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Abstract
As generalizations of g-frames and controlled frames, the theory of controlled
g-frames has been deeply studied. This paper addresses the controlled g-frames and
dual g-frames in Hilbert spaces. We first present some equivalent characterizations of
controlled g-frames. Then, we introduce the concepts of controlled dual g-frames
and controlled dual g-frames operator, get some properties of them. Finally, we
obtain some characterizations of the controlled dual g-frames for a given controlled
g-frame by the method of operator theory.
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1 Introduction
A sequence {fj}j∈J in a separable Hilbert space H is called a frame if there exist 0 < A ≤ B <
∞ such that

A‖f ‖2 ≤
∑

j∈J

∣∣〈f , fj〉
∣∣2 ≤ B‖f ‖2

for all f ∈H. The concept of frames was introduced by Gabor in 1946 and Duffin and Scha-
effer in 1952. Gabor in [12] proposed the idea of decomposing a general signal in terms of
elementary signals, and Duffin and Schaeffer in [10] abstracted “these elementary signals”
as the notion of frame. The frame theory has been developing rapidly since Daubechies,
Grossmann, and Meyer [9] had put forward the definition of frames for Hilbert spaces for-
mally in 1986. So far, the theory of frame has achieved fruitful success in pure mathematics,
science, and engineering [4, 5, 8, 13, 14, 21, 24]. In the last decades, various generalizations
of frame have been put forward for special purposes such as frame of subspaces [6], fusion
frame [7], bounded quasi-projector [11], and g-frame [22]. In particular, among these gen-
eralizations, a g-frame covers all others, and the research of g-frames has obtained many
results [16, 23, 25]. Controlled frames have been introduced to improve the numerical ef-
ficiency of iterative algorithms for inverting the frame operator on abstract Hilbert spaces
[2]. A sequence {fj}j∈J ⊂ H is called a C-controlled frame if there exist positive constants
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0 < A2 ≤ B2 < ∞ such that

A2‖f ‖2 ≤
∑

j∈J

〈f , fj〉〈Cfj, f 〉 ≤ B2‖f ‖2

for all f ∈ H, where C ∈ GL(H). However, they are only used as a tool to study spherical
wavelets [3]. Later, some scholars noticed that these frames can give a generalized way to
check the frame conditions while offering numerical advantages in the sense of precondi-
tioning. Since then, controlled frames have been widely studied [15, 17–20]. Rahimi et al.
in [18] first introduced the notion of controlled g-frames (see Definition 2.3), which is an
extension of g-frames and controlled frames.

Inspired by the above research, in this paper we address the characterization of con-
trolled g-frames and controlled dual g-frames, and it is organized as follows: In Sect. 2, we
recall some basic notions, properties, and related results. Section 3 is devoted to the char-
acterization of controlled g-frames, we obtain some equivalent conditions of controlled
g-frames. In Sect. 4, we introduce the notion of controlled dual frames in Hilbert spaces
and obtain some characterizations of the controlled dual g-frames for a given controlled
g-frame by the method of operator theory.

2 Preliminaries
We begin this section with some basic notions and results of g-frames (see [8, 18, 20, 22, 25]
for details).

Given separable Hilbert spaces H and V , let {Vj : j ∈ J} be a sequence of closed subspaces
of V with J being a subset of integers Z. The identity operator on H is denoted by IH. The
set of all bounded linear operators from H into Vj is denoted by L(H,Vj). As a special case,
L(H) is a collection of all bounded linear operators on H. The set of all bounded linear
operators on H with a bounded inverse is denoted by GL(H). If P, Q ∈ GL(H), then P∗,
P–1, and PQ are also in GL(H). Let GL+(H) be the set of all positive operators in GL(H).
A bounded operator P : H → H is positive if 〈Pf , f 〉 > 0 for all f �= 0. In a complex Hilbert
space, every bounded positive operator is self-adjoint. In addition, as a technical condition,
we also assume that any two positive operators involved in this paper commutate with each
other. Define

⊕

j∈J

Vj =
{
{aj}j∈J : aj ∈ Vj,

∥∥{aj}j∈J
∥∥2 =

∑

j∈J

‖aj‖2 < ∞
}

.

