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1 Introduction
Ifp>1, —+— =1, ay,b, >0,0< > ah, <ocoand 0< Y >, bl < 0o, then we have the
followmg Hardy Hilbert inequality w1th the best possible constant factor 7/ sin(%) (cf.

[1], Theorem 315):
(Z bz) ; (1)
n=1

Suppose that f(x),g(y) > 0, 0 < [, fP(x)dx < 00 and 0 < [~ g%(y) dy < 00. We have the
integral analog of (1) named in the Hardy—Hilbert’s integral inequality with the same best

S

possible constant factor as follows (cf. [1], Theorem 316):

LR woggm[res) ([Cevs). o

Inequalities (1) and (2) play an important role in analysis and its applications (cf. [2-13]).
In 2006, by applying the Euler—Maclaurin summation formula, Krnic et al. [14] gave
(0 < A <4).1In 2019, by means of the result of

an extension of (1) with the kernel as ¢

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not

L]
@ Sprlnger permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.


https://doi.org/10.1186/s13660-023-02971-9
https://crossmark.crossref.org/dialog/?doi=10.1186/s13660-023-02971-9&domain=pdf
mailto:hxs803@126.com
http://creativecommons.org/licenses/by/4.0/

Huang et al. Journal of Inequalities and Applications (2023) 2023:60

[14], Adiyasuren et al. [15] deduced an inequality involving the same kernel and two partial
sums. In 2020, Mo et al. [16] gave an extension of (2) involving two upper limit functions.
In 2016, Hong et al. [17] provided some equivalent statements of the extension of (1) with
the best possible constant factor related to several parameters. Some other works may be
consulted [18-23].

In this paper, following the way of [16] and [17], by means of the weight functions,
the idea of introducing parameters and the technique of real analysis related to the beta

and gamma functions, a new reverse Hardy—Hilbert-type integral inequality with the ho-

1
(x+y))‘+m+"

is given. As applications, the equivalent statements of the best possible constant factor

mogeneous kernel as (A > 0) involving two derivative functions of higher order
related to several parameters are considered, and some particular inequalities are ob-

tained.

2 Some lemmas

In what follows, we suppose that 0 < p < 1 (g < 0), 1% +1=1,0<h <2 (i=1,2),4 =
el Ay 1= B+ 2 mneNo:={0,1,..}, fO(0), g9(0) (¢>0) (i=0,1,..,m — 15 =
0,1,...,1n — 1) are piecewise-smooth functions, and f@(0+) = g?(0+) =0 (i =0,...,m - 1;

j=0,...,n-1),

==

F ) = g™ () = o(e™) (t>0u— ),

£ (5),g"(y) > 0, such that

[e%e] N 0o ~
0< f P (f("’) (x))qu <oo and O« / yad=r2)-1 (g(”) (y))q dy < oo.
0 0

Lemma 1 Fort>0,f(x) =fO(x), g(y) = g9(y), we have the following expressions:

f ” e f(x)dx = — ” e (x) dx, (3)
0 0

/ eVg(y)dy=— f e g (y) dy. (4)
0 0

Proof Since fi~D(0+) =0 (i = 1,...,m), on integration by parts, we have

/00 e f D (x) dx = /00 e dfiV(x)

0 0
_ e—txf(i—l)(x)l(c;o _/ f(i—l)(x) de—tx
0

-1
im

x—o0o e

+t/ e (x) dx.
0

; . (i-1) o i . (1)
If £V (00) = constant, then hmx_moj% = 0; if /"D (00) = 0o, then hmx_mo% =

. (@) . . . .
%hmxﬁoof ez,(f). Inductively, if there exist a ko = minge(i-1,.m-13{k; f®(00) = constant},

,,,,,
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then

im0 1 SO

= - 1m
X—> 00 etx tho—itl x oo ot

=0;

otherwise, for £ (x) = o(e*) (t > 0; x — 00), we have

(1) 1 (m)
im oL, [0
X—>00 etx =i+l x 500 pt%

It follows that

/we‘txf(i_l)(x)dx: %/Ooe_txf(i)(x)dx (=1,...,m).

