
, �� T = …

∫ T
0 XsdXs
∫ T

0 X2
s ds

, T � 0.

Recall that, for two random variablesX andY, the Wasserstein metric is given by

dW (X,Y) := sup
f � Lip(1)

∣

∣E
[

f (X)
]

…E
[

f (Y)
]∣

∣,

whereLip(1) is the set of all Lipschitz functions with the Lipschitz constant� 1.

Rates of convergence in the central limit theorem of the MCĒ� T and MLE �� T under the

Kolmogorov and Wasserstein distances have been studied as follows: There existc,C > 0

depending only on� such that

sup
x� R

∣

∣

∣

∣

P
(
√

T
2�

(�̄ T …� ) � x
)

…P(N � x)

∣

∣

∣

∣

�
C

�
T

, see [3, Theorem 2.5],

dW

(
√

T
2�

(�̄ T …� ),N
)

�
C

�
T

, see [7, Theorem 5.4],

c
�

T
� sup

x� R

∣

∣

∣

∣

P
(
√

T
2�

( �� T …� ) � x
)

…P(N � x)

∣

∣

∣

∣

�
C

�
T

, see [12, Theorems 1 and 2],

dW

(
√

T
2�

( �� T …� ),N
)

�
C

�
T

, see [8, Theorem 1] for “xed N = 1,

whereN � N (0, 1) denotes a standard normal random variable.

The purpose of this manuscript is to derive upper bounds of the Wasserstein distance

for the rates of convergence of the distribution of the AMCE˜� n and the AMLÊ� n. These

estimators are unbiased, and we show that they are consistent and admit a central limit

theorem as� n � 0 and T � � . Moreover, we bound the rate of convergence to the

normal distribution in terms of the Wasserstein distance.

Note that the papers [2] and [4] provided explicit upper bounds for the Kolmogorov

distance for the rates of convergence of the distribution of˜� n and̂� n, respectively. On
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the other hand, [7] provided Wasserstein bounds in central limit theorem for˜� n. Let us

describe what is proved in this direction:

• Theorem 2.1 in [2] shows that there exists C > 0 depending on � such that

sup
x� R

∣

∣

∣

∣

P
(
√

T
2�

(˜� n …� ) � x
)

…P(N � x)

∣

∣

∣

∣

� Cmax

(
√

log T
T

,
T 4

n2 log T

)

. (1.2)

• Theorem 2.3 in [4] proves that there exists C > 0 depending on � such that

sup
x� R

∣

∣

∣

∣

P
(
√

T
2�

(̂� n …� ) � x
)

…P(N � x)

∣

∣

∣

∣

� Cmax

(
√

log T
T

,
T 2

n log T

)

. (1.3)

• Theorem 5.4 in [7] establishes that there exists C > 0 depending on � such that

dW

(
√

T
2�

(˜� n …� ),N
)

� Cmax

(

1
�

T
,

√

T 2

n

)

. (1.4)

Remark1.1 Note that in [2, Theorem 2.1], [4, Theorem 2.3], and [7, Theorem 5.4], the

asymptotic normality of the distribution of˜� n and̂� n needn� 2
n = T2

n � 0 andT � � .

However, Theorem3.6and Theorem4.1, which are stated and proved below, show that,

respectively, the asymptotic normality of the distribution of˜� n and̂� n only need� n = T
n �

0 andT � � .

The aim of the present paper is to provide new explicit bounds for the rate of conver-

gence in the CLT of the estimators˜� n and̂� n under the Wasserstein metric as follows:

There exists a constantC > 0 such that, for alln � 1, T > 0,

dW

(
√

T
2�

(˜� n …� ),N
)

� Cmax

(

1
�

T
,
T 2

n2

)

, (1.5)

see Theorem3.6, and

dW

(
√

T
2�

(̂� n …� ),N
)

� Cmax

(

1
�

T
,

√

T 3

n2

)

, (1.6)

see Theorem4.1.

Remark1.2 The estimates (1.5) and (1.6) show that we have improved the bounds on the

error of normal approximation for˜� n and̂� n. In other words, it is clear that the obtained

bounds in (1.5) and (1.6) are sharper than the bounds in (1.2), (1.3), and (1.4).

To “nish this introduction, we note the general structure of this paper. Section2 con-

tains some preliminaries presenting the tools needed for the analysis of the Wiener space,

including Wiener chaos calculus and Malliavin calculus. Upper bounds for the rates of

convergence of the distribution of the AMCE˜� n and the AMLÊ� n are provided in Sect.3

and Sect.4, respectively.



Es-Sebaiy et al.Journal of Inequalities and Applications        (2023) 2023:62 Page 4 of 17

2 Preliminaries
This section gives a brief overview of some useful facts from the Malliavin calculus on
Wiener space. Some of the results presented here are essential for the proofs in the present
paper. For our purposes, we focus on special cases that are relevant to our setting and
omit the general high-level theory. We direct the interested reader to [18, Chap. 1]and [16,
Chap. 2].