Then
⊕

j∈J Vj is a Hilbert space under the following inner product:

〈{aj}j∈J , {bj}j∈J
〉

=
∑

j∈J

〈aj, bj〉 for {aj}j∈J , {bj}j∈J ∈
⊕

j∈J

Vj.

Suppose that {ej,k}k∈Kj is an orthonormal basis (simply o. n. b.) for Vj, where Kj ⊂ Z, j ∈ J .
Define ẽj,k = ej,kδj, where δ is the Kronecker symbol. Then {ẽj,k}j∈J ,k∈Kj is an o. n. b. for
⊕

j∈J Vj (see [25]).
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Definition 2.1 ([22]) A sequence {�j ∈ L(H,Vj)}j∈J is called a g-frame for H with respect
to (simply w. r. t.) {Vj}j∈J if

A‖f ‖2 ≤
∑

j∈J

‖�jf ‖2 ≤ B‖f ‖2 (2.1)

for all f ∈ H and some positive constants A ≤ B. The numbers A, B are called the frame
bounds. If only the right-hand inequality of (2.1) is satisfied, {�j}j∈J is called a g-Bessel
sequence for H w. r. t. {Vj}j∈J with bound B. If A = B = λ, {�j}j∈J is called a λ-tight g-frame.
In addition, if λ = 1, {�j}j∈J is called a Parseval g-frame.

Definition 2.2 ([25]) Let {�j}j∈J be a g-frame for H w. r. t. {Vj}j∈J . A g-frame {�j}j∈J is
called an alternate dual g-frame for {�j}j∈J if

f =
∑

j∈J

�∗
j �jf for f ∈H.

Moreover, {�j}j∈J is also an alternate dual g-frame for {�j}j∈J , that is,

f =
∑

j∈J

�∗
j �jf for f ∈H.

Definition 2.3 ([8]) Let P, Q ∈ GL+(H). A sequence {�j}j∈J is called a (P, Q)-controlled
g-frame for H w. r. t. {Vj}j∈J . If there exist two positive constants A and B such that

A‖f ‖2 ≤
∑

j∈J

〈�jPf ,�jQf 〉 ≤ B‖f ‖2, ∀f ∈H. (2.2)

We call A and B the lower and upper frame bounds for (P, Q)-controlled g-frame, respec-
tively.

If the right-hand side of (2.2) holds, then {�j}j∈J is called a (P, Q)-controlled g-Bessel
sequence for H w. r. t. {Vj}j∈J .

If Q = IH, then we call {�j}j∈J a P-controlled g-frame for H w. r. t. {Vj}j∈J .
If P = Q, then we call {�j}j∈J a P2(or (P, P))-controlled g-frame for H w. r. t. {Vj}j∈J .

Lemma 2.1 ([8]) Every bounded and positive operator P : H → H has a unique bounded
and positive square root W . If P is self-adjoint, then W is self-adjoint. If P is invertible, then
W is also invertible.

For a (P, Q)-controlled g-Bessel sequence {�j}j∈J with bound B, the operator TP�Q

TP�Q :
⊕

j∈J

Vj →H, TP�QF =
∑

j∈J

(PQ)
1
2 �∗

j fj, ∀F = {fj}j∈J ∈
⊕

j∈J

Vj

is well defined, and its adjoint is given by

T∗
P�Q : H →

⊕

j∈J

Vj, T∗
P�Qf =

{
�j(QP)

1
2 f

}
j∈J , ∀f ∈H.
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TP�Q is called the synthesis operator and T∗
P�Q is called the analysis operator of {�j}j∈J .

For a (P, Q)-controlled g-frame {�j}j∈J with bounds A and B, the operator

SP�Q : H →H, SP�Qf =
∑

j∈J

Q�∗
j �jPf , ∀f ∈H

is called the frame operator of {�j}j∈J . From the definition, SP�Q = PS�Q is positive and
invertible, where S� is a frame operator of g-frame {�j}j∈J , and it is bounded, invertible,
self-adjoint, positive, and AIH ≤ S� ≤ BIH . Let �̃j = �jS–1

� , then {�̃j}j∈J is a g-frame for H
w. r. t. {Vj}j∈J with frame operator S–1

� and frame bounds 1
B and 1

A , respectively. {�̃j}j∈J is
called the canonical dual g-frame of {�j}j∈J (see [22]).

