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Abstract
In this paper, we first study G-κ-strictly pseudocontractive mappings and we establish
a strong convergence theorem for finding the fixed points of two G-κ-strictly
pseudocontractive mappings, two G-nonexpansive mappings, and two G-variational
inequality problems in a Hilbert space endowed with a directed graph without the
Property G. Moreover, we prove an interesting result involving the set of fixed points
of a G-κ-strictly pseudocontractive and G-variational inequality problem and if � is a
G-κ-strictly pseudocontractive mapping, then I –� is a G – (1–κ )

2 -inverse strongly
monotone mapping, shown in Lemma 3.3. In support of our main result, some
examples are also presented.
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1 Introduction
Let H be a real Hilbert space. Let ζ be a nonempty, closed, and convex subset of H with
inner product 〈·, ·〉 and norm ‖ · ‖, respectively, and let T be a self-mapping of ζ . We use
F(T) to denote the set of fixed points of T (i.e., F(T) = {x ∈ ζ : Tx = x}). The iterative
schemes to approximate the fixed points of nonlinear mappings have a long history and
have been studied intensively by many researchers [10, 11, 17, 23]. A mapping T is called
κ-strictly pseudocontractive if there exists a constant κ ∈ [0, 1) such that

‖Tx – Ty‖2 ≤ ‖x – y‖2 + κ
∥
∥(I – T)x – (I – T)y

∥
∥

2, ∀x, y ∈ ζ . (1)

If κ = 1, a mapping T is called a pseudocontractive mapping.
Note that the class of κ-strictly pseudocontractive strictly includes the class of nonex-

pansive mappings that are self-mappings T on ζ such that

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ ζ . (2)

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13660-023-02975-5
https://crossmark.crossref.org/dialog/?doi=10.1186/s13660-023-02975-5&domain=pdf
mailto:beawrock@hotmail.com
http://creativecommons.org/licenses/by/4.0/


Sripattanet and Kangtunyakarn Journal of Inequalities and Applications         (2023) 2023:63 Page 2 of 28

Strictly pseudocontractive was first introduced by Browder and Petryshyn [8] in 1967.
It is well known that strictly pseudocontractive is more general than nonexpansive map-
pings and they have a wider range of applications. Therefore, it is important to develop the
theory of iterative methods for strictly pseudocontractive. Many authors have proposed
iterative algorithms and proved the strong convergence theorems for a nonexpansive map-
ping and a κ-strictly pseudocontractive mapping in Hilbert space to find their fixed points,
see, for example, [1, 4, 10, 13, 15, 18, 29].

To prove the strong convergence of iterations determined by nonexpansive mapping,
Moudafi [19] established a theorem for finding the fixed points of nonexpansive mappings.
More precisely, he established the following result, known as the viscosity approximation
method. To construct an iterative algorithm such that it converges strongly to the fixed
points of a finite family of strictly pseudocontractive by using the concept of the viscosity
approximation method, Yao et al. [31] proposed the intermixed algorithm for two strictly
pseudocontractive mappings as follows:

Algorithm 1 For arbitrarily given x0 ∈ ζ , y0 ∈ ζ , let the sequences {xn} and {yn} be gen-
erated iteratively by

⎧

⎨

⎩

xn+1 = (1 – βn)xn + βnPζ [αnf (yn) + (1 – k – αn)xn + kTxn], n ≥ 0,

yn+1 = (1 – βn)yn + βnPζ [αng(xn) + (1 – k – αn)yn + kSyn], n ≥ 0,
(3)

where {αn} and {βn} are two sequences of real numbers in (0,1), T , S : ζ → ζ are strictly λ-
pseudocontractive mappings, f : ζ →H is a ρ1-contraction, g : ζ →H is a ρ2-contraction,
and k ∈ (0, 1 – λ) is a constant.

We now move onto some basics and definitions in graph theory. Let G = (V (G), E(G))
be a directed graph, where V (G) is a set of vertices of a graph and E(G) is a set of its edges.
We denote by G–1 the directed graph obtained from G by reversing the direction of the
edges. That is,

E
(

G–1) =
{

(x, y) : (x, y) ∈ E(G)
}

.

The following basic definitions of domination in graphs are needed to prove the main
theorem. Let G = (V (G), E(G)) be a directed graph. A set X ⊆ V (G) is called a dominating
set if every z ∈ V (G) \ X there exists x ∈ X such that (x, z) ∈ E(G) and we say that x dom-
inates z or z is dominated by x. Let z ∈ V , a set X ⊆ V is dominated by z if (z, x) ∈ E(G)
for any x ∈ X and we say that X dominates z if (x, z) ∈ E(G) for all x ∈ X. In this paper, we
always assume that E(G) contains all loops.

In 2008, by combining the notions in fixed-point theory and graph theory, Jachymski
[12] generalized the Banach contraction principle in a complete metric space endowed
with a directed graph. He also introduced a contractive-type mapping with a directed
graph as follows:

Definition 1.1 Let (X, d) be a metric space and G = (V (G), E(G)) be a directed graph,
where V (G) = X and E(G) contains all loops, that is 	 ⊆ E(G). We say that a mapping
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f : X → X is a Banach G-contraction if f preserves the edges of G, i.e.,

for any x, y ∈ X such that (x, y) ∈ E(G) implies (fx, fy) ∈ E(G)

and there exists k ∈ (0, 1) such that

d(fx, fy) ≤ kd(x, y) for all x, y ∈ Xwith (x, y) ∈ E(G).

Definition 1.2 Let ζ be a nonempty convex subset of a Banach space, G = (V (G), E(G)) be
a directed graph such that V (G) = ζ and T : ζ → ζ , then T is said to be a G-nonexpansive
mapping if the following conditions hold:

(i) T is edge preserving, i.e., for any x, y ∈ ζ such that (x, y) ∈ E(G) ⇒ (T x,T y) ∈ E(G);
(ii) ‖T x – T y‖ ≤ ‖x – y‖, where (x, y) ∈ E(G) for any x, y ∈ ζ .

This mapping was introduced by Tiammee et al. [25].

The variational inequality problem (VIP) is to find a point u ∈ C such that

〈Au, v – u〉 ≥ 0,

for all v ∈ C. The set of all solutions of the variational inequality is denoted by VI(C, A).
Historically, the variational inequality was introduced by Stampachhia [22]. Since then,
variational inequalities have been used in various topics such as physic, optimization, and
applied sciences, see, for example, [3, 20, 30].

Recently, in 2019, Kangtunyakarn [14] introduced G-variational inequality problems
and G-α-inverse strongly monotone mappings as follows:

Definition 1.3 Let ζ be a nonempty, convex subset of a real Hilbert space H and let G =
(V (G), E(G)) be a directed graph with ζ = V (G). The G-variational inequality problem is
to find a point x∗ ∈ ζ such that

〈

y – x∗, Ax∗〉 ≥ 0, (4)

for all y ∈ ζ with (x∗, y) ∈ E(G) and A : ζ → H is a mapping. The set of all solutions of (4)
is denoted by G – VI(ζ , A).

Definition 1.4 Let ζ be a nonempty, convex subset of a real Hilbert space H and let G =
(V (G), E(G)) be a directed graph with ζ = V (G). The mapping A : ζ → H is said to be
G-α-inverse strongly monotone if there exists α > 0 such that

〈Ax – Ay, x – y〉 ≥ α‖Ax – Ay‖2,

for all x, y ∈ ζ with (x, y) ∈ E(G).

Let ζ be a nonempty, convex subset of a Banach space X and let G = (V (G), E(G)) be
a directed graph such that V (G) = ζ . Then, ζ is said to have Property G [25] if every se-
quence {an} in ζ converges weakly to x ∈ ζ , there exists a subsequence {ank } of {an} such
that (ank , x) ∈ E(G) for all k ∈ N. During the course of this research, when investigating
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the literature on research methods, it was found that many researchers were using the
Property G to prove the strong convergence theorems, see for example [14, 16, 26, 28].

In this paper, we will use some suitable conditions instead of the Property G.

Question 1 Can we prove a strong convergence theorem for finding the fixed points of
two G – κ-strictly pseudocontractive mappings, two G-nonexpansive mappings, and two
G-variational inequality problems in a Hilbert space endowed with a directed graph with-
out the Property G?

By using the concept of (3), we introduce a new iterative method as follows:

Algorithm 2 Starting with x1, y1 ∈ ζ , let the sequences {xn} and {yn} be defined by

⎧

⎨

⎩

xn+1 = δnxn + ηnPζ (I – λ1S1)xn + μnPζ (αnf (yn) + (1 – αn)B1xn),

yn+1 = δnyn + ηnPζ (I – λ2S2)yn + μnPζ (αng(xn) + (1 – αn)B2yn).

By putting S1 = S2 = 0, we obtain

⎧

⎨

⎩

xn+1 = δnxn + ηnxn + μnPζ (αnf (yn) + (1 – αn)B1xn),

yn+1 = δnyn + ηnyn + μnPζ (αng(xn) + (1 – αn)B2yn),

which is a modified version of [31].

To answer Question 1, we prove a strong convergence theorem for solving fixed-point
problems in a Hilbert space endowed with a directed graph by using Algorithm 2, where
S1,S2 : ζ → H are the G – α-inverse strongly monotone mappings, f , g : H → H are G-
contraction mappings, and B1,B2 : ζ → ζ are G-nonexpansive mappings with some extra
conditions in Theorem 3.2.