The “rst step is to identify the general centered Gaussian process (Zt )� 0 with an isonor-
mal Gaussian process X= {X(h),h � H} for some Hilbert spaceH, that is, X is a cen-
tered Gaussian family de“ned a common probability space (� ,F ,P) satisfying, for every
h1,h2 � H, E[X(h1)X(h2)] = 	h1,h2
H.

One can de“neH as the closure of real-valued step functions on [0,� ) with respect to
the inner product 	1[0,t] ,1[0,s] 
H = E[ZtZs]. Note that X(1[0,t] )

d= Zt .
The next step involves themultiple Wiener-Itô integrals. The formal de“nition in-

volves the concepts of the Malliavin derivative and divergence. We refer the reader to [18,
Chap. 1]and [16, Chap. 2]. For our purposes, we de“ne the multiple Wiener-Itô integralIp

via the Hermite polynomialsHp. In particular, for h � H with � h� H = 1, and anyp � 1,

Hp
(

X(h)
)

= Ip
(

h� p).

For p = 1 andp = 2, we have the following:

H1
(

X(1[0,t] )
)

=X(1[0,t] ) = I1(1[0,t] )
d= Zt , (2.1)

H2
(

X(1[0,t] )
)

=X(1[0,t] )2 …E
[

X(1[0,t] )2] = I2
(

1� 2
[0,t]

) d= Z2
t …E[Zt ]2. (2.2)

Note also thatI0 can be taken to be the identity operator.
€ Some notation for Hilbert spaces.LetH be a Hilbert space. Given an integerq � 2, the

Hilbert spacesH� q andH
 q correspond to theqth tensor productandqth symmetric ten-
sor productof H. If f � H� q is given byf =

∑

j1,...,jq a(j1, . . . ,jq)ej1 � · · · ejq, where (eji )i� [1,q]

form an orthonormal basis ofH� q, then the symmetrization�f is given by

�f =
1
q!

∑

�

∑

j1,...,jq

a(j1, . . . ,jq)e� (j1) � · · · e� (jq),

where the “rst sum runs over all permutations� of {1, . . . ,q}. Then �f is an element of
H
 q. We also make use of the concept of contraction. Therth contractionof two tensor
productsej1 � · · · � ejp andek1 � · · · ekq is an element ofH� (p+q…2r) given by

(ej1 � · · · � ejp) � r (ek1 � · · · � ekq)

=

[

r
∏

� =1

	ej� ,ek� 


]

ejr+1 � · · · � ejq � ekr+1 � · · · � ekq. (2.3)

€ Isometry property of integrals [16, Proposition 2.7.5]Fix integersp,q � 1 as well as
f � H
 p andg � H
 q.

E
[

Iq(f )Iq(g)
]

=

⎧

⎨

⎩

p!	 f ,g
H� p if p = q,

0 otherwise.
(2.4)
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€ Product formula [16, Proposition 2.7.10]Let p,q � 1. If f � H
 p and g � H
 q

then

Ip(f )Iq(g) =
p� q
∑

r=0

r!
(

p
r

)(

q
r

)

Ip+q…2r (f˜� rg). (2.5)

€ Hypercontractivity in Wiener Chaos.For everyq � 1,Hq denotes theqth Wiener chaos

of W, de“ned as the closed linear subspace ofL2(� ) generated by the random variables

{Hq(W(h)),h � H, � h� H = 1}, whereHq is theqth Hermite polynomial. For anyF � � q
l=1Hl

(i.e., in a “xed sum of Wiener chaoses), we have

(

E
[

|F|p
])1/p

� cp,q
(

E
[

|F|2
])1/2

for anyp � 2. (2.6)

It should be noted that the constantscp,q above are known with some precision whenF is

a single chaos term: indeed, by [16, Corollary 2.8.14],cp,q = (p … 1)q/2.

€ Optimal fourth moment theorem. Let N denote the standard normal law. Let a se-

quenceX : Xn � Hq, such thatEXn = 0 andVar[Xn] = 1, and assume thatXn converges to

a normal law in distribution, which is equivalent tolimn E[X4
n] = 3. Then we have the op-

timal estimate for total variation distancedTV(Xn,N ), known as the optimal 4th moment

theorem, proved in [17]. This optimal estimate also holds with the Wasserstein distance

dW (Xn,N ), see [7, Remark 2.2], as follows: there exist two constantsc,C > 0 depending

only on the sequenceX but not on n, such that

cmax
{

E
[

X4
n

]

… 3,
∣

∣E
[

X3
n

]∣

∣

}

� dW (Xn,N ) � Cmax
{

E
[

X4
n

]

… 3,
∣

∣E
[

X3
n

]∣

∣

}

. (2.7)

Moreover, we recall that the third and fourth cumulants are, respectively,

� 3(X) = E
[

X3]… 3E
[

X2]E[X] + 2E[X]3,

� 4(X) = E
[

X4]… 4E[X]E
[

X3]… 3E
[

X2]2 + 12E[X]2E
[

X2]… 6E[X]4.