0 0

Hence, substitution of i = 1,..., m, we have (3). In the same way, we have (4).
The lemma is proved. g

Lemma 2 Define the following weight functions:

o] t}uz—l

@ (Ao, x) := xk”b/ ——dt (xeR,), (5)

0 (x + t))‘

i 0 tll—l

A1, y) =yt ——dt R,). 6
o) =y [T ey ©

We have the following expressions:
ZD_()\Z) ?C) = B()‘-Z»)\- - }‘-2) (x € R+)» (7)
w()\-liy):B()\l,)‘-_)\l) (yERJr)r (8)

where, B(u,v) := [;° % dt (u,v > 0) is the beta function (cf. [24]).

Proof Setting u = £, we have

~ oo (ux))uz—l oo u)\z—l
A2, =’”2/7d=/ —————du = B(hy, h — Aa),
@ (b2 ) = 0 (x+ux)kx " o (1 +u? u=B02 2

namely, (7) follows. In the same way, we have (8).

The lemma is proved. d

Define the gamma function as follows (cf. [24]):

o) := foo et tdt (a>0). 9)
0

We have the following expression I'(« + 1) = ¢I'(«) (o > 0) and the formula related to the
beta and gamma functions:

B(u,v) =

I‘(u+v)r(u)r(v) (u,v>0). (10)
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For A,x,y > 0, by (9) we can obtain

1
(o + y)r+men - F'A+m+n) )

o0
t(A+m+n)—le—(x+y)t dt. (11)
Lemma 3 We have the following reverse Hardy—Hilbert’s integral inequality:

/ / f (;x-zg)A dxdy>B}j()“2’)‘_)‘Z)B‘ll()\l,)u—kl)

§ [/Omxp(l—il)—l(f(m)(x))pdx]E

5 [/qu(lxﬂl (g(n)(y))qdy]q‘ (12)
0

Proof By the reverse Holder inequality (cf. [25]), we have
0 oo £(m) (n)
[ [y,
(x+ y))\
(Az D/p ” xM1-1)/g o
./ / (x +y)A [xm A (x)] [ng (Y)] dx dy
! 2 ldy i| (m) (,\\? }’1’
- oy s (@) dx
{fo [/0 (x + y)* x1-Dl-1) ( )
00 00 1 x)q—l dx %
- (n) q
* {/0 |:f0 (x+y)* y(f\z—l)(q—l):|(g ») dy}

:|:/00 (Ag, x)a? -h1) l(f(’" )dx]
0

x [ / ” w(hy,y)yIi-+2)-1 (" )" dy] ‘. (13)
0

If (13) keeps the form of equality, then, there exist constants A and B such that they are
not both zero and (cf. [25])

Ao—1 r1-1
J

m p X n q :
Axi(xrl)(p—l) (F" (%)) :Byi(*f”(q’l) ()" a.e. in (0,00) x (0,00).

Assuming that A # 0, there exists a y € (0, 00), such that

1-41)- l(f (x)) [ yql A2) ( (y)) :| ~=41-%2) g e in (0, 00),

which contradicts the fact that 0 < [;° xP(l’Xl)’l(f(m)(x))p dx < co. In fact, fora = A — Ay —
A2 € R, we have fooo x 17 dx = 0.

Then by (7), (8), and (13), we have (12).

The lemma is proved. d
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3 Main results
Theorem 1 We have the following reverse Hardy—Hilbert-type integral inequality involv-

ing two derivative functions of higher order:

[
T(n)

73 Ao, A — Aqu,A A
>F()L+m+n) 7 (%o 2)B1 (A 1)

<[ [wree) dx] [Ty ] (19

In particular, for Ay + Ay = A, (14) reduces to:

/ / (x fjﬁ(*j:z*”

I'(3)
F(A+m+ n)

x U T 1 (0 )P dx]p [/ Oqu“““(g”’(w)qdy}q’ "
0 0

where, the constant factor

()\11)%)

B(X\1, 1) is the best possible. For m = n = 1, we have:

A+m+n

1
/ / (ac+y)Mz B>y e

1

x [ / AP URD-1p7p () dx}p
0

1

x [ / "yt dy] " (16)
0

Proof By (11) and the Fubini theorem (cf. [26]), in view of (3) and (4), we have

I= m fo ) /0 oof ()g() [ fo oot(“’”*”“e(“y”dt] dx dy
m / e (/0‘” e dx) (/ooo wreTen o) dy) &
- m / / f(’”)(x)g(”)(y)[ /0 oot“e@‘*”tdt] dxdy

OOfm)
F(A+m+n)/ / x+y)k a’xdy. (7)

