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1 Introduction

Let H be a real Hilbert space. Let ¢ be a nonempty, closed, and convex subset of H with
inner product (-,-) and norm || - ||, respectively, and let ¥ be a self-mapping of {. We use
F(%) to denote the set of fixed points of ¥ (i.e., F(¥) = {x € ¢ : Tx = x}). The iterative
schemes to approximate the fixed points of nonlinear mappings have a long history and
have been studied intensively by many researchers [10, 11, 17, 23]. A mapping ¥ is called
Kk -strictly pseudocontractive if there exists a constant « € [0, 1) such that

1Tx - Ty)1% < lx =yl + | T - Dx - T -Dy|>, Vxyel. (1)

If k = 1, a mapping ¥ is called a pseudocontractive mapping.
Note that the class of k-strictly pseudocontractive strictly includes the class of nonex-
pansive mappings that are self-mappings ¥ on ¢ such that
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Strictly pseudocontractive was first introduced by Browder and Petryshyn [8] in 1967.
It is well known that strictly pseudocontractive is more general than nonexpansive map-
pings and they have a wider range of applications. Therefore, it is important to develop the
theory of iterative methods for strictly pseudocontractive. Many authors have proposed
iterative algorithms and proved the strong convergence theorems for a nonexpansive map-
ping and a « -strictly pseudocontractive mapping in Hilbert space to find their fixed points,
see, for example, [1, 4, 10, 13, 15, 18, 29].

To prove the strong convergence of iterations determined by nonexpansive mapping,
Moudafi [19] established a theorem for finding the fixed points of nonexpansive mappings.
More precisely, he established the following result, known as the viscosity approximation
method. To construct an iterative algorithm such that it converges strongly to the fixed
points of a finite family of strictly pseudocontractive by using the concept of the viscosity
approximation method, Yao et al. [31] proposed the intermixed algorithm for two strictly

pseudocontractive mappings as follows:

Algorithm 1 For arbitrarily given xy € ¢, yo € ¢, let the sequences {x,} and {y,} be gen-
erated iteratively by

Xne1 = (1= Bu)xn + BuPrloyf () + (1 = k — ), + kTx,], 1 >0,
et = (1= Bu)yn + BuPr [ng(xn) + (1 —k — )y, + kSyul, n =0,

3)

where {«,} and {8,} are two sequences of real numbers in (0,1), T,S: ¢ — ¢ are strictly A-
pseudocontractive mappings, f : £ — H is a p;-contraction, g: ¢ — H is a pp-contraction,
and k € (0,1 — A) is a constant.

We now move onto some basics and definitions in graph theory. Let G = (V(G), E(G))
be a directed graph, where V(G) is a set of vertices of a graph and E(G) is a set of its edges.
We denote by G™! the directed graph obtained from G by reversing the direction of the
edges. That is,

E(G™) = {(x) : (xy) € EG)}.

The following basic definitions of domination in graphs are needed to prove the main
theorem. Let G = (V(G), E(G)) be a directed graph. A set X € V(G) is called a dominating
set if every z € V(G) \ X there exists x € X such that (x,z) € E(G) and we say that x dom-
inates z or z is dominated by x. Let z € V, a set X C V is dominated by z if (z,x) € E(G)
for any x € X and we say that X dominates z if (x,z) € E(G) for all x € X. In this paper, we
always assume that E(G) contains all loops.

In 2008, by combining the notions in fixed-point theory and graph theory, Jachymski
[12] generalized the Banach contraction principle in a complete metric space endowed
with a directed graph. He also introduced a contractive-type mapping with a directed

graph as follows:

Definition 1.1 Let (X,d) be a metric space and G = (V(G), E(G)) be a directed graph,
where V(G) = X and E(G) contains all loops, that is A C E(G). We say that a mapping



Sripattanet and Kangtunyakarn Journal of Inequalities and Applications (2023) 2023:63 Page 3 of 28

f: X — X is a Banach G-contraction if f preserves the edges of G, i.e.,
for any x,y € X such that (x,y) € E(G) implies (fx, fy) € E(G)

and there exists k € (0, 1) such that
d(fx,fy) < kd(x,y) for all x,y € Xwith (x,y) € E(G).

Definition 1.2 Let { be a nonempty convex subset of a Banach space, G = (V(G), E(G)) be
a directed graph such that V(G) = ¢ and 7 : ¢ — ¢, then 7 is said to be a G-nonexpansive
mapping if the following conditions hold:
(i) T is edge preserving, i.e, for any x,y € ¢ such that (x,y) € E(G) = (T %, Ty) € E(G);
(ii) 17x="Tyl < llx-yll, where (x,y) € E(G) for any x,y € ¢.
This mapping was introduced by Tiammee et al. [25].

The variational inequality problem (VIP) is to find a point u# € C such that
(Au,v—-u) >0,

for all v € C. The set of all solutions of the variational inequality is denoted by VI(C,A).
Historically, the variational inequality was introduced by Stampachhia [22]. Since then,
variational inequalities have been used in various topics such as physic, optimization, and
applied sciences, see, for example, 3, 20, 30].

Recently, in 2019, Kangtunyakarn [14] introduced G-variational inequality problems
and G-a-inverse strongly monotone mappings as follows:

Definition 1.3 Let { be a nonempty, convex subset of a real Hilbert space H and let G =
(V(G),E(G)) be a directed graph with ¢ = V(G). The G-variational inequality problem is
to find a point x* € ¢ such that

(y - x*,Ax*) >0, (4)

for all y € ¢ with (x*,y) € E(G) and A : { — H is a mapping. The set of all solutions of (4)
is denoted by G — VI(¢, A).

Definition 1.4 Let ¢ be a nonempty, convex subset of a real Hilbert space H and let G =
(V(G),E(G)) be a directed graph with ¢ = V(G). The mapping A : { — H is said to be
G-a-inverse strongly monotone if there exists o > 0 such that

(Ax—Ay,x - y) > allAx - Ay,
for all %,y € ¢ with (x,7) € E(G).

Let ¢ be a nonempty, convex subset of a Banach space X and let G = (V(G), E(G)) be
a directed graph such that V(G) = ¢. Then, ¢ is said to have Property G [25] if every se-
quence {a,} in ¢ converges weakly to x € ¢, there exists a subsequence {a,, } of {a,} such
that (a,,,x) € E(G) for all kK € N. During the course of this research, when investigating
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the literature on research methods, it was found that many researchers were using the
Property G to prove the strong convergence theorems, see for example [14, 16, 26, 28].

In this paper, we will use some suitable conditions instead of the Property G.

Question 1 Can we prove a strong convergence theorem for finding the fixed points of
two G — k-strictly pseudocontractive mappings, two G-nonexpansive mappings, and two
G-variational inequality problems in a Hilbert space endowed with a directed graph with-

out the Property G?
By using the concept of (3), we introduce a new iterative method as follows:

Algorithm 2 Starting with x;,y; € ¢, let the sequences {x,} and {y,} be defined by

KXys1 = OpXpy + nnP§ I =21S1)x, + MnP§ (O‘nf()/n) + (1 — o) Bix,),
yn+1 = 5nyn + nnP{ (1 - )"252)}’;1 + I/LnP{ (ang(xn) + (1 - an)B2yn)'

By putting S; = S, = 0, we obtain

Xn+l = (Snxn + NuXn + /LnP{ (ar(f(yn) + (1 - Oln)len)r
Vsl = 8uYn + NuYn + ang“ (ang(xn) +(1- an)B2yn)r

which is a modified version of [31].