In particular, whenE[X] = 0, we have that

� 3(X) = E
[

X3] and � 4(X) = E
[

X4]… 3E
[

X2]2.

If g � H� 2, then the third and fourth cumulants for I2(g) satisfy the following (see (6.2)

and (6.6) in [1], respectively),

k3
(

I2(g)
)

= E
[(

I2(g)
)3]

= 8	g,g � 1 g
H� 2, (2.8)

and

∣

∣k4
(

I2(g)
)∣

∣ = 16
(

� g � 1 g� 2
H� 2 + 2� g˜� 1g� 2

H� 2

)

� 48� g � 1 g� 2
H� 2. (2.9)
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Lemma 2.1 ([19]) Fix an integer M� 2.We have

∑

|kj |� n
1� j� M

∣

∣� (k · v)
∣

∣

M
∏

j=1

∣

∣� (kj)
∣

∣ � C
(

∑

|k|� n

∣

∣� (k)
∣

∣

1+ 1
M

)M

,

wherek = (k1, . . . ,kM ), and v � R
M is a “xed vector whose components are1 or …1.

Throughout the paperN denotes a standard normal random variable. Also,C denotes
a generic positive constant (perhaps depending on� but not on anything else), which may
change from line to line.

3 Approximate minimum contrast estimator
In this section, we prove the consistency and provide upper bounds in the Wasserstein
distance for the rate of normal convergence of an approximate minimum contrast estima-
tor of the drift parameter � of the Ornstein-Uhlenbeck processX := {Xt ,t � 0} driven by
Brownian motion {Wt ,t � 0}, de“ned as solution of the following linear stochastic di�er-
ential equation

X0 = 0; dXt = …� Xt dt + dWt, t � 0, (3.1)

where� > 0 is an unknown parameter. Since (3.1) is linear, it is immediate to see that its
solution can be expressed explicitly as

Xt =
∫ t

0
e…� (t…s) dWs. (3.2)

Moreover,

Zt =
∫ t

…�
e…� (t…s) dWs (3.3)

is a stationary Gaussian process, see [5, 9].
Furthermore,

Xt = Zt …e…� tZ0. (3.4)

SinceZ := {Zt ,t � 0} is a continuous centered stationary Gaussian process, then it can
be represented as a Wiener-Itô (multiple) integralZt

d= I1(1[0,t] ) for everyt � 0, according
to (2.1). Let � (r) = E(ZrZ0) denote the covariance ofZ for everyr � 0. It is easy to show
that

� (t) = E(ZtZ0) =
e…� |t|

2�
, t � R.

In particular, � (0) = 1
2� . Moreover, notice that� (r) = � (…r) for all r < 0.

Our goal is to estimate� based on the discrete observations ofX, using the approxima-
tive minimum contrast estimator:

˜� n :=
1

2(1
n

∑n
i=1 X2

ti )
=

1
2fn(X)

= g
(

fn(X)
)

, n � 1, (3.5)
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whereg(x) := 1
2x , ti = i� n, i = 0, . . . ,n, � n � 0 andT = n� n, whereasfn(X), n � 1, are given

by

fn(X) :=
1
n

n…1
∑

i=0

X2
ti
. (3.6)

To analyze the estimator˜� n of � based on discrete high-frequency data in time ofX, we

“rst estimate the limiting variance� (0) = 1
2� by the estimatorfn(X), given by (3.6).

Let us introduce

Fn(Z) :=
�

T
(

fn(Z) …
1
2�

)

, wherefn(Z) :=
1
n

n…1
∑

i=0

Z2
ti
.

According to (2.2), Fn(Z) can be written as

Fn(Z) =

√

� n

n

n…1
∑

i=0

I2
(

1� 2
[0,ti ]

)

= I2

(
√

� n

n

n…1
∑

i=0

1� 2
[0,ti ]

)

=: I2(	 n). (3.7)

We will make use of the following technical lemmas.

Lemma 3.1 Let X and Z be the processes given in(3.2) and (3.3), respectively. Then there

exists C> 0 depending only on� such that for every p� 1 and for all n � N,

∥

∥Fn(X) …Fn(Z)
∥

∥

Lp(� ) �
C

n� n
. (3.8)

Proof By (3.4), we can write

∥

∥Fn(X) …Fn(Z)
∥

∥

Lp(� ) �
1
n

n…1
∑

i=0

∥

∥e…2� ti Z2
0 … 2e…� ti Z0Zti

∥

∥

Lp(� ).