Inspired by the concept above, we introduce the definition of a G – κ-strictly pseudo-
contractive mapping that is different from κ-strictly pseudocontractive, see Example 2.5,
and prove a strong convergence theorem for finding the fixed points of two G-κ-strictly
pseudocontractive mappings, two G-nonexpansive mappings, and two G-variational in-
equality problems in a Hilbert space endowed with a directed graph without the Prop-
erty G. Moreover, we prove an interesting Lemma involving the set of fixed points of a
G-κ-strictly pseudocontractive and G-variational inequality problem and if � is a G-κ-
strictly pseudocontractive mappings, then I – � is a G – (1–κ)

2 -inverse strongly monotone
mapping, shown in Lemma 3.3. Finally, we give some examples for the main theorem.

2 Preliminaries
In this paper, we denote the weak convergence and the strong convergence by �� ⇀′′ and
�� →′′, respectively. For every x ∈ H , there exists a unique nearest point Pζ x in ζ such that
‖x–Pζ x‖ ≤ ‖x–y‖ for all y ∈ ζ . Pζ is called the metric projection of H onto ζ . Furthermore,
Pζ is a firmly nonexpansive mapping of H onto ζ , i.e.,

‖Pζ x – Pζ y‖2 ≤ 〈Pζ x – Pζ y, x – y〉, ∀x, y ∈ H .
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In a real Hilbert space H , it is well known that H satisfies Opial’s condition [21], i.e., for
any sequence {xn} ⊂ H with xn ⇀ x, the inequality

lim inf
n→∞ ‖xn – x‖ < lim inf

n→∞ ‖xn – y‖,

holds for every y ∈ H with y �= x.
The following Definitions and Lemmas are needed to prove the main theorem.

Lemma 2.1 ([27]) Let {sn} be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1 – αn)sn + δn, ∀n ≥ 0,

where αn is a sequence in (0, 1) and {δn} is a sequence such that
(i)

∑∞
i=1 αn = ∞;

(ii) lim supn→∞
δn
αn

≤ 0 or
∑∞

n=1|δn| < ∞.
Then, limn→∞ sn = 0.

Lemma 2.2 ([24]) For a given z ∈ H and u ∈ ζ ,

u = Pζ z ⇔ 〈u – z, v – u〉 ≥ 0, ∀v ∈ ζ .

Definition 2.3 ([25]) Let G = (V (G), E(G)) be a directed graph. A graph G is called tran-
sitive if for any x, y, z ∈ V (G) with (x, y) and (y, z) are in E(G), then (x, z) ∈ E(G).

Next, we introduce the definition of a G – κ-strictly pseudocontractive mapping.

Definition 2.4 Let ζ be a nonempty, closed, and convex subset of a real Hilbert space H
and let G = (V (G), E(G)) be a directed graph with ζ = V (G) and � : ζ → ζ . Then, � is said
to be G – κ-strictly pseudocontractive if there exists a constant κ ∈ [0, 1) and the following
conditions hold;

(i) � is edge preserving, i.e., for any x, y ∈ ζ such that (x, y) ∈ E(G) ⇒ (�x,�y) ∈ E(G);
(ii) ‖�x – �y‖2 ≤ ‖x – y‖2 + κ‖(I – �)x – (I – �)y‖2, where (x, y) ∈ E(G) for any x, y ∈ ζ .

Example 2.5 Let R be the set of real numbers, ζ = [–10, 10] with G = (ζ , E(G)) and E(G) =
{(x, y) ∈R×R : x, y ∈ [0, 10]}. Define the mapping � : ζ → ζ by

�x =

⎧

⎨

⎩

max(–x, x); x ∈ (–10, 10],

0; x = –10,

for all x ∈ ζ with

max(a, b) =
1
2
(

a + b + |a – b|).

Then, � is a G-( 1
2 )-strictly pseudocontractive mapping, but � is not a 1

2 -strictly pseudo-
contractive mapping.

Solution. Let x, y ∈ ζ and (x, y) ∈ E(G). Then, we have x, y ∈ [0, 10].
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It follows that �x,�y ∈ [0, 10]. Thus,

(�x,�y) ∈ E(G).

From the definition of �, we have

〈

(I – �)x – (I – �)y, x – y
〉

=
〈

x – max(–x, x) – y + max(–y, y), x – y
〉

=
〈

x – y –
1
2
(

–x + x + | – x – x|)

+
1
2
(

–y + y + | – y – y|), x – y
〉

=
〈

x – y +
(|y| – |x|), x – y

〉

=
[

x – y +
(|y| – |x|)](x – y) (5)

and
∣
∣(I – �)x – (I – �)y

∣
∣
2 =

∣
∣x – max(–x, x) – y + max(–y, y)

∣
∣
2

=
∣
∣
∣
∣
x –

1
2
(

–x + x + | – x – x|) – y +
1
2
(

–y + y + | – y – y|)
∣
∣
∣
∣

2

=
∣
∣(x – y) +

(|y| – |x|)∣∣2

≤ ∣
∣(x – y) +

(|y| – |x|)∣∣ · {|x – y| +
∣
∣
(|x| – |y|)∣∣}

≤ ∣
∣(x – y) +

(|y| – |x|)∣∣ · {|x – y| + |x – y|}

= 2
∣
∣(x – y) +

(|y| – |x|)∣∣ · |x – y|. (6)

From (5) and (6), we have

〈

(I – �)x – (I – �)y, x – y
〉 ≥ 1

2
∣
∣(I – �)x – (I – �)y

∣
∣
2

≥ 1 – 1
2

2
∣
∣(I – �)x – (I – �)y

∣
∣
2, (7)

for all x, y ∈ ζ with (x, y) ∈ E(G).
From the definition of � and (7), we have

|�x – �y|2 =
∣
∣(I – I + �)x – (I – I + �)y

∣
∣
2

=
∣
∣x – (I – �)x – y + (I – �)y

∣
∣
2

=
∣
∣(x – y) –

[

(I – �)x – (I – �)y
]∣
∣
2

=
∣
∣(x – y)

∣
∣
2 – 2

〈

x – y, (I – �)x – (I – �)y
〉

+
[

(I – �)x – (I – �)y
]2

≤ ∣
∣(x – y)

∣
∣
2 – 2

[1 – 1
2

2
∣
∣(I – �)x – (I – �)y

∣
∣
2
]

+
[

(I – �)x – (I – �)y
]2

=
∣
∣(x – y)

∣
∣
2 +

1
2
[

(I – �)x – (I – �)y
]2.

Hence, we obtain that � is a G-( 1
2 )-strictly pseudocontractive mapping.
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Next, we will show that � is not a 1
2 -strictly pseudocontractive mapping. Choose x = –9

and y = –10. Then,

∣
∣�(–9) – �(–10)

∣
∣
2 = |9 – 0|2 = 81 > 33 = |–9 + 10|2 +

1
2
∣
∣–9 – �(–9) + 10 + �(–10)

∣
∣
2.

Hence, � is not a 1
2 -strictly pseudocontractive mapping.

Example 2.6 Let H = R, ζ = [–10, 10] with G = (ζ , E(G)) and E(G) = {(x, y)|x ·y > 0}. Define
the mapping �̄ : ζ → ζ by �̄1 : [–10, 10] → [–10, 10] defined by

�̄1x = sgn
(

sgn(x)
)

=

⎧

⎪⎪⎨

⎪⎪⎩

1; x ∈ (0, 10],

0; x = 0,

–1; x ∈ [–10, 0),

for all x ∈ [–10, 10] with

sgn(x) =

⎧

⎪⎪⎨

⎪⎪⎩

–1; x < 0,

0; x = 0,

1; x > 0.

Then, � is a G-( 1
2 )-strictly pseudocontractive mapping, but � is not a 1

2 -strictly pseudo-
contractive mapping.

Solution. Let x, y ∈ ζ and (x, y) ∈ E(G). Then, we have x, y > 0.
Case I; x, y > 0, we have �̄x = �̄y = 1. Then, �̄x · �̄y > 0.
Case II; x, y < 0, we have �̄x = �̄y = –1. Then, �̄x · �̄y > 0.
Thus, (�̄x, �̄y) ∈ E(G).
From case I; x, y > 0, then

|x – y|2 +
1
2
∣
∣(I – �̄)x – (I – �̄)y

∣
∣
2 = |x – y|2 +

1
2
|x – y – �̄x + �̄y|2

=
3
2
|x – y|2

≥ 0

= |�̄x – �̄y|2.

From case II; x, y < 0, by using the same technique as in Case I, we obtain that

|x – y|2 +
1
2
∣
∣(I – �̄)x – (I – �̄)y

∣
∣
2 ≥ |�̄x – �̄y|2.

Thus, �̄ is a G-( 1
2 )-strictly pseudocontractive mapping.

Next, we will show that �̄ is not a 1
2 -strictly pseudocontractive mapping. Choose x = 1

and y = –1
5 . Then,

|�̄x – �̄y|2 = 4 ≥ 1.76 =
∣
∣
∣
∣
1 +

1
5

∣
∣
∣
∣

2

+
1
2

∣
∣
∣
∣
1 – �̄(1) +

1
5

+ �̄

(

–
1
5

)∣
∣
∣
∣

2

.

Hence, �̄ is not a 1
2 -strictly pseudocontractive mapping.
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Lemma 2.7 ([14]) Let ζ be a nonempty, closed, and convex subset of a real Hilbert space
H and let G = (V (G), E(G)) be a directed graph with ζ = V (G). Let E(G) be convex and G
be transitive with E(G) = E(G)–1 and let A : ζ → H be a G – α-inverse strongly monotone
operator with A–1(0) �= 0. Then, G – VI(ζ , A) = A–1(0) = F(Pζ (I – λA)), for all λ > 0.

Lemma 2.8 ([14]) Let H be a Hilbert space and ζ be a nonempty, closed, and convex subset
of H with ζ having a property G. Let G = (V (G), E(G)) be a directed graph where V (G) = ζ

and E(G) is a convex set. Let A : ζ → H be a G –α-inverse strongly monotone mapping with
F(Pζ (I – λA)) × F(Pζ (I – λA)) ⊆ E(G), for all λ ∈ (0, 2α). Then, F(Pζ (I – λA)) is closed and
convex.