To answer Question 1, we prove a strong convergence theorem for solving fixed-point
problems in a Hilbert space endowed with a directed graph by using Algorithm 2, where
851,83 1 ¢ — H are the G — a-inverse strongly monotone mappings, f,g: H — H are G-
contraction mappings, and Bi, By : ¢ — ¢ are G-nonexpansive mappings with some extra
conditions in Theorem 3.2.

Inspired by the concept above, we introduce the definition of a G — « -strictly pseudo-
contractive mapping that is different from « -strictly pseudocontractive, see Example 2.5,
and prove a strong convergence theorem for finding the fixed points of two G-« -strictly
pseudocontractive mappings, two G-nonexpansive mappings, and two G-variational in-
equality problems in a Hilbert space endowed with a directed graph without the Prop-
erty G. Moreover, we prove an interesting Lemma involving the set of fixed points of a
G-k -strictly pseudocontractive and G-variational inequality problem and if A is a G-« -

K)

strictly pseudocontractive mappings, then/ — A isa G — “%—inverse strongly monotone

mapping, shown in Lemma 3.3. Finally, we give some examples for the main theorem.

2 Preliminaries

In this paper, we denote the weak convergence and the strong convergence by * —” and
“ —”, respectively. For every x € H, there exists a unique nearest point P,x in ¢ such that
lle—Px|| < |lx—y| forally € ¢. P, is called the metric projection of H onto ¢. Furthermore,

P; is a firmly nonexpansive mapping of H onto ¢, i.e.,

P~ Peyll* < (Pex—Pey,x—9), Va,y € H.
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In a real Hilbert space H, it is well known that H satisfies Opial’s condition [21], i.e., for
any sequence {x,} C H with x,, — x, the inequality

liminf ||x, — x|| < liminf|x, — ||,
n—00 n—00

holds for every y € H with y # x.
The following Definitions and Lemmas are needed to prove the main theorem.

Lemma 2.1 ([27]) Let {s,} be a sequence of nonnegative real numbers satisfying
Sp+l = (1 - an)sn + (Snr Vn > 0)

where a,, is a sequence in (0,1) and {8,} is a sequence such that
(1) Zlo:1 oy = 0Q0;
(i) limsup,,_, o 2—’; <0o0r) 72118, < c0.
Then, lim,_, o, s, = 0.

Lemma 2.2 ([24]) Foragivenze Handue ¢,
u=Pz & (u-zv-u>0, Vvel.

Definition 2.3 ([25]) Let G = (V(G), E(G)) be a directed graph. A graph G is called tran-
sitive if for any x,y,z € V(G) with (x,y) and (y,z) are in E(G), then (x,z) € E(G).

Next, we introduce the definition of a G — k-strictly pseudocontractive mapping.

Definition 2.4 Let ¢ be a nonempty, closed, and convex subset of a real Hilbert space H
and let G = (V(G), E(G)) be a directed graph with ¢ = V(G) and A : ¢ — ¢. Then, A is said
to be G — k-strictly pseudocontractive if there exists a constant « € [0, 1) and the following
conditions hold;
(i) A is edge preserving, i.e., for any x,y € ¢ such that (x,y) € E(G) = (Ax, Ay) € E(G);
(i) J|Ax—=Ay|? < lx=yl|2 +«||(I = A)x— (I = A)y||?, where (x,y) € E(G) for any x,y € £.

Example 2.5 Let R be the set of real numbers, ¢ = [-10,10] with G = (¢, E(G)) and E(G) =
{(x,y) € R x R:x,y € [0,10]}. Define the mapping A : { — ¢ by

max(—x,x); «x € (-10,10],
Ax =
0; x =-10,

for all x € ¢ with
1
max(a, b) = 2 (a +b+|a- b|).
Then, A is a G—(%)—strictly pseudocontractive mapping, but A is not a %—strictly pseudo-

contractive mapping.
Solution. Let x,y € ¢ and (x,y) € E(G). Then, we have x,y € [0, 10].
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It follows that Ax, Ay € [0, 10]. Thus,
(Ax, Ay) € E(G).
From the definition of A, we have
(I = Nx— (I = N)y,x - y) = (x — max(-x,x) — y + max(-y,),x - y)

= x—y—%(—x+x+|—x—x|)

1
e Arad —y—yl),x—y>

==y + (vl = Ixl),x - )
=[x -y + (Iyl = I*)]Gx - (5)

and

’(1— A)x—(I - A)y’2 = ‘x— max(—x,x) —y + max(—y,y)’2

1 2

1
= x—i(—x+x+|—x—x|)—y+ 5(—y+y+|—y—y|)

= Ge—3) + (Iyl - 121)|”

<|-»+ Iyl = Ix)] - {lx =1+ |[(Ixl = I¥1)|}
<|@-2)+ (1= 1xl)| - {le =y + |lx - yI}
=2|(x - ) + (Iyl - |xl)| - lx = y. (6)

From (5) and (6), we have

(= A= (= Ax—y) 2 2 [~ A (U= Ay

. 2 @)

1
2[(I - A)x— (I - Ay

=

for all x,y € ¢ with (x,y) € E(G).
From the definition of A and (7), we have

|Ax— Ay = | =T+ A)x— (I —T+ Ay
— == Ax-y+I-Ap|
= (-9 - [~ A)x— (- M)y
= |- -2 -5, = Aw— U= A} + [ - Ax — I = A)y]’

1
1-3
2

<|x-»|* —2[ (1 - A)x - (1—A)y|2] + [ - M)x— (- A)y]
= lee=) + 5[0~ M- AT

Hence, we obtain that A is a G—(%)—strictly pseudocontractive mapping.
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Next, we will show that A is not a %—strictly pseudocontractive mapping. Choose x = -9
and y = —10. Then,

1
|A(=9) = A(=10)|* =19 - 0> =81 >33 = |-9 + 10/ + 5|—9 — A(=9) + 10+ A(-10)[*.

Hence, A isnot a %—strictly pseudocontractive mapping.

Example2.6 Let H =R, ¢ =[-10,10] with G = (¢, E(G)) and E(G) = {(x, y)|x-y > 0}. Define
the mapping A {—> ¢ by Aq:[-10,10] — [-10,10] defined by

1;  x€(0,10],
Ax = sgn(sgn(x)) =10; «x=0,
—1; X € [—10,0);

for all x € [-10, 10] with

-1; x<0,
sgn(x) =10; x=0,
1; x> 0.

Then, A is a G—(%)—strictly pseudocontractive mapping, but A is not a %—strictly pseudo-
contractive mapping.

Solution. Let x,y € ¢ and (x,y) € E(G). Then, we have x,y > 0.

Case I; x,y > 0, we have Ax = [\y =1. Then, Ax - [\y > 0.

Case IL; x,y < 0, we have Ax = Ay = —1. Then, Ax- Ay > 0.

Thus, (Ax, Ay) € E(G).