Combining this and the fact thatZ is a stationary Gaussian process, we deduce

∥

∥Fn(X) …Fn(Z)
∥

∥

Lp(� ) �
C
n

n…1
∑

i=0

e…� ti

=
C
n

1 …e…n�� n

1 …e…�� n

�
C

n� n
,

where we used � n
1…e…�� n � 1

� asn � � . Thus, the desired result is obtained. �

Lemma 3.2 There exists C> 0 depending only on� such that for large n

∣

∣

∣

∣

E
(

F2
n(Z)

)

…
1

2� 3

∣

∣

∣

∣

� C
(

� 2
n +

1
n� n

)

. (3.9)
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Consequently, using(3.8), for large n

∣

∣

∣

∣

E
(

F2
n(X)

)

…
1

2� 3

∣

∣

∣

∣

� C
(

� 2
n +

1
n� n

)

. (3.10)

Proof Using the well-known Wick formula, we have

E
(

Z2
t Z2

s

)

= E
(

Z2
t

)

E
(

Z2
s

)

+ 2
(

E(ZtZs)
)2

= � 2(0) + 2� 2(t …s). (3.11)

This implies

E
(

F2
n(Z)

)

= T
[

Ef2
n (Z) … 2

1
2�

Efn(Z) + � 2(0)
]

= T
[

Ef2
n (Z) …� 2(0)

]

= T

[

1
n2

n…1
∑

i,j=0

E
(

Z2
ti
Z2

tj

)

…� 2(0)

]

= T

[

2
n2

n…1
∑

i,j=0

� 2(tj …ti )

]

=
2� n

n

n…1
∑

i,j=0

� 2((j …i)� n
)

=
2� n

n

n…1
∑

i,j=0

e…2� |j…i|� n

(2� )2

=
� n

2� 2
+

� n

� 2n

∑

0� i<j� n…1

e…2� (j…i)� n

=
� n

2� 2
+

� n

� 2n

n…1
∑

k=1

(n …k)e…2k� n�

=
…� n

2� 2
+

� n

� 2

n…1
∑

k=0

e…2k� n� …
� n

� 2n

n…1
∑

k=1

ke…2k� n� . (3.12)

Further,

…� n

2� 2
+

� n

� 2

n…1
∑

k=0

e…2k� n�

=
…� n

2� 2
+

� n

� 2

1 …e…2n�� n

1 …e…2�� n

=
…� n

2� 2
+

1
� 2

� n

1 …e…2�� n
…

1
� 2

� n

1 …e…2�� n
e…2n�� n

=
…� n

2� 2
+

1
� 2

1
2� (1 …�� n + o(� n))

…
1
� 2

� n

1 …e…2�� n
e…2� n� n

=
…� n

2� 2
+

1
2� 3

(

1 + � � n + � 2� 2
n + o

(

� 2
n

))

…
1
� 2

� n

1 …e…2�� n
e…2� n� n

=
1

2� 3

(

1 + � 2� 2
n + o

(

� 2
n

))

…
1
� 2

� n

1 …e…2�� n
e…2� n� n . (3.13)
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Moreover,

� n

� 2n

n…1
∑

k=1

ke…2k� n� =
1

� 2n� n

n…1
∑

k=1

(k� n)e…2k� n� � n, (3.14)

and asn � �

n…1
∑

k=1

(k� n)e…2k� n� � n Š�
∫ �

0
xe…2� x dx =

1
4� 2

< � .

Combining (3.12), (3.13), and (3.14) and � n
1…e…2�� n � 1

2� , there existsC > 0 depending only

on � such that for largen

∣

∣

∣

∣

E
(

F2
n(Z)

)

…
1

2� 3

∣

∣

∣

∣

� C
(

� 2
n + e…2� n� n +

1
n� n

)

� C
(

� 2
n +

1
n� n

)

.

Therefore, the desired result is obtained. �

Lemma 3.3 There exists C> 0 depending only on� such that for large n,

∣

∣k3
(

Fn(Z)
)∣

∣ �
C

(n� n)3/2
, (3.15)

∣

∣k4
(

Fn(Z)
)∣

∣ � C
1

n� n
. (3.16)

Consequently,

max
(∣

∣k3
(

Fn(Z)
)∣

∣,
∣

∣k4
(

Fn(Z)
)∣

∣

)

� C
1

n� n
. (3.17)

Proof Using1� 2
[0,s] � 1 1� 2

[0,t] = 	1[0,s] ,1[0,t] 
H1[0,s] � 1[0,t] = � (t …s)1[0,s] � 1[0,t] , we can write

	 n � 1 	 n =
� n

n

n…1
∑

i,j=0

� (tj …ti )1[0,ti ] � 1[0,tj ] .

Combining this with (2.8) and (3.7), we get

k3
(

Fn(Z)
)

= k3
(

I2(	 n)
)

= 8	 	 n, 	 n � 1 	 n
H� 2

=
� 3/2

n

n3/2

n…1
∑

i,j,k=0

� (tj …ti )� (ti …tk)� (tk …tj)

=
� 3/2

n

n3/2

n…1
∑

i,j,k=0

�
(

(j …i)� n
)

�
(

(i …k)� n
)

�
(

(k …j)� n
)
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�
� 3/2

n

n3/2

∑

|ki |<n,i=1,2,3

� (k1� n)� (k2� n)� (k3� n)

�
� 3/2

n

n3/2

(

∑

|k|<n

� (k� n)
)3

. (3.18)