Then by (12), we have (14).
When Aj + Ay = A, Ap = “ + =, k=22 %2 = As, (14) reduces to (15).
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For any 0 < ¢ < A1 min{p, |q|}, we set the following functions:

f(’")(x) ) 0, O<x<1,

£
[T O +i= 9707, x>1,

~(n) o, O<y<1,
=1 gy Aol
[T a+j=2)" 77, y=1,

FO() = /x(/th ) ../tzj(m)(tl)dtl .. dtmk1> dtyr,
g(l)(y / (/tn_] / (t)dty - dt,,_j_l) dt,_j,

where £ (i) = ¥ (u) = o(e™) (t > 0; u — o0), fO(0*) =g"(0*) =0 (k=0,...,m—1;j =
0,...,m—1).Fork=j=0,we havef(x) =g(»)=0,0<x,y<1,

m—1

f(x=]_[(k1+l——)/ (/ / £ Ea dtl---dtm_l)dtm
é(y)=ﬁ(k2 +j- 2) /1y</ltn~~/lt2 tiz_g_ldtlm dtn1> dt,

where, for m = n =0, O;(x" 1) = 0,(y" 1) = 0; for m,n > 1,01 (x™ 1) (resp. O2(y" 1)) is a

nonnegative polynomial of m1 — 1 (resp. n — 1)-order.

If there exists a constant M(> Mmm)B(Al, A2)), such that (15) is valid, when we replace
r()

Foamim B(kl, A2) by M, then in particular, we have
Tl e (C0))
I:= == dxd
v/0 A (x + y)k+m+n xay
0 117 00 %I
>M [ / PRI (7 () dx] [ / yq“‘“)‘l(g?(”)(y))qdy} . (18)
0 0
We find that
) 117 S 1
~ - p(1-11)-1 (F(m) 4 d ] |:/ q(1-12)-1 ]
J |:/0 x (F" (x))" dx i I @ ()" d
m 1 ~ %
:H()\.l——+l)1_[<)\2——+]>< x 1dx) (/ y—g_ldy)
p 1
1 m-1 s n-1
81:(!(1_;+l)1_[<2__+])

5
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In view of the Fubini theorem (cf. [26]), we have
00 oo ha-gn-l B 00 00 ro—L+n-1
f</ / A dy |x et dx:/ e / M gu|adx
- 1 1 (x +y))»+m+n 1 % (1 + u)k+m+n
00 1 ro—E£+n-1 00 0o . Ap—L+n-1
u q u q
:/ a1 ———du dx+/ a1 / ————du|dx
1 % (1 + u)k+m+n 1 1 (1 + u)k+m+n
1 %) Ap—E4n-1 00 ro—E+n-1
u- 1 1 ua
:/ / x_s_ldx 7(1144'—‘/ 76114
0 % (1 + u)A+m+n e i (1 + M)A+m+n
1 1 M)»2+15—7+n—1 00 ukg—%ﬂz—l
=— ———du+ / ———du|.
< 0 (1 + M)A+m+n 1 (1 + u)k+m+n
Then by (18), it follows that

1 u)\2+1%+n—1 00 M)\z—%rn—l _ .
————du+ (7du281>8M]
1

(1 + M)A+m+n 1+ M)A+m+n
m-1 e n-1 e
=M1_[<A1——+i> <A2——+j>.
i0 p -0 q
Putting ¢ — 0%, in view of the continuity of the beta function, we have:

175 ( + ) l_[;':_ol (A2

) 0B A)
T +m+n) b2

m— n-1
=B\ +m, Ay + 1) > 1_[)»1+l1_[?»2+]
i=0 j=0

Namely, & x+m+n B(A1,)y) > M. Hence, M = mB()\.l, Ap) is the best possible constant
of (15).
The theorem is proved. O

Theorem 2 If A — Ay — Ay € (—=pAy, p(A — A1), and the constant factor

'(x)

1 1
———— BP (A9, A = A9)B7 (A, A — A
SO man) (Ao 2)B1 (A 1)

in (14) is the best possible, then we have A1 + Ly = A.