Lemma 2.9 ([25]) Let X be a normed space and ζ be a subset of X having a property G.
Let G = (V (G), E(G)) be a directed graph such that V (G) = ζ and E(G) is convex. Suppose
T : ζ → ζ is a G-nonexpansive mapping and F(T ) × F(T ) ⊆ E(G). Then, F(T ) is closed
and convex.

Lemma 2.10 Let ζ be a nonempty, closed, and convex subset of a real Hilbert space H
and let G = (V (G), E(G)) be a directed graph with ζ = V (G). Let E(G) be convex and G
be transitive with E(G) = E(G)–1. Let T : ζ → ζ be a G- nonexpansive mapping and � :
ζ → ζ be a G – κ-strictly pseudocontractive mapping. Define a mapping B : ζ → ζ by
Bx = T ((1–b)I +b�)x for all x ∈ ζ and b ∈ (0, 1–k). Then,B is a G-nonexpansive mapping,
for all x, y ∈ ζ with (x, y) ∈ E(G).

Proof Let x, y ∈ ζ and (x, y) ∈ E(G).
Since � is edge preserving and (x, y) ∈ E(G), then (�x,�y) ∈ E(G).
As (x, y), (�x,�y) ∈ E(G) and E(G) is convex, we obtain

(

(1 – b)x + b�x, (1 – b)y + b�y
) ∈ E(G).

Since T is edge preserving and ((1 – b)x + b�x, (1 – b)y + b�y) ∈ E(G), then

(

T
(

(1 – b)x + b�x
)

,T
(

(1 – b)y + b�y
)) ∈ E(G).

Thus, B is edge preserving.
We have

‖Bx – By‖2 =
∥
∥T

(

(1 – b)x + b�x
)

– T
(

(1 – b)y + b�y
)∥
∥

2

≤ ∥
∥(1 – b)x + b�x – (1 – b)y – b�y

∥
∥

2

=
∥
∥(1 – b)(x – y) + b(�x – �y)

∥
∥

2

= (1 – b)‖x – y‖2 + b‖�x – �y‖2 – b(1 – b)
∥
∥(x – y) – (�x – �y)

∥
∥

2

≤ (1 – b)‖x – y‖2 + b
{‖x – y‖2 + κ

∥
∥(I – �)x – (I – �)y

∥
∥

2}

– b(1 – b)
∥
∥(x – y) – (�x – �y)

∥
∥

2

≤ (1 – b)‖x – y‖2 + b‖x – y‖2 + kb
∥
∥(x – y) – (�x – �y)

∥
∥

2
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– b(1 – b)
∥
∥(x – y) – (�x – �y)

∥
∥

2

= ‖x – y‖2 +
(

kb – b(1 – b)
)∥
∥(x – y) – (�x – �y)

∥
∥

2

= ‖x – y‖2 + b
(

k – (1 – b)
)∥
∥(x – y) – (�x – �y)

∥
∥

2

≤ ‖x – y‖2,

for all x, y ∈ ζ with (x, y) ∈ E(G).
This implies that ‖Bx – By‖ ≤ ‖x – y‖.
Hence, B is a G-nonexpansive mapping. �

Lemma 2.11 Let ζ be a nonempty, closed, and convex subset of a real Hilbert space H
and let G = (V (G), E(G)) be a directed graph with ζ = V (G). Let E(G) be convex and G
be transitive with E(G) = E(G)–1. Let T : ζ → ζ be a G- nonexpansive mapping and � :
ζ → ζ be a G – κ-strictly pseudocontractivea mapping. Define a mapping B : ζ → ζ by
Bx = T ((1 – b)I + b�)x for all x ∈ ζ , b ∈ (0, 1 – k) and F(B) × (F(T ) ∩ F(�)) ⊆ E(G). Then,

F(B) = F(T ) ∩ F(�).

Proof It is obvious that F(T ) ∩ F(�) ⊆ F(B). Next, we claim that F(B) ⊆ F(T ) ∩ F(�).
To show this, let x0 ∈ F(B), x∗ ∈ F(T ) ∩ F(�), Then, we have (x0, x∗) ∈ E(G). Since �

is edge preserving and (x0, x∗) ∈ E(G), then (�x0, x∗) ∈ E(G). Since E(G) = E(G)–1 and
(�x0, x∗) ∈ E(G), then we have (x∗,�x0) ∈ E(G). By the transitivity of G and (x0, x∗) ∈ E(G)
and (x∗,�x0) ∈ E(G), then we have (x0,�x0) ∈ E(G). As (x0, x∗) and (�x0, x∗) are in E(G)
and E(G) is convex, we obtain

(

(1 – b)x0 + b�x0, (1 – b)x∗ + bx∗) =
(

(1 – b)x0 + b�x0, x∗) ∈ E(G).

Then, we have

‖x0 = x∗‖2 =
∥
∥T

(

(1 – b)x0 + b�x0
)

– T x∗∥∥2

≤ ∥
∥(1 – b)x0 + b�x0 – x∗∥∥2

=
∥
∥(1 – b)

(

x0 – x∗) + b
(

�x0 – x∗)∥∥2

= (1 – b)
∥
∥x0 – x∗∥∥2 + b

∥
∥�x0 – x∗∥∥2

– b(1 – b)
∥
∥
(

x0 – x∗) –
(

�x0 – x∗)∥∥2

≤ (1 – b)
∥
∥x0 – x∗∥∥2 + b

{∥
∥x0 – x∗∥∥2 + k

∥
∥(I – �)x0 – (I – �)x∗∥∥2}

– b(1 – b)‖x0 – �x0‖2

=
∥
∥x0 – x∗∥∥2 + bk

∥
∥(I – �)x0 – (I – �)x∗∥∥2 – b(1 – b)‖x0 – �x0‖2

=
∥
∥x0 – x∗∥∥2 + bk‖x0 – �x0‖2 – b(1 – b)‖x0 – �x0‖2

=
∥
∥x0 – x∗∥∥2 – b

(

(1 – k) – b
)‖x0 – �x0‖2, (8)

for all x0, x∗ ∈ ζ with (x0, x∗) ∈ E(G).
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From (8), this implies that

b
(

(1 – k) – b
)‖x0 – �x0‖2 ≤ ‖x0 = x∗‖2 – ‖x0 = x∗‖2 = 0,

for all x0, x∗ ∈ ζ with (x0, x∗) ∈ E(G).
Then, we have �x0 = x0.
That is, x0 ∈ F(�).
Since x0 ∈ F(B) from the definition of B, we have

x0 = Bx0 = T
(

(1 – b)x0 + b�x0
)

= T x0.

Then, we have x0 ∈ F(T ), therefore x0 ∈ F(T ) ∩ F(�).
It follows that F(B) ⊆ F(T ) ∩ F(�).
Hence, F(B) = F(T ) ∩ F(�). �

3 Main results
In this section, we prove a strong convergence theorem for solving the fixed-point problem
of two G-nonexpansive mappings, two G – κi-strictly pseudocontractive mappings, and
two G-variational inequality problems in Hilbert space endowed with a directed graph.

The following Proposition is needed to prove the main theorem.

Proposition 3.1 Let ζ be a nonempty, closed, and convex subset of a real Hilbert space H
and let G = (V (G), E(G)) be a directed graph with ζ = V (G). Let E(G) be convex and G be
transitive with E(G) = E(G)–1. For every i = 1, 2, let Si : ζ → H be a G – αi-inverse strongly
monotone mapping with

⎧

⎨

⎩

xn+1 = δnxn + ηnPζ (I – λ1S1)xn + μnPζ (αnf (yn) + (1 – αn)B1xn),

yn+1 = δnyn + ηnPζ (I – λ2S2)yn + μnPζ (αng(xn) + (1 – αn)B2yn),
(9)

where (x0, x0) and (y0, y0) are in E(G). If ζ = V (G) dominates x0 and y0, then (xn, xn+1),
(yn, yn+1) are in E(G) for all n ∈N.

Proof Since ζ = V (G) dominates x0 and Pζ (I – λ1S1)x0 ∈ ζ , then we have (Pζ (I –
λ1S1)x0, x0) ∈ E(G). From E(G) = E(G)–1 and (Pζ (I –λ1S1)x0, x0) ∈ E(G), we have (x0, Pζ (I –
λ1S1)x0) ∈ E(G). Since ζ = V (G) dominates x0 and U0 = Pζ (α0f (y0)+(1–α0)B1x0) ∈ ζ , then
we have (U0, x0) ∈ E(G). From E(G) = E(G)–1 and (U0, x0) ∈ E(G), we have (x0, U0) ∈ E(G).
Since (x0, x0), (x0, Pζ (I – λ1S1)x0) and (x0, U0) are in E(G) and E(G) is convex, we obtain

(

δ0x0 + η0x0 + μ0x0, δ0x0 + η0Pζ (I – λ1S1)x0 + μ0U0
)

= (x0, x1) ∈ E(G).