On the other hand,

∑

|k|<n

� (k� n) =
1
2�

∑

|k|<n

e…� |k|� n

�
1
�

n…1
∑

k=0

e…� k� n

�
1 …e…� n� n

� (1 …e…�� n)

�
C
� n

. (3.19)

Combining (3.18) and (3.19) yields

k3
(

Fn(Z)
)

�
C

(n� n)3/2
,

which implies (3.15).
Using (2.9) and (3.7), we get

∣

∣k4
(

Fn(Z)
)∣

∣ � 48� 	 n � 1 	 n� 2
H� 2

= 48
� 2

n

n2

n…1
∑

k1,k2,k3,k4=0

〈

1� 2
[0,tk1] � 1 1� 2

[0,tk2] ,1� 2
[0,tk3] � 1 1� 2

[0,tk4]

〉

H� 2

= 48
� 2

n

n2

n…1
∑

k1,k2,k3,k4=0

E[Ztk1
Ztk2

]E[Ztk3
Ztk4

]E[Ztk1
Ztk3

]E[Ztk2
Ztk4

]

= 48
� 2

n

n2

n…1
∑

k1,k2,k3,k4=0

� (tk1 …tk2)� (tk3 …tk4)� (tk1 …tk3)� (tk2 …tk4),

where we used

1� 2
[0,s] � 1 1� 2

[0,t] = 	1[0,s] ,1[0,t] 
H1[0,s] � 1[0,t]

= E[ZsZt ]1[0,s] � 1[0,t] . (3.20)

Furthermore,

48
� 2

n

n2

n…1
∑

k1,k2,k3,k4=0

� (tk1 …tk2)� (tk3 …tk4)� (tk1 …tk3)� (tk2 …tk4)

= 48
� 2

n

n2

n…1
∑

k1,k2,k3,k4=0

�
(

(k1 …k2)� n
)

�
(

(k3 …k4)� n
)

�
(

(k1 …k3)
)

� n)�
(

(k2 …k4)
)

� n)
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= 48
� 2

n

n

∑

|ji |<n
i=1,2,3

∣

∣� (j1� n)� (j2� n)� (j3� n)�
(

(j1 + j2 …j3)� n
)∣

∣

� C
� 2

n

n

(

∑

|k|<n

∣

∣� (k� n)
∣

∣

4
3

)3

� C
1

n� n

(

� n

∑

|k|<n

∣

∣� (k� n)
∣

∣

4
3

)3

� C
1

n� n
, (3.21)

where we used the the change of variablesk1 …k2 = j1, k2 …k4 = j2 andk3 …k4 = j3, and then

applying the Brascamp-Lieb inequality given by Lemma2.1. Therefore, the proof of (3.16)

is complete. �

Theorem 3.4 There exists C> 0 depending only on� such that for all n� 1,

dW
(�

2� 3/2Fn(X),N
)

� C
(

� 2
n +

1
n� n

)

.

Proof Using (3.8) and (3.9), we obtain

dW
(�

2� 3/2Fn(X),N
)

� dW
(�

2� 3/2Fn(Z),N
)

+
∥

∥Fn(X) …Fn(Z)
∥

∥

L2(� )

� dW

(

Fn(Z)
√

E(F2
n(Z))

,N
)

+ E

∣

∣

∣

∣

�
2� 3/2Fn(Z)
√

E(F2
n(Z))

(

1
�

2� 3/2
…
√

E
(

F2
n(Z)

)

)∣

∣

∣

∣

+
C

n� n

� dW

(

Fn(Z)
√

E(F2
n(Z))

,N
)

+
�

2� 3/2
|E(F2

n(Z)) … 1
2� 3 |

| 1�
2� 3/2 +

√

E(F2
n(Z))|

+
C

n� n

� dW

(

Fn(Z)
√

E(F2
n(Z))

,N
)

+ C

∣

∣

∣

∣

E
(

F2
n(Z)

)

…
1

2� 3

∣

∣

∣

∣

+
C

n� n

� dW

(

Fn(Z)
√

E(F2
n(Z))

,N
)

+ C
(

� 2
n +

1
n� n

)

� C
(

� 2
n +

1
n� n

)

,

where the latter inequality comes from (2.7) and (3.17). �

Theorem 3.5 Suppose� n � 0 and T � � . Then, the estimator˜� n of � is weakly consis-

tent, that is,˜� n � � in probability, as� n � 0 and T � � .

If, moreover, n� 

n � 0 for some1 <
 < 2 or n� 


n � � for some
 > 1,then˜� n is strongly

consistent, that is,˜� n � � almost surely.

Proof Using (3.5), it is su�cient to prove that the results of the theorem are satis“ed for

the estimatorfn(X) of 1
2� .

The weak consistency offn(X) is an immediate consequence from (3.10).
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If n� 

n � 0 for some 1 <
 < 2, the strong consistency offn(X) has been proved by [10,

Theorem 11].
Now, suppose thatn� 


n � � for some
 > 1. It follows from (3.10) that

E
[(

fn(X) …
1
2�

)2]

�
C

n� n
�

C
n1…1/
 (n� 


n)1/

�

C
n1…1/


.