Definition 2.4 ([20]) Let H be a Hilbert space and C ∈ GL(H). Suppose that {ψj}j∈J ⊆H
is a C-controlled frame and {φj}j∈J ⊆ H is a Bessel sequence. Then {φj}j∈J ⊆ H is said to
be a C-controlled dual of {ψj}j∈J ⊆H if the following condition is satisfied:

f =
∑

j∈J

〈f ,φj〉Cψj

for all f ∈H.

3 Controlled g-frames in Hilbert spaces
In this section, we present the characterization of controlled dual g-frames, and some
equivalent conditions of (P, Q)-controlled g-frames are obtained. For this purpose, we first
give some equivalent conditions of bounded and positive operators.

Lemma 3.1 ([8]) Let T : H →H be a linear operator. Then the following are equivalent:
(i) There exist two constants 0 < c ≤ C < ∞ such that cIH ≤ T ≤ CIH.

(ii) T is positive and there exist two constants 0 < c ≤ C < ∞ such that

c‖f ‖2 ≤ ∥∥T
1
2 f

∥∥2 ≤ C‖f ‖2.

(iii) T ∈ GL+(H).

The following lemma gives a characterization of (P, Q)-controlled g-frames in Hilbert
space. By Proposition 2.1 in [1], if P, Q ∈ GL+(H) and PQ = QP, then we have PQ ∈
GL+(H).

Lemma 3.2 Let P, Q ∈ GL+(H). Then {�j}j∈J is a (P, Q)-controlled g-frame for H w. r. t.
{Vj}j∈J if and only if {�j}j∈J is a g-frame for H w. r. t. {Vj}j∈J .

Proof Suppose that {�j}j∈J is a (P, Q)-controlled g-frame for H w. r. t. {Vj}j∈J with bounds
A, B. For any f ∈H, we have

A‖f ‖2 = A
∥∥(PQ)

1
2 (PQ)– 1

2 f
∥∥2

≤ A
∥∥(PQ)

1
2
∥∥2∥∥(PQ)– 1

2 f
∥∥2

≤ ∥∥(PQ)
1
2
∥∥2 ∑

j∈J

〈
�jP(PQ)– 1

2 f ,�jQ(PQ)– 1
2 f

〉
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=
∥∥(PQ)

1
2
∥∥2〈QS�P(PQ)– 1

2 f , (PQ)– 1
2 f

〉

=
∥∥(PQ)

1
2
∥∥2〈S�P(PQ)– 1

2 f , Q(PQ)– 1
2 f

〉

=
∥∥(PQ)

1
2
∥∥2〈S�P

1
2 (Q)– 1

2 f , Q
1
2 (P)– 1

2 f
〉

=
∥∥(PQ)

1
2
∥∥2〈(P)– 1

2 Q
1
2 S�P

1
2 (Q)– 1

2 f , f
〉

=
∥∥(PQ)

1
2
∥∥2〈S�f , f 〉.

Thus

A
‖(PQ) 1

2 ‖2
‖f ‖2 ≤

∑

j∈J

‖�jf ‖2, ∀f ∈H.

For any f ∈H, it follows that

∑

j∈J

‖�jf ‖2 = 〈S�f , f 〉 =
〈
(PQ)– 1

2 (PQ)
1
2 S�f , f

〉

=
〈
(PQ)

1
2 S�f , (PQ)– 1

2 f
〉

=
〈
S�(PQ)(PQ)– 1

2 f , (PQ)– 1
2 f

〉

=
〈
PS�Q(PQ)– 1

2 f , (PQ)– 1
2 f

〉

≤ B
∥∥(PQ)– 1

2 f
∥∥2 ≤ B

∥∥(PQ)– 1
2
∥∥2‖f ‖2.

Hence {�j}j∈J is a g-frame for H w. r. t. {Vj}j∈J with bounds A

‖(PQ)
1
2 ‖2

and B‖(PQ)– 1
2 ‖2.

On the other hand, suppose that {�j}j∈J is a g-frame for H w. r. t. {Vj}j∈J with bounds A1,
B1. Then

〈A1f , f 〉 ≤ 〈S�f , f 〉 ≤ 〈B1f , f 〉 for any f ∈H.

Since P, Q ∈ GL+(H), by Lemma 3.1, there exist constants c, c1, C, C1 (0 < c, c1, C, C1 < ∞)
such that

cIH ≤ P ≤ CIH, c1IH ≤ Q ≤ C1IH.