Since ζ = V (G) dominates x0 and Pζ (I – λ1S1)x1 ∈ ζ , then we have (Pζ (I – λ1S1)x1, x0) ∈
E(G). From E(G) = E(G)–1 and (Pζ (I – λ1S1)x1, x0) ∈ E(G), we have (x0, Pζ (I – λ1S1)x1) ∈
E(G). Since ζ = V (G) dominates x0 and U1 = Pζ (α1f (y1) + (1 – α1)B1x1) ∈ ζ , then we have
(U1, x0) ∈ E(G). From E(G) = E(G)–1 and (U1, x0) ∈ E(G), we have (x0, U1) ∈ E(G). Since
(x0, x1), (x0, Pζ (I – λ1S1)x1) and (x0, U1) are in E(G) and E(G) is convex, we obtain

(

δ0x0 + η0x0 + μ0x0, δ0x1 + η0Pζ (I – λ1S1)x1 + μ0U1
)

= (x0, x2) ∈ E(G).
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Since ζ = V (G) dominates x0 and Pζ (I – λ1S1)xk ∈ ζ , then we have (Pζ (I – λ1S1)xk , x0) ∈
E(G), for k ∈ N. From E(G) = E(G)–1 and (Pζ (I – λ1S1)xk , x0) ∈ E(G), we have (x0, Pζ (I –
λ1S1)xk) ∈ E(G), for k ∈ N. Since ζ = V (G) dominates x0 and Uk = Pζ (αkf (yk) + (1 –
αk)Bkxk) ∈ ζ , then we have (Uk , x0) ∈ E(G), for k ∈ N. From E(G) = E(G)–1 and (Uk , x0) ∈
E(G), we have (x0, Uk) ∈ E(G), for k ∈N.

Next, Assume that (x0, xk) ∈ E(G), for k ∈ N. Since (x0, xk), (x0, Pζ (I – λ1S1)xk), and
(x0, Uk) are in E(G) and E(G) is convex, then we obtain (δ0x0 + η0x0 + μ0x0, δ0xk + η0Pζ (I –
λ1S1)xk + μ0Uk) = (x0, xk+1) ∈ E(G).

Hence, by induction, we have (x0, xn) ∈ E(G). From E(G) = E(G)–1 and (x0, xn) ∈ E(G),
we have (xn, x0) ∈ E(G), for all n ∈ N. By the transitivity of G and (xn, x0), (x0, xn+1) ∈ E(G),
we have

(xn, xn+1) ∈ E(G), for all n ∈N. (10)

Applying the same arguments as for deriving (10), we also obtain

(yn, yn+1) ∈ E(G), for all n ∈N. �

Theorem 3.2 Let ζ be a nonempty, closed, and convex subset of a real Hilbert space H
and let G = (V (G), E(G)) be a directed graph with ζ = V (G). Let E(G) be convex and G
be transitive with E(G) = E(G)–1. For every i = 1, 2, let Si : ζ → H be a G – αi-inverse
strongly monotone mapping with α = min{α1,α2} and let g, f : H → H be an ag and
af – G-contraction mapping with a = max{ag , af }. For every i = 1, 2, let Ti : ζ → ζ be a
G-nonexpansive mapping and �i : ζ → ζ be a G – κi-strictly pseudocontractive mapping
with k = max{κ1,κ2}. Define a mapping B : ζ → ζ by Bix = Ti((1 – b)I + b�i)x for all x ∈ ζ

and i = 1, 2, b ∈ (0, 1 – k). Assume that Fi = F(Bi) ∩ G – VI(ζ ,Si) �= ∅ for all i = 1, 2 with
F(Bi)×F(Bi) ⊆ E(G), G–VI(ζ ,Si)×G–VI(ζ ,Si) ⊆ E(G) and F(B)×(F(T )∩F(�)) ⊆ E(G)
for all i = 1, 2 and there exists x0, y0 ∈ ζ such that (x0, x0) and (y0, y0) are in E(G) and
ζ = V (G) dominates x0 and y0. Let the sequences {xn} and {yn} be generated by x0, y0 ∈ ζ

and

⎧

⎨

⎩

xn+1 = δnxn + ηnPζ (I – λ1S1)xn + μnPζ (αnf (yn) + (1 – αn)B1xn),

yn+1 = δnyn + ηnPζ (I – λ2S2)yn + μnPζ (αng(xn) + (1 – αn)B2yn),
(11)

where {δn}, {ηn}, {μn}, {αn} ⊆ [0, 1] with δn +ηn +μn = 1 and λ ∈ (0, 2α) with λ = min{λ1,λ2}.
Assume the following conditions hold;

(i) 0 < ξ ≤ δn,ηn, μn ≤ ξ̄ for all n ∈ N and for some ξ , ξ̄ > 0;
(ii) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞;

(iii)
∑∞

n=1|δn+1 – δn| < ∞,
∑∞

n=1|ηn+1 – ηn| < ∞,
∑∞

n=1|αn+1 – αn| < ∞.
If {xn} dominates PF1 f (y0) and {yn} dominates PF2 g(x0), then {xn} converges strongly to
x∗ = PF1 f (y0) and {yn} converges strongly to y∗ = PF2 g(x0), where PFi is a metric projection
on Fi, for all i = 1, 2.

Proof The proof of this theorem will be divided into five steps.
Step 1: We will show that {xn} is bounded.
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First, we will prove that

∥
∥Pζ (I – λS)x – Pζ (I – λS)y

∥
∥ ≤ ‖x – y‖, (12)

for all x, y ∈ ζ and (x, y) ∈ E(G).
Letting x, y ∈ ζ and (x, y) ∈ E(G), we have

∥
∥Pζ (I – λS)x – Pζ (I – λS)y

∥
∥

2 ≤ ∥
∥x – y – λ(Sx – Sy)

∥
∥

2

= ‖x – y‖2 – 2λ〈x – y,Sy – Sy〉
+ λ2‖Sx – Sy‖2

≤ ‖x – y‖2 – 2αλ‖Sx – Sy‖2

+ λ2‖Sx – Sy‖2

= ‖x – y‖2 – λ(2α – λ)‖Sx – Sy‖2

≤ ‖x – y‖2,

for all x, y ∈ ζ with (x, y) ∈ E(G).
From Lemmas 2.7 and 2.8, we have G – VI(ζ ,Si) is closed and convex, for all i = 1, 2.
From Lemma 2.9, we have F(Bi) is closed and convex. Then, Fi is closed and convex, for

all i = 1, 2.
Let x∗ = PF1 f (y0) be dominated by {xn} and y∗ = PF2 g(x0) be dominated by {yn}, we have

(xn, x∗) and (yn, y∗) are in E(G) for all n ∈ N. From Lemma 2.7, we have G – VI(ζ ,S1) =
S–1

1 (0).
Then, x∗ ∈ S–1

1 (0). Since S1x∗ = 0, we have

∥
∥Pζ (I – λ1S1)xn – x∗∥∥2 ≤ ∥

∥xn – x∗ – λ1S1xn
∥
∥

2

=
∥
∥xn – x∗ –

(

λ1S1xn – λ1S1x∗)∥∥2

=
∥
∥xn – x∗∥∥2 – 2λ1

〈

xn – x∗,S1xn – S1x∗〉

+ λ2
1
∥
∥S1xn – S1x∗∥∥2

=
∥
∥xn – x∗∥∥2 – 2λ1α

∥
∥S1xn – S1x∗∥∥2 + λ2

1‖S1xn‖2

=
∥
∥xn – x∗∥∥2 – λ1(2α – λ1)‖S1xn‖2

≤ ∥
∥xn – x∗∥∥2.

From the definition of {xn}, we have

∥
∥xn+1 – x∗∥∥ =

∥
∥δnxn + ηnPζ (I – λ1S1)xn + μnPζ

(

αnf (yn) + (1 – αn)B1xn
)

– (δn + ηn + μn)x∗∥∥

≤ δn
∥
∥xn – x∗∥∥ + ηn

∥
∥Pζ (I – λ1S1)xn – x∗∥∥ + μn

∥
∥Pζ

(

αnf (yn)

+ (1 – αn)B1xn
)

– x∗∥∥

≤ (1 – μn)
∥
∥xn – x∗∥∥ + μn

∥
∥αn

(

f (yn) – x∗) + (1 – αn)
(

B1xn – x∗)∥∥
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≤ (1 – μn)
∥
∥xn – x∗∥∥ + μnαn

∥
∥f (yn) – x∗∥∥ + μn(1 – αn)

∥
∥xn – x∗∥∥

≤ (1 – μn)
∥
∥xn – x∗∥∥ + μnαna

∥
∥yn – y∗∥∥ + μnαn

∥
∥f

(

y∗) – x∗∥∥

+ μn(1 – αn)
∥
∥xn – x∗∥∥

= (1 – μnαn)
∥
∥xn – x∗∥∥ + μnαna

∥
∥yn – y∗∥∥ + μnαn

∥
∥f

(

y∗) – x∗∥∥. (13)

Similarly, we obtain

∥
∥yn+1 – y∗∥∥ ≤ (1 – μnαn)

∥
∥yn – y∗∥∥ + μnαna

∥
∥xn – x∗∥∥ + μnαn

∥
∥g

(

x∗) – y∗∥∥. (14)

Combining (13) and (14), we have

∥
∥xn+1 – x∗∥∥ +

∥
∥yn+1 – y∗∥∥ ≤ (1 – μnαn)

{∥
∥xn – x∗∥∥ +

∥
∥yn – y∗∥∥}

+ μnαna
{∥
∥xn – x∗∥∥ +

∥
∥yn – y∗∥∥}

+ μnαn
{∥
∥g

(

x∗) – y∗∥∥ +
∥
∥f

(

y∗) – x∗∥∥}

=
(

1 – μnαn(1 – a)
){∥

∥xn – x∗∥∥ +
∥
∥yn – y∗∥∥}

+
μnαn{‖g(x∗) – y∗‖ + ‖f (y∗) – x∗‖}

(1 – a)
.