From case I; x,y > 0, then

1 _ R 1 o
|x—y|2+§|(1—A)x—(1—A)y| :|x—y|2+§|x—y—Ax+Ay|2

3 2
= Elx—yl
>0
=|Ax - Ay

From case II; x, y < 0, by using the same technique as in Case I, we obtain that
2 1 A V|2 A A2
=y 4 S = Ax— (1= Ap|” = |Ax = Ayl

Thus, A is a G—(%)—strictly pseudocontractive mapping.
Next, we will show that A is not a %—strictly pseudocontractive mapping. Choose x = 1
and y = ‘?1 Then,

o 12 1 . 1 -/ 1
|Ax—Ay|2=4zl.76=‘1+— +§‘1—A(1)+—+A<——)

5

Hence, A is not a %—strictly pseudocontractive mapping.
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Lemma 2.7 ([14]) Let ¢ be a nonempty, closed, and convex subset of a real Hilbert space
H and let G = (V(G), E(G)) be a directed graph with ¢ = V(G). Let E(G) be convex and G
be transitive with E(G) = E(G)™! and let A : ¢ — H be a G — a-inverse strongly monotone
operator with A~1(0) #0. Then, G — VI(¢,A) = A~1(0) = F(P,(I - LA)), for all A > 0.

Lemma 2.8 ([14]) Let H be a Hilbert space and ¢ be a nonempty, closed, and convex subset
of H with ¢ having a property G. Let G = (V(G), E(G)) be a directed graph where V(G) = ¢
and E(G) is a convex set. Let A : { — H be a G —a-inverse strongly monotone mapping with
F(P (I -)A)) x F(P;(I - AA)) C E(G), for all 1 € (0,2«). Then, F(P.(I — LA)) is closed and
convex.

Lemma 2.9 ([25]) Let X be a normed space and ¢ be a subset of X having a property G.
Let G = (V(G), E(G)) be a directed graph such that V(G) = ¢ and E(G) is convex. Suppose
T :¢ — ¢ is a G-nonexpansive mapping and F(T) x F(T) C E(G). Then, F(T) is closed

and convex.

Lemma 2.10 Let ¢ be a nonempty, closed, and convex subset of a real Hilbert space H
and let G = (V(G), E(G)) be a directed graph with ¢ = V(G). Let E(G) be convex and G
be transitive with E(G) = E(G)™\. Let T : { — ¢ be a G- nonexpansive mapping and A :
¢ — ¢ be a G - k-strictly pseudocontractive mapping. Define a mapping B : ¢ — ¢ by
Bx=T((1-b)[+bA)x forallx € ¢ and b € (0,1-k). Then, B is a G-nonexpansive mapping,
forall x,y € ¢ with (x,y) € E(G).

Proof Letx,y € ¢ and (x,y) € E(G).
Since A is edge preserving and (x,y) € E(G), then (Ax, Ay) € E(G).
As (x,9), (Ax, Ay) € E(G) and E(G) is convex, we obtain

((1 —b)x+bAx,(1-b)y+ bAy) € E(G).
Since 7T is edge preserving and ((1 — b)x + bAx, (1 — b)y + bAy) € E(G), then
('T((l —b)x + be), T((l -b)y + bAy)) € E(G).

Thus, B is edge preserving.
We have
I1Bx = By|® = | T((1 = b)x + bAx) = T((1 - b)y + bAy)|*
< || =b)x+ bAx - (1 - by —bAy|’
= (1 - B) & —y) + b(Ax— Ap)|?
= -b)la-yI* + bl Ax - Ayl* - b(1 - b)[(x - 3) - (Ax— Ay
<@ =B)lx—yI? + b{lw =y + & | - M- T - Ay}
~b(1-5)(x~3) - (Ax— Ap)|

< (1 =b)llx—ylI? +blx—yI? + kb (x - ) - (Ax - Ay) |
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~b(1-b)|(x-y) - (Ax- Ap)[’
= o —yI? + (kb — b(1 - b)) | (x—3) - (Ax - Ap)|”
=l —yI? + bk - (1= b)) | (x-y) - (Ax - Ap)|?
<Illx-yl?,
for all x,y € ¢ with (x,7) € E(G).

This implies that ||[Bx — By|| < ||x — ||
Hence, B is a G-nonexpansive mapping. 0

Lemma 2.11 Let ¢ be a nonempty, closed, and convex subset of a real Hilbert space H
and let G = (V(G), E(G)) be a directed graph with ¢ = V(G). Let E(G) be convex and G
be transitive with E(G) = E(G)™\. Let T : { — ¢ be a G- nonexpansive mapping and A :
¢ — ¢ be a G — k-strictly pseudocontractivea mapping. Define a mapping B:{ — ¢ by
Bx=T((1-b)+bA)xforallxei,be(0,1-k)and F(B) x (F(T)NF(A)) C E(G). Then,

F(B) =F(T)NF(A).

Proof 1t is obvious that F(7) N F(A) € F(B). Next, we claim that F(B) € F(7) N F(A).
To show this, let xy € F(B), x* € F(T) N F(A), Then, we have (xg,x*) € E(G). Since A
is edge preserving and (xo,x*) € E(G), then (Axg,x*) € E(G). Since E(G) = E(G)™! and
(Axo,x*) € E(G), then we have (x*, Axg) € E(G). By the transitivity of G and (xg,x*) € E(G)
and (x*, Axg) € E(G), then we have (xo, Axy) € E(G). As (xo,x*) and (Axg,x*) are in E(G)
and E(G) is convex, we obtain

((l —b)xg + bAxg, (1 - b)x* + bx*) = ((1 —Db)xg + beo,x*) € E(G).
Then, we have

llxo = %1% = | T((1 - b)xo + bAxe) — T* |
< |1 = b)xo + bAxo - x*|?
= - b) (w0 - &%) + b(Axo —2*) |
= (1-b)|xo —«*|* + b| Axo — x|
= b(1 = b)| (w0 - ") = (Ao - ")
< (1=b)|xo—x*|)* + b a0 —x* || + k|| (I = A)xo — (I = A)x*|*)
—b(1 - b)|lxo — Axol|
= [0 —&*||* + bk || (1 = A)xo — (I = A)x*||* = b(1 = B) |0 — Axol?
= |20 = %*||* + bkllxo — Axol|> = B(1 = b)llxo — Asxol®

= [0 = #* | = (1 = k) = b) 1o — Axoll?, 8)

for all xg, x* € ¢ with (xg,x*) € E(G).
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From (8), this implies that
b((1 = k) = b) [lxo — Axoll* < [lx0 = x*[|* = [lxo = ™[> = 0,

for all xg,x* € ¢ with (xg,x*) € E(G).
Then, we have Axg = xy.
That is, xg € F(A).
Since xq € F(B) from the definition of 13, we have

x0 = Bro =T ((1 - b)xg + bAxo) = T xo.

Then, we have x € F(T), therefore xy € F(T) N F(A).
It follows that F(B) C F(T) N F(A).
Hence, F(B) = F(T) N F(A). O

3 Main results

In this section, we prove a strong convergence theorem for solving the fixed-point problem

of two G-nonexpansive mappings, two G — k;-strictly pseudocontractive mappings, and

two G-variational inequality problems in Hilbert space endowed with a directed graph.
The following Proposition is needed to prove the main theorem.