Using 〈PS�f , f 〉 = 〈f , S�Pf 〉 = 〈f , PS�f 〉, we get

cA ≤ S�P = PS� ≤ CB.

Similarly, we have

cc1A ≤ QS�P ≤ CC1B.

It follows that

cc1A‖f ‖2 ≤
∑

j∈J

〈�jPf ,�jQf 〉 ≤ CC1B‖f ‖2, ∀f ∈H.

Therefore, {�j}j∈J is a (P, Q)-controlled g-frame for H w. r. t. {Vj}j∈J . The proof is com-
pleted. �
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Lemma 3.3 Let P, Q ∈ GL+(H). Then {�j}j∈J is a (P, Q)-controlled g-frame for H w. r. t.
{Vj}j∈J if and only if {�j}j∈J is a ((QP) 1

2 , (QP) 1
2 )-controlled g-frame for H w. r. t. {Vj}j∈J .

Proof For any f ∈H, we have

∑

j∈J

〈�jPf ,�jQf 〉 =
〈∑

j∈J

Q�∗
j �jPf , f

〉
= 〈QS�Pf , f 〉

= 〈QPS�f , f 〉 =
〈
(QP)

1
2 S�(QP)

1
2 f , f

〉

=
〈∑

j∈J

(QP)
1
2 �∗

j �j(QP)
1
2 f , f

〉

=
∑

j∈J

〈
�j(QP)

1
2 f ,�j(QP)

1
2 f

〉
.

Hence, {�j}j∈J is a (P, Q)-controlled g-frame for H w. r. t. {Vj}j∈J is equivalent to

A‖f ‖2 ≤
∑

j∈J

〈
�j(QP)

1
2 f ,�j(QP)

1
2 f

〉 ≤ B‖f ‖2, ∀f ∈H,

where A and B are frame bounds of {�j}j∈J . Thus {�j}j∈J is a ((QP) 1
2 , (QP) 1

2 )-controlled
g-frame for H w. r. t. {Vj}j∈J . The proof is completed. �

Lemma 3.4 Let P, Q ∈ GL+(H). Then {�j}j∈J is a (P, Q)-controlled g-frame for H w. r. t.
{Vj}j∈J if and only if {�j}j∈J is a QP-controlled g-frame for H w. r. t. {Vj}j∈J .

Proof The proof is similar to that of Lemma 3.3. �

Lemma 3.5 Let P, Q ∈ GL+(H). Then {�j}j∈J is a (P, Q)-controlled g-frame for H w. r. t.
{Vj}j∈J if and only if {uj,k}j∈J ,k∈Kj is a (P, Q)-controlled g-frame for H, where {uj,k}j∈J ,k∈Kj is
the sequence induced by {�j}j∈J w. r. t. {ej,k}j∈J ,k∈Kj (i.e., uj,k = �∗

j ej,k).

Proof Noting that {ej,k}k∈Kj is an o.n.b. for Vj for each j ∈ J , for any f ∈H, we have �jf ∈ Vj.
It follows that

�jPf =
∑

k∈Kj

〈�jPf , ej,k〉ej,k =
∑

k∈Kj

〈
f , P�∗

j ej,k
〉
ej,k

and

�jQf =
∑

k∈Kj

〈�jQf , ej,k〉ej,k =
∑

k∈Kj

〈
f , Q�∗

j ej,k
〉
ej,k .

It is easy to check that

〈�jPf ,�jQf 〉 =
∑

k∈Kj

〈
f , P�∗

j ej,k
〉〈

Q�∗
j ej,k , f

〉
=

∑

k∈Kj

〈f , Puj,k〉〈Quj,k , f 〉.
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Hence

∑

j∈J

〈�jPf ,�jQf 〉 =
∑

j∈J

∑

k∈Kj

〈f , Puj,k〉〈Quj,k , f 〉.

Thus

A‖f ‖2 ≤
∑

j∈J

〈�jPf ,�jQf 〉 ≤ B‖f ‖2 for any f ∈H

is equivalent to

A‖f ‖2 ≤
∑

j∈J

∑

k∈Kj

〈f , Puj,k〉〈Quj,k , f 〉 ≤ B‖f ‖2 for any f ∈H.