Combining this with the hypercontractivity property (2.6) and [13, Lemma 2.1], which
is a well-known direct consequence of the Borel-Cantelli Lemma, we obtainfn(X) � 1

2�

almost surely. �

Theorem 3.6 There exists C> 0 depending only on� such that for all n� 1,

dW

(
√

T
2�

(˜� n …� ),N
)

� C
(

� 2
n +

1
�

n� n

)

. (3.22)

Proof Recall that by de“nition � = g( 1
2� ). We have

(˜� n …� ) =
(

g
(

fn(X)
)

…g
(

1
2�

))

= g�
(

1
2�

)(

fn(X) …
1
2�

)

+
1
2

g��(� n)
(

fn(X) …
1
2�

)2

for some random point� n betweenfn(X) and 1
2� .

Thus, we can write

√

T
2�

(˜� n …� ) = …
�

2� 3/2Fn(X) +
1

23/2
�

� T � 3
n

(

Fn(X)
)2

.

Therefore,

dW

(
√

T
2�

(˜� n …� ),N
)

�
1

23/2
�

� T
E

∣

∣

∣

∣

1
� 3

n

(

Fn(X)
)2
∣

∣

∣

∣

+ dW
(�

2� 3/2Fn(X),N
)

, (3.23)

where we have used thatdW (x1 + x2,y) � E[|x2|] + dW (x1,y) for any random variablesx1,
x2, y.

The second term in the inequality above is bounded in Theorem3.4. By Hölder•s in-
equality, and the hypercontractivity property (2.6), for p,q > 1 with 1/p+ 1/q = 1

E

∣

∣

∣

∣

1
� 3

n

(

Fn(X)
)2
∣

∣

∣

∣

�
(

E

∣

∣

∣

∣

1
� 3

n

∣

∣

∣

∣

p)1/p
(

E
∣

∣Fn(X)
∣

∣

2q)1/q

� cp,q

(

E

∣

∣

∣

∣

1
� 3

n

∣

∣

∣

∣

p)1/p

E
∣

∣Fn(X)
∣

∣

2
,

� C
(

E

∣

∣

∣

∣

1
� 3

n

∣

∣

∣

∣

p)1/p

, (3.24)

for some constantC > 0 depending onp.
Consequently, using (3.23), (3.24) and Theorem3.4, we deduce that for everyp � 1

dW

(
√

T
2�

(˜� n …� ),N
)

�
C

�
n� n

(

E

∣

∣

∣

∣

1
� 3

n

∣

∣

∣

∣

p)1/p

+ C
(

� 2
n +

1
n� n

)

.
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To establish (3.22), it is left to show that E|� n|…3p < � for some p � 1. Using the
monotonocity of x…3 and the fact that � n � [|fn(X), 1

2� |], it is enough to show that
E|fn(X)|…3p < � for somep � 1. This follows as an application of the technical [7, Propo-
sition 6.3]. �

4 Approximate maximum likelihood estimator
In this section, we study an approximate maximum likelihood estimator of� based on
discrete observations ofX.

The maximum likelihood estimator for� based on continuous observations of the pro-
cessX given by (3.1) is de“ned by

�� T = …

∫ T
0 XsdXs
∫ T

0 X2
s ds

, T � 0. (4.1)

Here we want to study the asymptotic distribution of a discrete version of (4.1). Then,
we assume that the processX given in (3.1) is observed equidistantly in time with the step
size� n: ti = i� n, i = 0, . . . ,n, andT = n� n denotes the length of the •observation windowŽ.
Let us consider the following discrete version of�� T :

̂� n = …

∑n
i=1 Xti…1(Xti …Xti…1)

� n
∑n

i=1 X2
ti…1

, n � 1.

Note that [6] and [11], respectively, proved the weak and strong consistency of the esti-
mator̂� n asT � � and � n � 0.

Let X be the process given by (3.1), and let us introduce the following sequences

Sn := � n

n
∑

i=1

X2
ti…1

,

and

� n :=
n
∑

i=1

e…� ti Xti…1(� ti …� ti…1) =
n
∑

i=1

e…� (ti +ti…1)� ti…1(� ti …� ti…1),

where

� t =
∫ t

0
e� sdWs.

Thus,

…̂� n =
e…�� n … 1

� n
+

� n

Sn
.

Therefore,

�
T(� …̂� n) =

�
T
(

e…�� n … 1
� n

+ �
)

+
1�
T

� n

1
T Sn

=
�

T
(

e…�� n … 1
� n

+ �
)

+
1�
T

� n

fn(X)
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=
�

T
(

� 2

2
� n + o(� n)

)

+
1�
T

� n

fn(X)

=
√

n� 3
n

(

� 2

2
+ o(1)

)

+
1�
T

� n

fn(X)
, (4.2)

wherefn(X) is given by (3.6).