Proposition 3.1 Let ¢ be a nonempty, closed, and convex subset of a real Hilbert space H
and let G = (V(G), E(G)) be a directed graph with ¢ = V(G). Let E(G) be convex and G be
transitive with E(G) = E(G)™. Foreveryi=1,2,let S;: ¢ — H be a G — a;-inverse strongly

monotone mapping with

Xpsl = OpXp + nnP§ I =11S)x, + ang (anf(Yn) + (1 - o) Bixy),
Yn+l = 5nyn + nnP§ (1 - )‘-ZSZ)yn + I'ang (ang(xn) + (1 - Oln)BZyn)r

)

where (xo,%0) and (yo,Y0) are in E(G). If ¢ = V(G) dominates xy and y,, then (x,,%,:1),
(Yu»Yns1) are in E(G) for all n € N.

Proof Since ¢ = V(G) dominates xy and P;(I — A;S1)x € ¢, then we have (P;(I -
1181)x0,%0) € E(G). From E(G) = E(G)™! and (P, (I - 2151)x0,%0) € E(G), we have (xo, P, (I -
MS1)x0) € E(G). Since ¢ = V(G) dominates xo and Uy = Py (otof (y0) + (1 —0t0) Bixo) € ¢, then
we have (Uy, xo) € E(G). From E(G) = E(G)™! and (U, x9) € E(G), we have (xo, U) € E(G).
Since (x9,%0), (x0, P; (I — 21S1)x0) and (xo, Up) are in E(G) and E(G) is convex, we obtain

(80%0 + Moo + [10%0, 800 + MoPr (I — A1S1)x0 + pollo) = (%0, %1) € E(G).

Since ¢ = V(G) dominates x¢ and P, (I — 11 S1)x1 € ¢, then we have (P, (I — A1 S1)x1,%0) €
E(G). From E(G) = E(G)™! and (P, (I — 11S1)x1,%0) € E(G), we have (xo, P (I — A1S1)x1) €
E(G). Since ¢ = V(G) dominates x and U; = Py (a1f(51) + (1 — a1) B1x1) € ¢, then we have
(U1,%0) € E(G). From E(G) = E(G)™! and (U},%0) € E(G), we have (xo, U;) € E(G). Since
(%0,%1), (%0, P¢ (I — M1 S1)x1) and (xo, Uh) are in E(G) and E(G) is convex, we obtain

(8oxo + mo%o + toXo, Sox1 + 1oPy (I — M1 S1)x1 + olly) = (x0,%2) € E(G).
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Since ¢ = V(G) dominates xo and P, (I — 1151)xx € ¢, then we have (P, (I — A1 S1)x¢,%0) €
E(G), for k € N. From E(G) = E(G)™! and (P, (I — 2151)xx,%0) € E(G), we have (x, P (I -
AS1)xk) € E(G), for k € N. Since ¢ = V(G) dominates xy and Uy = Pr(oif (i) + (1 —
o) Bixi) € ¢, then we have (Uy, xo) € E(G), for k € N. From E(G) = E(G)™! and (U, %) €
E(G), we have (xg, Uy) € E(G), for k € N.

Next, Assume that (xg,xx) € E(G), for k € N. Since (xo,%%), (%0, Pr(I — A1S1)x¢), and
(%0, Uy) are in E(G) and E(G) is convex, then we obtain (8oxo + 10%0 + toXo, Soxk + NP (I —
MSDxx + polly) = (%0, %141) € E(G).

Hence, by induction, we have (xo,x,) € E(G). From E(G) = E(G)™! and (x¢,x,) € E(G),
we have (x,,,x0) € E(G), for all n € N. By the transitivity of G and (x,, %0), (X0, ¥1+1) € E(G),
we have

(%4, %441) € E(G), forallmeN. (10)
Applying the same arguments as for deriving (10), we also obtain

> Vns1) € E(G), forallmeN. 0
Oy

Theorem 3.2 Let { be a nonempty, closed, and convex subset of a real Hilbert space H
and let G = (V(G), E(G)) be a directed graph with ¢ = V(G). Let E(G) be convex and G
be transitive with E(G) = E(G)™. For every i = 1,2, let S; : ¢ — H be a G — a;-inverse
strongly monotone mapping with o = min{ay,a} and let g,f : H — H be an a, and
ay — G-contraction mapping with a = max{ay,as}. For every i =1,2,let T;: { — ¢ be a
G-nonexpansive mapping and A;: ¢ — ¢ be a G — k;-strictly pseudocontractive mapping
with k = max{ky,«,}. Define a mapping B:¢ — ¢ by Bix = T{(1 = b)I + bA)x forall x € ¢
and i=1,2, b € (0,1 - k). Assume that §; = F(B;) NG - VI(,S;) # 9 forall i =1,2 with
F(B) x F(B;) € E(G), G- VI(,S) x G=VI(¢,S) € E(G) and F(B) x (F(T)NF(A)) € E(G)
for all i = 1,2 and there exists xy,yo € ¢ such that (xo,x0) and (yo,yo) are in E(G) and
¢ = V(G) dominates xo and yy. Let the sequences {x,} and {y,} be generated by x¢,y0 € ¢
and

Xn+l = Snxn + nnP{ (I - )»181)96;1 + /'an{ (ar(f(yn) + (1 - an)len)r
Vel = 8nYn + MuPr (I — X2 S2)y + nPy (ug(xs) + (1 — 0t) Bayy),

(11)

where {8}, {na}, {n}, {an} C [0, 1) with 8, + 0, + w, = Land A € (0, 2a) with & = min{iq, Ao}
Assume the following conditions hold;
(i) 0<E& <81 ity <E& foralln e N and for some &,€ > 0;

(i) lim, o0, =0and y 2) o, = 00;

(i) D524 181 = 8l < 00, 352 Mt = 1l < 00, 352, [otss1 — ] < 00,
If {x,} dominates Pg f(yo) and {y,} dominates Pg,g(xo), then {x,} converges strongly to
x* = Pz, f(yo) and {y,} converges strongly to y* = Pg,g(xo), where Py, is a metric projection
ong;, foralli=1,2.

Proof The proof of this theorem will be divided into five steps.
Step 1: We will show that {x,} is bounded.
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First, we will prove that
| P (I = 28)x = P (I = A8)y| < llx =1,

forall x,y € ¢ and (x,y) € E(G).
Letting x,y € ¢ and (x,y) € E(G), we have
| P (I = 28)x = P (1 - 28)y|” < |2 -y - 1(Sx - Sy)|?

= =yl = 22(x - 3, Sy - Sy)
+ 27| 8x - Syl

< o= y]1% = 2041 Sx — Sy|I?
+ 22| Sx - Sy|?

= [lx = yII* = A2 = 1) Sx - Syl®

2
< lx-xl

for all x,y € ¢ with (x,7) € E(G).

(12)

From Lemmas 2.7 and 2.8, we have G — VI(Z,S;) is closed and convex, for all i = 1, 2.
From Lemma 2.9, we have F(B3;) is closed and convex. Then, §; is closed and convex, for

alli=1,2.