By induction, we can derive that

∥
∥xn – x∗∥∥ +

∥
∥yn – y∗∥∥ ≤ max

{
∥
∥x1 – x∗∥∥ +

∥
∥y1 – y∗∥∥,

‖g(x∗) – y∗‖ + ‖f (y∗) – x∗‖
1 – a

}

,

for every n ∈N. This implies that {xn} and {yn} are bounded.
Step 2: We claim that limn→∞ ‖xn+1 – xn‖ = limn→∞ ‖yn+1 – yn‖ = 0.
From Proposition 3.1, we have (xn, xn+1) and (yn, yn+1) are in E(G) for all n ∈ N. First, we

let Un = Pζ (αnf (yn) + (1 – αn)B1xn) and Vn = Pζ (αng(xn) + (1 – αn)B2yn). Then, we observe
that

‖Un – Uu–1‖ =
∥
∥Pζ

(

αnf (yn) + (1 – αn)B1xn
)

– Pζ

(

αn–1f (yn–1)

+ (1 – αn–1)B1xn–1
)∥
∥

≤ αn
∥
∥f (yn) – f (yn–1)

∥
∥ + |αn – αn–1|

∥
∥f (yn–1)

∥
∥

+ (1 – αn)‖B1xn – B1xn–1‖
+ |αn – αn–1|‖B1xn–1‖

≤ αna‖yn – yn–1‖ + |αn – αn–1|
{∥
∥f (yn–1)

∥
∥ + ‖B1xn–1‖

}

+ (1 – αn)‖xn – xn–1‖. (15)

By the definition of xn and (15) we obtain

‖xn+1 – xn‖ =
∥
∥δnxn + ηnPζ (I – λ1S1)xn + μnUn – δn–1xn–1

– ηn–1Pζ (I – λ1S1)xn–1 – μn–1Un–1
∥
∥
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≤ δn‖xn – xn–1‖ + |δn – δn–1|‖xn–1‖ + ηn
∥
∥Pζ (I – λ1S1)xn

– Pζ (I – λ1S1)xn–1
∥
∥ + |ηn – ηn–1|

∥
∥Pζ (I – λ1S1)xn–1

∥
∥

+ μn‖Un – Un–1‖ + |μn – μn–1|‖Un–1‖
≤ (1 – μn)‖xn – xn–1‖ + |δn – δn–1|‖xn–1‖

+ |ηn – ηn–1|
∥
∥Pζ (I – λ1S1)xn–1

∥
∥

+ μn|αn – αn–1|
{∥
∥f (yn–1)

∥
∥ + ‖G1xn–1‖

}

+ μn(1 – αn)‖xn – xn–1‖ + |μn – μn–1|‖Un–1‖
+ μnαna‖yn – yn–1‖. (16)

Using the same method as derived in (16), we have

‖yn+1 – yn‖ ≤ (1 – μn)‖yn – yn–1‖ + |δn – δn–1|‖yn–1‖
+ |ηn – ηn–1|

∥
∥Pζ (I – λ2S2)yn–1

∥
∥

+ μn|αn – αn–1|
{∥
∥g(xn–1)

∥
∥ + ‖B2yn–1‖

}

+ μn(1 – αn)‖yn – yn–1‖ + |μn – μn–1|‖Vn–1‖
+ μnαna‖xn – xn–1‖. (17)

From (16) and (17), we obtain

‖xn+1 – xn‖ + ‖yn+1 – yn‖ ≤ (1 – μn)
[‖xn – xn–1‖ + ‖yn – yn–1‖

]

+ |δn – δn–1|
[‖xn–1‖ + ‖yn–1‖

]

+ |ηn – ηn–1|
[∥
∥Pζ (I – λ1S1)xn–1

∥
∥

+
∥
∥Pζ (I – λ2S2)yn–1

∥
∥
]

+ |μn – μn–1|
[‖Un–1‖ + ‖Vn–1‖

]

+ μnαna
[‖yn – yn–1‖ + ‖xn – xn–1‖

]

+ μn|αn – αn–1|
[∥
∥f (yn–1)

∥
∥ + ‖B1xn–1‖

+
∥
∥g(xn–1)

∥
∥ + ‖B2yn–1‖

]

+ μn(1 – αn)
[‖xn – xn–1‖ + ‖yn – yn–1‖

]

≤ (

1 – αnξ̄ (1 – a)
)[‖xn – xn–1‖ + ‖yn – yn–1‖

]

+ |δn – δn–1|
[‖xn–1‖ + ‖yn–1‖

]

+ |ηn – ηn–1|
[∥
∥Pζ (I – λ1S1)xn–1

∥
∥

+
∥
∥Pζ (I – λ2S2)yn–1

∥
∥
]

+ |μn – μn–1|
[‖Un–1‖ + ‖Vn–1‖

]

+ ξ |αn – αn–1|
[∥
∥f (yn–1)

∥
∥ + ‖B1xn–1‖

+
∥
∥g(xn–1)

∥
∥ + ‖B2yn–1‖

]

.
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Applying Lemma 2.1 and the conditions (ii) and (iii) we can conclude that

‖xn+1 – xn‖ → 0 and ‖yn+1 – yn‖ → 0 as n → ∞. (18)

Step 3: We prove that limn→∞ ‖Un – Pζ (I – λ1S1)Un‖ = limn→∞ ‖Un – B1Un‖ = 0.
To show this, take ũn = αnf (yn) + (1 – αn)B1xn, ∀n ∈ N.
Since x∗ is dominated by {xn}, y∗ is dominated by {yn} and (xn, xn+1), and (yn, yn+1) are in

E(G) for all n ∈N, then we derive that

∥
∥xn+1 – x∗∥∥2 =

∥
∥δn

(

xn – x∗) + ηn
(

Pζ (I – λ1S1)xn – x∗) + μn
(

Un – x∗)∥∥2

≤ δn
∥
∥xn – x∗∥∥2 + ηn

∥
∥Pζ (I – λ1S1)xn – x∗∥∥2

– δnηn
∥
∥xn – Pζ (I – λ1S1)xn

∥
∥

2 + μn
∥
∥ũn – x∗∥∥2

≤ (1 – μn)
∥
∥xn – x∗∥∥2 – δnηn

∥
∥xn – Pζ (I – λ1S1)xn

∥
∥

2

+ μn
∥
∥αn

(

f (yn) – B1xn
)

+
(

B1xn – x∗)∥∥2

≤ (1 – μn)
∥
∥xn – x∗∥∥2 – δnηn

∥
∥xn – Pζ (I – λ1A1)xn

∥
∥

2

+ μn
{∥
∥B1xn – x∗∥∥2 + 2αn

〈

f (yn) – B1xn, ũn – x∗〉}

≤ ∥
∥xn – x∗∥∥2 – δnηn

∥
∥xn – Pζ (I – λ1S1)xn

∥
∥

2

+ 2μnαn
∥
∥f (yn) – B1xn

∥
∥
∥
∥ũn – x∗∥∥,

which implies that

δnηn
∥
∥xn – Pζ (I – λ1S1)xn

∥
∥

2 ≤ ∥
∥xn – x∗∥∥2 –

∥
∥xn+1 – x∗∥∥2

+ 2μnαn
∥
∥f (yn) – B1xn

∥
∥
∥
∥ũn – x∗∥∥

≤ ‖xn – xn+1‖
{∥
∥xn – x∗∥∥ +

∥
∥xn+1 – x∗∥∥}

+ 2μnαn
∥
∥f (yn) – B1xn

∥
∥
∥
∥ũn – x∗∥∥.

Then, we have

∥
∥xn – Pζ (I – λ1S1)xn

∥
∥ → 0 as n → ∞. (19)

Observe that

xn+1 – xn = ηn
(

Pζ (I – λ1S1)xn – xn
)

+ μn(Un – xn).

It follows that

μn‖Un – xn‖ ≤ ηn
∥
∥Pζ (I – λ1S1)xn – xn

∥
∥ + ‖xn+1 – xn‖.

From (18) and (19), we obtain

‖Un – xn‖ → 0 as n → ∞. (20)
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Since ζ = V (G) dominates x0 and Un, xn ∈ ζ , then we have (Un, x0) and (xn, x0) are in E(G),
for all n ∈N. Since E(G) = E(G)–1 and (xn, x0) ∈ E(G), then (x0, xn) ∈ E(G), for all n ∈N. By
the transitivity of G and (Un, x0), (x0, xn) ∈ E(G), for all n ∈ N, we obtain (Un, xn) ∈ E(G),
for all n ∈N. Since E(G) = E(G)–1 and (Un, xn) ∈ E(G), then (xn, Un) ∈ E(G), for all n ∈N.

Observe that

∥
∥Un – Pζ (I – λ1S1)Un

∥
∥ ≤ ‖Un – xn‖ +

∥
∥xn – Pζ (I – λ1S1)xn

∥
∥

+
∥
∥Pζ (I – λ1S1)xn – Pζ (I – λ1S1)Un

∥
∥

≤ ‖Un – xn‖ +
∥
∥xn – Pζ (I – λ1S1)xn

∥
∥ + ‖xn – Un‖

= 2‖Un – xn‖ +
∥
∥xn – Pζ (I – λ1S1)xn

∥
∥,

by (12), (19), and (20), we obtain

∥
∥Un – Pζ (I – λ1S1)Un

∥
∥ → 0 as n → ∞. (21)

Applying the same arguments as for deriving (21), we also obtain

∥
∥Vn – Pζ (I – λ2S2)Vn

∥
∥ → 0 as n → ∞.

Consider

‖xn+1 – Un‖ ≤ ‖xn+1 – xn‖ + ‖xn – Un‖.

From (18) and (20), we have

‖xn+1 – Un‖ → 0 as n → ∞. (22)

Since

‖xn – B1xn‖ ≤ ‖xn – xn+1‖ + ‖xn+1 – Un‖ + ‖Un – B1xn‖
≤ ‖xn – xn+1‖ + ‖xn+1 – Un‖ + ‖ũn – B1xn‖
= ‖xn – xn+1‖ + ‖xn+1 – Un‖

+
∥
∥αnf (yn) + (1 – αn)B1xn – B1xn

∥
∥

= ‖xn – xn+1‖ + ‖xn+1 – Un‖ + αn
∥
∥f (yn) – B1xn

∥
∥,

from (18), (22), and condition (ii), we obtain

‖xn – B1xn‖ → 0 as n → ∞. (23)

Consider

‖Un – B1Un‖ ≤ ‖Un – xn‖ + ‖xn – B1xn‖ + ‖B1xn – B1Un‖
≤ ‖Un – xn‖ + ‖xn – B1xn‖ + ‖xn – Un‖
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≤ 2‖Un – xn‖ + ‖xn – B1xn‖.