The proof is completed. �

Lemma 3.6 Let P, Q ∈ GL+(H). Then {�j}j∈J is a (P, Q)-controlled g-frame for H w. r. t.
{Vj}j∈J if and only if {Puj,k}j∈J ,k∈Kj is a QP–1-controlled frame for H, where {uj,k}j∈J ,k∈Kj is the
sequence induced by {�j}j∈J w. r. t. {ej,k}j∈J ,k∈Kj (i.e., uj,k = �∗

j ej,k).

Proof From the proof of Theorem 3.5, we have

∑

j∈J

〈�jPf ,�jQf 〉 =
∑

j∈J

∑

k∈Kj

〈
f , P�∗

j ej,k
〉〈

Q�∗
j ej,k , f

〉
.

If we take uj,k = �∗
j ej,k , fj,k = Puj,k , then

A‖f ‖2 ≤
∑

j∈J

〈�jPf ,�jQf 〉 ≤ B‖f ‖2 for any f ∈H

is equivalent to

A‖f ‖2 ≤
∑

j∈J

∑

k∈Kj

〈f , Puj,k〉
〈
QP–1Puj,k , f

〉 ≤ B‖f ‖2 for any f ∈H.

The proof is completed. �

Combining Lemmas 3.2–3.6, we get Theorem 3.1.

Theorem 3.1 Let P, Q ∈ GL+(H). Then the following are equivalent:
(i) {�j}j∈J is a (P, Q)-controlled g-frame for H w. r. t. {Vj}j∈J .

(ii) {�j}j∈J is a g-frame for H w. r. t. {Vj}j∈J .
(iii) {�j}j∈J is a ((QP) 1

2 , (QP) 1
2 )-controlled g-frame for H w. r. t. {Vj}j∈J .

(iv) {�j}j∈J is a QP-controlled g-frame for H w. r. t. {Vj}j∈J .
(v) {uj,k}j∈J ,k∈Kj is a (P, Q)-controlled frame for H, where {uj,k}j∈J ,k∈Kj is the sequence

induced by {�j}j∈J w. r. t. {ej,k}j∈J ,k∈Kj .
(vi) {Puj,k}j∈J ,k∈Kj is a QP–1-controlled frame for H, where {uj,k}j∈J ,k∈Kj is the sequence

induced by {�j}j∈J w. r. t. {ej,k}j∈J ,k∈Kj .
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4 Controlled dual g-frames in Hilbert spaces
In this section, we introduce the notion of controlled dual frames and obtain some char-
acterizations of the controlled dual g-frames for a given controlled g-frame by the method
of operator theory.

Definition 4.1 Let P, Q ∈ GL+(H), {�j}j∈J and {�j}j∈J be (P, P)-controlled and (Q, Q)-
controlled g-Bessel sequences for H w. r. t. {Vj}j∈J , respectively. If for any f ∈H

f =
∑

j∈J

P�∗
j �jQf ,

then {�j}j∈J is called a (P, Q)-controlled dual g-frame of {�j}j∈J . In particular, if Q = IH,
then {�j}j∈J is called a P-controlled dual g-frame of {�j}j∈J .

Definition 4.2 Let P, Q ∈ GL+(H), {�j}j∈J and {�j}j∈J be (P, P)-controlled and (Q, Q)-
controlled g-Bessel sequence for H w. r. t. {Vj}j∈J , respectively. We define a (P, Q)-
controlled dual g-frame operator for this pair of controlled g-Bessel sequence as follows:

SP��Qf =
∑

j∈J

P�∗
j �jQf , ∀f ∈H.

As mentioned before, {�j}j∈J and {�j}j∈J are also two g-Bessel sequences. It is easy to
check that SP��Q is a well-defined and bounded operator, and

SP��Q = TP�PT∗
Q�Q = PT�T∗

�Q = PS��Q,

where S�� =
∑

j∈J �∗
j �j. From Definition 4.1, {�j}j∈J is a (P, Q)-controlled dual g-frame of

{�j}j∈J if and only if SP��Q = IH.

Proposition 4.1 Let P, Q ∈ GL+(H), {�j}j∈J and {�j}j∈J be (P, P)-controlled and (Q, Q)-
controlled g-Bessel sequences with bounds B� and B� , respectively. If SP��Q is bounded
below, then {�j}j∈J and {�j}j∈J are (P, P)-controlled and (Q, Q)-controlled g-frames, respec-
tively.