Let x* = Pg, f(yo) be dominated by {x,} and y* = Pg,g(x,) be dominated by {y,}, we have
(4, x*) and (y,,y*) are in E(G) for all # € N. From Lemma 2.7, we have G — VI(¢,S;) =

S74(0).
Then, x* € S71(0). Since Sjx* = 0, we have

[P (T = 2181)xs — x| < [0 — & = 1 Sioxa|)?
= 200 =& = (M S1x = 1512 ||
= ow = 2| = 20 = 2, S1 — Su5”)

+22|| S, - Sux” |

= [ = a* | = 2000 10, = Six” || + 221 G102
= [ = a*|* = 212 = 1) [ Sl

-
From the definition of {x,}, we have

1 = 2| = || 8 + 0uPr (L = A181)% + P (tnf () + (1 = ct,y) Bicxy,)
= (8 + M+ )™
< 8 otn — &% + 1| Pe (T = A1 81)n — &% + 1| P (ctf ()
+ (1—a)Buxy) — 2|

=< (1 - /Ln) ||xn _x* || + Un ||an(f(yn) - x*) + (1 - an)(len - x*) ||

Page 12 of 28
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< (1= ) |o0n = 2| + et [[f ) = 8" || + 1 (1 = ) || 2 — |
< (L= ) [0 = 2" + pnctnat | yn = || + penetn | (57) = 7|
+ (L = o) [, — 2|

= (1= pnoty) [ =" | + penetnat [y = 5" || + panern £ (77) = 27 (13)
Similarly, we obtain
1 =57 = @ = pwein) [ = 5" | + ncvnal s = 2 + penen | (x7) = 7] (14)
Combining (13) and (14), we have
[ =27+ [mer =57 = @ = pwern) (e =27 + [ =57}
+ pnetna{ [0 = + [y = 7|}
+ e e () =y + £ 07) - 7]}

= (1= pnen(L = ) an = 2% + Iy ="}

Pntn{llg(x™) = y*II + IF &) — %™11}
+ .
(1-a)

By induction, we can derive that

Ig(™) = y* 1| + If &) =7l }

R Ry e M P I

for every n € N. This implies that {x,} and {y,} are bounded.

Step 2: We claim that lim,,— oo [|%,+1 — %, || = limy,— oo || Y41 — Yull = 0.

From Proposition 3.1, we have (x,, x,,1) and (y,,, ¥,,+1) are in E(G) for all n € N. First, we
let Uy, = P (otyf (74) + (1 — ) B1xy,) and V,, = Py (ctug () + (1 — 1) B2yy,). Then, we observe
that

Uy = U |l = || P (ctnf 0) + (1 = 0) Ba) = P (@t 1f (1)
+(1- an—l)len—l) H
< o |[f ) =f@u-)|| + lotw =t | |f Bn1) |
+ (1= o) |1 Brxn — By |l
+ |ty =y || Brva |

< opallyn = yu-all + lan = an—ll{ “f()/n—l)” + | Bixua ”}

+ (1= o) %y — xpa |l (15)
By the definition of x,, and (15) we obtain

”xn+1 _xn” = ||8nxn + nnP{ (1 - )"lsl)xn + ﬂnun - ‘Sn—lxn—l

= 1P (I = 2 S)%n1 — o U |
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< 8ullxn = Hno1 | + 185 = St | 1n-1 | + 1 | Pe (I = 21S1)
= Pe(I = 218 %n-1 || + 100 = Mt ||| Pe (I = M1 S1)1 |
+ | Uy = Upa | + [ = -1 1 U |l

<@ = pwn)llen = %1l + 185 = Sp-a [l %n-1
+ 100 = et || Pe (T = 21 S1)% |
+ tnlon =t |{ [f On-1) || + G111}
+ (1 = )% = 21 | + 11 = -1 1 Ul

+ Mnanﬂ”yn _yn—l||~ (16)

Using the same method as derived in (16), we have

lyner =yl < (L= ) 1¥n = Yl + 185 = Sy Iy |
+ 170 = Mt | Pe( = 2282y |
+ tnletn — one1 | | g@no1) | + 1Boyu-ill}
+ (L = ) 1Yn = Y1 | + 11t = pena [ Via |

+ WnOpdl[Xy — X1l (17)
From (16) and (17), we obtain

11 = %l + 19e1 = Yll < (1= 1) {120 = Zna | + 170 = Y ]
185 = Snca [t | + 1701 11]
+ 110 = Nt [ | Pe (I = A1 81)%1 |
Pt = 2282701 ]
1 = a1 U I+ Vi 1]
+ U0 10 = Yur || + 1% — 20111
+ tnletn = [ @u-1) | + 1B1xua
+ [ gGeu-n)|| + 11Boynall]

+ (1 - an)[”xn = xp-1l + llyn _yn—lll]

IA

(1-0aé (1 =a))[In = %noall + 170 = Y1 ]
185 = Snca [t | + 1701 11]

+ 110 = Nt [ | Pe (I = 1 S1)xu1 |

[Pt = 228271 ]

1 = a1 U I+ Vi 1]

+ Ela = [ [fOn1) | + 1B1tns |

+ [ gGeu-n)] + 1Boyuaall].
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Applying Lemma 2.1 and the conditions (ii) and (iii) we can conclude that
%41 — %4l > 0 and  ||[¥ps1 —yull > 0 asnu — oo. (18)

Step 3: We prove that lim,_, o | U}, — Pr (I = M1 51) U, || = lim,—, o | U}, — B1 U, || = 0.
To show this, take i, = o, f (1) + (1 — &,) B1x, Y € N.
Since x* is dominated by {x,}, y* is dominated by {y,} and (x,,, x,+1), and (¥, y»+1) are in
E(G) for all n € N, then we derive that
s =27 = 30 =) + 10 P 31811 ) + 000y ) |
<34, ||x,, —x* ||2 + 1y, ||P{(I— ASy)x, —x* H2
— 8uMn ”xn =PI - 1181)xn ”2 + Un ||;in —x ||2
=< (1 - Mn)”xn _x* Hz - annn ”xn - P{(I - )»181)96,, ”2
+ Un ”an (f(yn) - len) + (len _x*) ”2
S (1 - //Ln)Hxn _x* HZ - annn ”xn _P{(I - AlAl)xn ”2
+ pc,,{ ||len —x* ||2 + 204,,(f(yn) - Bix,, iy, —x*)}
= Hxn _x* H2 - 8;17771 ”xn _P{(I - )\lsl)xn “2

+ 2,Uvnan Hf(yn) - len || ” ﬁn - x*

’

which implies that

Suta 50 Pell = 1S | = [ =7 = [t
+ Zﬂnan Hf(yn) - len || || Zln —x* H
< 1% = Fnar [ |20 — 2| + 2001 — [ }

+ 2y O) = Bu| |t = 5.
Then, we have
%4 = Pe(I = 2481)xa | —> 0 as n— oo. (19)
Observe that
Xna1 — X = N (P (I = 2181)% — %) + pn(Up — %)
It follows that
Ml U = 2nll < 0| Pe (2 = 2180 = 2| + %11 = 2.
From (18) and (19), we obtain

U, —x,]| >0 asn— o0. (20)
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Since ¢ = V(G) dominates xo and U, x, € ¢, then we have (U, x¢) and (x,, x) are in E(G),

for all n € N. Since E(G) = E(G)™! and (x,,, x0) € E(G), then (xg,,) € E(G), for all n € N. By

the transitivity of G and (U, xo), (%0, %) € E(G), for all n € N, we obtain (U,,x,) € E(G),

for all # € N. Since E(G) = E(G)™! and (U, x,) € E(G), then (x,, U,) € E(G), for all » € N.
Observe that

|| un _Pc(l_)\lsl)un || = ”un _xn” + ”xn _Pg(l_)\l‘sl)xn ||
+ | Pe (I = 2 S1)%n = P (I = 7 S1) Uy |
<Ny —xull + ”xn _Pz(l_)hlsl)xn ” + |l = Uyl