From (20) and (23), we have

‖Un – B1Un‖ → 0 as n → ∞. (24)

Applying the same arguments as for deriving (24), we also obtain

‖Vn – B2Vn‖ → 0 as n → ∞.

Step 4: We claim that lim supn→∞〈f (y∗) – x∗, Un – x∗〉 ≤ 0, where x∗ = PF1 f (y∗).
First, take a subsequence {Unk } of {Un} such that

lim sup
n→∞

〈

f
(

y∗) – x∗, Un – x∗〉 = lim
k→∞

〈

f
(

y∗) – x∗, Unk – x∗〉. (25)

Since {xn} is bounded, there exists a subsequence {xnk } of {xn} such that xnk ⇀ x̂ ∈ ζ as
k → ∞. From (20), we obtain Unk ⇀ x̂ as k → ∞. Since ζ dominates x0, x̂ and Unk are
in ζ , then (x̂, xo) and (Unk , xo) are in E(G). From E(G) = E(G)–1 and (Unk , xo) ∈ E(G), then
(xo, Unk ) ∈ E(G). By the transitivity of G, (x̂, xo) and (xo, Unk ) are in E(G), we have (x̂, Unk ) ∈
E(G). From E(G) = E(G)–1 and (x̂, Unk ) ∈ E(G), then (Unk , x̂) ∈ E(G).

Next, we need to show that x̂ ∈ F1 = F(B1)∩VI(ζ ,S1). Assume x̂ /∈ F(B1). Then, we have
x̂ �= B1x̂. By Opial’s condition, we obtain

lim inf
k→∞

‖Unk – x̂‖ < lim inf
k→∞

‖Unk – B1x̂‖

≤ lim inf
k→∞

‖Unk – B1Unk ‖ + lim inf
k→∞

‖B1Unk – B1x̂‖

≤ lim inf
k→∞

‖Unk – x̂‖.

This is a contradiction.
Therefore,

x̂ ∈ F(B1). (26)

Assume x̂ /∈ VI(ζ ,S1), then we obtain x̂ �= Pζ (I – λ1S1)x̂.
From Opial’s condition, (Unk , x̂) ∈ E(G) and (21), we have

lim inf
k→∞

‖Unk – x̂‖ < lim inf
k→∞

∥
∥Unk – Pζ (I – γ1S1)x̂

∥
∥

≤ lim inf
k→∞

∥
∥Unk – Pζ (I – λ1S1)Unk

∥
∥

+ lim inf
k→∞

∥
∥Pζ (I – λ1S1)Unk – PC(I – λ1S1)x̂

∥
∥

≤ lim inf
k→∞

‖Unk – x̂‖.

This is a contradiction.
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Therefore,

x̂ ∈ VI(ζ ,S1). (27)

By (26) and (27), this yields that

x̂ ∈ F1 = F(B1) ∩ VI(ζ ,S1). (28)

Since Unk ⇀ x̂ as k → ∞, (28) and Lemma 2.2, we can derive that

lim sup
n→∞

〈

f
(

y∗) – x∗, Un – x∗〉 = lim
k→∞

〈

f
(

y∗) – x∗, Unk – x∗〉

=
〈

f
(

y∗) – x∗, x̂ – x∗〉

≤ 0. (29)

Following the same method as for (29), we obtain that

lim sup
n→∞

〈

g
(

x∗) – y∗, Vn – y∗〉 ≤ 0. (30)

Step 5: Finally, we prove that the sequences {xn} and {yn} converge strongly to x∗ = PF1 f (y∗)
and y∗ = PF2 g(x∗), respectively.

By the firm nonexpansiveness of Pζ , (xn, xn+1) and (yn, yn+1) being in E(G) we derive that

∥
∥Un – x∗∥∥2 =

∥
∥Pζ ũn – x∗∥∥2

≤ 〈

ũn – x∗, Un – x∗〉

=
〈

αn
(

f (yn) – x∗) + (1 – αn)
(

B1xn – x∗), Un – x∗〉

= αn
〈

f (yn) – x∗, Un – x∗〉 + (1 – αn)
〈

B1xn – x∗, Un – x∗〉

= αn
〈

f (yn) – f
(

y∗), Un – x∗〉 + αn
〈

f
(

y∗) – x∗, Un – x∗〉

+ (1 – αn)
∥
∥B1xn – x∗∥∥∥

∥Un – x∗∥∥

≤ αna
∥
∥yn – y∗∥∥∥

∥Un – x∗∥∥ + αn
〈

f
(

y∗) – x∗, Un – x∗〉

+ (1 – αn)
∥
∥xn – x∗∥∥∥

∥Un – x∗∥∥

≤ αna
2

{∥
∥yn – y∗∥∥2 +

∥
∥Un – x∗∥∥2} + αn

〈

f
(

y∗) – x∗, Un – x∗〉

+
(1 – αn)

2
{∥
∥xn – x∗∥∥2 +

∥
∥Un – x∗∥∥2}

=
αna

2
∥
∥yn – y∗∥∥2 +

(1 – αn)
2

∥
∥xn – x∗∥∥2

+
(

αna
2

+
(1 – αn)

2

)
∥
∥Un – x∗∥∥2

+ αn
〈

f
(

y∗) – x∗, Un – x∗〉

=
αna

2
∥
∥yn – y∗∥∥2 +

(1 – αn)
2

∥
∥xn – x∗∥∥2
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+
(

1 – αn(1 – a)
2

)
∥
∥Un – x∗∥∥2

+ αn
〈

f
(

y∗) – x∗, Un – x∗〉,

which yields

∥
∥Un – x∗∥∥2 ≤ αna

1 + αn(1 – a)
∥
∥yn – y∗∥∥2 +

(1 – αn)
1 + αn(1 – a)

∥
∥xn – x∗∥∥2

+
αn

1 + αn(1 – a)
〈

f
(

y∗) – x∗, Un – x∗〉. (31)

From the definition of xn and (31), we obtain

∥
∥xn+1 – x∗∥∥2 ≤ δn

∥
∥xn – x∗∥∥2 + ηn

∥
∥Pζ (I – λ1S1)xn – x∗∥∥2 + μn

∥
∥Un – x∗∥∥2

≤ (1 – μn)
∥
∥xn – x∗∥∥2 +

μnαna
1 + αn(1 – a)

∥
∥yn – y∗∥∥2

+
μnαn

1 + αn(1 – a)
〈

f
(

y∗) – x∗, Un – x∗〉

+
μn(1 – αn)

1 + αn(1 – a)
∥
∥xn – x∗∥∥2

=
(

1 –
μnαn(2 – a)
1 + αn(1 – a)

)
∥
∥xn – x∗∥∥2 +

μnαna
1 + αn(1 – a)

∥
∥yn – y∗∥∥2

+
μnαn

1 + αn(1 – a)
〈

f
(

y∗) – x∗, Un – x∗〉. (32)

Similarly, as derived above, we also have

∥
∥yn+1 – y∗∥∥2 ≤

(

1 –
μnαn(2 – a)
1 + αn(1 – a)

)
∥
∥yn – y∗∥∥2 +

μnαna
1 + αn(1 – a)

∥
∥xn – x∗∥∥2

+
μnαn

1 + αn(1 – a)
〈

g
(

x∗) – y∗, Vn – y∗〉. (33)

From (32) and (33), we deduce that

∥
∥xn+1 – x∗∥∥2 +

∥
∥yn+1 – y∗∥∥2

≤
(

1 –
μnαn(2 – a)
1 + αn(1 – a)

)
{∥
∥xn – x∗∥∥2 +

∥
∥yn – y∗∥∥2}

+
μnαna

1 + αn(1 – a)
{∥
∥xn – x∗∥∥2 +

∥
∥yn – y∗∥∥2}

+
μnαn

1 + αn(1 – a)
(〈

f
(

y∗) – x∗, Un – x∗〉 +
〈

g
(

x∗) – y∗, Vn – y∗〉)

=
(

1 –
μnαn(2 – a)
1 + αn(1 – a)

+
μnαna

1 + αn(1 – a)

)
{∥
∥xn – x∗∥∥2 +

∥
∥yn – y∗∥∥2}

+
μnαn

1 + αn(1 – a)
(〈

f
(

y∗) – x∗, Un – x∗〉 +
〈

g
(

x∗) – y∗, Vn – y∗〉)

=
(

1 –
2μnαn(1 – a)
1 + αn(1 – a)

)
{∥
∥xn – x∗∥∥2 +

∥
∥yn – y∗∥∥2}
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+
μnαn

1 + αn(1 – a)
(〈

f
(

y∗) – x∗, Un – x∗〉 +
〈

g
(

x∗) – y∗, Vn – y∗〉).

Applying the condition (ii), (29), (30), and Lemma 2.1, we can conclude that the sequences
{xn} and {yn} converge strongly to x∗ = PF1 f (y∗) and y∗ = PF2 g(x∗), respectively. This com-
pletes the proof. �

Lemma 3.3 Let ζ be a nonempty, closed, and convex subset of a real Hilbert space H and
let G = (V (G), E(G)) be a directed graph with ζ = V (G). Let � : ζ → ζ be edge preserving
and � be a G – κ-strictly pseudocontractive. Then, the following conditions hold;

(i) � is G – κ-strictly pseudocontractive ⇔ (I – �) is G – ( 1–κ
2 )-inverse strongly

monotone;
(ii) G – VI(ζ , I – �) = F(�).