Proof Suppose that there exists a constant λ > 0 such that

‖SP��Qf ‖ ≥ λ‖f ‖ for all f ∈H.

By the Cauchy–Schwarz inequality, we have

λ‖f ‖ ≤ ‖SP��Qf ‖ = sup
‖g‖=1

∣∣∣∣

〈∑

j∈J

P�∗
j �jQf , g

〉∣∣∣∣

= sup
‖g‖=1

∣∣∣∣
∑

j∈J

〈�jQf ,�jPg〉
∣∣∣∣

≤ sup
‖g‖=1

(∑

j∈J

‖�jQf ‖2
) 1

2
(∑

j∈J

‖�jPg‖2
) 1

2
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≤ √
B�

(∑

j∈J

‖�jQf ‖2
) 1

2
.

Thus

λ2

B�

‖f ‖2 ≤
∑

j∈J

‖�jQf ‖2 for f ∈H.

On the other hand, since

S∗
P��Q = (PS��Q)∗ = QS∗

��P = QS��P = SQ��P,

then SQ��P is also bounded below. Similarly, we can prove that {�j}j∈J is a (P, P)-controlled
g-frame. The proof is completed. �

Theorem 4.1 Let P, Q ∈ GL+(H), {�j}j∈J and {�j}j∈J be (P, P)-controlled and (Q, Q)-
controlled g-Bessel sequences for H w. r. t. {Vj}j∈J , respectively. Then the following conditions
are equivalent:

(i) f =
∑

j∈J P�∗
j �jQf , ∀f ∈H;

(ii) f =
∑

j∈J Q�∗
j �jPf , ∀f ∈H;

(iii) 〈f , g〉 =
∑

j∈J〈�jPf ,�jQg〉 =
∑

j∈J〈�jQf ,�jPg〉, ∀f , g ∈H;
(iv) ‖f ‖2 =

∑
j∈J〈�jPf ,�jQf 〉 =

∑
j∈J〈�jQf ,�jPf 〉, ∀f ∈H.

In case the equivalent conditions are satisfied, {�j}j∈J and {�j}j∈J are (P, P)-controlled
and (Q, Q)-controlled g-frames, respectively.

Proof (i)⇔(ii). Let TP�P be the synthesis operator of the (P, P)-controlled g-Bessel se-
quence {�j}j∈J and TQ�Q be the synthesis operator of the (Q, Q)-controlled g-Bessel se-
quence {�j}j∈J . In these conditions (i) means that TP�PT∗

Q�Q = IH, this is equivalent to
TQ�QT∗

P�P = IH, which is identical to statement (ii). Conversely, (ii) implies (i) similarly.
(ii)⇔(iii). It is clear that (ii)⇒(iii). Next we prove (iii) implies (ii) for any f , g ∈H, 〈f , g〉 =

∑
j∈J〈�jPf ,�jQg〉 shows that

〈
f –

∑

j∈J

Q�∗
j �jPf , g

〉
= 0, ∀g ∈H.

Hence (ii) is followed.
(iii)⇔(iv). (iii)⇒(iv) is obvious. To prove that (iv)⇒(iii), applying condition (iv), we have

‖f + g‖2 =
∑

j∈J

〈
�jP(f + g),�jQ(f + g)

〉

=
∑

j∈J

〈�jPf + �jPg,�jQf + �jQg〉

=
∑

j∈J

〈�jPf ,�jQf 〉 +
∑

j∈J

〈�jPf ,�jQg〉

+
∑

j∈J

〈�jPg,�jQf 〉 +
∑

j∈J

〈�jPg,�jQg〉.
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Similarly,

‖f – g‖2 =
∑

j∈J

〈�jPf ,�jQf 〉 –
∑

j∈J

〈�jPf ,�jQg〉

–
∑

j∈J

〈�jPg,�jQf 〉 +
∑

j∈J

〈�jPg,�jQg〉,

‖f + ig‖2 =
∑

j∈J

〈�jPf ,�jQf 〉 – i
∑

j∈J

〈�jPf ,�jQg〉

+ i
∑

j∈J

〈�jPg,�jQf 〉 +
∑

j∈J

〈�jPg,�jQg〉,

‖f – ig‖2 =
∑

j∈J

〈�jPf ,�jQf 〉 + i
∑

j∈J

〈�jPf ,�jQg〉

– i
∑

j∈J

〈�jPg,�jQf 〉 +
∑

j∈J

〈�jPg,�jQg〉.