= 20Uy = %l + 0 = P (I = 21 S1)%a |,

by (12), (19), and (20), we obtain

||L1n—P§(1—)\1$1)L[n|| —0 asn— oo. (21)
Applying the same arguments as for deriving (21), we also obtain

|| V., —P;(I—)QSZ)VHH —0 asn— 0.
Consider

%01 = Unll < 16011 = %ull + 1260 — Ul
From (18) and (20), we have

%41 — Uyl = 0 asn— oo. (22)
Since

%60 = Bixull < %0 = X | + 161 = Unll + 1 U = Brxn|
= N = X | + 1%s1 = Unll + 80 = Bix|
= 160 = Xna1 [l + [ %ne1 — Ul
+ tf On) + (1 = 0t) Broxy — Bioxs |
= 1% — Xpar |l + %01 = Unll + 0ty Hf()/n) — Bixy

’

from (18), (22), and condition (ii), we obtain

|, = Bix,|| = 0 asn— oc. (23)

Consider

U, = Bily, |l < Uy = xull + 1%, — Bixll + |1 B1x, — Bl |l

< WUy = xull + lloen = Buall + Nl = Ul
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<201 Uy = xnll + %0 — Bixll.
From (20) and (23), we have
U, = BiU,|| — 0 asn— oco. (24)
Applying the same arguments as for deriving (24), we also obtain
V=BVl — 0 asn— oo.

Step 4: We claim that limsup,,_, . (f(¥*) — x*, U,, — x*) <0, where x* = Pz f(y*).
First, take a subsequence {U,,, } of {U/,} such that

lim sup(f(y*) —x* U, —x*) = klim {f(y*) —x*, Uy, —x*). (25)

n—00

Since {x,} is bounded, there exists a subsequence {x,, } of {x,} such that x,, — X € ¢ as
k — oo. From (20), we obtain U/,, — X as k — o0o. Since ¢ dominates xg, ¥ and u,, are
in ¢, then (%,%,) and (U,,,x,) are in E(G). From E(G) = E(G)™! and (Uy;,%0) € E(G), then
(%0, Uy, ) € E(G). By the transitivity of G, (%,%,) and (x,, Uy, ) are in E(G), we have (%, U,,) €
E(G). From E(G) = E(G)™! and (%, U,,,) € E(G), then (U, %) € E(G).

Next, we need to show that x € §1 = F(B1) N VI(¢,S1). Assume X ¢ F(B;). Then, we have
X # B1x. By Opial’s condition, we obtain

liminf [|U,, — &|| < liminf |2, — B
k—o00 k— 00
<liminf||U,, - BiUy,|l +liminf || B,U,, — B.1|
k— 00 k—00

<liminf || U, - .
k— 00

This is a contradiction.

Therefore,
QAC S F(Bl). (26)

Assume % ¢ VI(¢,S1), then we obtain & # Py (I — 11 51)A.
From Opial’s condition, (U,,,%) € E(G) and (21), we have

liminf || U, - &| <liminf|U,, - P.(I - S|
k—o00 k—o00
< 1ikrgi£f|| Uy =P (I = S)Uy |
+ likminf”P; (I = MS)Uy, — P - 1S)E|
— 00

< liminf |1, —&].
k— 00

This is a contradiction.
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Therefore,
xe VI(¢,S). (27)
By (26) and (27), this yields that
x €31 =FB)NVIE,S). (28)
Since U, — ¥ as k — oo, (28) and Lemma 2.2, we can derive that
limsup(f (y*) - &*, U, —x*) = klggo{f(y*) -, Uy, —x¥)

=) -« 5 -x7)

<o. (29)
Following the same method as for (29), we obtain that

limsuplg(x*) - %, V., —y*) < 0. (30)

n—o0

Step 5: Finally, we prove that the sequences {x, } and {y,} converge strongly to x* = Pz, f(y*)
and y* = Pg, g(x*), respectively.
By the firm nonexpansiveness of Py, (%, %,41) and (¥, ¥,+1) being in E(G) we derive that
[t =" = | Peit —° |
< <itn —x* U, —x*>
= (on (f () — &%) + (1 = o) (Baxn — &%), Uy, — x7)
= ou(f () — &%, Uy — &%) + (1 — a,))(Broxy — &%, U, — x¥)
= ou(f ) —f ("), Un = &) + a{f () — &*, U — x¥)
+(1-ay) ||le,, —x* || || u, -x* ||
= awally =y || U =5 + @l () =" U = 27)

U P | T

< gy P o [t P ) - Uy )
(1—0[,,) « N
e R Ty
aua 12 1-ay) 12
=~y =y P+ = o=
+(Olnﬂ+(1—01n))||un_x*”2
2 2
+aulf () — o, Uy — ")
e O R e
B 2 yn y 2 n
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: (71‘“"2(1‘“))nun—x*||2

+ou(f () — &%, Uy — &%),

which yields
% (|2 aua (1 _an) « (|2
[t =" = = - I+ el
Ay * * *

From the definition of x,, and (31), we obtain

[t = <l = [ [P~ 21800+ 11—

O e wevver A

l+a,(1-a

Hnly ¥\ K X
+1+an(1—a)<f(y) x5 Uy x)

mn(1—ay) “
1+a,(1-a)

(1 Un0y (2 — a) 2 UnQpa k2
(1= 22 o - |

=

HnQn * * *
+m{f(y)—x ,U,,—x ) (32)

Similarly, as derived above, we also have

nYn 2 * nYn «
e I LR e L e R
+o,(1-a) 1+a,(l-a)
Hnlty A Ak
+ Toa—a w(1-a) <g(x ) VS Vu—y ) (33)

From (32) and (33), we deduce that

Jsonss = 1"+ e =

n 71(2
< (1- 222 Y =+ =)

MnCnd
1+a,(1-a)

e 07 =2 =)+ g(x7) =5, V=)

_ <1_ Mnan(2—ﬂ) + MUnOya ){Hx —X*HZ+||J/ _y*”Z}
l+a,(1-a) l+a,(l-a) )™ ’

Honn * * * * * *
Tra o 07 -t =x) 4 g(67) =5 V=)

_ 2ty (1 - a) |2 * |2
= <1—m>{”xn—x |7+ |y =577}

e e A
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Mnly

=g 0 =3l =) le(7) =5 Vi)

Applying the condition (ii), (29), (30), and Lemma 2.1, we can conclude that the sequences
{x,} and {y,} converge strongly to x* = Pz, f(y*) and y* = Pz,g(x*), respectively. This com-
pletes the proof. O

Lemma 3.3 Let ¢ be a nonempty, closed, and convex subset of a real Hilbert space H and
let G = (V(G), E(G)) be a directed graph with ¢ = V(G). Let A : { — ¢ be edge preserving
and A be a G — k-strictly pseudocontractive. Then, the following conditions hold;
(i) A is G- «-strictly pseudocontractive < (I — A) is G — (FTK)-inverse strongly
monotone,
(i) G- VI(¢,I-A)=F(A).