Proof We have

~ ~ A=Xy A1 A=X1 Ay A A
A+ Ay = + — + +—=—+—=A.
p q q p pP 9

For A — A1 — Ay € (=pA1, p(A — A1)), we find that
—19)\1 +)\1 <)\.—)\.2 <p()\—)\.1)+)\.1

and then 0 < ):1 = % + %1 < A, from which it follows that 0 < ):z =A— ):z < A. Hence, we

have B(A1, 2) € R,.
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By the reverse Holder inequality (cf. [25]), we still have

A 00 ):171 00 1 Py
B()»lykz):/ Ldu=/ —_ P2+__ldu
o (1+u? o Qrup”

1 A—hg-1 Ap-1

:/me(uT)(uT)du

yhra-l B[ roo -l i
[ +wy H/o (1+u)kd”}

= BF (Ao, — A2)BT (A1, A = A1), (19)

v

On substitution of A; = A; (i = 1,2) in (15), we have
r'(\) -
dxdy > ——————B(Aq, A
/ _/ (x+y)“m”‘ y>F(A+m+n) (h1,22)
1

= i1 (plm) P |’
x[/o x TARIEY)) x]

1
% R i
% [/ yq(l—kz)—l(g(n)(y))q dyi| . (20)
0
Since r( BP (Ao, A — Az)B%(kl,)\ A1) in (14) is the best possible, we have the following
1nequahty.
r) () A A
—B!’k,)» A Bq)\.,)\, A —— B(A 1, A R,,
SO man) (A2 2)B7 (M 1)_I’(A+m+ ) (A1,42) €

namely, B(i1, %2) < B (o, A = 22)BE (o, ) = A1).

Hence, (19) keeps the form of equality. Then (cf. [25]), there exist constants A and B
such that they are not both zero, and Au*27! = Bu*17! a.e. in R,. Assuming that A # 0,
we have #2741 = £ a.e. in R,. It follows that A — A; — A, = 0, and then A; + A3 = A.

The theorem is proved. O

Theorem 3 The following statements (i), (ii), (iii), and (iv) are equivalent:
1 1
(i) Both B? (Ay, A —A2)B47 (A1, A— A1) and B(% + %1, % + %) are independent of p, q;
(ii)

(21)

1 1 A=A M A=A A
BP (A, k= A2)B1 (A1, A — A1) ZB( 2 2 Ly —2>;

p 4 q p

(111) lf}\. —A— A€ (_p}"l’p()" }\.1)) then AM+Ary=A;
1
BP (A A = A2)B7 (A1, A — Ay) in (14) is the best possible.

(iv) the constant factor &

k+m+n

Proof (i) = (ii). In view of (i) and the continuity of the beta function, we have

BP (hyy & — Ap)BH (b, A — A1)

= lim lim B? (g A — A9)BE Ay, & — A1) = BOgy A — A),

g—>—-00p—1~
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A=Xdy A A—=Ap Ay ) . A=Xy A A—=A1 A
B +—, +— )= lim lim B +—, + —=
p 9 9 p a=—oop=>1” p 9 49 p

= B(Ag, X — Ag).

Hence, we have (21).

(ii) = (iii). By (21), (19) keeps the form of equality. In view of the proof of Theorem 2,
we have A1 + Ay = A.

(iii) = (i). If A1 + A3 = A, then

B (hay k= 3)Bi (b, A — A1) = B(A1, M),

<A—A2 A A=) Az
B +—,
p 9 4 P

) B()‘-I’)LZ)'

1 1
Hence, both B? (Ay, A — A2)B4 (A1, A — A1) and B(% + %1, % + %) are independent of p,
q.
(iii) = (iv). If A; + Ao = A, then by Theorem 1, the constant factor

(L)
LA +m+ n)

N

1 1
————BP(Ag, A = A9)B1 (A, A — A =
B k= 2)BY 1>(

B()“l» A2))

is the best possible in (14).
(iv) = (iii). By Theorem 2, if . — 11 — X3 € (=pA1, p(A — A1)), then we have A1 + Xy = A.
Therefore, statements (i), (ii), (iii), and (iv) are equivalent.

The theorem is proved. d

Remark1 ForA=1,A1 = %, Ay = % (r>1, =1)in (15), we have

R R A€ 46) ps
/o /0 (x + y)Lrmsn drdy> (m + n)!'sin(w /r)
X [/Omxg‘l(f(m)(x))p dx:| ’
x [ f ygl(g(”’(y))qdy] " (22)
0
In particular, for r = s = 2, m = n, (22) reduces to
EEIN Y R RYPEINY ’
/ / (x +y)”2” dudy > (2n)! Uo ) dx]
8- 7- 23
x [ /0 ("0)"d ] (23)

The constant factors in the above inequalities are the best possible.
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