Proof i) (⇐) Let (x, y) ∈ E(G).
Since � is edge preserving and (x, y) ∈ E(G), then (�x,�y) ∈ E(G).
Suppose that M = I – � is G – ( 1–κ

2 )– inverse strongly monotone, i.e.,

〈x – y, Mx – My〉 ≥
(

1 – κ

2

)

‖Mx – My‖2,

for all x, y ∈ ζ with (x, y) ∈ E(G). Then,

‖�x – �y‖2 =
∥
∥(I – M)x – (I – M)y

∥
∥

2

= ‖Mx – My‖2 + ‖x – y‖2 – 2〈x – y, Mx – My〉

≤ ‖Mx – My‖2 + ‖x – y‖2 – 2
(

1 – κ

2

)

‖Mx – My‖2

= ‖x – y‖2 + κ‖Mx – My‖2,

for all x, y ∈ ζ with (x, y) ∈ E(G).
Thus, � is a G – κ-strictly pseudocontractive mapping.
(⇒) Conversely, suppose that M = I – � and � is a G – κ-strictly pseudocontractive

mapping.
Let x, y ∈ ζ with (x, y) ∈ E(G), i.e.,

‖�x – �y‖2 ≤ ‖x – y‖2 + κ‖Mx – My‖2,

for all x, y ∈ ζ with (x, y) ∈ E(G). Then,

‖�x – �y‖2 =
∥
∥(I – M)x – (I – M)y

∥
∥

2

= ‖Mx – My‖2 + ‖x – y‖2 – 2〈x – y, Mx – My〉
≤ ‖x – y‖2 + κ‖Mx – My‖2.

Hence,

〈x – y, Mx – My〉 ≥
(

1 – κ

2

)

‖Mx – My‖2,
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for all x, y ∈ ζ with (x, y) ∈ E(G). This implies that M is a G – κ-strictly pseudocontractive
mapping.

ii) Let x̂ ∈ G – VI(ζ , I – �).
From i) and Lemma 2.7, we have

x̂ ∈ (I – �)–1(0).

This implies that (I – �)x̂ = 0.
Thus, x̂ ∈ F(�). Therefore,

G – VI(ζ , I – �) ⊆ F(�). (34)

Let x̆ ∈ F(�) and y ∈ ζ with (x̆, y) ∈ E(G).
Since �x̆ = x̆, we have (I – �)x̆ = 0.
This implies that x̆ ∈ (I – �)–1(0).
From Lemma 2.7 and x̆ ∈ (I – �)–1(0), we have

〈

y – x̆, (I – �)x̆
〉

= 0,

for all y ∈ ζ with (x̆, y) ∈ E(G). Then, x̆ ∈ G – VI(ζ , I – �).
Therefore,

F(�) ⊆ G – VI(ζ , I – �). (35)

From (34) and (35), we have

G – VI(ζ , I – �) = F(�). �

Corollary 3.4 Let ζ be a nonempty, closed, and convex subset of a real Hilbert space H
and let G = (V (G), E(G)) be a directed graph with ζ = V (G). Let E(G) be convex and G be
transitive with E(G) = E(G)–1. For every i = 1, 2, let Ai : ζ → ζ be a G – κ-strictly pseudo-
contractive mapping with F(Ai) �= ∅ and let g, f : H → H be an ag and af – G-contraction
mapping with a = max{ag , af }. For every i = 1, 2, let Ti : ζ → ζ be a G-nonexpansive map-
ping and �i : ζ → ζ be a G – κi-strictly pseudocontractive mapping with k = max{κ1,κ2}.
Define a mapping Bi : ζ → ζ by Bix = Ti((1 – b)I + b�i)x for all x ∈ ζ and i = 1, 2,
b ∈ (0, 1 – k). Assume that Fi = F(Bi) ∩ F(Ai) �= ∅ for all i = 1, 2 with F(Bi) × F(Bi) ⊆ E(G)
and G – VI(ζ ,Si) × G – VI(ζ ,Si) ⊆ E(G) for all i = 1, 2 and there exists x0, y0 ∈ ζ such that
(x0, x0) and (y0, y0) are in E(G) and ζ = V (G) dominates x0 and y0. Let the sequences {xn}
and {yn} be generated by x0, y0 ∈ ζ and

⎧

⎨

⎩

xn+1 = δnxn + ηnPζ (I – λ1(I – A1))xn + μnPζ (αnf (yn) + (1 – αn)B1xn),

yn+1 = δnyn + ηnPζ (I – λ2(I – A2))yn + μnPζ (αng(xn) + (1 – αn)B2yn),
(36)

where {δn}, {ηn}, {μn}, {αn} ⊆ [0, 1] with δn + ηn + μn = 1 and λ ∈ (0, 2α) with α = min{ 1–κ1
2 ,

1–κ2
2 }. Assume the following conditions hold;

(i) 0 < ξ ≤ δn,ηn, μn ≤ ξ̄ for all n ∈ N and for some ξ , ξ̄ > 0;
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(ii) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(iii)

∑∞
n=1|δn+1 – δn| < ∞,

∑∞
n=1|ηn+1 – ηn| < ∞,

∑∞
n=1|αn+1 – αn| < ∞.

If {xn} dominates PF1 f (y0) and {yn} dominates PF2 g(x0), then {xn} converges strongly to
x∗ = PF1 f (y0) and {yn} converges strongly to y∗ = PF2 g(x0), where PFi is a metric projection
on Fi, for all i = 1, 2.

Proof From Theorem 3.2 and Lemma 3.3, we have the desired conclusion. �

4 Example
In this section, we give some examples to support our main theorem.

Example 4.1 Let H = R and ζ = [–10, 10] and let G = (V (G), E(G)) be such that V (G) = ζ ,
E(G) = {(x, y) : xy > 0}. Let T1 : [–10, 10] → [–10, 10] be defined by

T1x =
|x|
x

,

for all x ∈ [–10, 10] and let T2 : [–10, 10] → [–10, 10] be defined by

T2x =

⎧

⎪⎪⎨

⎪⎪⎩

1–x
2 ; x < 0,

0.5; x = 0,
x+1

2 ; x > 0,

for all x ∈ [–10, 10].
Let �1 : [–10, 10] → [–10, 10] be defined by

�1x = sgn
(

sgn(x)
)

=

⎧

⎪⎪⎨

⎪⎪⎩

1; x ∈ (0, 10],

0; x = 0,

–1; x ∈ [–10, 0),

for all x ∈ [–10, 10] and let �2 : [–10, 10] → [–10, 10] be defined by

�2x =

⎧

⎪⎪⎨

⎪⎪⎩

2x+3
5 ; x ∈ (0, 10],

0; x = 0,
2x–11

5 ; x ∈ [–10, 0),

for all x ∈ [–10, 10].
Let S1 : [–10, 10] →R be defined by

S1x =

⎧

⎪⎪⎨

⎪⎪⎩

x+5
12 – 1

2 ; x ∈ (0, 10],

0; x = 0,
x+5
12 + 1

2 ; x ∈ [–10, 0),
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for all x ∈ [–10, 10], and let S2 : [–10, 10] →R be defined by

S2x =

⎧

⎪⎪⎨

⎪⎪⎩

2(x–1)√
19 ; x ∈ (0, 10],

0; x = 0,
2(x+1)√

19 ; x ∈ [–10, 0).

For every i = 1, 2, let Bi : ζ → ζ be defined by Bix = Ti(0.5I + 0.5�i)x for all x ∈ [–10, 10].
Let f , g : R →R be defined by

f (x) =
sgn(x)

2
=

⎧

⎪⎪⎨

⎪⎪⎩

1
2 ; x > 0,

0; x = 0,

– 1
2 ; x < 0

and

g(x) =
sgn(x)

3
+

1
2

=

⎧

⎪⎪⎨

⎪⎪⎩

5
6 ; x > 0,

0; x = 0,
1
6 ; x < 0.

Let the sequences {xn} and {yn} be generated by x0, y0 ∈ ζ and

⎧

⎨

⎩

xn+1 = ( n
3n+2 )xn + ( n+ 1

2
3n+2 )Pζ (I – 0.7S1)xn + ( n+ 3

2
3n+2 )Pζ ( 1

8n f (yn) + (1 – 1
8n )B1xn),

yn+1 = ( n
3n+2 )yn + ( n+ 1

2
3n+2 )Pζ (I – 0.5S2)yn + ( n+ 3

2
3n+2 )Pζ ( 1

8n g(xn) + (1 – 1
8n )B2yn).

Then, the sequences {xn} and {yn} converge strongly to 1.
Solution. For every i = 1, 2, it is clear that S–1

i (0) �= ∅, since 1 ∈ S–1
i (0), E(G) = E(G)–1

and E(G) is convex. By the definitions of T1, T2, f , g , S1, S2, �1, and �2, we have T1

and T2 are G-nonexpansive mappings, f and g are G-contraction mappings, S1 and S2

are G-12,
√

19
2 -inverse strongly monotone mappings, respectively, �1 and �2 are G- 1

2 ,
1
3 -strictly pseudocontractive mappings, respectively. However, T1 and T2 are not nonex-
pansive mappings, as if we choose x1 = 1, y1 = – 1

5 , x2 = 0 and y2 = 1, then we see that
|T1x1 – T1y1| = 2 > 6

5 = |x1 – y1| and |T2x2 – T2y2| = 1.5 > 1 = |x2 – y2|.
f and g are not contraction mappings, as if we choose x = 1

4 and y = – 1
5 , then we see that

|f (x) – f (y)| = 1 > 7
10 = |x – y| and |g(x) – g(y)| = | 5

6 – 1
6 | = 4

6 > 9
20 = | 1

4 + 1
5 | = |x – y|.