Proof i) (<) Let (x,y) € E(G).
Since A is edge preserving and (x,y) € E(G), then (Ax, Ay) € E(G).
Suppose that M =1 - A is G - (1‘7’()— inverse strongly monotone, i.e.,

1-«
(x—y,Mx - My) = (T) [Mx — My|)?,

for all x,y € ¢ with (x,) € E(G). Then,

2
A% = Ayl = |1 = M)x ~ (I - M)y |
= [Mx = Myl + llx = y11* = 2(x - y, Mx - My)

2 2 1-« 2
< [IMx - My||” + |lx—y||I” -2 - |Mx - My

= v =yl + & | Mx - My|)?,

for all x,y € ¢ with (x,7) € E(G).

Thus, A is a G — k-strictly pseudocontractive mapping.

(=) Conversely, suppose that M =1 — A and A is a G — «-strictly pseudocontractive
mapping.

Let x,y € ¢ with (x,7) € E(G), i.e.,

[Ax = Ayll* < I - yl|* + || Mx — My,
for all x,y € ¢ with (x,y) € E(G). Then,

2
[Ax = Ayll* = | (I - M)x - (I - M)y|
= | Mx - My||* + [lx = yII* = 2(x — y, Mx — My)
< lx =yl + K | Mx — My||*.
Hence,

1-«

<x—y,Mx—My>z< 2 )||Mx—My||2,
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for all x,y € ¢ with (x,y) € E(G). This implies that M is a G — «-strictly pseudocontractive
mapping.

i) Let i € G- VI(¢,I - A).

From i) and Lemma 2.7, we have

xe (- A)0).

This implies that (/ — A)x = 0.
Thus, ¥ € F(A). Therefore,

G-VI(,I-A) CF(A). (34)

Let X € F(A) and y € ¢ with (%,y) € E(G).
Since Ax = X, we have (I — A)x = 0.

This implies that X € (I — A)™1(0).

From Lemma 2.7 and ¥ € (I — A)~1(0), we have

y-xU-n)x)=0,

for all y € ¢ with (¥,y) € E(G). Then,x € G- VI(¢,I - A).
Therefore,

F(A) S G-VI(,I-A). (35)
From (34) and (35), we have
G- VI(¢,I- A) = F(A). O

Corollary 3.4 Let ¢ be a nonempty, closed, and convex subset of a real Hilbert space H
and let G = (V(G), E(G)) be a directed graph with ¢ = V(G). Let E(G) be convex and G be
transitive with E(G) = E(G)™!. For every i =1,2,let A;: { — ¢ be a G — k-strictly pseudo-
contractive mapping with F(A;) # ) and let g,f : H — H be an a, and ar — G-contraction
mapping with a = max{a,,as}. For every i = 1,2, let T;: { — ¢ be a G-nonexpansive map-
pingand A;: ¢ — ¢ be a G — k;-strictly pseudocontractive mapping with k = max{x1, k3}.
Define a mapping B; : { — ¢ by Bix = T(1 = b)] + bA;)x for all x € ¢ and i = 1,2,
b€ (0,1 k). Assume that §; = F(B;) N F(A;) # 0 for all i = 1,2 with F(B;) x F(B;) C E(G)
and G-VI(¢,S;) x G- VI(¢,S;) C E(G) for all i = 1,2 and there exists xo, Yo € ¢ such that
(%0, %0) and (yo,yo) are in E(G) and ¢ = V(G) dominates xy and yy. Let the sequences {x,}
and {y,} be generated by x¢,y0 € ¢ and

Xpe1 = OpXy + nnP§ I-rU- Al))xn + I'anc (anf()/n) + (1 = ay)Bix,),
Vel = 8nYn + nnpz (= xo(I - A2))yn + MnP{ (ang(xn) +(1- Oln)Bzyn)r

(36)

where {8,}, {nu} {tn} {otn} S [0, 1] with 8, + 0y + 1y = 1 and A € (0, 2a) with o = min{ 1*2K1,
1_%}- Assume the following conditions hold,;
(i) 0<& <80 iy <& foralln € N and for some &,& > 0;
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(i) lim, o0, =0and y o) o, = 00;

(iil) Y o1 18me1 = 8ul <00, 2o [Mast — Nl < 00, Y opo0tns1 — | < 00.
If {x,} dominates Pg f(yo) and {y,} dominates Pg,g(x), then {x,} converges strongly to
x* = Pg,f(yo) and {y,} converges strongly to y* = Py,g(xo), where Pg, is a metric projection
ong;, foralli=1,2.

Proof From Theorem 3.2 and Lemma 3.3, we have the desired conclusion. d

4 Example
In this section, we give some examples to support our main theorem.

Example 4.1 Let H=R and ¢ = [-10,10] and let G = (V(G), E(G)) be such that V(G) = ¢,
E(G) = {(x,y) : xy > 0}. Let T; : [-10,10] — [-10,10] be defined by

|x|
ﬂx ="

X

for all x € [-10,10] and let 75 : [-10,10] — [-10, 10] be defined by

%; x <0,
Tox=1405 x=0,
=l x50,

2

for all x € [-10, 10].
Let A; :[-10,10] — [-10,10] be defined by

1;  x€(0,10],
Ax = sgn(sgn(x)) =10; «x=0,
—1; X € [—10,0);

for all x € [-10,10] and let A, : [-10,10] — [-10, 10] be defined by

23, xe (0,10,

Axx =10 x=0,

21l e [-10,0),

for all x € [-10,10].
Let & : [-10,10] — R be defined by

221 xe(0,10],

Slx: O; x=0,

5+ 1 x€[-10,0),
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for all x € [-10,10], and let S, : [-10,10] — R be defined by

22D,y e(0,10],

\/ﬁ b
St =140; x=0,
2(x+1) ,
To5 X€ [-10,0).

For every i =1,2, let B;: ¢ — ¢ be defined by Byx = 7;(0.5I + 0.5A )« for all x € [-10, 10].
Let f,g: R — R be defined by

() %, x>0,
sgn(x
f(x)_ £ = O; x:01
—%; x<0
and
" 2 x>0,
sgn(x 1
gx) = g3 +-=490;, x=0,
é; x<0.

Let the sequences {x,} and {y,} be generated by xy, yo € ¢ and

X1 = (525 )% + (3”;22 )P (I - 0.781)x, + (;jfz P (of ) + (1= &) Buxy),
Pt = (525 )9+ (EZVP (I - 0.58 )y + (2P (L glw,) + (1 - 8W)Bzyn).

Then, the sequences {x,} and {y,} converge strongly to 1.