Next, since� ti…1and � ti …� ti…1are independent, we have

E
[(

1
�

T
� n

)2]

=
1
T

n
∑

i,j=1

e…� (ti +ti…1+tj+tj…1)E
[

� ti…1(� ti …� ti…1)� tj…1(� tj …� tj…1)
]

=
1
T

n
∑

i=1

e…2� (ti +ti…1)E
[

� 2
ti…1

(� ti …� ti…1)
2]

=
1
T

n
∑

i=1

e…2� (ti +ti…1)E
[

� 2
ti…1

]

E
[

(� ti …� ti…1)
2]

=
1
T

n
∑

i=1

e…2� (ti +ti…1)
(

e2� ti…1… 1
2�

)(

e2� ti …e2� ti…1

2�

)

=
(1 …e…2�� n )

(2� )2� n

1
n

n
∑

i=1

(

1 …e…2� ti…1
)

=
(1 …e…2�� n )

(2� )2� n
…

(1 …e…2�� n )
(2� )2� n

(

1 …e…2� T

n(1 …e…2�� n )

)

.

Moreover, since

(1 …e…2�� n )
(2� )2� n

=
1
2�

…
� n

2
+ o(� n),

there existsC > 0 depending only on� such that for largen

∣

∣

∣

∣

E
[(

1
�

T
� n

)2]

…
1
2�

∣

∣

∣

∣

� C
(

� n +
1

n� n

)

. (4.3)

UsingE[� n] = 0 and the fact that� ti…1and � ti …� ti…1are independent, we get

� 3

(

1
�

T
� n

)

= E
[(

1
�

T
� n

)3]

= 0. (4.4)

On the other hand,

E
[(

1
�

T
� n

)4]

=
1

T 2

n
∑

i,j,k,l=1

e…� (ti +ti…1+tj+tj…1+tk+tk…1+tl +tl…1)

× E
[

� ti…1(� ti …� ti…1)� tj…1(� tj …� tj…1)� tk…1(� tk …� tk…1)� tl…1(� tl …� tl…1)
]
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=
1

T 2

n
∑

i=1

e…4� (ti +ti…1)E
[

� 4
ti…1

(� ti …� ti…1)
4]

+
3

T 2

n
∑

i=j�=k=l

e…2� (ti +ti…1+tk+tk…1)E
[

� 2
ti…1

(� ti …� ti…1)
2� 2

tk…1
(� tk …� tk…1)

2]

=
6

T 2

n
∑

i=1

e…4� (ti +ti…1)
(

E
[

� 2
ti…1

])2(
E
[

(� ti …� ti…1)
2])2

+ 3

[

1
T

n
∑

i=1

e…2� (ti +ti…1)E
[

� 2
ti…1

(� ti …� ti…1)
2]
]2

=
6

T 2

n
∑

i=1

e…4� (ti +ti…1)
(

E
[

� 2
ti…1

])2(
E
[

(� ti …� ti…1)
2])2 + 3

[

E
[(

1
�

T
� n

)2]]2

.

This implies

� 4

(

1
�

T
� n

)

= E
[(

1
�

T
� n

)4]

… 3
[

E
[(

1
�

T
� n

)2]]2

=
6

T 2

n
∑

i=1

e…4� (ti +ti…1)
(

E
[

� 2
ti…1

])2(
E
[

(� ti …� ti…1)
2])2

=
6

T 2

n
∑

i=1

e…4� (ti +ti…1)
(

e2� ti…1… 1
2�

)2(e2� ti …e2� ti…1

2�

)2

=
6(1 …e…2�� n )2

(2� )4� 2
n

1
n2

n
∑

i=1

(

1 …e…2� ti…1
)2

�
6(1 …e…2�� n )2

(2� )4� 2
n

1
n

�
C
n

, (4.5)

where the latter inequality comes from the fact that1…e…2�� n

� n
� 2� asn � � .

Theorem 4.1 There exists a constant C> 0 such that, for all n � 1,

dW

(
√

T
2�

(̂� n …� ),N
)

� C
(

1
�

n� n
+
√

n� 3
n

)

. (4.6)

Proof De“ne Gn := 1�
T

� n. Using (2.7), (4.4), and (4.5), we have

dW

(

Gn
√

E(G2
n)

,N
)

�
C
n

. (4.7)

Combining (4.7) with (4.2), (4.3), and (3.10), we obtain

dW

(
√

T
2�

(̂� n …� ),N
)

� dW

(

1
�

2�

Gn

fn(X)
,N
)

+ C
√

n� 3
n
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� dW

(

Gn
√

E(G2
n)

,N
)

+ E

∣

∣

∣

∣

Gn
√

E(G2
n)fn(X)

(
√

E(G2
n)

�
2�

…fn(X)
)∣

∣

∣

∣

+ C
√

n� 3
n

� dW

(

Gn
√

E(G2
n)

,N
)

+

∥

∥

∥

∥

Gn
√

E(G2
n)

∥

∥

∥

∥

L4(� )

∥

∥

∥

∥

1
fn(X)

∥

∥

∥

∥

L4(� )

∥

∥

∥

∥

√

E(G2
n)

�
2�

…fn(X)

∥

∥

∥

∥

L2(� )

+ C
√

n� 3
n

� C
(

1
n

+
1

�
n� n

)

+ C
√

n� 3
n

� C
(

1
�

n� n
+
√

n� 3
n

)

,

where we used the fact thatE|fn(X)|…4< � , which is a direct application of the technical
[7, Proposition 6.3]. The proof of (4.6) is thus complete. �

Funding
This project was funded by Kuwait Foundation for the Advancement of Sciences (KFAS) under project code:
PR18-16SM-04.