S1 and S2 are not 12,
√

19
2 -inverse strongly monotone mappings, respectively. If x = 2

and y = 10 with (2, 10) ∈ E(G), then

〈

S1(2) – S1(10), 2 – 10
〉

= 5.33 < 5.38 = 12
∣
∣S1(2) – S1(10)

∣
∣
2.

If x = 10 and y = 8 with (10, 8) ∈ E(G), then

〈

S2(10) – S2(8), 10 – 8
〉

=
〈

18√
19

, 2
〉

= 8.26 < 37.16 =
√

19
2

∣
∣S2(10) – S2(8)

∣
∣
2.



Sripattanet and Kangtunyakarn Journal of Inequalities and Applications         (2023) 2023:63 Page 24 of 28

�1 and �2 are not 1
2 , 1

3 -strictly pseudocontractive mappings, respectively, as if we
choose x = 1 and y = – 1

5 , then we have

|�1x – �1y|2 = 4 > 1.76 =
∣
∣
∣
∣
1 +

1
5

∣
∣
∣
∣

2

+
1
2

∣
∣
∣
∣
1 – �1(1) +

1
5

+ �1

(

–
1
5

)∣
∣
∣
∣

2

and

|�2x – �2y|2 = 10.76 > 2.88 =
∣
∣
∣
∣
1 +

1
5

∣
∣
∣
∣

2

+
1
3

∣
∣
∣
∣
(I – �2)(1) – (I – �2)

(

–
1
5

)∣
∣
∣
∣

2

.

By the definitions of Si, Ti, and �i for every i = 1, 2, we have 1 = F(Bi) ∩ G – VI(ζ ,Si).
We observed that the parameters satisfy all the conditions of Theorem 3.2. Hence, we can
conclude that the sequences {xn} and {yn} converge strongly to 1.

Newton’s Method is a mathematical tool often used in numerical analysis, which serves
to approximate numerical solutions (i.e., x-intercepts, zeros, or roots). Given a function
g(x) defined over the domain of real numbers x, and the derivative of said function g ′(x).
If xn is an approximation of a solution of g(x) = 0 and if ǵ(xn) �= 0, the next approximation
defined for each n = 0, 1, 2, . . . by:

xn+1 = xn –
g(xn)
g ′(xn)

, (37)

where x0 is an initial point, is the most popular, studied, and used method for generating
a sequence {xn} approximating the solution.

Newton’s Method (37) is also an example of Picard iteration, for the equation

xn+1 = Txn,

where T = I – g
g′ . Several authors have used the Picard iteration for approximation of fixed

points (see [5, 6, 9]).
� is an important mathematic constant. The search for the accurate value of � led not

only to more accuracy, but also to the development of new concepts and techniques. Many
researches have been trying to approximate the value of � (see [2, 7]). By using our main
result, we introduce a new method to approximate the value of � as shown in the following
example.

Example 4.2 Let H = R and ζ = [3, 4] and let G = (V (G), E(G)) be a directed graph with
V (G) = ζ , E(G) = {(x, y) : x, y ∈ [3, 11

3 ]}. For an approximate value of �, for every i = 1, 2,
define Fi : C → H by Fi(x) = x

5i – �
5i and Fi is a subdifferentiable. It is easy to show that I – Fi

F ′
i

is a G-nonexpansive mapping.
For every i = 1, 2, define Ti : [3, 4] → [3, 4] by

Tix =

⎧

⎨

⎩

x – F(x)
F́(x)

; if x ∈ [3, 4),
11
3 ; if x = 4,

for all x ∈ [3, 4].
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For every i = 1, 2, let �i : [3, 4] → [3, 4] be defined by

�ix =

⎧

⎨

⎩

2ix+�
2i+1 ; if x ∈ [3, 4),

11
3 ; if x = 4,

for all x ∈ [3, 4].
For every i = 1, 2, let Si : [3, 4] →R be defined by

Six =

⎧

⎨

⎩

2i( x
3�

– 1
3 ); if x ∈ [3, 4),

11
3 ; if x = 4,

for all x ∈ [3, 4].
For every i = 1, 2, let Bi : ζ → ζ be defined by Bix = Ti(0.5I + 0.5�i)x for all x ∈ [3, 4]. Let

f , g : R →R be defined by

f (x) =

⎧

⎨

⎩

2x
3 + 1; if x ∈ [3, 4],

11
3 ; if x /∈ [3, 4]

and

g(x) =

⎧

⎨

⎩

x+7
3 ; if x ∈ [3, 4],

11
3 ; if x /∈ [3, 4].

Let the sequences {xn} and {yn} be generated by x0, y0 ∈ ζ and

⎧

⎨

⎩

xn+1 = ( n
3n+2 )xn + ( n+ 1

2
3n+2 )Pζ (I – 0.7S1)xn + ( n+ 3

2
3n+2 )Pζ ( 1

8n f (yn) + (1 – 1
8n )B1xn),

yn+1 = ( n
3n+2 )yn + ( n+ 1

2
3n+2 )Pζ (I – 0.5S2)yn + ( n+ 3

2
3n+2 )Pζ ( 1

8n g(xn) + (1 – 1
8n )B2yn).

(38)

Then, the sequences {xn} and {yn} converge strongly to �.
Solution. For every i = 1, 2, it is clear that S–1

i (0) �= ∅, since � ∈ S–1
i (0), E(G) = E(G)–1

and E(G) is convex. By the definitions of T1, T2, f , g , S1, S2, �1, and �2, we have T1 and
T2 are G-nonexpansive mappings, f and g are G-contraction mappings, S1 and S2 are
G- 3�

2 , 3�
4 -inverse strongly monotone mappings, respectively, �1 and �2 are G- 1

15 -strictly
pseudocontractive mappings.

By the definitions of Si, Ti, and �i for every i = 1, 2, we have � = F(Bi) ∩ G – VI(ζ ,Si).
We observed that the parameters satisfy all the conditions of Theorem 3.2. Hence, we can
conclude that the sequences {xn} and {yn} converge strongly to �.

Using the algorithm (38), we have the numerical result to approximate the value of � as
shown in Table 1 and Fig. 1, where x1 = y1 = 4.00000 and n = N = 150.

Remark 1 We show that T1 and T2 are not nonexpansive mappings, as if we choose x1 =
x2 = 4, y1 = 11

3 and y2 = 3.5, then we see that |T1x1 – T1y1| = 0.526 > 0.3 = |x1 – y1| and
|T2x2 – T2y2| = 0.526 > 0.5 = |x2 – y2|.

f and g are not contraction mappings, as if we choose x1 = 25
10 , x2 = 29

10 and y1 = y2 = 3,
then we see that |f (x1) – f (y1)| = 0.67 > 0.5 = |x1 – y1| and |g(x2) – g(y2)| = 0.3 > 0.1 = |x2 –
y2|.
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Table 1 The values of {xn} and {yn} with initial values x1 = y1 = 4.00000 and n = N = 150

n xn yn

1 4.00000 4.00000
2 3.53333 3.58051
3 3.44013 3.44482

...
...

...
74 3.14162 3.14221
75 3.14162 3.14220
76 3.14162 3.14219
...

...
...

148 3.14158 3.14187
149 3.14158 3.14187
150 3.14158 3.14186

Figure 1 The convergence of {xn} and {yn} with initial values x1 = y1 = 4.00000 and n = N = 150

S1 and S2 are not 3�
2 , 3�

4 -inverse strongly monotone mappings, respectively. If x1 = x2 =
3.5 and y1 = y2 = 3 with (3.5, 3) ∈ E(G), then

〈

S1(x1) – S1(y1), x1 – y1
〉

= 0.025 < 0.047 =
3�

2
∣
∣S1(x1) – S1(y1)

∣
∣
2

and

〈

S2(x2) – S2(y2), x2 – y2
〉

= 0.025 < 9.42 =
3�

4
∣
∣S2(x2) – S2(y2)

∣
∣
2.

�1 and �2 are not 1
15 -strictly pseudocontractive mappings, as if we choose x1 = x2 = 4

and y1 = y2 = 11
3 , then we have |�1x1 – �1y1|2 = 0.24 > 0.22 = |x1 – y1|2 + 1

15 |(I – �1)x1 –
(I – �1)y1|2, and |�2x2 – �2y2|2 = 0.32 > 0.22 = |x2 – y2|2 + 1

15 |(I – �1)x2 – (I – �1)y2|2.

5 Conclusion
In this work, we introduce the definition of a G – κ-strictly pseudocontractive mapping
that is different from a κ-strictly pseudocontractive mapping and prove a strong conver-
gence theorem for finding the fixed points of two G-κ-strictly pseudocontractive map-
pings, two G-nonexpansive mappings, and two G-variational inequality problems in a
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Hilbert space endowed with a directed graph. However, we should like to note the fol-
lowing:

(1) Our result is proved without the Property G.
(2) We give some examples to support our main theorem and we have the numerical

result to approximate the value of � as shown in Table 1 and Fig. 1.
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Univ. ‘Ovidius’ Constanţa, Ser. Mat. 19, 313–330 (2011)
30. Yao, Y., Shahzad, N., Yao, J.C.: Convergence of Tseng-type self-adaptive algorithms for variational inequalities and fixed

point problems. Carpath. J. Math. 37, 541–550 (2021)
31. Yao, Z., Kang, S.M., Li, H.J.: An intermixed algorithm for strict pseudo-contractions in Hilbert spaces. Fixed Point Theory

Appl. 2015, 206 (2015)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Approximation of G-variational inequality problems and ﬁxed-point problems of G-kappa-strictly pseudocontractive mappings by an intermixed method endowed with a graph
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main results
	Example
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Competing interests
	Author contributions
	References
	Publisher's Note