By polarization identity,

〈f , g〉 =
1
4
(‖f + g‖2 – ‖f – g‖2 + i‖f + ig‖2 – i‖f – ig‖2)

=
∑

j∈J

〈�jPf ,�jQg〉.

In case the equivalent conditions are satisfied, SQ��P = IH implies ‖SQ��P‖ = 1, by Propo-
sition 4.1, {�j}j∈J and {�j}j∈J are (P, P)-controlled and (Q, Q)-controlled g-frames, respec-
tively. The proof is completed. �

Lemma 4.1 Let P, Q ∈ GL+(H). A sequence {�j}j∈J is a (P, Q)-controlled g-Bessel sequence
for H w. r. t. {Vj}j∈J with bound B if and only if the operator

TP�Q :
⊕

j∈J

Vj →H, TP�Q
({fj}j∈J

)
=

∑

j∈J

(PQ)
1
2 �∗

j fj

is well defined and bounded with ‖TP�Q‖ ≤ √
B.

Proof The necessary condition follows from the definition of (P, Q)-controlled g-Bessel
sequence. We only need to prove that the sufficient condition holds. Suppose that TP�Q is
well defined and bounded operator with ‖TP�Q‖ ≤ √

B. For any f ∈H, we have

∑

j∈J

〈�jPf ,�jQf 〉 =
∑

j∈J

〈
Q�∗

j �jPf , f
〉

= 〈QS�Pf , f 〉

=
〈
(QP)

1
2 S�(QP)

1
2 f , f

〉

=
〈∑

j∈J

(QP)
1
2 �∗

j �j(QP)
1
2 f , f

〉

≤ ‖TP�Q‖
(∑

j∈J

∥∥�i(QP)
1
2 f

∥∥2
) 1

2 ‖f ‖
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= ‖TP�Q‖
(∑

j∈J

〈�jPf ,�jQf 〉
) 1

2 ‖f ‖.

Hence we get

∑

j∈J

〈�jPf ,�jQf 〉 ≤ ‖TP�Q‖2‖f ‖2 ≤ B‖f ‖2.

This shows that {�j}j∈J is a (P, Q)-controlled g-Bessel sequence for H w. r. t. {Vj}j∈J with
bound B. The proof is completed. �

Theorem 4.2 Let P, Q ∈ GL+(H), {�j}j∈J be a (P, P)-controlled g-frame for H w. r. t. {Vj}j∈J

with the synthesis operator TP�P . Then a (Q, Q)-controlled g-frame {�j}j∈J is a (P, Q)-
controlled dual g-frame of {�j}j∈J if and only if

Q�∗
j ej,k = U(ej,kδj), j ∈ J , k ∈ Kj,

where U :
⊕

j∈J Vj →H is a bounded left-inverse of T∗
P�P .

Proof If {gj}j∈J ∈ ⊕
j∈J Vj, then

{gj}j∈J =
∑

j∈J

gjδj =
∑

j∈J

∑

k∈Kj

〈gj, ej,k〉ej,kδj.

Roughly speaking, {ej,kδj}j∈J ,k∈Kj is an o. n. b. of
⊕

j∈J Vj. If there exist U :
⊕

j∈J Vj →H is a
bounded left-inverse of T∗

P�P such that

Q�∗
j ej,k = U(ej,kδj), j ∈ J , k ∈ Kj.

By Lemma 4.1, {�j}j∈J is a (Q, Q)-controlled g-Bessel sequence for H w. r. t. {Vj}j∈J . For any
f ∈H, we have

f = UT∗
P�Pf = U

(∑

j∈J

∑

k∈Kj

〈�jPf , ej,k〉ej,kδj

)

=
∑

j∈J

∑

k∈Kj

〈
f , P�∗

j ej,k
〉
U(ej,kδj)