Solution. For every i = 1,2, it is clear that S;'(0) # #, since 1 € S;%(0), E(G) = E(G)™!
and E(G) is convex. By the definitions of 71, 73, f, g& S1, Sa, A1, and A,, we have T;
and 7, are G-nonexpansive mappings, f and g are G-contraction mappings, S; and S,
are G-12, L-lnverse strongly monotone mappings, respectively, A; and A, are G-%,
g—strlctly pseudocontractive mappings, respectively. However, 71 and 7, are not nonex-
pansive mappings, as if we choose x; = 1, y; = —é, x, = 0 and y; = 1, then we see that
[T = Tiyrl =2> & = %1 — 31| and | Toxy = Toya| = 15> 1 = x5 = pa.

f and g are not contraction mappings, as if we choose x = l andy = —é, then we see that
) ~f )] = 15 2 = =yl and. lg(@) —gO)| =12 = 21 = &> 2 = |1+ 1] = ey,

S; and S, are not 12, ‘/_ -inverse strongly monotone mappings, respectively. If x = 2
and y = 10 with (2,10) € E(G), then

(81(2) - 81(10),2 - 10) = 5.33 < 5.38 = 12|85 (2) - S, (10)|*.
If x =10 and y = 8 with (10, 8) € E(G), then

18

AT

V19

(S2(10) - S,(8),10 - 8) = < ,2> =8.26<37.16 = - |5,(10) - 52(8){2.
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A7 and A, are not %, %—strictly pseudocontractive mappings, respectively, as if we
choosex=1and y = —é, then we have

2 2

1
|Awx— Ayl* =4>1.76 = ‘1+ :

L A1) L
+=|1- +—+ -
2 ! 5 71\ 5

and

2 2

1

3= - - 20 (=3 )

5

1
|Agx — Agy|* =10.76 > 2.88 = ‘1 | 3

By the definitions of S;, 7;, and A; for every i = 1,2, we have 1 = F(3;) N G - VI(¢, ).
We observed that the parameters satisfy all the conditions of Theorem 3.2. Hence, we can
conclude that the sequences {x,} and {y,} converge strongly to 1.

Newton’s Method is a mathematical tool often used in numerical analysis, which serves
to approximate numerical solutions (i.e., x-intercepts, zeros, or roots). Given a function
g(x) defined over the domain of real numbers x, and the derivative of said function g’(x).
If x, is an approximation of a solution of g(x) = 0 and if g(x,) # 0, the next approximation
defined for each n=0,1,2,... by:

g(x,)
g )’

KXn+l =Xy — (37)

where %, is an initial point, is the most popular, studied, and used method for generating

a sequence {x,} approximating the solution.
Newton’s Method (37) is also an example of Picard iteration, for the equation

Xps1 = Txy,

where T =1- ?. Several authors have used the Picard iteration for approximation of fixed
points (see [5, 6, 9]).

IT is an important mathematic constant. The search for the accurate value of IT led not
only to more accuracy, but also to the development of new concepts and techniques. Many
researches have been trying to approximate the value of I1 (see [2, 7]). By using our main
result, we introduce a new method to approximate the value of I as shown in the following

example.

Example 4.2 Let H = R and ¢ = [3,4] and let G = (V(G), E(G)) be a directed graph with
V(G) = ¢, E(G) = {(x,9) : 4,y € [3, 1L]}. For an approximate value of I, for every i = 1,2,
define F;: C — H by Fi(x) = £; - % and F; is a subdifferentiable. It is easy to show that / — %
is a G-nonexpansive mapping.

For every i = 1,2, define 7;: [3,4] — [3,4] by

x— L9 ifxe[3,4),
Tix = @

%; ifx =4,

1

for all x € [3,4].
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For everyi=1,2,let A;:[3,4] — [3,4] be defined by

Are ells ifx e [3,4),
%=
iy ifx =4,

3 ’
for all x € [3,4].
For everyi=1,2,let S;:[3,4] — R be defined by

2i(55 - 3) ifxe(3,4),

5 ifx =4,
for all x € [3,4].

Foreveryi=1,2,let B;: { — ¢ be defined by Bix = T;(0.5] + 0.5A )« for all x € [3,4]. Let
f,g:R — R be defined by

N

* +1; ifxe[3,4],

f@=32""
3 ifx ¢ [3,4]
and
x+7 .
~ 55 ifxe(3,4],
8 = u.  f
? ifx ¢ [3,4].

Let the sequences {x,} and {y,} be generated by xy, yo € ¢ and

VH—Z

Bt = (5 o+ (5P~ 0781), + (3”;32 )P (f () + (1 - £)Bx,),
n+ 7 n+ 3

Ina1 = (55 )9 + (3,“2)1’;(1 0.582)yn + (3,”2)P;( §800n) + (1 - @)Bzyn)

(38)

Then, the sequences {x,} and {y,} converge strongly to II.

Solution. For every i = 1,2, it is clear that S;1(0) # ¢, since I1 € S;(0), E(G) = E(G)™*
and E(G) is convex. By the definitions of 71, T2, f, g, S1, Sz, A1, and Aj, we have 77 and
T, are G-nonexpansive mappings, f and g are G-contraction mappings, S; and S, are
G—m m—mverse strongly monotone mappings, respectively, A; and A, are G—%—strictly
pseudocontractive mappings.

By the definitions of S;, 7;, and A, for every i = 1,2, we have I1 = F(B;)) N G - VI(¢, S)).
We observed that the parameters satisfy all the conditions of Theorem 3.2. Hence, we can
conclude that the sequences {x,} and {y,} converge strongly to IT.

Using the algorithm (38), we have the numerical result to approximate the value of IT as

shown in Table 1 and Fig. 1, where x; = y; = 4.00000 and n = N = 150.

Remark 1 We show that 77 and 7T, are not nonexpansive mappings, as if we choose x; =
xp =4, 91 = ﬂ and y, = 3.5, then we see that |Tix; — T1y1] = 0.526 > 0.3 = |x; — ;1| and
|Tax2 — Toya| = 0.526 > 0.5 =[x — y3].

f and g are not contraction mappings, as if we choose x; = %, X = @ and y; =y, =
then we see that |f(x1) — f(y1)| = 0.67 > 0.5 = |x; — y1| and |g(x2) — g(y2) | =03>01= |x2 -

yal.
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Table 1 The values of {x,} and {y,} with initial values x; = y; =4.00000 and n =N =150

n Xn Yn
1 4.00000 4.00000
2 3.53333 3.58051
3 344013 344482
74 3.14162 3.14221
75 3.14162 3.14220
76 3.14162 3.14219
148 3.14158 3.14187
149 3.14158 3.14187
150 3.14158 3.14186
4
X
n
3.9 Yn| 1
3.8
3.7
ST
2 36
g
- 35}
x
34r
33F
32+t
31 1 1
0 50 100 150
n
Figure 1 The convergence of {x,} and {y,} with initial values x; = y; =4.00000 and n =N =150

S and S are not %, %—inverse strongly monotone mappings, respectively. If x; = x; =

3.5 and y; =y, = 3 with (3.5, 3) € E(G), then

311
(81061) = S102), 31 =31} = 0.025 < 0,047 = =~ Sy (1) - S|’
and

3I1 2
(Sg(xg) — 82()12),962 —yz) =0.025<9.42 = T ’Sg(xg) — 82()/2)’

A; and A, are not %—strictly pseudocontractive mappings, as if we choose x; = x, = 4
and y; = y5 = 13—1, then we have |Ajx; — Apy1|? =0.24>0.22 = [x; — y1]% + %|(1 —A)xg —
(I = A)y1]% and [Agxy — Agyn|? = 032> 0.22 =[xy — 32| + 12 1T = Ap)xa — (I = Ar)ya|®.
5 Conclusion
In this work, we introduce the definition of a G — « -strictly pseudocontractive mapping
that is different from a « -strictly pseudocontractive mapping and prove a strong conver-
gence theorem for finding the fixed points of two G-«-strictly pseudocontractive map-
pings, two G-nonexpansive mappings, and two G-variational inequality problems in a
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Hilbert space endowed with a directed graph. However, we should like to note the fol-
lowing:

(1) Our result is proved without the Property G.

(2) We give some examples to support our main theorem and we have the numerical

result to approximate the value of IT as shown in Table 1 and Fig. 1.
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