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare no competing interests.

Author contributions
Investigation, K.E., F.A. and M.A.; Methodology, K.E., F.A. and M.A.; Writing—review and editing, K.E., F.A. and M.A.. All
authors have read and agreed to the published version of the manuscript.

Received: 5 November 2022 Accepted: 21 April 2023

References
1. Biermé, H., Bonami, A., Nourdin, I., Peccati, G.: Optimal Berry-Esseen rates on the Wiener space: the barrier of third and

fourth cumulants. ALEA Lat. Am. J. Probab. Math. Stat. 9(2), 473–500 (2012)
2. Bishwal, J.P.: Rates of weak convergence of approximate minimum contrast estimators for the discretely observed

Ornstein-Uhlenbeck process. Stat. Probab. Lett. 76(13), 1397–1409 (2006)
3. Bishwal, J.P.: Uniform rate of weak convergence of the minimum contrast estimator in the Ornstein-Uhlenbeck

process. Methodol. Comput. Appl. Probab. 12(3), 323–334 (2010)
4. Bishwal, J.P.N., Bose, A.: Rates of convergence of approximate maximum likelihood estimators in the

Ornstein-Uhlenbeck process. Comput. Math. Appl. 42(1–2), 23–38 (2001)
5. Cheridito, P., Kawaguchi, H., Maejima, M.: Fractional Ornstein-Uhlenbeck processes. Electron. J. Probab. 8, 1–14 (2003)
6. Dorogovcev, A.Ja.: The consistency of an estimate of a parameter of stochastic differential equation. Theory Probab.

Math. Stat. 10, 73–82 (1976)
7. Douissi, S., Es-Sebaiy, K., Kerchev, G., Nourdin, N.: Berry-Esseen bounds of second moment estimators for Gaussian

processes observed at high frequency. Electron. J. Stat. 16(1), 636–670 (2022). https://doi.org/10.1214/21-EJS1967
8. Es-Sebaiy, K., Al-Foraih, M., Alazemi, F.: Wasserstein bounds in the CLT of the MLE for the drift coefficient of a

stochastic partial diffenrential equation. Fractal Fract. 5, 187 (2021)
9. Es-Sebaiy, K., Viens, F.: Optimal rates for parameter estimation of stationary Gaussian processes. Stoch. Process. Appl.

129(9), 3018–3054 (2019)
10. Hu, Y., Nualart, D., Zhou, H.: Parameter estimation for fractional Ornstein-Uhlenbeck processes of general Hurst

parameter. Stat. Inference Stoch. Process. 22(1), 111–142 (2019)
11. Kasonga, R.A.: The consistency of a nonlinear least squares estimator from diffusion processes. Stoch. Process. Appl.

30, 263–275 (1988)
12. Kim, Y.T., Park, H.S.: Optimal Berry-Esseen bound for an estimator of parameter in the Ornstein-Uhlenbeck process. J.

Korean Stat. Soc. 46(3), 413–425 (2017)
13. Kloeden, P., Neuenkirch, A.: The pathwise convergence of approximation schemes for stochastic differential

equations. LMS J. Comput. Math. 10, 235–253 (2007)
14. Kutoyants, Y.A.: Statistical Inference for Ergodic Diffusion Processes. Springer, Berlin (2004)
15. Liptser, R.S., Shiryaev, A.N.: Statistics of Random Processes: II Applications, 2nd edn. Applications of Mathematics.

Springer, Berlin, Heidelberg, New York (2001)
16. Nourdin, I., Peccati, G.: Normal Approximations with Malliavin Calculus: From Stein’s Method to Universality.

Cambridge Tracts in Mathematics, vol. 192. Cambridge University Press, Cambridge (2012)

https://doi.org/10.1214/21-EJS1967


Es-Sebaiy et al.Journal of Inequalities and Applications        (2023) 2023:62 Page 17 of 17

17. Nourdin, I., Peccati, G.: The optimal fourth moment theorem. Proc. Am. Math. Soc. 143, 3123–3133 (2015)
18. Nualart, D.: The Malliavin Calculus and Related Topics. Springer, Berlin (2006)
19. Nualart, D., Zhou, H.: Total variation estimates in the Breuer-Major theorem. Ann. Inst. Henri Poincaré Probab. Stat.

57(2), 740–777 (2021)

Publisher•s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