=
∑

j∈J

∑

k∈Kj

〈f , Puj,k〉Q�∗
j ej,k

=
∑

j∈J

Q�∗
j

(∑

k∈Kj

〈Pf , uj,k〉ej,k

)
=

∑

j∈J

Q�∗
j �jPf ,

where uj,k = �∗
j ej,k . By the definition of controlled dual g-frame, {�j}j∈J is a (P, Q)-

controlled dual g-frame of {�j}j∈J .
On the other hand, suppose that a (Q, Q)-controlled g-frame {�j}j∈J is a (P, Q)-controlled

dual g-frame of {�j}j∈J . For any f ∈H, we have

f =
∑

j∈J

P�∗
j �jQf =

∑

j∈J

Q�∗
j �jPf ,
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that is, TQ�QT∗
P�P = IH. Let U = TQ�Q, then U :

⊕
j∈J Vj → H is a bounded left-inverse of

T∗
P�P . A calculation as above shows that

∑

j∈J

∑

k∈Kj

〈f , Puj,k〉Q�∗
j ej,k = f =

∑

j∈J

∑

k∈Kj

〈f , Puj,k〉U(ej,kδj), ∀f ∈H.

Combining this with the fact {ej,k}k∈Kj is an o. n. b. of Vj, we have

Q�∗
j ej,k = U(ej,kδj), j ∈ J , k ∈ Kj.

The proof is completed. �

Theorem 4.3 Let P ∈ GL+(H), {�j}j∈J be a (P, P)-controlled g-frame for H w. r. t. {Vj}j∈J

with the synthesis operator and frame operator TP�P and SP�P , respectively. Then {�j ∈
L(H,Vj)}j∈J is a P-controlled dual g-frame of {�j}j∈J if and only if

�jf = (Tf )j + �jS–1
P�PPf , j ∈ J , f ∈H,

where T : H → ⊕
j∈J Vj is a bounded linear operator satisfying TP�PT = 0.

Proof If T : H → ⊕
j∈J Vj is a bounded linear operator satisfying TP�PT = 0, then {�j ∈

L(H,Vj)}j∈J is a g-Bessel sequence for H w. r. t. {Vj}j∈J . In fact, for any f ∈H, we have

∑

j∈J

‖�jf ‖2 =
∑

j∈J

∥∥(Tf )j + �jS–1
P�PPf

∥∥2

≤ 2
(∑

j∈J

∥∥�jS–1
P�PPf

∥∥2 + ‖Tf ‖2
)

≤ 2
(
B
∥∥S–1

P�PP
∥∥2 + ‖T‖2)‖f ‖2,

where B is the upper bound of {�j}j∈J . Furthermore,

∑

j∈J

P�∗
j �jf =

∑

j∈J

P�∗
j
(
(Tf )j + �jS–1

P�PPf
)

= TP�T Tf +
∑

j∈J

P�∗
j �jS–1

P�PPf = f .

Thus {�j ∈ L(H,Vj)}j∈J is a P-controlled dual g-frame of {�j}j∈J .
Now we prove the converse. Assume that {�j ∈ L(H,Vj)}j∈J is a P-controlled dual g-

frame of {�j}j∈J . Define the operator T as follows:

T : H →
⊕

j∈J

Vj, f �→ Sf (∀f ∈H)

satisfying

�jf = (Tf )j + �jS–1
P�PPf , j ∈ J .



Liu et al. Journal of Inequalities and Applications         (2023) 2023:64 Page 13 of 14

For any f ∈H, we have

‖Tf ‖2 =
∑

j∈J

∥∥�jf – �jS–1
P�PPf

∥∥2

≤
∑

j∈J

‖�jf ‖2 +
∑

j∈J

∥∥�jS–1
P�PPf

∥∥2 + 2
(∑

j∈J

‖�jf ‖2
) 1

2
(∑

j∈J

∥∥�jS–1
P�PPf

∥∥2
) 1

2

≤ (
B1 + A–1 + 2

√
B1A–1

)‖f ‖2,

where B1 is the frame upper bound of {�j}j∈J , A is the frame lower bound of {�j}j∈J . Thus
T is a linear bounded operator. Moreover, for any f , g ∈H, we have

〈TP�PTf , g〉 =
∑

j∈J

〈
P�∗

j Tf , g
〉

=
∑

j∈J

〈
P�∗

j
(
�jf – �jS–1

P�PPf
)
, g

〉

=
∑

j∈J

〈
P�∗

j �jf , g
〉
–

∑

j∈J

〈
P�∗

j �jS–1
P�PPf , g

〉

= 〈f , g〉 – 〈f , g〉 = 0.

That is, TP�PT = 0. The proof is completed. �
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